Merge branch 'agust@denx.de' of git://git.denx.de/u-boot-staging
[oweals/u-boot.git] / drivers / net / e1000.c
1 /**************************************************************************
2 Intel Pro 1000 for ppcboot/das-u-boot
3 Drivers are port from Intel's Linux driver e1000-4.3.15
4 and from Etherboot pro 1000 driver by mrakes at vivato dot net
5 tested on both gig copper and gig fiber boards
6 ***************************************************************************/
7 /*******************************************************************************
8
9
10   Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
11
12  * SPDX-License-Identifier:     GPL-2.0+
13
14   Contact Information:
15   Linux NICS <linux.nics@intel.com>
16   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
17
18 *******************************************************************************/
19 /*
20  *  Copyright (C) Archway Digital Solutions.
21  *
22  *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
23  *  2/9/2002
24  *
25  *  Copyright (C) Linux Networx.
26  *  Massive upgrade to work with the new intel gigabit NICs.
27  *  <ebiederman at lnxi dot com>
28  *
29  *  Copyright 2011 Freescale Semiconductor, Inc.
30  */
31
32 #include <common.h>
33 #include <dm.h>
34 #include <errno.h>
35 #include <memalign.h>
36 #include <pci.h>
37 #include "e1000.h"
38
39 #define TOUT_LOOP   100000
40
41 #ifdef CONFIG_DM_ETH
42 #define virt_to_bus(devno, v)   dm_pci_virt_to_mem(devno, (void *) (v))
43 #define bus_to_phys(devno, a)   dm_pci_mem_to_phys(devno, a)
44 #else
45 #define virt_to_bus(devno, v)   pci_virt_to_mem(devno, (void *) (v))
46 #define bus_to_phys(devno, a)   pci_mem_to_phys(devno, a)
47 #endif
48
49 #define E1000_DEFAULT_PCI_PBA   0x00000030
50 #define E1000_DEFAULT_PCIE_PBA  0x000a0026
51
52 /* NIC specific static variables go here */
53
54 /* Intel i210 needs the DMA descriptor rings aligned to 128b */
55 #define E1000_BUFFER_ALIGN      128
56
57 /*
58  * TODO(sjg@chromium.org): Even with driver model we share these buffers.
59  * Concurrent receiving on multiple active Ethernet devices will not work.
60  * Normally U-Boot does not support this anyway. To fix it in this driver,
61  * move these buffers and the tx/rx pointers to struct e1000_hw.
62  */
63 DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
64 DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
65 DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
66
67 static int tx_tail;
68 static int rx_tail, rx_last;
69 #ifdef CONFIG_DM_ETH
70 static int num_cards;   /* Number of E1000 devices seen so far */
71 #endif
72
73 static struct pci_device_id e1000_supported[] = {
74         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
75         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
76         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
77         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
78         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
79         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
80         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
81         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
82         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
83         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
84         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
85         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
86         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
87         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
88         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
89         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
90         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
91         /* E1000 PCIe card */
92         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
93         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
94         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
95         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
96         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
97         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
98         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
99         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
100         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
101         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
102         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
103         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
104         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
105         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
106         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
107         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
108         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
109         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
110         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
111         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
112         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
113         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
114         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
115         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
116         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
117         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
118         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
119         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
120         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
121         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
122
123         {}
124 };
125
126 /* Function forward declarations */
127 static int e1000_setup_link(struct e1000_hw *hw);
128 static int e1000_setup_fiber_link(struct e1000_hw *hw);
129 static int e1000_setup_copper_link(struct e1000_hw *hw);
130 static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
131 static void e1000_config_collision_dist(struct e1000_hw *hw);
132 static int e1000_config_mac_to_phy(struct e1000_hw *hw);
133 static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
134 static int e1000_check_for_link(struct e1000_hw *hw);
135 static int e1000_wait_autoneg(struct e1000_hw *hw);
136 static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
137                                        uint16_t * duplex);
138 static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
139                               uint16_t * phy_data);
140 static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
141                                uint16_t phy_data);
142 static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
143 static int e1000_phy_reset(struct e1000_hw *hw);
144 static int e1000_detect_gig_phy(struct e1000_hw *hw);
145 static void e1000_set_media_type(struct e1000_hw *hw);
146
147 static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
148 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
149 static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
150
151 #ifndef CONFIG_E1000_NO_NVM
152 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
153 static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
154                 uint16_t words,
155                 uint16_t *data);
156 /******************************************************************************
157  * Raises the EEPROM's clock input.
158  *
159  * hw - Struct containing variables accessed by shared code
160  * eecd - EECD's current value
161  *****************************************************************************/
162 void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
163 {
164         /* Raise the clock input to the EEPROM (by setting the SK bit), and then
165          * wait 50 microseconds.
166          */
167         *eecd = *eecd | E1000_EECD_SK;
168         E1000_WRITE_REG(hw, EECD, *eecd);
169         E1000_WRITE_FLUSH(hw);
170         udelay(50);
171 }
172
173 /******************************************************************************
174  * Lowers the EEPROM's clock input.
175  *
176  * hw - Struct containing variables accessed by shared code
177  * eecd - EECD's current value
178  *****************************************************************************/
179 void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
180 {
181         /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
182          * wait 50 microseconds.
183          */
184         *eecd = *eecd & ~E1000_EECD_SK;
185         E1000_WRITE_REG(hw, EECD, *eecd);
186         E1000_WRITE_FLUSH(hw);
187         udelay(50);
188 }
189
190 /******************************************************************************
191  * Shift data bits out to the EEPROM.
192  *
193  * hw - Struct containing variables accessed by shared code
194  * data - data to send to the EEPROM
195  * count - number of bits to shift out
196  *****************************************************************************/
197 static void
198 e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
199 {
200         uint32_t eecd;
201         uint32_t mask;
202
203         /* We need to shift "count" bits out to the EEPROM. So, value in the
204          * "data" parameter will be shifted out to the EEPROM one bit at a time.
205          * In order to do this, "data" must be broken down into bits.
206          */
207         mask = 0x01 << (count - 1);
208         eecd = E1000_READ_REG(hw, EECD);
209         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
210         do {
211                 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
212                  * and then raising and then lowering the clock (the SK bit controls
213                  * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
214                  * by setting "DI" to "0" and then raising and then lowering the clock.
215                  */
216                 eecd &= ~E1000_EECD_DI;
217
218                 if (data & mask)
219                         eecd |= E1000_EECD_DI;
220
221                 E1000_WRITE_REG(hw, EECD, eecd);
222                 E1000_WRITE_FLUSH(hw);
223
224                 udelay(50);
225
226                 e1000_raise_ee_clk(hw, &eecd);
227                 e1000_lower_ee_clk(hw, &eecd);
228
229                 mask = mask >> 1;
230
231         } while (mask);
232
233         /* We leave the "DI" bit set to "0" when we leave this routine. */
234         eecd &= ~E1000_EECD_DI;
235         E1000_WRITE_REG(hw, EECD, eecd);
236 }
237
238 /******************************************************************************
239  * Shift data bits in from the EEPROM
240  *
241  * hw - Struct containing variables accessed by shared code
242  *****************************************************************************/
243 static uint16_t
244 e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
245 {
246         uint32_t eecd;
247         uint32_t i;
248         uint16_t data;
249
250         /* In order to read a register from the EEPROM, we need to shift 'count'
251          * bits in from the EEPROM. Bits are "shifted in" by raising the clock
252          * input to the EEPROM (setting the SK bit), and then reading the
253          * value of the "DO" bit.  During this "shifting in" process the
254          * "DI" bit should always be clear.
255          */
256
257         eecd = E1000_READ_REG(hw, EECD);
258
259         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
260         data = 0;
261
262         for (i = 0; i < count; i++) {
263                 data = data << 1;
264                 e1000_raise_ee_clk(hw, &eecd);
265
266                 eecd = E1000_READ_REG(hw, EECD);
267
268                 eecd &= ~(E1000_EECD_DI);
269                 if (eecd & E1000_EECD_DO)
270                         data |= 1;
271
272                 e1000_lower_ee_clk(hw, &eecd);
273         }
274
275         return data;
276 }
277
278 /******************************************************************************
279  * Returns EEPROM to a "standby" state
280  *
281  * hw - Struct containing variables accessed by shared code
282  *****************************************************************************/
283 void e1000_standby_eeprom(struct e1000_hw *hw)
284 {
285         struct e1000_eeprom_info *eeprom = &hw->eeprom;
286         uint32_t eecd;
287
288         eecd = E1000_READ_REG(hw, EECD);
289
290         if (eeprom->type == e1000_eeprom_microwire) {
291                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
292                 E1000_WRITE_REG(hw, EECD, eecd);
293                 E1000_WRITE_FLUSH(hw);
294                 udelay(eeprom->delay_usec);
295
296                 /* Clock high */
297                 eecd |= E1000_EECD_SK;
298                 E1000_WRITE_REG(hw, EECD, eecd);
299                 E1000_WRITE_FLUSH(hw);
300                 udelay(eeprom->delay_usec);
301
302                 /* Select EEPROM */
303                 eecd |= E1000_EECD_CS;
304                 E1000_WRITE_REG(hw, EECD, eecd);
305                 E1000_WRITE_FLUSH(hw);
306                 udelay(eeprom->delay_usec);
307
308                 /* Clock low */
309                 eecd &= ~E1000_EECD_SK;
310                 E1000_WRITE_REG(hw, EECD, eecd);
311                 E1000_WRITE_FLUSH(hw);
312                 udelay(eeprom->delay_usec);
313         } else if (eeprom->type == e1000_eeprom_spi) {
314                 /* Toggle CS to flush commands */
315                 eecd |= E1000_EECD_CS;
316                 E1000_WRITE_REG(hw, EECD, eecd);
317                 E1000_WRITE_FLUSH(hw);
318                 udelay(eeprom->delay_usec);
319                 eecd &= ~E1000_EECD_CS;
320                 E1000_WRITE_REG(hw, EECD, eecd);
321                 E1000_WRITE_FLUSH(hw);
322                 udelay(eeprom->delay_usec);
323         }
324 }
325
326 /***************************************************************************
327 * Description:     Determines if the onboard NVM is FLASH or EEPROM.
