Merge tag 'dm-pull-29oct19' of git://git.denx.de/u-boot-dm
[oweals/u-boot.git] / drivers / nvme / nvme.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 NXP Semiconductors
4  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5  */
6
7 #include <common.h>
8 #include <dm.h>
9 #include <errno.h>
10 #include <memalign.h>
11 #include <pci.h>
12 #include <dm/device-internal.h>
13 #include "nvme.h"
14
15 #define NVME_Q_DEPTH            2
16 #define NVME_AQ_DEPTH           2
17 #define NVME_SQ_SIZE(depth)     (depth * sizeof(struct nvme_command))
18 #define NVME_CQ_SIZE(depth)     (depth * sizeof(struct nvme_completion))
19 #define ADMIN_TIMEOUT           60
20 #define IO_TIMEOUT              30
21 #define MAX_PRP_POOL            512
22
23 enum nvme_queue_id {
24         NVME_ADMIN_Q,
25         NVME_IO_Q,
26         NVME_Q_NUM,
27 };
28
29 /*
30  * An NVM Express queue. Each device has at least two (one for admin
31  * commands and one for I/O commands).
32  */
33 struct nvme_queue {
34         struct nvme_dev *dev;
35         struct nvme_command *sq_cmds;
36         struct nvme_completion *cqes;
37         wait_queue_head_t sq_full;
38         u32 __iomem *q_db;
39         u16 q_depth;
40         s16 cq_vector;
41         u16 sq_head;
42         u16 sq_tail;
43         u16 cq_head;
44         u16 qid;
45         u8 cq_phase;
46         u8 cqe_seen;
47         unsigned long cmdid_data[];
48 };
49
50 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
51 {
52         u32 bit = enabled ? NVME_CSTS_RDY : 0;
53         int timeout;
54         ulong start;
55
56         /* Timeout field in the CAP register is in 500 millisecond units */
57         timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
58
59         start = get_timer(0);
60         while (get_timer(start) < timeout) {
61                 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
62                         return 0;
63         }
64
65         return -ETIME;
66 }
67
68 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
69                            int total_len, u64 dma_addr)
70 {
71         u32 page_size = dev->page_size;
72         int offset = dma_addr & (page_size - 1);
73         u64 *prp_pool;
74         int length = total_len;
75         int i, nprps;
76         u32 prps_per_page = (page_size >> 3) - 1;
77         u32 num_pages;
78
79         length -= (page_size - offset);
80
81         if (length <= 0) {
82                 *prp2 = 0;
83                 return 0;
84         }
85
86         if (length)
87                 dma_addr += (page_size - offset);
88
89         if (length <= page_size) {
90                 *prp2 = dma_addr;
91                 return 0;
92         }
93
94         nprps = DIV_ROUND_UP(length, page_size);
95         num_pages = DIV_ROUND_UP(nprps, prps_per_page);
96
97         if (nprps > dev->prp_entry_num) {
98                 free(dev->prp_pool);
99                 /*
100                  * Always increase in increments of pages.  It doesn't waste
101                  * much memory and reduces the number of allocations.
