x86: qemu: Fix build warnings with CONFIG_DISTRO_DEFAULTS=n
[oweals/u-boot.git] / net / net.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *      Copied from Linux Monitor (LiMon) - Networking.
4  *
5  *      Copyright 1994 - 2000 Neil Russell.
6  *      (See License)
7  *      Copyright 2000 Roland Borde
8  *      Copyright 2000 Paolo Scaffardi
9  *      Copyright 2000-2002 Wolfgang Denk, wd@denx.de
10  */
11
12 /*
13  * General Desription:
14  *
15  * The user interface supports commands for BOOTP, RARP, and TFTP.
16  * Also, we support ARP internally. Depending on available data,
17  * these interact as follows:
18  *
19  * BOOTP:
20  *
21  *      Prerequisites:  - own ethernet address
22  *      We want:        - own IP address
23  *                      - TFTP server IP address
24  *                      - name of bootfile
25  *      Next step:      ARP
26  *
27  * LINK_LOCAL:
28  *
29  *      Prerequisites:  - own ethernet address
30  *      We want:        - own IP address
31  *      Next step:      ARP
32  *
33  * RARP:
34  *
35  *      Prerequisites:  - own ethernet address
36  *      We want:        - own IP address
37  *                      - TFTP server IP address
38  *      Next step:      ARP
39  *
40  * ARP:
41  *
42  *      Prerequisites:  - own ethernet address
43  *                      - own IP address
44  *                      - TFTP server IP address
45  *      We want:        - TFTP server ethernet address
46  *      Next step:      TFTP
47  *
48  * DHCP:
49  *
50  *     Prerequisites:   - own ethernet address
51  *     We want:         - IP, Netmask, ServerIP, Gateway IP
52  *                      - bootfilename, lease time
53  *     Next step:       - TFTP
54  *
55  * TFTP:
56  *
57  *      Prerequisites:  - own ethernet address
58  *                      - own IP address
59  *                      - TFTP server IP address
60  *                      - TFTP server ethernet address
61  *                      - name of bootfile (if unknown, we use a default name
62  *                        derived from our own IP address)
63  *      We want:        - load the boot file
64  *      Next step:      none
65  *
66  * NFS:
67  *
68  *      Prerequisites:  - own ethernet address
69  *                      - own IP address
70  *                      - name of bootfile (if unknown, we use a default name
71  *                        derived from our own IP address)
72  *      We want:        - load the boot file
73  *      Next step:      none
74  *
75  * SNTP:
76  *
77  *      Prerequisites:  - own ethernet address
78  *                      - own IP address
79  *      We want:        - network time
80  *      Next step:      none
81  *
82  * WOL:
83  *
84  *      Prerequisites:  - own ethernet address
85  *      We want:        - magic packet or timeout
86  *      Next step:      none
87  */
88
89
90 #include <common.h>
91 #include <command.h>
92 #include <console.h>
93 #include <env.h>
94 #include <env_internal.h>
95 #include <errno.h>
96 #include <net.h>
97 #include <net/fastboot.h>
98 #include <net/tftp.h>
99 #if defined(CONFIG_LED_STATUS)
100 #include <miiphy.h>
101 #include <status_led.h>
102 #endif
103 #include <watchdog.h>
104 #include <linux/compiler.h>
105 #include "arp.h"
106 #include "bootp.h"
107 #include "cdp.h"
108 #if defined(CONFIG_CMD_DNS)
109 #include "dns.h"
110 #endif
111 #include "link_local.h"
112 #include "nfs.h"
113 #include "ping.h"
114 #include "rarp.h"
115 #if defined(CONFIG_CMD_SNTP)
116 #include "sntp.h"
117 #endif
118 #if defined(CONFIG_CMD_WOL)
119 #include "wol.h"
120 #endif
121
122 /** BOOTP EXTENTIONS **/
123
124 /* Our subnet mask (0=unknown) */
125 struct in_addr net_netmask;
126 /* Our gateways IP address */
127 struct in_addr net_gateway;
128 /* Our DNS IP address */
129 struct in_addr net_dns_server;
130 #if defined(CONFIG_BOOTP_DNS2)
131 /* Our 2nd DNS IP address */
132 struct in_addr net_dns_server2;
133 #endif
134
135 /** END OF BOOTP EXTENTIONS **/
136
137 /* Our ethernet address */
138 u8 net_ethaddr[6];
139 /* Boot server enet address */
140 u8 net_server_ethaddr[6];
141 /* Our IP addr (0 = unknown) */
142 struct in_addr  net_ip;
143 /* Server IP addr (0 = unknown) */
144 struct in_addr  net_server_ip;
145 /* Current receive packet */
146 uchar *net_rx_packet;
147 /* Current rx packet length */
148 int             net_rx_packet_len;
149 /* IP packet ID */
150 static unsigned net_ip_id;
151 /* Ethernet bcast address */
152 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
153 const u8 net_null_ethaddr[6];
154 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
155 void (*push_packet)(void *, int len) = 0;
156 #endif
157 /* Network loop state */
158 enum net_loop_state net_state;
159 /* Tried all network devices */
160 int             net_restart_wrap;
161 /* Network loop restarted */
162 static int      net_restarted;
163 /* At least one device configured */
164 static int      net_dev_exists;
165
166 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
167 /* default is without VLAN */
168 ushort          net_our_vlan = 0xFFFF;
169 /* ditto */
170 ushort          net_native_vlan = 0xFFFF;
171
172 /* Boot File name */
173 char net_boot_file_name[1024];
174 /* Indicates whether the file name was specified on the command line */
175 bool net_boot_file_name_explicit;
176 /* The actual transferred size of the bootfile (in bytes) */
177 u32 net_boot_file_size;
178 /* Boot file size in blocks as reported by the DHCP server */
179 u32 net_boot_file_expected_size_in_blocks;
180
181 #if defined(CONFIG_CMD_SNTP)
182 /* NTP server IP address */
183 struct in_addr  net_ntp_server;
184 /* offset time from UTC */
185 int             net_ntp_time_offset;
186 #endif
187
188 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
189 /* Receive packets */
190 uchar *net_rx_packets[PKTBUFSRX];
191 /* Current UDP RX packet handler */
192 static rxhand_f *udp_packet_handler;
193 /* Current ARP RX packet handler */
194 static rxhand_f *arp_packet_handler;
195 #ifdef CONFIG_CMD_TFTPPUT
196 /* Current ICMP rx handler */
197 static rxhand_icmp_f *packet_icmp_handler;
198 #endif
199 /* Current timeout handler */
200 static thand_f *time_handler;
201 /* Time base value */
202 static ulong    time_start;
203 /* Current timeout value */
204 static ulong    time_delta;
205 /* THE transmit packet */
206 uchar *net_tx_packet;
207
208 static int net_check_prereq(enum proto_t protocol);
209
210 static int net_try_count;
211
212 int __maybe_unused net_busy_flag;
213