328 *
329 * hw - Struct containing variables accessed by shared code
330 ****************************************************************************/
331 static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
332 {
333         uint32_t eecd = 0;
334
335         DEBUGFUNC();
336
337         if (hw->mac_type == e1000_ich8lan)
338                 return false;
339
340         if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
341                 eecd = E1000_READ_REG(hw, EECD);
342
343                 /* Isolate bits 15 & 16 */
344                 eecd = ((eecd >> 15) & 0x03);
345
346                 /* If both bits are set, device is Flash type */
347                 if (eecd == 0x03)
348                         return false;
349         }
350         return true;
351 }
352
353 /******************************************************************************
354  * Prepares EEPROM for access
355  *
356  * hw - Struct containing variables accessed by shared code
357  *
358  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
359  * function should be called before issuing a command to the EEPROM.
360  *****************************************************************************/
361 int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
362 {
363         struct e1000_eeprom_info *eeprom = &hw->eeprom;
364         uint32_t eecd, i = 0;
365
366         DEBUGFUNC();
367
368         if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
369                 return -E1000_ERR_SWFW_SYNC;
370         eecd = E1000_READ_REG(hw, EECD);
371
372         if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
373                 /* Request EEPROM Access */
374                 if (hw->mac_type > e1000_82544) {
375                         eecd |= E1000_EECD_REQ;
376                         E1000_WRITE_REG(hw, EECD, eecd);
377                         eecd = E1000_READ_REG(hw, EECD);
378                         while ((!(eecd & E1000_EECD_GNT)) &&
379                                 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
380                                 i++;
381                                 udelay(5);
382                                 eecd = E1000_READ_REG(hw, EECD);
383                         }
384                         if (!(eecd & E1000_EECD_GNT)) {
385                                 eecd &= ~E1000_EECD_REQ;
386                                 E1000_WRITE_REG(hw, EECD, eecd);
387                                 DEBUGOUT("Could not acquire EEPROM grant\n");
388                                 return -E1000_ERR_EEPROM;
389                         }
390                 }
391         }
392
393         /* Setup EEPROM for Read/Write */
394
395         if (eeprom->type == e1000_eeprom_microwire) {
396                 /* Clear SK and DI */
397                 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
398                 E1000_WRITE_REG(hw, EECD, eecd);
399
400                 /* Set CS */
401                 eecd |= E1000_EECD_CS;
402                 E1000_WRITE_REG(hw, EECD, eecd);
403         } else if (eeprom->type == e1000_eeprom_spi) {
404                 /* Clear SK and CS */
405                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
406                 E1000_WRITE_REG(hw, EECD, eecd);
407                 udelay(1);
408         }
409
410         return E1000_SUCCESS;
411 }
412
413 /******************************************************************************
414  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
415  * is configured.  Additionally, if this is ICH8, the flash controller GbE
416  * registers must be mapped, or this will crash.
417  *
418  * hw - Struct containing variables accessed by shared code
419  *****************************************************************************/
420 static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
421 {
422         struct e1000_eeprom_info *eeprom = &hw->eeprom;
423         uint32_t eecd;
424         int32_t ret_val = E1000_SUCCESS;
425         uint16_t eeprom_size;
426
427         if (hw->mac_type == e1000_igb)
428                 eecd = E1000_READ_REG(hw, I210_EECD);
429         else
430                 eecd = E1000_READ_REG(hw, EECD);
431
432         DEBUGFUNC();
433
434         switch (hw->mac_type) {
435         case e1000_82542_rev2_0:
436         case e1000_82542_rev2_1:
437         case e1000_82543:
438         case e1000_82544:
439                 eeprom->type = e1000_eeprom_microwire;
440                 eeprom->word_size = 64;
441                 eeprom->opcode_bits = 3;
442                 eeprom->address_bits = 6;
443                 eeprom->delay_usec = 50;
444                 eeprom->use_eerd = false;
445                 eeprom->use_eewr = false;
446         break;
447         case e1000_82540:
448         case e1000_82545:
449         case e1000_82545_rev_3:
450         case e1000_82546:
451         case e1000_82546_rev_3:
452                 eeprom->type = e1000_eeprom_microwire;
453                 eeprom->opcode_bits = 3;
454                 eeprom->delay_usec = 50;
455                 if (eecd & E1000_EECD_SIZE) {
456                         eeprom->word_size = 256;
457                         eeprom->address_bits = 8;
458                 } else {
459                         eeprom->word_size = 64;
460                         eeprom->address_bits = 6;
461                 }
462                 eeprom->use_eerd = false;
463                 eeprom->use_eewr = false;
464                 break;
465         case e1000_82541:
466         case e1000_82541_rev_2:
467         case e1000_82547:
468         case e1000_82547_rev_2:
469                 if (eecd & E1000_EECD_TYPE) {
470                         eeprom->type = e1000_eeprom_spi;
471                         eeprom->opcode_bits = 8;
472                         eeprom->delay_usec = 1;
473                         if (eecd & E1000_EECD_ADDR_BITS) {
474                                 eeprom->page_size = 32;
475                                 eeprom->address_bits = 16;
476                         } else {
477                                 eeprom->page_size = 8;
478                                 eeprom->address_bits = 8;
479                         }
480                 } else {
481                         eeprom->type = e1000_eeprom_microwire;
482                         eeprom->opcode_bits = 3;
483                         eeprom->delay_usec = 50;
484                         if (eecd & E1000_EECD_ADDR_BITS) {
485                                 eeprom->word_size = 256;
486                                 eeprom->address_bits = 8;
487                         } else {
488                                 eeprom->word_size = 64;
489                                 eeprom->address_bits = 6;
490                         }
491                 }
492                 eeprom->use_eerd = false;
493                 eeprom->use_eewr = false;
494                 break;
495         case e1000_82571:
496         case e1000_82572:
497                 eeprom->type = e1000_eeprom_spi;
498                 eeprom->opcode_bits = 8;
499                 eeprom->delay_usec = 1;
500                 if (eecd & E1000_EECD_ADDR_BITS) {
501                         eeprom->page_size = 32;
502                         eeprom->address_bits = 16;
503                 } else {
504                         eeprom->page_size = 8;
505                         eeprom->address_bits = 8;
506                 }
507                 eeprom->use_eerd = false;
508                 eeprom->use_eewr = false;
509                 break;
510         case e1000_82573:
511         case e1000_82574:
512                 eeprom->type = e1000_eeprom_spi;
513                 eeprom->opcode_bits = 8;
514                 eeprom->delay_usec = 1;
515                 if (eecd & E1000_EECD_ADDR_BITS) {
516                         eeprom->page_size = 32;
517                         eeprom->address_bits = 16;
518                 } else {
519                         eeprom->page_size = 8;
520                         eeprom->address_bits = 8;
521                 }
522                 if (e1000_is_onboard_nvm_eeprom(hw) == false) {
523                         eeprom->use_eerd = true;
524                         eeprom->use_eewr = true;
525
526                         eeprom->type = e1000_eeprom_flash;
527                         eeprom->word_size = 2048;
528
529                 /* Ensure that the Autonomous FLASH update bit is cleared due to
530                  * Flash update issue on parts which use a FLASH for NVM. */
531                         eecd &= ~E1000_EECD_AUPDEN;
532                         E1000_WRITE_REG(hw, EECD, eecd);
533                 }
534                 break;
535         case e1000_80003es2lan:
536                 eeprom->type = e1000_eeprom_spi;
537                 eeprom->opcode_bits = 8;
538                 eeprom->delay_usec = 1;
539                 if (eecd & E1000_EECD_ADDR_BITS) {
540                         eeprom->page_size = 32;
541                         eeprom->address_bits = 16;
542                 } else {
543                         eeprom->page_size = 8;
544                         eeprom->address_bits = 8;
545                 }
546                 eeprom->use_eerd = true;
547                 eeprom->use_eewr = false;
548                 break;
549         case e1000_igb:
550                 /* i210 has 4k of iNVM mapped as EEPROM */
551                 eeprom->type = e1000_eeprom_invm;
552                 eeprom->opcode_bits = 8;
553                 eeprom->delay_usec = 1;
554                 eeprom->page_size = 32;
555                 eeprom->address_bits = 16;
556                 eeprom->use_eerd = true;
557                 eeprom->use_eewr = false;
558                 break;
559         default:
560                 break;
561         }
562
563         if (eeprom->type == e1000_eeprom_spi ||
564             eeprom->type == e1000_eeprom_invm) {
565                 /* eeprom_size will be an enum [0..8] that maps
566                  * to eeprom sizes 128B to
567                  * 32KB (incremented by powers of 2).
568                  */
569                 if (hw->mac_type <= e1000_82547_rev_2) {
570                         /* Set to default value for initial eeprom read. */
571                         eeprom->word_size = 64;
572                         ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
573                                         &eeprom_size);
574                         if (ret_val)
575                                 return ret_val;
576                         eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
577                                 >> EEPROM_SIZE_SHIFT;
578                         /* 256B eeprom size was not supported in earlier
579                          * hardware, so we bump eeprom_size up one to
580                          * ensure that "1" (which maps to 256B) is never
581                          * the result used in the shifting logic below. */
582                         if (eeprom_size)
583                                 eeprom_size++;
584                 } else {
585                         eeprom_size = (uint16_t)((eecd &
586                                 E1000_EECD_SIZE_EX_MASK) >>
587                                 E1000_EECD_SIZE_EX_SHIFT);
588                 }
589
590                 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
591         }
592         return ret_val;
593 }
594
595 /******************************************************************************
596  * Polls the status bit (bit 1) of the EERD to determine when the read is done.