102                  */
103                 dev->prp_pool = memalign(page_size, num_pages * page_size);
104                 if (!dev->prp_pool) {
105                         printf("Error: malloc prp_pool fail\n");
106                         return -ENOMEM;
107                 }
108                 dev->prp_entry_num = prps_per_page * num_pages;
109         }
110
111         prp_pool = dev->prp_pool;
112         i = 0;
113         while (nprps) {
114                 if (i == ((page_size >> 3) - 1)) {
115                         *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
116                                         page_size);
117                         i = 0;
118                         prp_pool += page_size;
119                 }
120                 *(prp_pool + i++) = cpu_to_le64(dma_addr);
121                 dma_addr += page_size;
122                 nprps--;
123         }
124         *prp2 = (ulong)dev->prp_pool;
125
126         flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
127                            dev->prp_entry_num * sizeof(u64));
128
129         return 0;
130 }
131
132 static __le16 nvme_get_cmd_id(void)
133 {
134         static unsigned short cmdid;
135
136         return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
137 }
138
139 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
140 {
141         u64 start = (ulong)&nvmeq->cqes[index];
142         u64 stop = start + sizeof(struct nvme_completion);
143
144         invalidate_dcache_range(start, stop);
145
146         return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
147 }
148
149 /**
150  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
151  *
152  * @nvmeq:      The queue to use
153  * @cmd:        The command to send
154  */
155 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
156 {
157         u16 tail = nvmeq->sq_tail;
158
159         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
160         flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
161                            (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
162
163         if (++tail == nvmeq->q_depth)
164                 tail = 0;
165         writel(tail, nvmeq->q_db);
166         nvmeq->sq_tail = tail;
167 }
168
169 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
170                                 struct nvme_command *cmd,
171                                 u32 *result, unsigned timeout)
172 {
173         u16 head = nvmeq->cq_head;
174         u16 phase = nvmeq->cq_phase;
175         u16 status;
176         ulong start_time;
177         ulong timeout_us = timeout * 100000;
178
179         cmd->common.command_id = nvme_get_cmd_id();
180         nvme_submit_cmd(nvmeq, cmd);
181
182         start_time = timer_get_us();
183
184         for (;;) {
185                 status = nvme_read_completion_status(nvmeq, head);
186                 if ((status & 0x01) == phase)
187                         break;
188                 if (timeout_us > 0 && (timer_get_us() - start_time)
189                     >= timeout_us)
190                         return -ETIMEDOUT;
191         }
192
193         status >>= 1;
194         if (status) {
195                 printf("ERROR: status = %x, phase = %d, head = %d\n",
196                        status, phase, head);
197                 status = 0;
198                 if (++head == nvmeq->q_depth) {
199                         head = 0;
200                         phase = !phase;
201                 }
202                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
203                 nvmeq->cq_head = head;
204                 nvmeq->cq_phase = phase;
205
206                 return -EIO;
207         }
208
209         if (result)
210                 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
211
212         if (++head == nvmeq->q_depth) {
213                 head = 0;
214                 phase = !phase;
215         }
216         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
217         nvmeq->cq_head = head;
218         nvmeq->cq_phase = phase;
219
220         return status;
221 }
222
223 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
224                                  u32 *result)
225 {
226         return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
227                                     result, ADMIN_TIMEOUT);
228 }
229
230 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
231                                            int qid, int depth)
232 {
233         struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
234         if (!nvmeq)
235                 return NULL;
236         memset(nvmeq, 0, sizeof(*nvmeq));
237
238         nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
239         if (!nvmeq->cqes)
240                 goto free_nvmeq;
241         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
242
243         nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
244         if (!nvmeq->sq_cmds)
245                 goto free_queue;
246         memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
247
248         nvmeq->dev = dev;
249
250         nvmeq->cq_head = 0;
251         nvmeq->cq_phase = 1;
252         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
253         nvmeq->q_depth = depth;
254         nvmeq->qid = qid;
255         dev->queue_count++;
256         dev->queues[qid] = nvmeq;
257
258         return nvmeq;
259
260  free_queue:
261         free((void *)nvmeq->cqes);
262  free_nvmeq:
263         free(nvmeq);
264
265         return NULL;
266 }
267
268 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
269 {
270         struct nvme_command c;
271
272         memset(&c, 0, sizeof(c));