214 /**********************************************************************/
215
216 static int on_ipaddr(const char *name, const char *value, enum env_op op,
217         int flags)
218 {
219         if (flags & H_PROGRAMMATIC)
220                 return 0;
221
222         net_ip = string_to_ip(value);
223
224         return 0;
225 }
226 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
227
228 static int on_gatewayip(const char *name, const char *value, enum env_op op,
229         int flags)
230 {
231         if (flags & H_PROGRAMMATIC)
232                 return 0;
233
234         net_gateway = string_to_ip(value);
235
236         return 0;
237 }
238 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
239
240 static int on_netmask(const char *name, const char *value, enum env_op op,
241         int flags)
242 {
243         if (flags & H_PROGRAMMATIC)
244                 return 0;
245
246         net_netmask = string_to_ip(value);
247
248         return 0;
249 }
250 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
251
252 static int on_serverip(const char *name, const char *value, enum env_op op,
253         int flags)
254 {
255         if (flags & H_PROGRAMMATIC)
256                 return 0;
257
258         net_server_ip = string_to_ip(value);
259
260         return 0;
261 }
262 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
263
264 static int on_nvlan(const char *name, const char *value, enum env_op op,
265         int flags)
266 {
267         if (flags & H_PROGRAMMATIC)
268                 return 0;
269
270         net_native_vlan = string_to_vlan(value);
271
272         return 0;
273 }
274 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
275
276 static int on_vlan(const char *name, const char *value, enum env_op op,
277         int flags)
278 {
279         if (flags & H_PROGRAMMATIC)
280                 return 0;
281
282         net_our_vlan = string_to_vlan(value);
283
284         return 0;
285 }
286 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
287
288 #if defined(CONFIG_CMD_DNS)
289 static int on_dnsip(const char *name, const char *value, enum env_op op,
290         int flags)
291 {
292         if (flags & H_PROGRAMMATIC)
293                 return 0;
294
295         net_dns_server = string_to_ip(value);
296
297         return 0;
298 }
299 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
300 #endif
301
302 /*
303  * Check if autoload is enabled. If so, use either NFS or TFTP to download
304  * the boot file.
305  */
306 void net_auto_load(void)
307 {
308 #if defined(CONFIG_CMD_NFS)
309         const char *s = env_get("autoload");
310
311         if (s != NULL && strcmp(s, "NFS") == 0) {
312                 if (net_check_prereq(NFS)) {
313 /* We aren't expecting to get a serverip, so just accept the assigned IP */
314 #ifdef CONFIG_BOOTP_SERVERIP
315                         net_set_state(NETLOOP_SUCCESS);
316 #else
317                         printf("Cannot autoload with NFS\n");
318                         net_set_state(NETLOOP_FAIL);
319 #endif
320                         return;
321                 }
322                 /*
323                  * Use NFS to load the bootfile.
324                  */
325                 nfs_start();
326                 return;
327         }
328 #endif
329         if (env_get_yesno("autoload") == 0) {
330                 /*
331                  * Just use BOOTP/RARP to configure system;
332                  * Do not use TFTP to load the bootfile.
333                  */
334                 net_set_state(NETLOOP_SUCCESS);
335                 return;
336         }
337         if (net_check_prereq(TFTPGET)) {
338 /* We aren't expecting to get a serverip, so just accept the assigned IP */
339 #ifdef CONFIG_BOOTP_SERVERIP
340                 net_set_state(NETLOOP_SUCCESS);
341 #else
342                 printf("Cannot autoload with TFTPGET\n");
343                 net_set_state(NETLOOP_FAIL);
344 #endif
345                 return;
346         }
347         tftp_start(TFTPGET);
348 }
349
350 static void net_init_loop(void)
351 {
352         if (eth_get_dev())
353                 memcpy(net_ethaddr, eth_get_ethaddr(), 6);
354
355         return;
356 }
357
358 static void net_clear_handlers(void)
359 {
360         net_set_udp_handler(NULL);
361         net_set_arp_handler(NULL);
362         net_set_timeout_handler(0, NULL);
363 }
364
365 static void net_cleanup_loop(void)
366 {
367         net_clear_handlers();
368 }
369
370 void net_init(void)
371 {
372         static int first_call = 1;
373
374         if (first_call) {
375                 /*
376                  *      Setup packet buffers, aligned correctly.
377                  */
378                 int i;
379
380                 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
381                 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
382                 for (i = 0; i < PKTBUFSRX; i++) {
383                         net_rx_packets[i] = net_tx_packet +
384                                 (i + 1) * PKTSIZE_ALIGN;
385                 }
386                 arp_init();
387                 net_clear_handlers();
388
389                 /* Only need to setup buffer pointers once. */
390                 first_call = 0;
391         }
392
393         net_init_loop();
394 }
395
396 /**********************************************************************/
397 /*
398  *      Main network processing loop.
399  */
400
401 int net_loop(enum proto_t protocol)
402 {
403         int ret = -EINVAL;
404         enum net_loop_state prev_net_state = net_state;
405
406         net_restarted = 0;
407         net_dev_exists = 0;
408         net_try_count = 1;
409         debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
410
411         bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
412         net_init();
413         if (eth_is_on_demand_init() || protocol != NETCONS) {
414                 eth_halt();
415                 eth_set_current();
416                 ret = eth_init();
417                 if (ret < 0) {
418                         eth_halt();
419                         return ret;
420                 }
421         } else {
422                 eth_init_state_only();
423         }
424 restart:
425 #ifdef CONFIG_USB_KEYBOARD
426         net_busy_flag = 0;
427 #endif
428         net_set_state(NETLOOP_CONTINUE);
429
430         /*
431          *      Start the ball rolling with the given start function.  From
432          *      here on, this code is a state machine driven by received
433          *      packets and timer events.