597  *
598  * hw - Struct containing variables accessed by shared code
599  *****************************************************************************/
600 static int32_t
601 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
602 {
603         uint32_t attempts = 100000;
604         uint32_t i, reg = 0;
605         int32_t done = E1000_ERR_EEPROM;
606
607         for (i = 0; i < attempts; i++) {
608                 if (eerd == E1000_EEPROM_POLL_READ) {
609                         if (hw->mac_type == e1000_igb)
610                                 reg = E1000_READ_REG(hw, I210_EERD);
611                         else
612                                 reg = E1000_READ_REG(hw, EERD);
613                 } else {
614                         if (hw->mac_type == e1000_igb)
615                                 reg = E1000_READ_REG(hw, I210_EEWR);
616                         else
617                                 reg = E1000_READ_REG(hw, EEWR);
618                 }
619
620                 if (reg & E1000_EEPROM_RW_REG_DONE) {
621                         done = E1000_SUCCESS;
622                         break;
623                 }
624                 udelay(5);
625         }
626
627         return done;
628 }
629
630 /******************************************************************************
631  * Reads a 16 bit word from the EEPROM using the EERD register.
632  *
633  * hw - Struct containing variables accessed by shared code
634  * offset - offset of  word in the EEPROM to read
635  * data - word read from the EEPROM
636  * words - number of words to read
637  *****************************************************************************/
638 static int32_t
639 e1000_read_eeprom_eerd(struct e1000_hw *hw,
640                         uint16_t offset,
641                         uint16_t words,
642                         uint16_t *data)
643 {
644         uint32_t i, eerd = 0;
645         int32_t error = 0;
646
647         for (i = 0; i < words; i++) {
648                 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
649                         E1000_EEPROM_RW_REG_START;
650
651                 if (hw->mac_type == e1000_igb)
652                         E1000_WRITE_REG(hw, I210_EERD, eerd);
653                 else
654                         E1000_WRITE_REG(hw, EERD, eerd);
655
656                 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
657
658                 if (error)
659                         break;
660
661                 if (hw->mac_type == e1000_igb) {
662                         data[i] = (E1000_READ_REG(hw, I210_EERD) >>
663                                 E1000_EEPROM_RW_REG_DATA);
664                 } else {
665                         data[i] = (E1000_READ_REG(hw, EERD) >>
666                                 E1000_EEPROM_RW_REG_DATA);
667                 }
668
669         }
670
671         return error;
672 }
673
674 void e1000_release_eeprom(struct e1000_hw *hw)
675 {
676         uint32_t eecd;
677
678         DEBUGFUNC();
679
680         eecd = E1000_READ_REG(hw, EECD);
681
682         if (hw->eeprom.type == e1000_eeprom_spi) {
683                 eecd |= E1000_EECD_CS;  /* Pull CS high */
684                 eecd &= ~E1000_EECD_SK; /* Lower SCK */
685
686                 E1000_WRITE_REG(hw, EECD, eecd);
687
688                 udelay(hw->eeprom.delay_usec);
689         } else if (hw->eeprom.type == e1000_eeprom_microwire) {
690                 /* cleanup eeprom */
691
692                 /* CS on Microwire is active-high */
693                 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
694
695                 E1000_WRITE_REG(hw, EECD, eecd);
696
697                 /* Rising edge of clock */
698                 eecd |= E1000_EECD_SK;
699                 E1000_WRITE_REG(hw, EECD, eecd);
700                 E1000_WRITE_FLUSH(hw);
701                 udelay(hw->eeprom.delay_usec);
702
703                 /* Falling edge of clock */
704                 eecd &= ~E1000_EECD_SK;
705                 E1000_WRITE_REG(hw, EECD, eecd);
706                 E1000_WRITE_FLUSH(hw);
707                 udelay(hw->eeprom.delay_usec);
708         }
709
710         /* Stop requesting EEPROM access */
711         if (hw->mac_type > e1000_82544) {
712                 eecd &= ~E1000_EECD_REQ;
713                 E1000_WRITE_REG(hw, EECD, eecd);
714         }
715
716         e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
717 }
718
719 /******************************************************************************
720  * Reads a 16 bit word from the EEPROM.
721  *
722  * hw - Struct containing variables accessed by shared code
723  *****************************************************************************/
724 static int32_t
725 e1000_spi_eeprom_ready(struct e1000_hw *hw)
726 {
727         uint16_t retry_count = 0;
728         uint8_t spi_stat_reg;
729
730         DEBUGFUNC();
731
732         /* Read "Status Register" repeatedly until the LSB is cleared.  The
733          * EEPROM will signal that the command has been completed by clearing
734          * bit 0 of the internal status register.  If it's not cleared within
735          * 5 milliseconds, then error out.
736          */
737         retry_count = 0;
738         do {
739                 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
740                         hw->eeprom.opcode_bits);
741                 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
742                 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
743                         break;
744
745                 udelay(5);
746                 retry_count += 5;
747
748                 e1000_standby_eeprom(hw);
749         } while (retry_count < EEPROM_MAX_RETRY_SPI);
750
751         /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
752          * only 0-5mSec on 5V devices)
753          */
754         if (retry_count >= EEPROM_MAX_RETRY_SPI) {
755                 DEBUGOUT("SPI EEPROM Status error\n");
756                 return -E1000_ERR_EEPROM;
757         }
758
759         return E1000_SUCCESS;
760 }
761
762 /******************************************************************************
763  * Reads a 16 bit word from the EEPROM.
764  *
765  * hw - Struct containing variables accessed by shared code
766  * offset - offset of  word in the EEPROM to read
767  * data - word read from the EEPROM
768  *****************************************************************************/
769 static int32_t
770 e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
771                 uint16_t words, uint16_t *data)
772 {
773         struct e1000_eeprom_info *eeprom = &hw->eeprom;
774         uint32_t i = 0;
775
776         DEBUGFUNC();
777
778         /* If eeprom is not yet detected, do so now */
779         if (eeprom->word_size == 0)
780                 e1000_init_eeprom_params(hw);
781
782         /* A check for invalid values:  offset too large, too many words,
783          * and not enough words.
784          */
785         if ((offset >= eeprom->word_size) ||
786                 (words > eeprom->word_size - offset) ||
787                 (words == 0)) {
788                 DEBUGOUT("\"words\" parameter out of bounds."
789                         "Words = %d, size = %d\n", offset, eeprom->word_size);
790                 return -E1000_ERR_EEPROM;
791         }
792
793         /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
794          * directly. In this case, we need to acquire the EEPROM so that
795          * FW or other port software does not interrupt.
796          */
797         if (e1000_is_onboard_nvm_eeprom(hw) == true &&
798                 hw->eeprom.use_eerd == false) {
799
800                 /* Prepare the EEPROM for bit-bang reading */
801                 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
802                         return -E1000_ERR_EEPROM;
803         }
804
805         /* Eerd register EEPROM access requires no eeprom aquire/release */
806         if (eeprom->use_eerd == true)
807                 return e1000_read_eeprom_eerd(hw, offset, words, data);
808
809         /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
810          * acquired the EEPROM at this point, so any returns should relase it */
811         if (eeprom->type == e1000_eeprom_spi) {
812                 uint16_t word_in;
813                 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
814
815                 if (e1000_spi_eeprom_ready(hw)) {
816                         e1000_release_eeprom(hw);
817                         return -E1000_ERR_EEPROM;
818                 }
819
820                 e1000_standby_eeprom(hw);
821
822                 /* Some SPI eeproms use the 8th address bit embedded in
823                  * the opcode */
824                 if ((eeprom->address_bits == 8) && (offset >= 128))
825                         read_opcode |= EEPROM_A8_OPCODE_SPI;
826
827                 /* Send the READ command (opcode + addr)  */
828                 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
829                 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
830                                 eeprom->address_bits);
831
832                 /* Read the data.  The address of the eeprom internally
833                  * increments with each byte (spi) being read, saving on the
834                  * overhead of eeprom setup and tear-down.  The address
835                  * counter will roll over if reading beyond the size of
836                  * the eeprom, thus allowing the entire memory to be read
837                  * starting from any offset. */
838                 for (i = 0; i < words; i++) {
839                         word_in = e1000_shift_in_ee_bits(hw, 16);
840                         data[i] = (word_in >> 8) | (word_in << 8);
841                 }
842         } else if (eeprom->type == e1000_eeprom_microwire) {
843                 for (i = 0; i < words; i++) {
844                         /* Send the READ command (opcode + addr)  */
845                         e1000_shift_out_ee_bits(hw,
846                                 EEPROM_READ_OPCODE_MICROWIRE,
847                                 eeprom->opcode_bits);
848                         e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
849                                 eeprom->address_bits);
850
851                         /* Read the data.  For microwire, each word requires
852                          * the overhead of eeprom setup and tear-down. */
853                         data[i] = e1000_shift_in_ee_bits(hw, 16);
854                         e1000_standby_eeprom(hw);
855                 }
856         }
857
858         /* End this read operation */
859         e1000_release_eeprom(hw);
860
861         return E1000_SUCCESS;
862 }
863
864 /******************************************************************************
865  * Verifies that the EEPROM has a valid checksum
866  *
867  * hw - Struct containing variables accessed by shared code
868  *
869  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
870  * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
871  * valid.
872  *****************************************************************************/
873 static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
874 {
875         uint16_t i, checksum, checksum_reg, *buf;
876
877         DEBUGFUNC();
878
879         /* Allocate a temporary buffer */
880         buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
881         if (!buf) {
882                 E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
883                 return -E1000_ERR_EEPROM;
884         }
885
886         /* Read the EEPROM */
887         if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
888                 E1000_ERR(hw, "Unable to read EEPROM!\n");
889                 return -E1000_ERR_EEPROM;
890         }
891
892         /* Compute the checksum */
893         checksum = 0;
894         for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
895                 checksum += buf[i];
896         checksum = ((uint16_t)EEPROM_SUM) - checksum;
897         checksum_reg = buf[i];
898
899         /* Verify it! */
900         if (checksum == checksum_reg)
901                 return 0;
902
903         /* Hrm, verification failed, print an error */
904         E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
905         E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
906                   checksum_reg, checksum);
907
908         return -E1000_ERR_EEPROM;
909 }
910 #endif /* CONFIG_E1000_NO_NVM */
911
912 /*****************************************************************************
913  * Set PHY to class A mode
914  * Assumes the following operations will follow to enable the new class mode.
915  *  1. Do a PHY soft reset
916  *  2. Restart auto-negotiation or force link.