273         c.delete_queue.opcode = opcode;
274         c.delete_queue.qid = cpu_to_le16(id);
275
276         return nvme_submit_admin_cmd(dev, &c, NULL);
277 }
278
279 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
280 {
281         return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
282 }
283
284 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
285 {
286         return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
287 }
288
289 static int nvme_enable_ctrl(struct nvme_dev *dev)
290 {
291         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
292         dev->ctrl_config |= NVME_CC_ENABLE;
293         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
294
295         return nvme_wait_ready(dev, true);
296 }
297
298 static int nvme_disable_ctrl(struct nvme_dev *dev)
299 {
300         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
301         dev->ctrl_config &= ~NVME_CC_ENABLE;
302         writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
303
304         return nvme_wait_ready(dev, false);
305 }
306
307 static void nvme_free_queue(struct nvme_queue *nvmeq)
308 {
309         free((void *)nvmeq->cqes);
310         free(nvmeq->sq_cmds);
311         free(nvmeq);
312 }
313
314 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
315 {
316         int i;
317
318         for (i = dev->queue_count - 1; i >= lowest; i--) {
319                 struct nvme_queue *nvmeq = dev->queues[i];
320                 dev->queue_count--;
321                 dev->queues[i] = NULL;
322                 nvme_free_queue(nvmeq);
323         }
324 }
325
326 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
327 {
328         struct nvme_dev *dev = nvmeq->dev;
329
330         nvmeq->sq_tail = 0;
331         nvmeq->cq_head = 0;
332         nvmeq->cq_phase = 1;
333         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
334         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
335         flush_dcache_range((ulong)nvmeq->cqes,
336                            (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
337         dev->online_queues++;
338 }
339
340 static int nvme_configure_admin_queue(struct nvme_dev *dev)
341 {
342         int result;
343         u32 aqa;
344         u64 cap = dev->cap;
345         struct nvme_queue *nvmeq;
346         /* most architectures use 4KB as the page size */
347         unsigned page_shift = 12;
348         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
349         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
350
351         if (page_shift < dev_page_min) {
352                 debug("Device minimum page size (%u) too large for host (%u)\n",
353                       1 << dev_page_min, 1 << page_shift);
354                 return -ENODEV;
355         }
356
357         if (page_shift > dev_page_max) {
358                 debug("Device maximum page size (%u) smaller than host (%u)\n",
359                       1 << dev_page_max, 1 << page_shift);
360                 page_shift = dev_page_max;
361         }
362
363         result = nvme_disable_ctrl(dev);
364         if (result < 0)
365                 return result;
366
367         nvmeq = dev->queues[NVME_ADMIN_Q];
368         if (!nvmeq) {
369                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
370                 if (!nvmeq)
371                         return -ENOMEM;
372         }
373
374         aqa = nvmeq->q_depth - 1;
375         aqa |= aqa << 16;
376         aqa |= aqa << 16;
377
378         dev->page_size = 1 << page_shift;
379
380         dev->ctrl_config = NVME_CC_CSS_NVM;
381         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
382         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
383         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
384
385         writel(aqa, &dev->bar->aqa);
386         nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
387         nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
388
389         result = nvme_enable_ctrl(dev);
390         if (result)
391                 goto free_nvmeq;
392
393         nvmeq->cq_vector = 0;
394
395         nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
396
397         return result;
398
399  free_nvmeq:
400         nvme_free_queues(dev, 0);
401
402         return result;
403 }
404
405 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
406                             struct nvme_queue *nvmeq)
407 {
408         struct nvme_command c;
409         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
410
411         memset(&c, 0, sizeof(c));
412         c.create_cq.opcode = nvme_admin_create_cq;
413         c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
414         c.create_cq.cqid = cpu_to_le16(qid);
415         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
416         c.create_cq.cq_flags = cpu_to_le16(flags);
417         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
418
419         return nvme_submit_admin_cmd(dev, &c, NULL);
420 }
421
422 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
423                             struct nvme_queue *nvmeq)
424 {
425         struct nvme_command c;
426         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
427
428         memset(&c, 0, sizeof(c));
429         c.create_sq.opcode = nvme_admin_create_sq;
430         c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
431         c.create_sq.sqid = cpu_to_le16(qid);
432         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
433         c.create_sq.sq_flags = cpu_to_le16(flags);
434         c.create_sq.cqid = cpu_to_le16(qid);
435
436         return nvme_submit_admin_cmd(dev, &c, NULL);
437 }
438
439 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