434          */
435         debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
436         net_init_loop();
437
438         switch (net_check_prereq(protocol)) {
439         case 1:
440                 /* network not configured */
441                 eth_halt();
442                 net_set_state(prev_net_state);
443                 return -ENODEV;
444
445         case 2:
446                 /* network device not configured */
447                 break;
448
449         case 0:
450                 net_dev_exists = 1;
451                 net_boot_file_size = 0;
452                 switch (protocol) {
453                 case TFTPGET:
454 #ifdef CONFIG_CMD_TFTPPUT
455                 case TFTPPUT:
456 #endif
457                         /* always use ARP to get server ethernet address */
458                         tftp_start(protocol);
459                         break;
460 #ifdef CONFIG_CMD_TFTPSRV
461                 case TFTPSRV:
462                         tftp_start_server();
463                         break;
464 #endif
465 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT
466                 case FASTBOOT:
467                         fastboot_start_server();
468                         break;
469 #endif
470 #if defined(CONFIG_CMD_DHCP)
471                 case DHCP:
472                         bootp_reset();
473                         net_ip.s_addr = 0;
474                         dhcp_request();         /* Basically same as BOOTP */
475                         break;
476 #endif
477
478                 case BOOTP:
479                         bootp_reset();
480                         net_ip.s_addr = 0;
481                         bootp_request();
482                         break;
483
484 #if defined(CONFIG_CMD_RARP)
485                 case RARP:
486                         rarp_try = 0;
487                         net_ip.s_addr = 0;
488                         rarp_request();
489                         break;
490 #endif
491 #if defined(CONFIG_CMD_PING)
492                 case PING:
493                         ping_start();
494                         break;
495 #endif
496 #if defined(CONFIG_CMD_NFS)
497                 case NFS:
498                         nfs_start();
499                         break;
500 #endif
501 #if defined(CONFIG_CMD_CDP)
502                 case CDP:
503                         cdp_start();
504                         break;
505 #endif
506 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
507                 case NETCONS:
508                         nc_start();
509                         break;
510 #endif
511 #if defined(CONFIG_CMD_SNTP)
512                 case SNTP:
513                         sntp_start();
514                         break;
515 #endif
516 #if defined(CONFIG_CMD_DNS)
517                 case DNS:
518                         dns_start();
519                         break;
520 #endif
521 #if defined(CONFIG_CMD_LINK_LOCAL)
522                 case LINKLOCAL:
523                         link_local_start();
524                         break;
525 #endif
526 #if defined(CONFIG_CMD_WOL)
527                 case WOL:
528                         wol_start();
529                         break;
530 #endif
531                 default:
532                         break;
533                 }
534
535                 break;
536         }
537
538 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
539 #if     defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)        && \
540         defined(CONFIG_LED_STATUS)                      && \
541         defined(CONFIG_LED_STATUS_RED)
542         /*
543          * Echo the inverted link state to the fault LED.
544          */
545         if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
546                 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
547         else
548                 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
549 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
550 #endif /* CONFIG_MII, ... */
551 #ifdef CONFIG_USB_KEYBOARD
552         net_busy_flag = 1;
553 #endif
554
555         /*
556          *      Main packet reception loop.  Loop receiving packets until
557          *      someone sets `net_state' to a state that terminates.
558          */
559         for (;;) {
560                 WATCHDOG_RESET();
561 #ifdef CONFIG_SHOW_ACTIVITY
562                 show_activity(1);
563 #endif
564                 if (arp_timeout_check() > 0)
565                         time_start = get_timer(0);
566
567                 /*
568                  *      Check the ethernet for a new packet.  The ethernet
569                  *      receive routine will process it.
570                  *      Most drivers return the most recent packet size, but not
571                  *      errors that may have happened.
572                  */
573                 eth_rx();
574
575                 /*
576                  *      Abort if ctrl-c was pressed.
577                  */
578                 if (ctrlc()) {
579                         /* cancel any ARP that may not have completed */
580                         net_arp_wait_packet_ip.s_addr = 0;
581
582                         net_cleanup_loop();
583                         eth_halt();
584                         /* Invalidate the last protocol */
585                         eth_set_last_protocol(BOOTP);
586
587                         puts("\nAbort\n");
588                         /* include a debug print as well incase the debug
589                            messages are directed to stderr */
590                         debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
591                         ret = -EINTR;
592                         goto done;
593                 }
594
595                 /*
596                  *      Check for a timeout, and run the timeout handler
597                  *      if we have one.
598                  */
599                 if (time_handler &&
600                     ((get_timer(0) - time_start) > time_delta)) {
601                         thand_f *x;
602
603 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
604 #if     defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)        && \
605         defined(CONFIG_LED_STATUS)                      && \
606         defined(CONFIG_LED_STATUS_RED)
607                         /*
608                          * Echo the inverted link state to the fault LED.
609                          */
610                         if (miiphy_link(eth_get_dev()->name,
611                                         CONFIG_SYS_FAULT_MII_ADDR))
612                                 status_led_set(CONFIG_LED_STATUS_RED,
613                                                CONFIG_LED_STATUS_OFF);
614                         else
615                                 status_led_set(CONFIG_LED_STATUS_RED,
616                                                CONFIG_LED_STATUS_ON);
617 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
618 #endif /* CONFIG_MII, ... */
619                         debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
620                         x = time_handler;
621                         time_handler = (thand_f *)0;
622                         (*x)();
623                 }
624
625                 if (net_state == NETLOOP_FAIL)
626                         ret = net_start_again();
627
628                 switch (net_state) {
629                 case NETLOOP_RESTART:
630                         net_restarted = 1;
631                         goto restart;
632
633                 case NETLOOP_SUCCESS:
634                         net_cleanup_loop();
635                         if (net_boot_file_size > 0) {
636                                 printf("Bytes transferred = %d (%x hex)\n",
637                                        net_boot_file_size, net_boot_file_size);
638                                 env_set_hex("filesize", net_boot_file_size);
639                                 env_set_hex("fileaddr", load_addr);
640                         }
641                         if (protocol != NETCONS)
642                                 eth_halt();
643                         else
644                                 eth_halt_state_only();
645
646                         eth_set_last_protocol(protocol);
647
648                         ret = net_boot_file_size;
649                         debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
650                         goto done;
651
652                 case NETLOOP_FAIL:
653                         net_cleanup_loop();
654                         /* Invalidate the last protocol */
655                         eth_set_last_protocol(BOOTP);
656                         debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
657                         ret = -ENONET;
658                         goto done;
659
660                 case NETLOOP_CONTINUE:
661                         continue;
662                 }
663         }
664
665 done:
666 #ifdef CONFIG_USB_KEYBOARD
667         net_busy_flag = 0;
668 #endif
669 #ifdef CONFIG_CMD_TFTPPUT
670         /* Clear out the handlers */
671         net_set_udp_handler(NULL);
672         net_set_icmp_handler(NULL);
673 #endif
674         net_set_state(prev_net_state);
675         return ret;
676 }
677
678 /**********************************************************************/
679
680 static void start_again_timeout_handler(void)
681 {
682         net_set_state(NETLOOP_RESTART);
683 }
684
685 int net_start_again(void)
686 {
687         char *nretry;
688         int retry_forever = 0;
689         unsigned long retrycnt = 0;
690         int ret;
691
692         nretry = env_get("netretry");
693         if (nretry) {
694                 if (!strcmp(nretry, "yes"))
695                         retry_forever = 1;
696                 else if (!strcmp(nretry, "no"))
697                         retrycnt = 0;
698                 else if (!strcmp(nretry, "once"))
699                         retrycnt = 1;
700                 else
701                         retrycnt = simple_strtoul(nretry, NULL, 0);
702         } else {
703                 retrycnt = 0;
704                 retry_forever = 0;
705         }
706
707         if ((!retry_forever) && (net_try_count > retrycnt)) {
708                 eth_halt();
709                 net_set_state(NETLOOP_FAIL);
710                 /*
711                  * We don't provide a way for the protocol to return an error,
712                  * but this is almost always the reason.