917  *
918  * hw - Struct containing variables accessed by shared code
919  ****************************************************************************/
920 static int32_t
921 e1000_set_phy_mode(struct e1000_hw *hw)
922 {
923 #ifndef CONFIG_E1000_NO_NVM
924         int32_t ret_val;
925         uint16_t eeprom_data;
926
927         DEBUGFUNC();
928
929         if ((hw->mac_type == e1000_82545_rev_3) &&
930                 (hw->media_type == e1000_media_type_copper)) {
931                 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
932                                 1, &eeprom_data);
933                 if (ret_val)
934                         return ret_val;
935
936                 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
937                         (eeprom_data & EEPROM_PHY_CLASS_A)) {
938                         ret_val = e1000_write_phy_reg(hw,
939                                         M88E1000_PHY_PAGE_SELECT, 0x000B);
940                         if (ret_val)
941                                 return ret_val;
942                         ret_val = e1000_write_phy_reg(hw,
943                                         M88E1000_PHY_GEN_CONTROL, 0x8104);
944                         if (ret_val)
945                                 return ret_val;
946
947                         hw->phy_reset_disable = false;
948                 }
949         }
950 #endif
951         return E1000_SUCCESS;
952 }
953
954 #ifndef CONFIG_E1000_NO_NVM
955 /***************************************************************************
956  *
957  * Obtaining software semaphore bit (SMBI) before resetting PHY.
958  *
959  * hw: Struct containing variables accessed by shared code
960  *
961  * returns: - E1000_ERR_RESET if fail to obtain semaphore.
962  *            E1000_SUCCESS at any other case.
963  *
964  ***************************************************************************/
965 static int32_t
966 e1000_get_software_semaphore(struct e1000_hw *hw)
967 {
968          int32_t timeout = hw->eeprom.word_size + 1;
969          uint32_t swsm;
970
971         DEBUGFUNC();
972
973         if (hw->mac_type != e1000_80003es2lan)
974                 return E1000_SUCCESS;
975
976         while (timeout) {
977                 swsm = E1000_READ_REG(hw, SWSM);
978                 /* If SMBI bit cleared, it is now set and we hold
979                  * the semaphore */
980                 if (!(swsm & E1000_SWSM_SMBI))
981                         break;
982                 mdelay(1);
983                 timeout--;
984         }
985
986         if (!timeout) {
987                 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
988                 return -E1000_ERR_RESET;
989         }
990
991         return E1000_SUCCESS;
992 }
993 #endif
994
995 /***************************************************************************
996  * This function clears HW semaphore bits.
997  *
998  * hw: Struct containing variables accessed by shared code
999  *
1000  * returns: - None.
1001  *
1002  ***************************************************************************/
1003 static void
1004 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
1005 {
1006 #ifndef CONFIG_E1000_NO_NVM
1007          uint32_t swsm;
1008
1009         DEBUGFUNC();
1010
1011         if (!hw->eeprom_semaphore_present)
1012                 return;
1013
1014         swsm = E1000_READ_REG(hw, SWSM);
1015         if (hw->mac_type == e1000_80003es2lan) {
1016                 /* Release both semaphores. */
1017                 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1018         } else
1019                 swsm &= ~(E1000_SWSM_SWESMBI);
1020         E1000_WRITE_REG(hw, SWSM, swsm);
1021 #endif
1022 }
1023
1024 /***************************************************************************
1025  *
1026  * Using the combination of SMBI and SWESMBI semaphore bits when resetting
1027  * adapter or Eeprom access.
1028  *
1029  * hw: Struct containing variables accessed by shared code
1030  *
1031  * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
1032  *            E1000_SUCCESS at any other case.
1033  *
1034  ***************************************************************************/
1035 static int32_t
1036 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
1037 {
1038 #ifndef CONFIG_E1000_NO_NVM
1039         int32_t timeout;
1040         uint32_t swsm;
1041
1042         DEBUGFUNC();
1043
1044         if (!hw->eeprom_semaphore_present)
1045                 return E1000_SUCCESS;
1046
1047         if (hw->mac_type == e1000_80003es2lan) {
1048                 /* Get the SW semaphore. */
1049                 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
1050                         return -E1000_ERR_EEPROM;
1051         }
1052
1053         /* Get the FW semaphore. */
1054         timeout = hw->eeprom.word_size + 1;
1055         while (timeout) {
1056                 swsm = E1000_READ_REG(hw, SWSM);
1057                 swsm |= E1000_SWSM_SWESMBI;
1058                 E1000_WRITE_REG(hw, SWSM, swsm);
1059                 /* if we managed to set the bit we got the semaphore. */
1060                 swsm = E1000_READ_REG(hw, SWSM);
1061                 if (swsm & E1000_SWSM_SWESMBI)
1062                         break;
1063
1064                 udelay(50);
1065                 timeout--;
1066         }
1067
1068         if (!timeout) {
1069                 /* Release semaphores */
1070                 e1000_put_hw_eeprom_semaphore(hw);
1071                 DEBUGOUT("Driver can't access the Eeprom - "
1072                                 "SWESMBI bit is set.\n");
1073                 return -E1000_ERR_EEPROM;
1074         }
1075 #endif
1076         return E1000_SUCCESS;
1077 }
1078
1079 /* Take ownership of the PHY */
1080 static int32_t
1081 e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
1082 {
1083         uint32_t swfw_sync = 0;
1084         uint32_t swmask = mask;
1085         uint32_t fwmask = mask << 16;
1086         int32_t timeout = 200;
1087
1088         DEBUGFUNC();
1089         while (timeout) {
1090                 if (e1000_get_hw_eeprom_semaphore(hw))
1091                         return -E1000_ERR_SWFW_SYNC;
1092
1093                 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1094                 if (!(swfw_sync & (fwmask | swmask)))
1095                         break;
1096
1097                 /* firmware currently using resource (fwmask) */
1098                 /* or other software thread currently using resource (swmask) */
1099                 e1000_put_hw_eeprom_semaphore(hw);
1100                 mdelay(5);
1101                 timeout--;
1102         }
1103
1104         if (!timeout) {
1105                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
1106                 return -E1000_ERR_SWFW_SYNC;
1107         }
1108
1109         swfw_sync |= swmask;
1110         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1111
1112         e1000_put_hw_eeprom_semaphore(hw);
1113         return E1000_SUCCESS;
1114 }
1115
1116 static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
1117 {
1118         uint32_t swfw_sync = 0;
1119
1120         DEBUGFUNC();
1121         while (e1000_get_hw_eeprom_semaphore(hw))
1122                 ; /* Empty */
1123
1124         swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
1125         swfw_sync &= ~mask;
1126         E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
1127
1128         e1000_put_hw_eeprom_semaphore(hw);
1129 }
1130
1131 static bool e1000_is_second_port(struct e1000_hw *hw)
1132 {
1133         switch (hw->mac_type) {
1134         case e1000_80003es2lan:
1135         case e1000_82546:
1136         case e1000_82571:
1137                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1138                         return true;
1139                 /* Fallthrough */
1140         default:
1141                 return false;
1142         }
1143 }
1144
1145 #ifndef CONFIG_E1000_NO_NVM
1146 /******************************************************************************
1147  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
1148  * second function of dual function devices
1149  *
1150  * nic - Struct containing variables accessed by shared code
1151  *****************************************************************************/
1152 static int
1153 e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
1154 {
1155         uint16_t offset;
1156         uint16_t eeprom_data;
1157         uint32_t reg_data = 0;
1158         int i;
1159
1160         DEBUGFUNC();
1161
1162         for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
1163                 offset = i >> 1;
1164                 if (hw->mac_type == e1000_igb) {
1165                         /* i210 preloads MAC address into RAL/RAH registers */
1166                         if (offset == 0)
1167                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
1168                         else if (offset == 1)
1169                                 reg_data >>= 16;
1170                         else if (offset == 2)
1171                                 reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
1172                         eeprom_data = reg_data & 0xffff;
1173                 } else if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
1174                         DEBUGOUT("EEPROM Read Error\n");
1175                         return -E1000_ERR_EEPROM;
1176                 }
1177                 enetaddr[i] = eeprom_data & 0xff;
1178                 enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
1179         }
1180
1181         /* Invert the last bit if this is the second device */
1182         if (e1000_is_second_port(hw))
1183                 enetaddr[5] ^= 1;
1184
1185         return 0;
1186 }
1187 #endif
1188
1189 /******************************************************************************
1190  * Initializes receive address filters.
1191  *
1192  * hw - Struct containing variables accessed by shared code
1193  *
1194  * Places the MAC address in receive address register 0 and clears the rest
1195  * of the receive addresss registers. Clears the multicast table. Assumes
1196  * the receiver is in reset when the routine is called.
1197  *****************************************************************************/
1198 static void
1199 e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
1200 {
1201         uint32_t i;
1202         uint32_t addr_low;
1203         uint32_t addr_high;
1204
1205         DEBUGFUNC();
1206
1207         /* Setup the receive address. */
1208         DEBUGOUT("Programming MAC Address into RAR[0]\n");
1209         addr_low = (enetaddr[0] |
1210                     (enetaddr[1] << 8) |
1211                     (enetaddr[2] << 16) | (enetaddr[3] << 24));
1212
1213         addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
1214
1215         E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
1216         E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
1217
1218         /* Zero out the other 15 receive addresses. */
1219         DEBUGOUT("Clearing RAR[1-15]\n");
1220         for (i = 1; i < E1000_RAR_ENTRIES; i++) {
1221                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
1222                 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
1223         }
1224 }
1225
1226 /******************************************************************************
1227  * Clears the VLAN filer table
1228  *
1229  * hw - Struct containing variables accessed by shared code
1230  *****************************************************************************/
1231 static void
1232 e1000_clear_vfta(struct e1000_hw *hw)
1233 {
1234         uint32_t offset;
1235
1236         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
1237                 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
1238 }
1239
1240 /******************************************************************************
1241  * Set the mac type member in the hw struct.