440                   unsigned cns, dma_addr_t dma_addr)
441 {
442         struct nvme_command c;
443         u32 page_size = dev->page_size;
444         int offset = dma_addr & (page_size - 1);
445         int length = sizeof(struct nvme_id_ctrl);
446         int ret;
447
448         memset(&c, 0, sizeof(c));
449         c.identify.opcode = nvme_admin_identify;
450         c.identify.nsid = cpu_to_le32(nsid);
451         c.identify.prp1 = cpu_to_le64(dma_addr);
452
453         length -= (page_size - offset);
454         if (length <= 0) {
455                 c.identify.prp2 = 0;
456         } else {
457                 dma_addr += (page_size - offset);
458                 c.identify.prp2 = cpu_to_le64(dma_addr);
459         }
460
461         c.identify.cns = cpu_to_le32(cns);
462
463         ret = nvme_submit_admin_cmd(dev, &c, NULL);
464         if (!ret)
465                 invalidate_dcache_range(dma_addr,
466                                         dma_addr + sizeof(struct nvme_id_ctrl));
467
468         return ret;
469 }
470
471 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
472                       dma_addr_t dma_addr, u32 *result)
473 {
474         struct nvme_command c;
475
476         memset(&c, 0, sizeof(c));
477         c.features.opcode = nvme_admin_get_features;
478         c.features.nsid = cpu_to_le32(nsid);
479         c.features.prp1 = cpu_to_le64(dma_addr);
480         c.features.fid = cpu_to_le32(fid);
481
482         /*
483          * TODO: add cache invalidate operation when the size of
484          * the DMA buffer is known
485          */
486
487         return nvme_submit_admin_cmd(dev, &c, result);
488 }
489
490 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
491                       dma_addr_t dma_addr, u32 *result)
492 {
493         struct nvme_command c;
494
495         memset(&c, 0, sizeof(c));
496         c.features.opcode = nvme_admin_set_features;
497         c.features.prp1 = cpu_to_le64(dma_addr);
498         c.features.fid = cpu_to_le32(fid);
499         c.features.dword11 = cpu_to_le32(dword11);
500
501         /*
502          * TODO: add cache flush operation when the size of
503          * the DMA buffer is known
504          */
505
506         return nvme_submit_admin_cmd(dev, &c, result);
507 }
508
509 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
510 {
511         struct nvme_dev *dev = nvmeq->dev;
512         int result;
513
514         nvmeq->cq_vector = qid - 1;
515         result = nvme_alloc_cq(dev, qid, nvmeq);
516         if (result < 0)
517                 goto release_cq;
518
519         result = nvme_alloc_sq(dev, qid, nvmeq);
520         if (result < 0)
521                 goto release_sq;
522
523         nvme_init_queue(nvmeq, qid);
524
525         return result;
526
527  release_sq:
528         nvme_delete_sq(dev, qid);
529  release_cq:
530         nvme_delete_cq(dev, qid);
531
532         return result;
533 }
534
535 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
536 {
537         int status;
538         u32 result;
539         u32 q_count = (count - 1) | ((count - 1) << 16);
540
541         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
542                         q_count, 0, &result);
543
544         if (status < 0)
545                 return status;
546         if (status > 1)
547                 return 0;
548
549         return min(result & 0xffff, result >> 16) + 1;
550 }
551
552 static void nvme_create_io_queues(struct nvme_dev *dev)
553 {
554         unsigned int i;
555
556         for (i = dev->queue_count; i <= dev->max_qid; i++)
557                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
558                         break;
559
560         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
561                 if (nvme_create_queue(dev->queues[i], i))
562                         break;
563 }
564
565 static int nvme_setup_io_queues(struct nvme_dev *dev)
566 {
567         int nr_io_queues;
568         int result;
569
570         nr_io_queues = 1;
571         result = nvme_set_queue_count(dev, nr_io_queues);
572         if (result <= 0)
573                 return result;
574
575         dev->max_qid = nr_io_queues;
576
577         /* Free previously allocated queues */
578         nvme_free_queues(dev, nr_io_queues + 1);
579         nvme_create_io_queues(dev);
580
581         return 0;
582 }
583
584 static int nvme_get_info_from_identify(struct nvme_dev *dev)
585 {
586         struct nvme_id_ctrl *ctrl;
587         int ret;
588         int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
589
590         ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
591         if (!ctrl)
592                 return -ENOMEM;
593
594         ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
595         if (ret) {
596                 free(ctrl);
597                 return -EIO;
598         }
599
600         dev->nn = le32_to_cpu(ctrl->nn);
601         dev->vwc = ctrl->vwc;
602         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
603         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
604         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
605         if (ctrl->mdts)
606                 dev->max_transfer_shift = (ctrl->mdts + shift);
607         else {
608                 /*
609                  * Maximum Data Transfer Size (MDTS) field indicates the maximum
610                  * data transfer size between the host and the controller. The
611                  * host should not submit a command that exceeds this transfer
612                  * size. The value is in units of the minimum memory page size
613                  * and is reported as a power of two (2^n).