713                  */
714                 return -ETIMEDOUT;
715         }
716
717         net_try_count++;
718
719         eth_halt();
720 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
721         eth_try_another(!net_restarted);
722 #endif
723         ret = eth_init();
724         if (net_restart_wrap) {
725                 net_restart_wrap = 0;
726                 if (net_dev_exists) {
727                         net_set_timeout_handler(10000UL,
728                                                 start_again_timeout_handler);
729                         net_set_udp_handler(NULL);
730                 } else {
731                         net_set_state(NETLOOP_FAIL);
732                 }
733         } else {
734                 net_set_state(NETLOOP_RESTART);
735         }
736         return ret;
737 }
738
739 /**********************************************************************/
740 /*
741  *      Miscelaneous bits.
742  */
743
744 static void dummy_handler(uchar *pkt, unsigned dport,
745                         struct in_addr sip, unsigned sport,
746                         unsigned len)
747 {
748 }
749
750 rxhand_f *net_get_udp_handler(void)
751 {
752         return udp_packet_handler;
753 }
754
755 void net_set_udp_handler(rxhand_f *f)
756 {
757         debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
758         if (f == NULL)
759                 udp_packet_handler = dummy_handler;
760         else
761                 udp_packet_handler = f;
762 }
763
764 rxhand_f *net_get_arp_handler(void)
765 {
766         return arp_packet_handler;
767 }
768
769 void net_set_arp_handler(rxhand_f *f)
770 {
771         debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
772         if (f == NULL)
773                 arp_packet_handler = dummy_handler;
774         else
775                 arp_packet_handler = f;
776 }
777
778 #ifdef CONFIG_CMD_TFTPPUT
779 void net_set_icmp_handler(rxhand_icmp_f *f)
780 {
781         packet_icmp_handler = f;
782 }
783 #endif
784
785 void net_set_timeout_handler(ulong iv, thand_f *f)
786 {
787         if (iv == 0) {
788                 debug_cond(DEBUG_INT_STATE,
789                            "--- net_loop timeout handler cancelled\n");
790                 time_handler = (thand_f *)0;
791         } else {
792                 debug_cond(DEBUG_INT_STATE,
793                            "--- net_loop timeout handler set (%p)\n", f);
794                 time_handler = f;
795                 time_start = get_timer(0);
796                 time_delta = iv * CONFIG_SYS_HZ / 1000;
797         }
798 }
799
800 uchar *net_get_async_tx_pkt_buf(void)
801 {
802         if (arp_is_waiting())
803                 return arp_tx_packet; /* If we are waiting, we already sent */
804         else
805                 return net_tx_packet;
806 }
807
808 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
809                 int payload_len)
810 {
811         return net_send_ip_packet(ether, dest, dport, sport, payload_len,
812                                   IPPROTO_UDP, 0, 0, 0);
813 }
814
815 int net_send_ip_packet(uchar *ether, struct in_addr dest, int dport, int sport,
816                        int payload_len, int proto, u8 action, u32 tcp_seq_num,
817                        u32 tcp_ack_num)
818 {
819         uchar *pkt;
820         int eth_hdr_size;
821         int pkt_hdr_size;
822
823         /* make sure the net_tx_packet is initialized (net_init() was called) */
824         assert(net_tx_packet != NULL);
825         if (net_tx_packet == NULL)
826                 return -1;
827
828         /* convert to new style broadcast */
829         if (dest.s_addr == 0)
830                 dest.s_addr = 0xFFFFFFFF;
831
832         /* if broadcast, make the ether address a broadcast and don't do ARP */
833         if (dest.s_addr == 0xFFFFFFFF)
834                 ether = (uchar *)net_bcast_ethaddr;
835
836         pkt = (uchar *)net_tx_packet;
837
838         eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
839
840         switch (proto) {
841         case IPPROTO_UDP:
842                 net_set_udp_header(pkt + eth_hdr_size, dest, dport, sport,
843                                    payload_len);
844                 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
845                 break;
846         default:
847                 return -EINVAL;
848         }
849
850         /* if MAC address was not discovered yet, do an ARP request */
851         if (memcmp(ether, net_null_ethaddr, 6) == 0) {
852                 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
853
854                 /* save the ip and eth addr for the packet to send after arp */
855                 net_arp_wait_packet_ip = dest;
856                 arp_wait_packet_ethaddr = ether;
857
858                 /* size of the waiting packet */
859                 arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
860
861                 /* and do the ARP request */
862                 arp_wait_try = 1;
863                 arp_wait_timer_start = get_timer(0);
864                 arp_request();
865                 return 1;       /* waiting */
866         } else {
867                 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
868                            &dest, ether);
869                 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
870                 return 0;       /* transmitted */
871         }
872 }
873
874 #ifdef CONFIG_IP_DEFRAG
875 /*
876  * This function collects fragments in a single packet, according
877  * to the algorithm in RFC815. It returns NULL or the pointer to
878  * a complete packet, in static storage
879  */
880 #ifndef CONFIG_NET_MAXDEFRAG
881 #define CONFIG_NET_MAXDEFRAG 16384
882 #endif
883 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
884
885 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
886
887 /*
888  * this is the packet being assembled, either data or frag control.