1242  *
1243  * hw - Struct containing variables accessed by shared code
1244  *****************************************************************************/
1245 int32_t
1246 e1000_set_mac_type(struct e1000_hw *hw)
1247 {
1248         DEBUGFUNC();
1249
1250         switch (hw->device_id) {
1251         case E1000_DEV_ID_82542:
1252                 switch (hw->revision_id) {
1253                 case E1000_82542_2_0_REV_ID:
1254                         hw->mac_type = e1000_82542_rev2_0;
1255                         break;
1256                 case E1000_82542_2_1_REV_ID:
1257                         hw->mac_type = e1000_82542_rev2_1;
1258                         break;
1259                 default:
1260                         /* Invalid 82542 revision ID */
1261                         return -E1000_ERR_MAC_TYPE;
1262                 }
1263                 break;
1264         case E1000_DEV_ID_82543GC_FIBER:
1265         case E1000_DEV_ID_82543GC_COPPER:
1266                 hw->mac_type = e1000_82543;
1267                 break;
1268         case E1000_DEV_ID_82544EI_COPPER:
1269         case E1000_DEV_ID_82544EI_FIBER:
1270         case E1000_DEV_ID_82544GC_COPPER:
1271         case E1000_DEV_ID_82544GC_LOM:
1272                 hw->mac_type = e1000_82544;
1273                 break;
1274         case E1000_DEV_ID_82540EM:
1275         case E1000_DEV_ID_82540EM_LOM:
1276         case E1000_DEV_ID_82540EP:
1277         case E1000_DEV_ID_82540EP_LOM:
1278         case E1000_DEV_ID_82540EP_LP:
1279                 hw->mac_type = e1000_82540;
1280                 break;
1281         case E1000_DEV_ID_82545EM_COPPER:
1282         case E1000_DEV_ID_82545EM_FIBER:
1283                 hw->mac_type = e1000_82545;
1284                 break;
1285         case E1000_DEV_ID_82545GM_COPPER:
1286         case E1000_DEV_ID_82545GM_FIBER:
1287         case E1000_DEV_ID_82545GM_SERDES:
1288                 hw->mac_type = e1000_82545_rev_3;
1289                 break;
1290         case E1000_DEV_ID_82546EB_COPPER:
1291         case E1000_DEV_ID_82546EB_FIBER:
1292         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1293                 hw->mac_type = e1000_82546;
1294                 break;
1295         case E1000_DEV_ID_82546GB_COPPER:
1296         case E1000_DEV_ID_82546GB_FIBER:
1297         case E1000_DEV_ID_82546GB_SERDES:
1298         case E1000_DEV_ID_82546GB_PCIE:
1299         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1300         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1301                 hw->mac_type = e1000_82546_rev_3;
1302                 break;
1303         case E1000_DEV_ID_82541EI:
1304         case E1000_DEV_ID_82541EI_MOBILE:
1305         case E1000_DEV_ID_82541ER_LOM:
1306                 hw->mac_type = e1000_82541;
1307                 break;
1308         case E1000_DEV_ID_82541ER:
1309         case E1000_DEV_ID_82541GI:
1310         case E1000_DEV_ID_82541GI_LF:
1311         case E1000_DEV_ID_82541GI_MOBILE:
1312                 hw->mac_type = e1000_82541_rev_2;
1313                 break;
1314         case E1000_DEV_ID_82547EI:
1315         case E1000_DEV_ID_82547EI_MOBILE:
1316                 hw->mac_type = e1000_82547;
1317                 break;
1318         case E1000_DEV_ID_82547GI:
1319                 hw->mac_type = e1000_82547_rev_2;
1320                 break;
1321         case E1000_DEV_ID_82571EB_COPPER:
1322         case E1000_DEV_ID_82571EB_FIBER:
1323         case E1000_DEV_ID_82571EB_SERDES:
1324         case E1000_DEV_ID_82571EB_SERDES_DUAL:
1325         case E1000_DEV_ID_82571EB_SERDES_QUAD:
1326         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1327         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1328         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1329         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1330                 hw->mac_type = e1000_82571;
1331                 break;
1332         case E1000_DEV_ID_82572EI_COPPER:
1333         case E1000_DEV_ID_82572EI_FIBER:
1334         case E1000_DEV_ID_82572EI_SERDES:
1335         case E1000_DEV_ID_82572EI:
1336                 hw->mac_type = e1000_82572;
1337                 break;
1338         case E1000_DEV_ID_82573E:
1339         case E1000_DEV_ID_82573E_IAMT:
1340         case E1000_DEV_ID_82573L:
1341                 hw->mac_type = e1000_82573;
1342                 break;
1343         case E1000_DEV_ID_82574L:
1344                 hw->mac_type = e1000_82574;
1345                 break;
1346         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
1347         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
1348         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
1349         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
1350                 hw->mac_type = e1000_80003es2lan;
1351                 break;
1352         case E1000_DEV_ID_ICH8_IGP_M_AMT:
1353         case E1000_DEV_ID_ICH8_IGP_AMT:
1354         case E1000_DEV_ID_ICH8_IGP_C:
1355         case E1000_DEV_ID_ICH8_IFE:
1356         case E1000_DEV_ID_ICH8_IFE_GT:
1357         case E1000_DEV_ID_ICH8_IFE_G:
1358         case E1000_DEV_ID_ICH8_IGP_M:
1359                 hw->mac_type = e1000_ich8lan;
1360                 break;
1361         case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
1362         case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
1363         case PCI_DEVICE_ID_INTEL_I210_COPPER:
1364         case PCI_DEVICE_ID_INTEL_I211_COPPER:
1365         case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
1366         case PCI_DEVICE_ID_INTEL_I210_SERDES:
1367         case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
1368         case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
1369                 hw->mac_type = e1000_igb;
1370                 break;
1371         default:
1372                 /* Should never have loaded on this device */
1373                 return -E1000_ERR_MAC_TYPE;
1374         }
1375         return E1000_SUCCESS;
1376 }
1377
1378 /******************************************************************************
1379  * Reset the transmit and receive units; mask and clear all interrupts.
1380  *
1381  * hw - Struct containing variables accessed by shared code
1382  *****************************************************************************/
1383 void
1384 e1000_reset_hw(struct e1000_hw *hw)
1385 {
1386         uint32_t ctrl;
1387         uint32_t ctrl_ext;
1388         uint32_t manc;
1389         uint32_t pba = 0;
1390         uint32_t reg;
1391
1392         DEBUGFUNC();
1393
1394         /* get the correct pba value for both PCI and PCIe*/
1395         if (hw->mac_type <  e1000_82571)
1396                 pba = E1000_DEFAULT_PCI_PBA;
1397         else
1398                 pba = E1000_DEFAULT_PCIE_PBA;
1399
1400         /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
1401         if (hw->mac_type == e1000_82542_rev2_0) {
1402                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1403 #ifdef CONFIG_DM_ETH
1404                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1405                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1406 #else
1407                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1408                                 hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1409 #endif
1410         }
1411
1412         /* Clear interrupt mask to stop board from generating interrupts */
1413         DEBUGOUT("Masking off all interrupts\n");
1414         if (hw->mac_type == e1000_igb)
1415                 E1000_WRITE_REG(hw, I210_IAM, 0);
1416         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1417
1418         /* Disable the Transmit and Receive units.  Then delay to allow
1419          * any pending transactions to complete before we hit the MAC with
1420          * the global reset.
1421          */
1422         E1000_WRITE_REG(hw, RCTL, 0);
1423         E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
1424         E1000_WRITE_FLUSH(hw);
1425
1426         /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
1427         hw->tbi_compatibility_on = false;
1428
1429         /* Delay to allow any outstanding PCI transactions to complete before
1430          * resetting the device
1431          */
1432         mdelay(10);
1433
1434         /* Issue a global reset to the MAC.  This will reset the chip's
1435          * transmit, receive, DMA, and link units.  It will not effect
1436          * the current PCI configuration.  The global reset bit is self-
1437          * clearing, and should clear within a microsecond.
