2 This file is part of GNUnet.
3 Copyright (C) 2012, 2013, 2015 GNUnet e.V.
5 GNUnet is free software: you can redistribute it and/or modify it
6 under the terms of the GNU Affero General Public License as published
7 by the Free Software Foundation, either version 3 of the License,
8 or (at your option) any later version.
10 GNUnet is distributed in the hope that it will be useful, but
11 WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Affero General Public License for more details.
15 You should have received a copy of the GNU Affero General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
18 SPDX-License-Identifier: AGPL3.0-or-later
22 * @file util/crypto_ecc_dlog.c
23 * @brief ECC addition and discreate logarithm for small values.
24 * Allows us to use ECC for computations as long as the
25 * result is relativey small.
26 * @author Christian Grothoff
30 #include "gnunet_crypto_lib.h"
31 #include "gnunet_container_lib.h"
35 * Name of the curve we are using. Note that we have hard-coded
36 * structs that use 256 bits, so using a bigger curve will require
37 * changes that break stuff badly. The name of the curve given here
38 * must be agreed by all peers and be supported by libgcrypt.
40 #define CURVE "Ed25519"
47 extract_pk (gcry_mpi_point_t pt,
49 struct GNUNET_PeerIdentity *pid)
53 GNUNET_assert (0 == gcry_mpi_ec_set_point ("q", pt, ctx));
54 q_y = gcry_mpi_ec_get_mpi ("q@eddsa", ctx, 0);
56 GNUNET_CRYPTO_mpi_print_unsigned (pid->public_key.q_y,
57 sizeof (pid->public_key.q_y),
59 gcry_mpi_release (q_y);
64 * Internal structure used to cache pre-calculated values for DLOG calculation.
66 struct GNUNET_CRYPTO_EccDlogContext
69 * Maximum absolute value the calculation supports.
74 * How much memory should we use (relates to the number of entries in the map).
79 * Map mapping points (here "interpreted" as EdDSA public keys) to
80 * a "void * = long" which corresponds to the numeric value of the
81 * point. As NULL is used to represent "unknown", the actual value
82 * represented by the entry in the map is the "long" minus @e max.
84 struct GNUNET_CONTAINER_MultiPeerMap *map;
87 * Context to use for operations on the elliptic curve.
95 * Convert point value to binary representation.
97 * @param edc calculation context for ECC operations
98 * @param point computational point representation
99 * @param[out] bin binary point representation
102 GNUNET_CRYPTO_ecc_point_to_bin (struct GNUNET_CRYPTO_EccDlogContext *edc,
103 gcry_mpi_point_t point,
104 struct GNUNET_CRYPTO_EccPoint *bin)
108 GNUNET_assert (0 == gcry_mpi_ec_set_point ("q", point, edc->ctx));
109 q_y = gcry_mpi_ec_get_mpi ("q@eddsa", edc->ctx, 0);
111 GNUNET_CRYPTO_mpi_print_unsigned (bin->q_y,
114 gcry_mpi_release (q_y);
119 * Convert binary representation of a point to computational representation.
121 * @param edc calculation context for ECC operations
122 * @param bin binary point representation
123 * @return computational representation
126 GNUNET_CRYPTO_ecc_bin_to_point (struct GNUNET_CRYPTO_EccDlogContext *edc,
127 const struct GNUNET_CRYPTO_EccPoint *bin)
129 gcry_sexp_t pub_sexpr;
134 if (0 != gcry_sexp_build (&pub_sexpr, NULL,
135 "(public-key(ecc(curve " CURVE ")(q %b)))",
136 (int) sizeof (bin->q_y),
142 GNUNET_assert (0 == gcry_mpi_ec_new (&ctx, pub_sexpr, NULL));
143 gcry_sexp_release (pub_sexpr);
144 q = gcry_mpi_ec_get_point ("q", ctx, 0);
145 gcry_ctx_release (ctx);
151 * Do pre-calculation for ECC discrete logarithm for small factors.
153 * @param max maximum value the factor can be
154 * @param mem memory to use (should be smaller than @a max), must not be zero.