889  * Fragments go by 8 bytes, so this union must be 8 bytes long
890  */
891 struct hole {
892         /* first_byte is address of this structure */
893         u16 last_byte;  /* last byte in this hole + 1 (begin of next hole) */
894         u16 next_hole;  /* index of next (in 8-b blocks), 0 == none */
895         u16 prev_hole;  /* index of prev, 0 == none */
896         u16 unused;
897 };
898
899 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
900 {
901         static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
902         static u16 first_hole, total_len;
903         struct hole *payload, *thisfrag, *h, *newh;
904         struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
905         uchar *indata = (uchar *)ip;
906         int offset8, start, len, done = 0;
907         u16 ip_off = ntohs(ip->ip_off);
908
909         /* payload starts after IP header, this fragment is in there */
910         payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
911         offset8 =  (ip_off & IP_OFFS);
912         thisfrag = payload + offset8;
913         start = offset8 * 8;
914         len = ntohs(ip->ip_len) - IP_HDR_SIZE;
915
916         if (start + len > IP_MAXUDP) /* fragment extends too far */
917                 return NULL;
918
919         if (!total_len || localip->ip_id != ip->ip_id) {
920                 /* new (or different) packet, reset structs */
921                 total_len = 0xffff;
922                 payload[0].last_byte = ~0;
923                 payload[0].next_hole = 0;
924                 payload[0].prev_hole = 0;
925                 first_hole = 0;
926                 /* any IP header will work, copy the first we received */
927                 memcpy(localip, ip, IP_HDR_SIZE);
928         }
929
930         /*
931          * What follows is the reassembly algorithm. We use the payload
932          * array as a linked list of hole descriptors, as each hole starts
933          * at a multiple of 8 bytes. However, last byte can be whatever value,
934          * so it is represented as byte count, not as 8-byte blocks.
935          */
936
937         h = payload + first_hole;
938         while (h->last_byte < start) {
939                 if (!h->next_hole) {
940                         /* no hole that far away */
941                         return NULL;
942                 }
943                 h = payload + h->next_hole;
944         }
945
946         /* last fragment may be 1..7 bytes, the "+7" forces acceptance */
947         if (offset8 + ((len + 7) / 8) <= h - payload) {
948                 /* no overlap with holes (dup fragment?) */
949                 return NULL;
950         }
951
952         if (!(ip_off & IP_FLAGS_MFRAG)) {
953                 /* no more fragmentss: truncate this (last) hole */
954                 total_len = start + len;
955                 h->last_byte = start + len;
956         }
957
958         /*
959          * There is some overlap: fix the hole list. This code doesn't
960          * deal with a fragment that overlaps with two different holes
961          * (thus being a superset of a previously-received fragment).
962          */
963
964         if ((h >= thisfrag) && (h->last_byte <= start + len)) {
965                 /* complete overlap with hole: remove hole */
966                 if (!h->prev_hole && !h->next_hole) {
967                         /* last remaining hole */
968                         done = 1;
969                 } else if (!h->prev_hole) {
970                         /* first hole */
971                         first_hole = h->next_hole;
972                         payload[h->next_hole].prev_hole = 0;
973                 } else if (!h->next_hole) {
974                         /* last hole */
975                         payload[h->prev_hole].next_hole = 0;
976                 } else {
977                         /* in the middle of the list */
978                         payload[h->next_hole].prev_hole = h->prev_hole;
979                         payload[h->prev_hole].next_hole = h->next_hole;
980                 }
981
982         } else if (h->last_byte <= start + len) {
983                 /* overlaps with final part of the hole: shorten this hole */
984                 h->last_byte = start;
985
986         } else if (h >= thisfrag) {
987                 /* overlaps with initial part of the hole: move this hole */
988                 newh = thisfrag + (len / 8);
989                 *newh = *h;
990                 h = newh;
991                 if (h->next_hole)
992                         payload[h->next_hole].prev_hole = (h - payload);
993                 if (h->prev_hole)
994                         payload[h->prev_hole].next_hole = (h - payload);
995                 else
996                         first_hole = (h - payload);
997
998         } else {
999                 /* fragment sits in the middle: split the hole */
1000                 newh = thisfrag + (len / 8);
1001                 *newh = *h;
1002                 h->last_byte = start;
1003                 h->next_hole = (newh - payload);
1004                 newh->prev_hole = (h - payload);
1005                 if (newh->next_hole)
1006                         payload[newh->next_hole].prev_hole = (newh - payload);
1007         }
1008
1009         /* finally copy this fragment and possibly return whole packet */
1010         memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
1011         if (!done)
1012                 return NULL;
1013
1014         localip->ip_len = htons(total_len);
1015         *lenp = total_len + IP_HDR_SIZE;
1016         return localip;
1017 }
1018
1019 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1020         int *lenp)
1021 {
1022         u16 ip_off = ntohs(ip->ip_off);
1023         if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1024                 return ip; /* not a fragment */
1025         return __net_defragment(ip, lenp);
1026 }
1027
1028 #else /* !CONFIG_IP_DEFRAG */
1029
1030 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1031         int *lenp)
1032 {
1033         u16 ip_off = ntohs(ip->ip_off);
1034         if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1035                 return ip; /* not a fragment */
1036         return NULL;
1037 }
1038 #endif
1039
1040 /**
1041  * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1042  * drop others.