614                  *
615                  * The spec also says: a value of 0h indicates no restrictions
616                  * on transfer size. But in nvme_blk_read/write() below we have
617                  * the following algorithm for maximum number of logic blocks
618                  * per transfer:
619                  *
620                  * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
621                  *
622                  * In order for lbas not to overflow, the maximum number is 15
623                  * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
624                  * Let's use 20 which provides 1MB size.
625                  */
626                 dev->max_transfer_shift = 20;
627         }
628
629         free(ctrl);
630         return 0;
631 }
632
633 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
634 {
635         struct nvme_ns *ns = dev_get_priv(udev);
636
637         if (ns_id)
638                 *ns_id = ns->ns_id;
639         if (eui64)
640                 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
641
642         return 0;
643 }
644
645 int nvme_scan_namespace(void)
646 {
647         struct uclass *uc;
648         struct udevice *dev;
649         int ret;
650
651         ret = uclass_get(UCLASS_NVME, &uc);
652         if (ret)
653                 return ret;
654
655         uclass_foreach_dev(dev, uc) {
656                 ret = device_probe(dev);
657                 if (ret)
658                         return ret;
659         }
660
661         return 0;
662 }
663
664 static int nvme_blk_probe(struct udevice *udev)
665 {
666         struct nvme_dev *ndev = dev_get_priv(udev->parent);
667         struct blk_desc *desc = dev_get_uclass_platdata(udev);
668         struct nvme_ns *ns = dev_get_priv(udev);
669         u8 flbas;
670         struct pci_child_platdata *pplat;
671         struct nvme_id_ns *id;
672
673         id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
674         if (!id)
675                 return -ENOMEM;
676
677         memset(ns, 0, sizeof(*ns));
678         ns->dev = ndev;
679         /* extract the namespace id from the block device name */
680         ns->ns_id = trailing_strtol(udev->name) + 1;
681         if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
682                 free(id);
683                 return -EIO;
684         }
685
686         memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
687         flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
688         ns->flbas = flbas;
689         ns->lba_shift = id->lbaf[flbas].ds;
690         ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
691         ns->mode_select_block_len = 1 << ns->lba_shift;
692         list_add(&ns->list, &ndev->namespaces);
693
694         desc->lba = ns->mode_select_num_blocks;
695         desc->log2blksz = ns->lba_shift;
696         desc->blksz = 1 << ns->lba_shift;
697         desc->bdev = udev;
698         pplat = dev_get_parent_platdata(udev->parent);
699         sprintf(desc->vendor, "0x%.4x", pplat->vendor);
700         memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
701         memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
702
703         free(id);
704         return 0;
705 }
706
707 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
708                          lbaint_t blkcnt, void *buffer, bool read)
709 {
710         struct nvme_ns *ns = dev_get_priv(udev);
711         struct nvme_dev *dev = ns->dev;
712         struct nvme_command c;
713         struct blk_desc *desc = dev_get_uclass_platdata(udev);
714         int status;
715         u64 prp2;
716         u64 total_len = blkcnt << desc->log2blksz;
717         u64 temp_len = total_len;
718
719         u64 slba = blknr;
720         u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
721         u64 total_lbas = blkcnt;
722
723         flush_dcache_range((unsigned long)buffer,
724                            (unsigned long)buffer + total_len);
725
726         c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
727         c.rw.flags = 0;
728         c.rw.nsid = cpu_to_le32(ns->ns_id);
729         c.rw.control = 0;
730         c.rw.dsmgmt = 0;
731         c.rw.reftag = 0;
732         c.rw.apptag = 0;
733         c.rw.appmask = 0;
734         c.rw.metadata = 0;
735
736         while (total_lbas) {
737                 if (total_lbas < lbas) {
738                         lbas = (u16)total_lbas;
739                         total_lbas = 0;