1438          */
1439         DEBUGOUT("Issuing a global reset to MAC\n");
1440         ctrl = E1000_READ_REG(hw, CTRL);
1441
1442         E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
1443
1444         /* Force a reload from the EEPROM if necessary */
1445         if (hw->mac_type == e1000_igb) {
1446                 mdelay(20);
1447                 reg = E1000_READ_REG(hw, STATUS);
1448                 if (reg & E1000_STATUS_PF_RST_DONE)
1449                         DEBUGOUT("PF OK\n");
1450                 reg = E1000_READ_REG(hw, I210_EECD);
1451                 if (reg & E1000_EECD_AUTO_RD)
1452                         DEBUGOUT("EEC OK\n");
1453         } else if (hw->mac_type < e1000_82540) {
1454                 /* Wait for reset to complete */
1455                 udelay(10);
1456                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1457                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1458                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1459                 E1000_WRITE_FLUSH(hw);
1460                 /* Wait for EEPROM reload */
1461                 mdelay(2);
1462         } else {
1463                 /* Wait for EEPROM reload (it happens automatically) */
1464                 mdelay(4);
1465                 /* Dissable HW ARPs on ASF enabled adapters */
1466                 manc = E1000_READ_REG(hw, MANC);
1467                 manc &= ~(E1000_MANC_ARP_EN);
1468                 E1000_WRITE_REG(hw, MANC, manc);
1469         }
1470
1471         /* Clear interrupt mask to stop board from generating interrupts */
1472         DEBUGOUT("Masking off all interrupts\n");
1473         if (hw->mac_type == e1000_igb)
1474                 E1000_WRITE_REG(hw, I210_IAM, 0);
1475         E1000_WRITE_REG(hw, IMC, 0xffffffff);
1476
1477         /* Clear any pending interrupt events. */
1478         E1000_READ_REG(hw, ICR);
1479
1480         /* If MWI was previously enabled, reenable it. */
1481         if (hw->mac_type == e1000_82542_rev2_0) {
1482 #ifdef CONFIG_DM_ETH
1483                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1484 #else
1485                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1486 #endif
1487         }
1488         if (hw->mac_type != e1000_igb)
1489                 E1000_WRITE_REG(hw, PBA, pba);
1490 }
1491
1492 /******************************************************************************
1493  *
1494  * Initialize a number of hardware-dependent bits
1495  *
1496  * hw: Struct containing variables accessed by shared code
1497  *
1498  * This function contains hardware limitation workarounds for PCI-E adapters
1499  *
1500  *****************************************************************************/
1501 static void
1502 e1000_initialize_hardware_bits(struct e1000_hw *hw)
1503 {
1504         if ((hw->mac_type >= e1000_82571) &&
1505                         (!hw->initialize_hw_bits_disable)) {
1506                 /* Settings common to all PCI-express silicon */
1507                 uint32_t reg_ctrl, reg_ctrl_ext;
1508                 uint32_t reg_tarc0, reg_tarc1;
1509                 uint32_t reg_tctl;
1510                 uint32_t reg_txdctl, reg_txdctl1;
1511
1512                 /* link autonegotiation/sync workarounds */
1513                 reg_tarc0 = E1000_READ_REG(hw, TARC0);
1514                 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
1515
1516                 /* Enable not-done TX descriptor counting */
1517                 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
1518                 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
1519                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
1520
1521                 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
1522                 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
1523                 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
1524
1525         /* IGB is cool */
1526         if (hw->mac_type == e1000_igb)
1527                 return;
1528
1529                 switch (hw->mac_type) {
1530                 case e1000_82571:
1531                 case e1000_82572:
1532                         /* Clear PHY TX compatible mode bits */
1533                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1534                         reg_tarc1 &= ~((1 << 30)|(1 << 29));
1535
1536                         /* link autonegotiation/sync workarounds */
1537                         reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
1538
1539                         /* TX ring control fixes */
1540                         reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
1541
1542                         /* Multiple read bit is reversed polarity */
1543                         reg_tctl = E1000_READ_REG(hw, TCTL);
1544                         if (reg_tctl & E1000_TCTL_MULR)
1545                                 reg_tarc1 &= ~(1 << 28);
1546                         else
1547                                 reg_tarc1 |= (1 << 28);
1548
1549                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1550                         break;
1551                 case e1000_82573:
1552                 case e1000_82574:
1553                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1554                         reg_ctrl_ext &= ~(1 << 23);
1555                         reg_ctrl_ext |= (1 << 22);
1556
1557                         /* TX byte count fix */
1558                         reg_ctrl = E1000_READ_REG(hw, CTRL);
1559                         reg_ctrl &= ~(1 << 29);
1560
1561                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1562                         E1000_WRITE_REG(hw, CTRL, reg_ctrl);
1563                         break;
1564                 case e1000_80003es2lan:
1565         /* improve small packet performace for fiber/serdes */
1566                         if ((hw->media_type == e1000_media_type_fiber)
1567                         || (hw->media_type ==
1568                                 e1000_media_type_internal_serdes)) {
1569                                 reg_tarc0 &= ~(1 << 20);
1570                         }
1571
1572                 /* Multiple read bit is reversed polarity */
1573                         reg_tctl = E1000_READ_REG(hw, TCTL);
1574                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1575                         if (reg_tctl & E1000_TCTL_MULR)
1576                                 reg_tarc1 &= ~(1 << 28);
1577                         else
1578                                 reg_tarc1 |= (1 << 28);
1579
1580                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1581                         break;
1582                 case e1000_ich8lan:
1583                         /* Reduce concurrent DMA requests to 3 from 4 */
1584                         if ((hw->revision_id < 3) ||
1585                         ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1586                                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
1587                                 reg_tarc0 |= ((1 << 29)|(1 << 28));
1588
1589                         reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1590                         reg_ctrl_ext |= (1 << 22);
1591                         E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
1592
1593                         /* workaround TX hang with TSO=on */
1594                         reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
1595
1596                         /* Multiple read bit is reversed polarity */
1597                         reg_tctl = E1000_READ_REG(hw, TCTL);
1598                         reg_tarc1 = E1000_READ_REG(hw, TARC1);
1599                         if (reg_tctl & E1000_TCTL_MULR)
1600                                 reg_tarc1 &= ~(1 << 28);
1601                         else
1602                                 reg_tarc1 |= (1 << 28);
1603
1604                         /* workaround TX hang with TSO=on */
1605                         reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
1606
1607                         E1000_WRITE_REG(hw, TARC1, reg_tarc1);
1608                         break;
1609                 default:
1610                         break;
1611                 }
1612
1613                 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
1614         }
1615 }
1616
1617 /******************************************************************************
1618  * Performs basic configuration of the adapter.
1619  *
1620  * hw - Struct containing variables accessed by shared code
1621  *
1622  * Assumes that the controller has previously been reset and is in a
1623  * post-reset uninitialized state. Initializes the receive address registers,
1624  * multicast table, and VLAN filter table. Calls routines to setup link
1625  * configuration and flow control settings. Clears all on-chip counters. Leaves
1626  * the transmit and receive units disabled and uninitialized.
1627  *****************************************************************************/
1628 static int
1629 e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
1630 {
1631         uint32_t ctrl;
1632         uint32_t i;
1633         int32_t ret_val;
1634         uint16_t pcix_cmd_word;
1635         uint16_t pcix_stat_hi_word;
1636         uint16_t cmd_mmrbc;
1637         uint16_t stat_mmrbc;
1638         uint32_t mta_size;
1639         uint32_t reg_data;
1640         uint32_t ctrl_ext;
1641         DEBUGFUNC();
1642         /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
1643         if ((hw->mac_type == e1000_ich8lan) &&
1644                 ((hw->revision_id < 3) ||
1645                 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
1646                 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
1647                         reg_data = E1000_READ_REG(hw, STATUS);
1648                         reg_data &= ~0x80000000;
1649                         E1000_WRITE_REG(hw, STATUS, reg_data);
1650         }
1651         /* Do not need initialize Identification LED */
1652
1653         /* Set the media type and TBI compatibility */
1654         e1000_set_media_type(hw);
1655
1656         /* Must be called after e1000_set_media_type
1657          * because media_type is used */
1658         e1000_initialize_hardware_bits(hw);
1659
1660         /* Disabling VLAN filtering. */
1661         DEBUGOUT("Initializing the IEEE VLAN\n");
1662         /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
1663         if (hw->mac_type != e1000_ich8lan) {
1664                 if (hw->mac_type < e1000_82545_rev_3)
1665                         E1000_WRITE_REG(hw, VET, 0);
1666                 e1000_clear_vfta(hw);
1667         }
1668
1669         /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
1670         if (hw->mac_type == e1000_82542_rev2_0) {
1671                 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
1672 #ifdef CONFIG_DM_ETH
1673                 dm_pci_write_config16(hw->pdev, PCI_COMMAND,
1674                                       hw->
1675                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1676 #else
1677                 pci_write_config_word(hw->pdev, PCI_COMMAND,
1678                                       hw->
1679                                       pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
1680 #endif
1681                 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
1682                 E1000_WRITE_FLUSH(hw);
1683                 mdelay(5);
1684         }
1685
1686         /* Setup the receive address. This involves initializing all of the Receive
1687          * Address Registers (RARs 0 - 15).
1688          */
1689         e1000_init_rx_addrs(hw, enetaddr);
1690
1691         /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
1692         if (hw->mac_type == e1000_82542_rev2_0) {
1693                 E1000_WRITE_REG(hw, RCTL, 0);
1694                 E1000_WRITE_FLUSH(hw);
1695                 mdelay(1);
1696 #ifdef CONFIG_DM_ETH
1697                 dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1698 #else
1699                 pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
1700 #endif
1701         }
1702
1703         /* Zero out the Multicast HASH table */
1704         DEBUGOUT("Zeroing the MTA\n");
1705         mta_size = E1000_MC_TBL_SIZE;
1706         if (hw->mac_type == e1000_ich8lan)
1707                 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
1708         for (i = 0; i < mta_size; i++) {
1709                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1710                 /* use write flush to prevent Memory Write Block (MWB) from
1711                  * occuring when accessing our register space */
1712                 E1000_WRITE_FLUSH(hw);
1713         }
1714
1715         switch (hw->mac_type) {
1716         case e1000_82545_rev_3:
1717         case e1000_82546_rev_3:
1718         case e1000_igb:
1719                 break;
1720         default:
1721         /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
1722         if (hw->bus_type == e1000_bus_type_pcix) {
1723 #ifdef CONFIG_DM_ETH
1724                 dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1725                                      &pcix_cmd_word);
1726                 dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
1727                                      &pcix_stat_hi_word);
1728 #else
1729                 pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1730                                      &pcix_cmd_word);
1731                 pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
1732                                      &pcix_stat_hi_word);
1733 #endif
1734                 cmd_mmrbc =
1735                     (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
1736                     PCIX_COMMAND_MMRBC_SHIFT;
1737                 stat_mmrbc =
1738                     (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
1739                     PCIX_STATUS_HI_MMRBC_SHIFT;
1740                 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
1741                         stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
1742                 if (cmd_mmrbc > stat_mmrbc) {
1743                         pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
1744                         pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
1745 #ifdef CONFIG_DM_ETH
1746                         dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
1747                                               pcix_cmd_word);
1748 #else
1749                         pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
1750                                               pcix_cmd_word);
1751 #endif
1752                 }
1753         }
1754                 break;
1755         }
1756
1757         /* More time needed for PHY to initialize */
1758         if (hw->mac_type == e1000_ich8lan)
1759                 mdelay(15);
1760         if (hw->mac_type == e1000_igb)
1761                 mdelay(15);
1762
1763         /* Call a subroutine to configure the link and setup flow control. */
1764         ret_val = e1000_setup_link(hw);
1765
1766         /* Set the transmit descriptor write-back policy */
1767         if (hw->mac_type > e1000_82544) {
1768                 ctrl = E1000_READ_REG(hw, TXDCTL);
1769                 ctrl =
1770                     (ctrl & ~E1000_TXDCTL_WTHRESH) |
1771                     E1000_TXDCTL_FULL_TX_DESC_WB;
1772                 E1000_WRITE_REG(hw, TXDCTL, ctrl);
1773         }
1774
1775         /* Set the receive descriptor write back policy */
1776         if (hw->mac_type >= e1000_82571) {
1777                 ctrl = E1000_READ_REG(hw, RXDCTL);
1778                 ctrl =
1779                     (ctrl & ~E1000_RXDCTL_WTHRESH) |
1780                     E1000_RXDCTL_FULL_RX_DESC_WB;
1781                 E1000_WRITE_REG(hw, RXDCTL, ctrl);
1782         }
1783
1784         switch (hw->mac_type) {
1785         default:
1786                 break;
1787         case e1000_80003es2lan:
1788                 /* Enable retransmit on late collisions */
1789                 reg_data = E1000_READ_REG(hw, TCTL);
1790                 reg_data |= E1000_TCTL_RTLC;
1791                 E1000_WRITE_REG(hw, TCTL, reg_data);
1792
1793                 /* Configure Gigabit Carry Extend Padding */
1794                 reg_data = E1000_READ_REG(hw, TCTL_EXT);
1795                 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
1796                 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
1797                 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
1798
1799                 /* Configure Transmit Inter-Packet Gap */
1800                 reg_data = E1000_READ_REG(hw, TIPG);
1801                 reg_data &= ~E1000_TIPG_IPGT_MASK;
1802                 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1803                 E1000_WRITE_REG(hw, TIPG, reg_data);
1804
1805                 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
1806                 reg_data &= ~0x00100000;
1807                 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1808                 /* Fall through */
1809         case e1000_82571:
1810         case e1000_82572:
1811         case e1000_ich8lan:
1812                 ctrl = E1000_READ_REG(hw, TXDCTL1);
1813                 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
1814                         | E1000_TXDCTL_FULL_TX_DESC_WB;
1815                 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1816                 break;
1817         case e1000_82573:
1818         case e1000_82574:
1819                 reg_data = E1000_READ_REG(hw, GCR);
1820                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1821                 E1000_WRITE_REG(hw, GCR, reg_data);
1822         case e1000_igb:
1823                 break;
1824         }
1825
1826         if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1827                 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1828                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1829                 /* Relaxed ordering must be disabled to avoid a parity
1830                  * error crash in a PCI slot. */
1831                 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1832                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1833         }
1834
1835         return ret_val;
1836 }
1837
1838 /******************************************************************************
1839  * Configures flow control and link settings.