1043  *
1044  * @parma ip    IP packet containing the ICMP
1045  */
1046 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1047                         struct in_addr src_ip, struct ethernet_hdr *et)
1048 {
1049         struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1050
1051         switch (icmph->type) {
1052         case ICMP_REDIRECT:
1053                 if (icmph->code != ICMP_REDIR_HOST)
1054                         return;
1055                 printf(" ICMP Host Redirect to %pI4 ",
1056                        &icmph->un.gateway);
1057                 break;
1058         default:
1059 #if defined(CONFIG_CMD_PING)
1060                 ping_receive(et, ip, len);
1061 #endif
1062 #ifdef CONFIG_CMD_TFTPPUT
1063                 if (packet_icmp_handler)
1064                         packet_icmp_handler(icmph->type, icmph->code,
1065                                             ntohs(ip->udp_dst), src_ip,
1066                                             ntohs(ip->udp_src), icmph->un.data,
1067                                             ntohs(ip->udp_len));
1068 #endif
1069                 break;
1070         }
1071 }
1072
1073 void net_process_received_packet(uchar *in_packet, int len)
1074 {
1075         struct ethernet_hdr *et;
1076         struct ip_udp_hdr *ip;
1077         struct in_addr dst_ip;
1078         struct in_addr src_ip;
1079         int eth_proto;
1080 #if defined(CONFIG_CMD_CDP)
1081         int iscdp;
1082 #endif
1083         ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1084
1085         debug_cond(DEBUG_NET_PKT, "packet received\n");
1086
1087         net_rx_packet = in_packet;
1088         net_rx_packet_len = len;
1089         et = (struct ethernet_hdr *)in_packet;
1090
1091         /* too small packet? */
1092         if (len < ETHER_HDR_SIZE)
1093                 return;
1094
1095 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1096         if (push_packet) {
1097                 (*push_packet)(in_packet, len);
1098                 return;
1099         }
1100 #endif
1101
1102 #if defined(CONFIG_CMD_CDP)
1103         /* keep track if packet is CDP */
1104         iscdp = is_cdp_packet(et->et_dest);
1105 #endif
1106
1107         myvlanid = ntohs(net_our_vlan);
1108         if (myvlanid == (ushort)-1)
1109                 myvlanid = VLAN_NONE;
1110         mynvlanid = ntohs(net_native_vlan);
1111         if (mynvlanid == (ushort)-1)
1112                 mynvlanid = VLAN_NONE;
1113
1114         eth_proto = ntohs(et->et_protlen);
1115
1116         if (eth_proto < 1514) {
1117                 struct e802_hdr *et802 = (struct e802_hdr *)et;
1118                 /*
1119                  *      Got a 802.2 packet.  Check the other protocol field.
1120                  *      XXX VLAN over 802.2+SNAP not implemented!
1121                  */
1122                 eth_proto = ntohs(et802->et_prot);
1123
1124                 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1125                 len -= E802_HDR_SIZE;
1126
1127         } else if (eth_proto != PROT_VLAN) {    /* normal packet */
1128                 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1129                 len -= ETHER_HDR_SIZE;
1130
1131         } else {                        /* VLAN packet */
1132                 struct vlan_ethernet_hdr *vet =
1133                         (struct vlan_ethernet_hdr *)et;
1134
1135                 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1136
1137                 /* too small packet? */
1138                 if (len < VLAN_ETHER_HDR_SIZE)
1139                         return;
1140
1141                 /* if no VLAN active */
1142                 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1143 #if defined(CONFIG_CMD_CDP)
1144                                 && iscdp == 0
1145 #endif
1146                                 )
1147                         return;
1148
1149                 cti = ntohs(vet->vet_tag);
1150                 vlanid = cti & VLAN_IDMASK;
1151                 eth_proto = ntohs(vet->vet_type);
1152
1153                 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1154                 len -= VLAN_ETHER_HDR_SIZE;
1155         }
1156
1157         debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1158
1159 #if defined(CONFIG_CMD_CDP)
1160         if (iscdp) {
1161                 cdp_receive((uchar *)ip, len);
1162                 return;
1163         }
1164 #endif
1165
1166         if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1167                 if (vlanid == VLAN_NONE)
1168                         vlanid = (mynvlanid & VLAN_IDMASK);
1169                 /* not matched? */
1170                 if (vlanid != (myvlanid & VLAN_IDMASK))
1171                         return;
1172         }
1173
1174         switch (eth_proto) {
1175         case PROT_ARP:
1176                 arp_receive(et, ip, len);
1177                 break;
1178
1179 #ifdef CONFIG_CMD_RARP
1180         case PROT_RARP:
1181                 rarp_receive(ip, len);
1182                 break;
1183 #endif
1184         case PROT_IP:
1185                 debug_cond(DEBUG_NET_PKT, "Got IP\n");
1186                 /* Before we start poking the header, make sure it is there */
1187                 if (len < IP_UDP_HDR_SIZE) {
1188                         debug("len bad %d < %lu\n", len,
1189                               (ulong)IP_UDP_HDR_SIZE);
1190                         return;
1191                 }
1192                 /* Check the packet length */
1193                 if (len < ntohs(ip->ip_len)) {
1194                         debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1195                         return;
1196                 }
1197                 len = ntohs(ip->ip_len);
1198                 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1199                            len, ip->ip_hl_v & 0xff);
1200
1201                 /* Can't deal with anything except IPv4 */
1202                 if ((ip->ip_hl_v & 0xf0) != 0x40)
1203                         return;
1204                 /* Can't deal with IP options (headers != 20 bytes) */
1205                 if ((ip->ip_hl_v & 0x0f) > 0x05)
1206                         return;
1207                 /* Check the Checksum of the header */
1208                 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1209                         debug("checksum bad\n");
1210                         return;
1211                 }
1212                 /* If it is not for us, ignore it */
1213                 dst_ip = net_read_ip(&ip->ip_dst);
1214                 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1215                     dst_ip.s_addr != 0xFFFFFFFF) {
1216                                 return;
1217                 }
1218                 /* Read source IP address for later use */
1219                 src_ip = net_read_ip(&ip->ip_src);
1220                 /*
1221                  * The function returns the unchanged packet if it's not
1222                  * a fragment, and either the complete packet or NULL if
1223                  * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1224                  */
1225                 ip = net_defragment(ip, &len);
1226                 if (!ip)
1227                         return;
1228                 /*
1229                  * watch for ICMP host redirects
1230                  *
1231                  * There is no real handler code (yet). We just watch
1232                  * for ICMP host redirect messages. In case anybody
1233                  * sees these messages: please contact me
1234                  * (wd@denx.de), or - even better - send me the
1235                  * necessary fixes :-)
1236                  *
1237                  * Note: in all cases where I have seen this so far
1238                  * it was a problem with the router configuration,
1239                  * for instance when a router was configured in the
1240                  * BOOTP reply, but the TFTP server was on the same
1241                  * subnet. So this is probably a warning that your
1242                  * configuration might be wrong. But I'm not really
1243                  * sure if there aren't any other situations.