155 * @return NULL on error
157 struct GNUNET_CRYPTO_EccDlogContext *
158 GNUNET_CRYPTO_ecc_dlog_prepare (unsigned int max,
161 struct GNUNET_CRYPTO_EccDlogContext *edc;
162 unsigned int K = ((max + (mem-1)) / mem);
164 struct GNUNET_PeerIdentity key;
165 gcry_mpi_point_t gKi;
170 GNUNET_assert (max < INT32_MAX);
171 edc = GNUNET_new (struct GNUNET_CRYPTO_EccDlogContext);
175 edc->map = GNUNET_CONTAINER_multipeermap_create (mem * 2,
178 GNUNET_assert (0 == gcry_mpi_ec_new (&edc->ctx,
181 g = gcry_mpi_ec_get_point ("g", edc->ctx, 0);
182 GNUNET_assert (NULL != g);
183 fact = gcry_mpi_new (0);
184 gKi = gcry_mpi_point_new (0);
187 gcry_mpi_set_ui (fact, i * K);
188 gcry_mpi_ec_mul (gKi, fact, g, edc->ctx);
189 extract_pk (gKi, edc->ctx, &key);
190 GNUNET_assert (GNUNET_OK ==
191 GNUNET_CONTAINER_multipeermap_put (edc->map,
193 (void*) (long) i + max,
194 GNUNET_CONTAINER_MULTIHASHMAPOPTION_UNIQUE_ONLY));
196 /* negative values */
197 n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1);
200 gcry_mpi_set_ui (fact, i * K);
201 gcry_mpi_sub (fact, n, fact);
202 gcry_mpi_ec_mul (gKi, fact, g, edc->ctx);
203 extract_pk (gKi, edc->ctx, &key);
204 GNUNET_assert (GNUNET_OK ==
205 GNUNET_CONTAINER_multipeermap_put (edc->map,
207 (void*) (long) max - i,
208 GNUNET_CONTAINER_MULTIHASHMAPOPTION_UNIQUE_ONLY));
210 gcry_mpi_release (fact);
211 gcry_mpi_release (n);
212 gcry_mpi_point_release (gKi);
213 gcry_mpi_point_release (g);
219 * Calculate ECC discrete logarithm for small factors.
221 * @param edc precalculated values, determine range of factors
222 * @param input point on the curve to factor
223 * @return INT_MAX if dlog failed, otherwise the factor
226 GNUNET_CRYPTO_ecc_dlog (struct GNUNET_CRYPTO_EccDlogContext *edc,
227 gcry_mpi_point_t input)
229 unsigned int K = ((edc->max + (edc->mem-1)) / edc->mem);
231 struct GNUNET_PeerIdentity key;
237 g = gcry_mpi_ec_get_point ("g", edc->ctx, 0);
238 GNUNET_assert (NULL != g);
239 q = gcry_mpi_point_new (0);
242 for (i=0;i<=edc->max/edc->mem;i++)
245 extract_pk (input, edc->ctx, &key);
247 extract_pk (q, edc->ctx, &key);
248 retp = GNUNET_CONTAINER_multipeermap_get (edc->map,
252 res = (((long) retp) - edc->max) * K - i;
253 /* we continue the loop here to make the implementation
254 "constant-time". If we do not care about this, we could just
255 'break' here and do fewer operations... */
257 if (i == edc->max/edc->mem)
261 gcry_mpi_ec_add (q, input, g, edc->ctx);
263 gcry_mpi_ec_add (q, q, g, edc->ctx);
265 gcry_mpi_point_release (g);
266 gcry_mpi_point_release (q);
273 * Generate a random value mod n.
275 * @param edc ECC context
276 * @return random value mod n.
279 GNUNET_CRYPTO_ecc_random_mod_n (struct GNUNET_CRYPTO_EccDlogContext *edc)
282 unsigned int highbit;
285 n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1);
287 /* check public key for number of bits, bail out if key is all zeros */
288 highbit = 256; /* Curve25519 */
289 while ( (! gcry_mpi_test_bit (n, highbit)) &&
292 GNUNET_assert (0 != highbit);
293 /* generate fact < n (without bias) */
294 GNUNET_assert (NULL != (r = gcry_mpi_new (0)));
296 gcry_mpi_randomize (r,
300 while (gcry_mpi_cmp (r, n) >= 0);
301 gcry_mpi_release (n);
307 * Release precalculated values.
309 * @param edc dlog context
312 GNUNET_CRYPTO_ecc_dlog_release (struct GNUNET_CRYPTO_EccDlogContext *edc)
314 gcry_ctx_release (edc->ctx);
315 GNUNET_CONTAINER_multipeermap_destroy (edc->map);
321 * Multiply the generator g of the elliptic curve by @a val
322 * to obtain the point on the curve representing @a val.
323 * Afterwards, point addition will correspond to integer
324 * addition. #GNUNET_CRYPTO_ecc_dlog() can be used to
325 * convert a point back to an integer (as long as the
326 * integer is smaller than the MAX of the @a edc context).