740                 } else {
741                         total_lbas -= lbas;
742                 }
743
744                 if (nvme_setup_prps(dev, &prp2,
745                                     lbas << ns->lba_shift, (ulong)buffer))
746                         return -EIO;
747                 c.rw.slba = cpu_to_le64(slba);
748                 slba += lbas;
749                 c.rw.length = cpu_to_le16(lbas - 1);
750                 c.rw.prp1 = cpu_to_le64((ulong)buffer);
751                 c.rw.prp2 = cpu_to_le64(prp2);
752                 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
753                                 &c, NULL, IO_TIMEOUT);
754                 if (status)
755                         break;
756                 temp_len -= (u32)lbas << ns->lba_shift;
757                 buffer += lbas << ns->lba_shift;
758         }
759
760         if (read)
761                 invalidate_dcache_range((unsigned long)buffer,
762                                         (unsigned long)buffer + total_len);
763
764         return (total_len - temp_len) >> desc->log2blksz;
765 }
766
767 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
768                            lbaint_t blkcnt, void *buffer)
769 {
770         return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
771 }
772
773 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
774                             lbaint_t blkcnt, const void *buffer)
775 {
776         return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
777 }
778
779 static const struct blk_ops nvme_blk_ops = {
780         .read   = nvme_blk_read,
781         .write  = nvme_blk_write,
782 };
783
784 U_BOOT_DRIVER(nvme_blk) = {
785         .name   = "nvme-blk",
786         .id     = UCLASS_BLK,
787         .probe  = nvme_blk_probe,
788         .ops    = &nvme_blk_ops,
789         .priv_auto_alloc_size = sizeof(struct nvme_ns),
790 };
791
792 static int nvme_bind(struct udevice *udev)
793 {
794         static int ndev_num;
795         char name[20];
796
797         sprintf(name, "nvme#%d", ndev_num++);
798
799         return device_set_name(udev, name);
800 }
801
802 static int nvme_probe(struct udevice *udev)
803 {
804         int ret;
805         struct nvme_dev *ndev = dev_get_priv(udev);
806
807         ndev->instance = trailing_strtol(udev->name);
808
809         INIT_LIST_HEAD(&ndev->namespaces);
810         ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
811                         PCI_REGION_MEM);
812         if (readl(&ndev->bar->csts) == -1) {
813                 ret = -ENODEV;
814                 printf("Error: %s: Out of memory!\n", udev->name);
815                 goto free_nvme;
816         }
817
818         ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
819         if (!ndev->queues) {
820                 ret = -ENOMEM;
821                 printf("Error: %s: Out of memory!\n", udev->name);
822                 goto free_nvme;
823         }
824         memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
825
826         ndev->cap = nvme_readq(&ndev->bar->cap);
827         ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
828         ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
829         ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
830
831         ret = nvme_configure_admin_queue(ndev);
832         if (ret)
833                 goto free_queue;
834
835         /* Allocate after the page size is known */
836         ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
837         if (!ndev->prp_pool) {
838                 ret = -ENOMEM;
839                 printf("Error: %s: Out of memory!\n", udev->name);
840                 goto free_nvme;
841         }
842         ndev->prp_entry_num = MAX_PRP_POOL >> 3;
843
844         ret = nvme_setup_io_queues(ndev);
845         if (ret)
846                 goto free_queue;
847
848         nvme_get_info_from_identify(ndev);
849
850         return 0;
851
852 free_queue:
853         free((void *)ndev->queues);
854 free_nvme:
855         return ret;
856 }
857
858 U_BOOT_DRIVER(nvme) = {
859         .name   = "nvme",
860         .id     = UCLASS_NVME,
861         .bind   = nvme_bind,
862         .probe  = nvme_probe,
863         .priv_auto_alloc_size = sizeof(struct nvme_dev),
864 };
865
866 struct pci_device_id nvme_supported[] = {
867         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
868         {}
869 };
870
871 U_BOOT_PCI_DEVICE(nvme, nvme_supported);