1244                  *
1245                  * Simon Glass <sjg@chromium.org>: We get an ICMP when
1246                  * we send a tftp packet to a dead connection, or when
1247                  * there is no server at the other end.
1248                  */
1249                 if (ip->ip_p == IPPROTO_ICMP) {
1250                         receive_icmp(ip, len, src_ip, et);
1251                         return;
1252                 } else if (ip->ip_p != IPPROTO_UDP) {   /* Only UDP packets */
1253                         return;
1254                 }
1255
1256                 debug_cond(DEBUG_DEV_PKT,
1257                            "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1258                            &dst_ip, &src_ip, len);
1259
1260 #ifdef CONFIG_UDP_CHECKSUM
1261                 if (ip->udp_xsum != 0) {
1262                         ulong   xsum;
1263                         ushort *sumptr;
1264                         ushort  sumlen;
1265
1266                         xsum  = ip->ip_p;
1267                         xsum += (ntohs(ip->udp_len));
1268                         xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1269                         xsum += (ntohl(ip->ip_src.s_addr) >>  0) & 0x0000ffff;
1270                         xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1271                         xsum += (ntohl(ip->ip_dst.s_addr) >>  0) & 0x0000ffff;
1272
1273                         sumlen = ntohs(ip->udp_len);
1274                         sumptr = (ushort *)&(ip->udp_src);
1275
1276                         while (sumlen > 1) {
1277                                 ushort sumdata;
1278
1279                                 sumdata = *sumptr++;
1280                                 xsum += ntohs(sumdata);
1281                                 sumlen -= 2;
1282                         }
1283                         if (sumlen > 0) {
1284                                 ushort sumdata;
1285
1286                                 sumdata = *(unsigned char *)sumptr;
1287                                 sumdata = (sumdata << 8) & 0xff00;
1288                                 xsum += sumdata;
1289                         }
1290                         while ((xsum >> 16) != 0) {
1291                                 xsum = (xsum & 0x0000ffff) +
1292                                        ((xsum >> 16) & 0x0000ffff);
1293                         }
1294                         if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1295                                 printf(" UDP wrong checksum %08lx %08x\n",
1296                                        xsum, ntohs(ip->udp_xsum));
1297                                 return;
1298                         }
1299                 }
1300 #endif
1301
1302 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
1303                 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1304                                 src_ip,
1305                                 ntohs(ip->udp_dst),
1306                                 ntohs(ip->udp_src),
1307                                 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1308 #endif
1309                 /*
1310                  * IP header OK.  Pass the packet to the current handler.
1311                  */
1312                 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1313                                       ntohs(ip->udp_dst),
1314                                       src_ip,
1315                                       ntohs(ip->udp_src),
1316                                       ntohs(ip->udp_len) - UDP_HDR_SIZE);
1317                 break;
1318 #ifdef CONFIG_CMD_WOL
1319         case PROT_WOL:
1320                 wol_receive(ip, len);
1321                 break;
1322 #endif
1323         }
1324 }
1325
1326 /**********************************************************************/
1327
1328 static int net_check_prereq(enum proto_t protocol)
1329 {
1330         switch (protocol) {
1331                 /* Fall through */
1332 #if defined(CONFIG_CMD_PING)
1333         case PING:
1334                 if (net_ping_ip.s_addr == 0) {
1335                         puts("*** ERROR: ping address not given\n");
1336                         return 1;
1337                 }
1338                 goto common;
1339 #endif
1340 #if defined(CONFIG_CMD_SNTP)
1341         case SNTP:
1342                 if (net_ntp_server.s_addr == 0) {
1343                         puts("*** ERROR: NTP server address not given\n");
1344                         return 1;
1345                 }
1346                 goto common;
1347 #endif
1348 #if defined(CONFIG_CMD_DNS)
1349         case DNS:
1350                 if (net_dns_server.s_addr == 0) {
1351                         puts("*** ERROR: DNS server address not given\n");
1352                         return 1;
1353                 }
1354                 goto common;
1355 #endif
1356 #if defined(CONFIG_CMD_NFS)
1357         case NFS:
1358 #endif
1359                 /* Fall through */
1360         case TFTPGET:
1361         case TFTPPUT:
1362                 if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) {
1363                         puts("*** ERROR: `serverip' not set\n");
1364                         return 1;
1365                 }
1366 #if     defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1367         defined(CONFIG_CMD_DNS)
1368 common:
1369 #endif
1370                 /* Fall through */
1371
1372         case NETCONS:
1373         case FASTBOOT:
1374         case TFTPSRV:
1375                 if (net_ip.s_addr == 0) {
1376                         puts("*** ERROR: `ipaddr' not set\n");
1377                         return 1;
1378                 }
1379                 /* Fall through */
1380
1381 #ifdef CONFIG_CMD_RARP
1382         case RARP:
1383 #endif
1384         case BOOTP:
1385         case CDP:
1386         case DHCP:
1387         case LINKLOCAL:
1388                 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1389                         int num = eth_get_dev_index();
1390
1391                         switch (num) {
1392                         case -1:
1393                                 puts("*** ERROR: No ethernet found.\n");
1394                                 return 1;
1395                         case 0:
1396                                 puts("*** ERROR: `ethaddr' not set\n");
1397                                 break;
1398                         default:
1399                                 printf("*** ERROR: `eth%daddr' not set\n",
1400                                        num);
1401                                 break;
1402                         }
1403
1404                         net_start_again();
1405                         return 2;
1406                 }
1407                 /* Fall through */
1408         default:
1409                 return 0;
1410         }
1411         return 0;               /* OK */
1412 }
1413 /**********************************************************************/
1414
1415 int
1416 net_eth_hdr_size(void)
1417 {
1418         ushort myvlanid;
1419
1420         myvlanid = ntohs(net_our_vlan);
1421         if (myvlanid == (ushort)-1)
1422                 myvlanid = VLAN_NONE;
1423
1424         return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1425                 VLAN_ETHER_HDR_SIZE;
1426 }
1427
1428 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1429 {
1430         struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1431         ushort myvlanid;
1432
1433         myvlanid = ntohs(net_our_vlan);
1434         if (myvlanid == (ushort)-1)
1435                 myvlanid = VLAN_NONE;
1436
1437         memcpy(et->et_dest, dest_ethaddr, 6);
1438         memcpy(et->et_src, net_ethaddr, 6);
1439         if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1440                 et->et_protlen = htons(prot);
1441                 return ETHER_HDR_SIZE;
1442         } else {
1443                 struct vlan_ethernet_hdr *vet =
1444                         (struct vlan_ethernet_hdr *)xet;
1445
1446                 vet->vet_vlan_type = htons(PROT_VLAN);
1447                 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1448                 vet->vet_type = htons(prot);
1449                 return VLAN_ETHER_HDR_SIZE;
1450         }
1451 }
1452
1453 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1454 {
1455         ushort protlen;
1456
1457         memcpy(et->et_dest, addr, 6);
1458         memcpy(et->et_src, net_ethaddr, 6);
1459         protlen = ntohs(et->et_protlen);
1460         if (protlen == PROT_VLAN) {
1461                 struct vlan_ethernet_hdr *vet =
1462                         (struct vlan_ethernet_hdr *)et;
1463                 vet->vet_type = htons(prot);
1464                 return VLAN_ETHER_HDR_SIZE;
1465         } else if (protlen > 1514) {
1466                 et->et_protlen = htons(prot);
1467                 return ETHER_HDR_SIZE;
1468         } else {
1469                 /* 802.2 + SNAP */
1470                 struct e802_hdr *et802 = (struct e802_hdr *)et;
1471                 et802->et_prot = htons(prot);
1472                 return E802_HDR_SIZE;
1473         }
1474 }
1475
1476 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source,
1477                        u16 pkt_len, u8 proto)
1478 {
1479         struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1480
1481         /*
1482          *      Construct an IP header.