1840  *
1841  * hw - Struct containing variables accessed by shared code
1842  *
1843  * Determines which flow control settings to use. Calls the apropriate media-
1844  * specific link configuration function. Configures the flow control settings.
1845  * Assuming the adapter has a valid link partner, a valid link should be
1846  * established. Assumes the hardware has previously been reset and the
1847  * transmitter and receiver are not enabled.
1848  *****************************************************************************/
1849 static int
1850 e1000_setup_link(struct e1000_hw *hw)
1851 {
1852         int32_t ret_val;
1853 #ifndef CONFIG_E1000_NO_NVM
1854         uint32_t ctrl_ext;
1855         uint16_t eeprom_data;
1856 #endif
1857
1858         DEBUGFUNC();
1859
1860         /* In the case of the phy reset being blocked, we already have a link.
1861          * We do not have to set it up again. */
1862         if (e1000_check_phy_reset_block(hw))
1863                 return E1000_SUCCESS;
1864
1865 #ifndef CONFIG_E1000_NO_NVM
1866         /* Read and store word 0x0F of the EEPROM. This word contains bits
1867          * that determine the hardware's default PAUSE (flow control) mode,
1868          * a bit that determines whether the HW defaults to enabling or
1869          * disabling auto-negotiation, and the direction of the
1870          * SW defined pins. If there is no SW over-ride of the flow
1871          * control setting, then the variable hw->fc will
1872          * be initialized based on a value in the EEPROM.
1873          */
1874         if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
1875                                 &eeprom_data) < 0) {
1876                 DEBUGOUT("EEPROM Read Error\n");
1877                 return -E1000_ERR_EEPROM;
1878         }
1879 #endif
1880         if (hw->fc == e1000_fc_default) {
1881                 switch (hw->mac_type) {
1882                 case e1000_ich8lan:
1883                 case e1000_82573:
1884                 case e1000_82574:
1885                 case e1000_igb:
1886                         hw->fc = e1000_fc_full;
1887                         break;
1888                 default:
1889 #ifndef CONFIG_E1000_NO_NVM
1890                         ret_val = e1000_read_eeprom(hw,
1891                                 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1892                         if (ret_val) {
1893                                 DEBUGOUT("EEPROM Read Error\n");
1894                                 return -E1000_ERR_EEPROM;
1895                         }
1896                         if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1897                                 hw->fc = e1000_fc_none;
1898                         else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1899                                     EEPROM_WORD0F_ASM_DIR)
1900                                 hw->fc = e1000_fc_tx_pause;
1901                         else
1902 #endif
1903                                 hw->fc = e1000_fc_full;
1904                         break;
1905                 }
1906         }
1907
1908         /* We want to save off the original Flow Control configuration just
1909          * in case we get disconnected and then reconnected into a different
1910          * hub or switch with different Flow Control capabilities.
1911          */
1912         if (hw->mac_type == e1000_82542_rev2_0)
1913                 hw->fc &= (~e1000_fc_tx_pause);
1914
1915         if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
1916                 hw->fc &= (~e1000_fc_rx_pause);
1917
1918         hw->original_fc = hw->fc;
1919
1920         DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
1921
1922 #ifndef CONFIG_E1000_NO_NVM
1923         /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1924          * polarity value for the SW controlled pins, and setup the
1925          * Extended Device Control reg with that info.
1926          * This is needed because one of the SW controlled pins is used for
1927          * signal detection.  So this should be done before e1000_setup_pcs_link()
1928          * or e1000_phy_setup() is called.
1929          */
1930         if (hw->mac_type == e1000_82543) {
1931                 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1932                             SWDPIO__EXT_SHIFT);
1933                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1934         }
1935 #endif
1936
1937         /* Call the necessary subroutine to configure the link. */
1938         ret_val = (hw->media_type == e1000_media_type_fiber) ?
1939             e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
1940         if (ret_val < 0) {
1941                 return ret_val;
1942         }
1943
1944         /* Initialize the flow control address, type, and PAUSE timer
1945          * registers to their default values.  This is done even if flow
1946          * control is disabled, because it does not hurt anything to
1947          * initialize these registers.
1948          */
1949         DEBUGOUT("Initializing the Flow Control address, type"
1950                         "and timer regs\n");
1951
1952         /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1953         if (hw->mac_type != e1000_ich8lan) {
1954                 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1955                 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1956                 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1957         }
1958
1959         E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1960
1961         /* Set the flow control receive threshold registers.  Normally,
1962          * these registers will be set to a default threshold that may be
1963          * adjusted later by the driver's runtime code.  However, if the
1964          * ability to transmit pause frames in not enabled, then these
1965          * registers will be set to 0.
1966          */
1967         if (!(hw->fc & e1000_fc_tx_pause)) {
1968                 E1000_WRITE_REG(hw, FCRTL, 0);
1969                 E1000_WRITE_REG(hw, FCRTH, 0);
1970         } else {
1971                 /* We need to set up the Receive Threshold high and low water marks
1972                  * as well as (optionally) enabling the transmission of XON frames.
1973                  */
1974                 if (hw->fc_send_xon) {
1975                         E1000_WRITE_REG(hw, FCRTL,
1976                                         (hw->fc_low_water | E1000_FCRTL_XONE));
1977                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1978                 } else {
1979                         E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1980                         E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1981                 }
1982         }
1983         return ret_val;
1984 }
1985
1986 /******************************************************************************
1987  * Sets up link for a fiber based adapter
1988  *
1989  * hw - Struct containing variables accessed by shared code
1990  *
1991  * Manipulates Physical Coding Sublayer functions in order to configure
1992  * link. Assumes the hardware has been previously reset and the transmitter
1993  * and receiver are not enabled.
1994  *****************************************************************************/
1995 static int
1996 e1000_setup_fiber_link(struct e1000_hw *hw)
1997 {
1998         uint32_t ctrl;
1999         uint32_t status;
2000         uint32_t txcw = 0;
2001         uint32_t i;
2002         uint32_t signal;
2003         int32_t ret_val;
2004
2005         DEBUGFUNC();
2006         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
2007          * set when the optics detect a signal. On older adapters, it will be
2008          * cleared when there is a signal
2009          */
2010         ctrl = E1000_READ_REG(hw, CTRL);
2011         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
2012                 signal = E1000_CTRL_SWDPIN1;
2013         else
2014                 signal = 0;
2015
2016         printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
2017                ctrl);
2018         /* Take the link out of reset */
2019         ctrl &= ~(E1000_CTRL_LRST);
2020
2021         e1000_config_collision_dist(hw);
2022
2023         /* Check for a software override of the flow control settings, and setup
2024          * the device accordingly.  If auto-negotiation is enabled, then software
2025          * will have to set the "PAUSE" bits to the correct value in the Tranmsit
2026          * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
2027          * auto-negotiation is disabled, then software will have to manually
2028          * configure the two flow control enable bits in the CTRL register.
2029          *
2030          * The possible values of the "fc" parameter are:
2031          *      0:  Flow control is completely disabled
2032          *      1:  Rx flow control is enabled (we can receive pause frames, but
2033          *          not send pause frames).
2034          *      2:  Tx flow control is enabled (we can send pause frames but we do
2035          *          not support receiving pause frames).
2036          *      3:  Both Rx and TX flow control (symmetric) are enabled.
2037          */
2038         switch (hw->fc) {
2039         case e1000_fc_none:
2040                 /* Flow control is completely disabled by a software over-ride. */
2041                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
2042                 break;
2043         case e1000_fc_rx_pause:
2044                 /* RX Flow control is enabled and TX Flow control is disabled by a
2045                  * software over-ride. Since there really isn't a way to advertise
2046                  * that we are capable of RX Pause ONLY, we will advertise that we
2047                  * support both symmetric and asymmetric RX PAUSE. Later, we will
2048                  *  disable the adapter's ability to send PAUSE frames.