328 * @param edc calculation context for ECC operations
329 * @param val value to encode into a point
330 * @return representation of the value as an ECC point,
331 * must be freed using #GNUNET_CRYPTO_ecc_free()
334 GNUNET_CRYPTO_ecc_dexp (struct GNUNET_CRYPTO_EccDlogContext *edc,
342 g = gcry_mpi_ec_get_point ("g", edc->ctx, 0);
343 GNUNET_assert (NULL != g);
344 fact = gcry_mpi_new (0);
347 n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1);
348 gcry_mpi_set_ui (fact, - val);
349 gcry_mpi_sub (fact, n, fact);
350 gcry_mpi_release (n);
354 gcry_mpi_set_ui (fact, val);
356 r = gcry_mpi_point_new (0);
357 gcry_mpi_ec_mul (r, fact, g, edc->ctx);
358 gcry_mpi_release (fact);
359 gcry_mpi_point_release (g);
365 * Multiply the generator g of the elliptic curve by @a val
366 * to obtain the point on the curve representing @a val.
368 * @param edc calculation context for ECC operations
369 * @param val (positive) value to encode into a point
370 * @return representation of the value as an ECC point,
371 * must be freed using #GNUNET_CRYPTO_ecc_free()
374 GNUNET_CRYPTO_ecc_dexp_mpi (struct GNUNET_CRYPTO_EccDlogContext *edc,
380 g = gcry_mpi_ec_get_point ("g", edc->ctx, 0);
381 GNUNET_assert (NULL != g);
382 r = gcry_mpi_point_new (0);
383 gcry_mpi_ec_mul (r, val, g, edc->ctx);
384 gcry_mpi_point_release (g);
390 * Add two points on the elliptic curve.
392 * @param edc calculation context for ECC operations
393 * @param a some value
394 * @param b some value
395 * @return @a a + @a b, must be freed using #GNUNET_CRYPTO_ecc_free()
398 GNUNET_CRYPTO_ecc_add (struct GNUNET_CRYPTO_EccDlogContext *edc,
404 r = gcry_mpi_point_new (0);
405 gcry_mpi_ec_add (r, a, b, edc->ctx);
411 * Multiply the point @a p on the elliptic curve by @a val.
413 * @param edc calculation context for ECC operations
414 * @param p point to multiply
415 * @param val (positive) value to encode into a point
416 * @return representation of the value as an ECC point,
417 * must be freed using #GNUNET_CRYPTO_ecc_free()
420 GNUNET_CRYPTO_ecc_pmul_mpi (struct GNUNET_CRYPTO_EccDlogContext *edc,
426 r = gcry_mpi_point_new (0);
427 gcry_mpi_ec_mul (r, val, p, edc->ctx);
433 * Obtain a random point on the curve and its
434 * additive inverse. Both returned values
435 * must be freed using #GNUNET_CRYPTO_ecc_free().
437 * @param edc calculation context for ECC operations
438 * @param[out] r set to a random point on the curve
439 * @param[out] r_inv set to the additive inverse of @a r
442 GNUNET_CRYPTO_ecc_rnd (struct GNUNET_CRYPTO_EccDlogContext *edc,
444 gcry_mpi_point_t *r_inv)
450 fact = GNUNET_CRYPTO_ecc_random_mod_n (edc);
453 g = gcry_mpi_ec_get_point ("g", edc->ctx, 0);
454 GNUNET_assert (NULL != g);
455 *r = gcry_mpi_point_new (0);
456 gcry_mpi_ec_mul (*r, fact, g, edc->ctx);
458 /* calculate 'r_inv' */
459 n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1);
460 gcry_mpi_sub (fact, n, fact); /* fact = n - fact = - fact */
461 *r_inv = gcry_mpi_point_new (0);
462 gcry_mpi_ec_mul (*r_inv, fact, g, edc->ctx);
464 gcry_mpi_release (n);
465 gcry_mpi_release (fact);
466 gcry_mpi_point_release (g);
471 * Obtain a random scalar for point multiplication on the curve and
472 * its multiplicative inverse.
474 * @param edc calculation context for ECC operations
475 * @param[out] r set to a random scalar on the curve
476 * @param[out] r_inv set to the multiplicative inverse of @a r
479 GNUNET_CRYPTO_ecc_rnd_mpi (struct GNUNET_CRYPTO_EccDlogContext *edc,
485 *r = GNUNET_CRYPTO_ecc_random_mod_n (edc);
486 /* r_inv = n - r = - r */
487 *r_inv = gcry_mpi_new (0);
488 n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1);
489 gcry_mpi_sub (*r_inv, n, *r);
494 * Free a point value returned by the API.
496 * @param p point to free
499 GNUNET_CRYPTO_ecc_free (gcry_mpi_point_t p)
501 gcry_mpi_point_release (p);
505 /* end of crypto_ecc_dlog.c */