1483          */
1484         /* IP_HDR_SIZE / 4 (not including UDP) */
1485         ip->ip_hl_v  = 0x45;
1486         ip->ip_tos   = 0;
1487         ip->ip_len   = htons(pkt_len);
1488         ip->ip_p     = proto;
1489         ip->ip_id    = htons(net_ip_id++);
1490         ip->ip_off   = htons(IP_FLAGS_DFRAG);   /* Don't fragment */
1491         ip->ip_ttl   = 255;
1492         ip->ip_sum   = 0;
1493         /* already in network byte order */
1494         net_copy_ip((void *)&ip->ip_src, &source);
1495         /* already in network byte order */
1496         net_copy_ip((void *)&ip->ip_dst, &dest);
1497
1498         ip->ip_sum   = compute_ip_checksum(ip, IP_HDR_SIZE);
1499 }
1500
1501 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1502                         int len)
1503 {
1504         struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1505
1506         /*
1507          *      If the data is an odd number of bytes, zero the
1508          *      byte after the last byte so that the checksum
1509          *      will work.
1510          */
1511         if (len & 1)
1512                 pkt[IP_UDP_HDR_SIZE + len] = 0;
1513
1514         net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len,
1515                           IPPROTO_UDP);
1516
1517         ip->udp_src  = htons(sport);
1518         ip->udp_dst  = htons(dport);
1519         ip->udp_len  = htons(UDP_HDR_SIZE + len);
1520         ip->udp_xsum = 0;
1521 }
1522
1523 void copy_filename(char *dst, const char *src, int size)
1524 {
1525         if (src && *src && (*src == '"')) {
1526                 ++src;
1527                 --size;
1528         }
1529
1530         while ((--size > 0) && src && *src && (*src != '"'))
1531                 *dst++ = *src++;
1532         *dst = '\0';
1533 }
1534
1535 int is_serverip_in_cmd(void)
1536 {
1537         return !!strchr(net_boot_file_name, ':');
1538 }
1539
1540 int net_parse_bootfile(struct in_addr *ipaddr, char *filename, int max_len)
1541 {
1542         char *colon;
1543
1544         if (net_boot_file_name[0] == '\0')
1545                 return 0;
1546
1547         colon = strchr(net_boot_file_name, ':');
1548         if (colon) {
1549                 if (ipaddr)
1550                         *ipaddr = string_to_ip(net_boot_file_name);
1551                 strncpy(filename, colon + 1, max_len);
1552         } else {
1553                 strncpy(filename, net_boot_file_name, max_len);
1554         }
1555         filename[max_len - 1] = '\0';
1556
1557         return 1;
1558 }
1559
1560 #if     defined(CONFIG_CMD_NFS)         || \
1561         defined(CONFIG_CMD_SNTP)        || \
1562         defined(CONFIG_CMD_DNS)
1563 /*
1564  * make port a little random (1024-17407)
1565  * This keeps the math somewhat trivial to compute, and seems to work with
1566  * all supported protocols/clients/servers
1567  */
1568 unsigned int random_port(void)
1569 {
1570         return 1024 + (get_timer(0) % 0x4000);
1571 }
1572 #endif
1573
1574 void ip_to_string(struct in_addr x, char *s)
1575 {
1576         x.s_addr = ntohl(x.s_addr);
1577         sprintf(s, "%d.%d.%d.%d",
1578                 (int) ((x.s_addr >> 24) & 0xff),
1579                 (int) ((x.s_addr >> 16) & 0xff),
1580                 (int) ((x.s_addr >> 8) & 0xff),
1581                 (int) ((x.s_addr >> 0) & 0xff)
1582         );
1583 }
1584
1585 void vlan_to_string(ushort x, char *s)
1586 {
1587         x = ntohs(x);
1588
1589         if (x == (ushort)-1)
1590                 x = VLAN_NONE;
1591
1592         if (x == VLAN_NONE)
1593                 strcpy(s, "none");
1594         else
1595                 sprintf(s, "%d", x & VLAN_IDMASK);
1596 }
1597
1598 ushort string_to_vlan(const char *s)
1599 {
1600         ushort id;
1601
1602         if (s == NULL)
1603                 return htons(VLAN_NONE);
1604
1605         if (*s < '0' || *s > '9')
1606                 id = VLAN_NONE;
1607         else
1608                 id = (ushort)simple_strtoul(s, NULL, 10);
1609
1610         return htons(id);
1611 }
1612
1613 ushort env_get_vlan(char *var)
1614 {
1615         return string_to_vlan(env_get(var));
1616 }
1617
1618 void eth_parse_enetaddr(const char *addr, uint8_t *enetaddr)
1619 {
1620         char *end;
1621         int i;
1622
1623         for (i = 0; i < 6; ++i) {
1624                 enetaddr[i] = addr ? simple_strtoul(addr, &end, 16) : 0;
1625                 if (addr)
1626                         addr = (*end) ? end + 1 : end;
1627         }
1628 }