2049                  */
2050                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2051                 break;
2052         case e1000_fc_tx_pause:
2053                 /* TX Flow control is enabled, and RX Flow control is disabled, by a
2054                  * software over-ride.
2055                  */
2056                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
2057                 break;
2058         case e1000_fc_full:
2059                 /* Flow control (both RX and TX) is enabled by a software over-ride. */
2060                 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
2061                 break;
2062         default:
2063                 DEBUGOUT("Flow control param set incorrectly\n");
2064                 return -E1000_ERR_CONFIG;
2065                 break;
2066         }
2067
2068         /* Since auto-negotiation is enabled, take the link out of reset (the link
2069          * will be in reset, because we previously reset the chip). This will
2070          * restart auto-negotiation.  If auto-neogtiation is successful then the
2071          * link-up status bit will be set and the flow control enable bits (RFCE
2072          * and TFCE) will be set according to their negotiated value.
2073          */
2074         DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
2075
2076         E1000_WRITE_REG(hw, TXCW, txcw);
2077         E1000_WRITE_REG(hw, CTRL, ctrl);
2078         E1000_WRITE_FLUSH(hw);
2079
2080         hw->txcw = txcw;
2081         mdelay(1);
2082
2083         /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
2084          * indication in the Device Status Register.  Time-out if a link isn't
2085          * seen in 500 milliseconds seconds (Auto-negotiation should complete in
2086          * less than 500 milliseconds even if the other end is doing it in SW).
2087          */
2088         if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
2089                 DEBUGOUT("Looking for Link\n");
2090                 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
2091                         mdelay(10);
2092                         status = E1000_READ_REG(hw, STATUS);
2093                         if (status & E1000_STATUS_LU)
2094                                 break;
2095                 }
2096                 if (i == (LINK_UP_TIMEOUT / 10)) {
2097                         /* AutoNeg failed to achieve a link, so we'll call
2098                          * e1000_check_for_link. This routine will force the link up if we
2099                          * detect a signal. This will allow us to communicate with
2100                          * non-autonegotiating link partners.
2101                          */
2102                         DEBUGOUT("Never got a valid link from auto-neg!!!\n");
2103                         hw->autoneg_failed = 1;
2104                         ret_val = e1000_check_for_link(hw);
2105                         if (ret_val < 0) {
2106                                 DEBUGOUT("Error while checking for link\n");
2107                                 return ret_val;
2108                         }
2109                         hw->autoneg_failed = 0;
2110                 } else {
2111                         hw->autoneg_failed = 0;
2112                         DEBUGOUT("Valid Link Found\n");
2113                 }
2114         } else {
2115                 DEBUGOUT("No Signal Detected\n");
2116                 return -E1000_ERR_NOLINK;
2117         }
2118         return 0;
2119 }
2120
2121 /******************************************************************************
2122 * Make sure we have a valid PHY and change PHY mode before link setup.
2123 *
2124 * hw - Struct containing variables accessed by shared code
2125 ******************************************************************************/
2126 static int32_t
2127 e1000_copper_link_preconfig(struct e1000_hw *hw)
2128 {
2129         uint32_t ctrl;
2130         int32_t ret_val;
2131         uint16_t phy_data;
2132
2133         DEBUGFUNC();
2134
2135         ctrl = E1000_READ_REG(hw, CTRL);
2136         /* With 82543, we need to force speed and duplex on the MAC equal to what
2137          * the PHY speed and duplex configuration is. In addition, we need to
2138          * perform a hardware reset on the PHY to take it out of reset.
2139          */
2140         if (hw->mac_type > e1000_82543) {
2141                 ctrl |= E1000_CTRL_SLU;
2142                 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2143                 E1000_WRITE_REG(hw, CTRL, ctrl);
2144         } else {
2145                 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
2146                                 | E1000_CTRL_SLU);
2147                 E1000_WRITE_REG(hw, CTRL, ctrl);
2148                 ret_val = e1000_phy_hw_reset(hw);
2149                 if (ret_val)
2150                         return ret_val;
2151         }
2152
2153         /* Make sure we have a valid PHY */
2154         ret_val = e1000_detect_gig_phy(hw);
2155         if (ret_val) {
2156                 DEBUGOUT("Error, did not detect valid phy.\n");
2157                 return ret_val;
2158         }
2159         DEBUGOUT("Phy ID = %x\n", hw->phy_id);
2160
2161         /* Set PHY to class A mode (if necessary) */
2162         ret_val = e1000_set_phy_mode(hw);
2163         if (ret_val)
2164                 return ret_val;
2165         if ((hw->mac_type == e1000_82545_rev_3) ||
2166                 (hw->mac_type == e1000_82546_rev_3)) {
2167                 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2168                                 &phy_data);
2169                 phy_data |= 0x00000008;
2170                 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
2171                                 phy_data);
2172         }
2173
2174         if (hw->mac_type <= e1000_82543 ||
2175                 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
2176                 hw->mac_type == e1000_82541_rev_2
2177                 || hw->mac_type == e1000_82547_rev_2)
2178                         hw->phy_reset_disable = false;
2179
2180         return E1000_SUCCESS;
2181 }
2182
2183 /*****************************************************************************
2184  *
2185  * This function sets the lplu state according to the active flag.  When
2186  * activating lplu this function also disables smart speed and vise versa.
2187  * lplu will not be activated unless the device autonegotiation advertisment
2188  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2189  * hw: Struct containing variables accessed by shared code
2190  * active - true to enable lplu false to disable lplu.
2191  *
2192  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2193  *            E1000_SUCCESS at any other case.
2194  *
2195  ****************************************************************************/
2196
2197 static int32_t
2198 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
2199 {
2200         uint32_t phy_ctrl = 0;
2201         int32_t ret_val;
2202         uint16_t phy_data;
2203         DEBUGFUNC();
2204
2205         if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
2206             && hw->phy_type != e1000_phy_igp_3)
2207                 return E1000_SUCCESS;
2208
2209         /* During driver activity LPLU should not be used or it will attain link
2210          * from the lowest speeds starting from 10Mbps. The capability is used
2211          * for Dx transitions and states */
2212         if (hw->mac_type == e1000_82541_rev_2
2213                         || hw->mac_type == e1000_82547_rev_2) {
2214                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
2215                                 &phy_data);
2216                 if (ret_val)
2217                         return ret_val;
2218         } else if (hw->mac_type == e1000_ich8lan) {
2219                 /* MAC writes into PHY register based on the state transition
2220                  * and start auto-negotiation. SW driver can overwrite the
2221                  * settings in CSR PHY power control E1000_PHY_CTRL register. */
2222                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2223         } else {
2224                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2225                                 &phy_data);
2226                 if (ret_val)
2227                         return ret_val;
2228         }
2229
2230         if (!active) {
2231                 if (hw->mac_type == e1000_82541_rev_2 ||
2232                         hw->mac_type == e1000_82547_rev_2) {
2233                         phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
2234                         ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
2235                                         phy_data);
2236                         if (ret_val)
2237                                 return ret_val;
2238                 } else {
2239                         if (hw->mac_type == e1000_ich8lan) {
2240                                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2241                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2242                         } else {
2243                                 phy_data &= ~IGP02E1000_PM_D3_LPLU;
2244                                 ret_val = e1000_write_phy_reg(hw,
2245                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2246                                 if (ret_val)
2247                                         return ret_val;
2248                         }
2249                 }
2250
2251         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2252          * Dx states where the power conservation is most important.  During
2253          * driver activity we should enable SmartSpeed, so performance is
2254          * maintained. */
2255                 if (hw->smart_speed == e1000_smart_speed_on) {
2256                         ret_val = e1000_read_phy_reg(hw,
2257                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2258                         if (ret_val)
2259                                 return ret_val;
2260
2261                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2262                         ret_val = e1000_write_phy_reg(hw,
2263                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2264                         if (ret_val)
2265                                 return ret_val;
2266                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2267                         ret_val = e1000_read_phy_reg(hw,
2268                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2269                         if (ret_val)
2270                                 return ret_val;
2271
2272                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2273                         ret_val = e1000_write_phy_reg(hw,
2274                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2275                         if (ret_val)
2276                                 return ret_val;
2277                 }
2278
2279         } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
2280                 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
2281                 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
2282
2283                 if (hw->mac_type == e1000_82541_rev_2 ||
2284                     hw->mac_type == e1000_82547_rev_2) {
2285                         phy_data |= IGP01E1000_GMII_FLEX_SPD;
2286                         ret_val = e1000_write_phy_reg(hw,
2287                                         IGP01E1000_GMII_FIFO, phy_data);
2288                         if (ret_val)
2289                                 return ret_val;
2290                 } else {
2291                         if (hw->mac_type == e1000_ich8lan) {
2292                                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2293                                 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2294                         } else {
2295                                 phy_data |= IGP02E1000_PM_D3_LPLU;
2296                                 ret_val = e1000_write_phy_reg(hw,
2297                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2298                                 if (ret_val)
2299                                         return ret_val;
2300                         }
2301                 }
2302
2303                 /* When LPLU is enabled we should disable SmartSpeed */
2304                 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2305                                 &phy_data);
2306                 if (ret_val)
2307                         return ret_val;
2308
2309                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2310                 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
2311                                 phy_data);
2312                 if (ret_val)
2313                         return ret_val;
2314         }
2315         return E1000_SUCCESS;
2316 }
2317
2318 /*****************************************************************************
2319  *
2320  * This function sets the lplu d0 state according to the active flag.  When
2321  * activating lplu this function also disables smart speed and vise versa.
2322  * lplu will not be activated unless the device autonegotiation advertisment
2323  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
2324  * hw: Struct containing variables accessed by shared code
2325  * active - true to enable lplu false to disable lplu.
2326  *
2327  * returns: - E1000_ERR_PHY if fail to read/write the PHY
2328  *            E1000_SUCCESS at any other case.
2329  *
2330  ****************************************************************************/
2331
2332 static int32_t
2333 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2334 {
2335         uint32_t phy_ctrl = 0;
2336         int32_t ret_val;
2337         uint16_t phy_data;
2338         DEBUGFUNC();
2339
2340         if (hw->mac_type <= e1000_82547_rev_2)
2341                 return E1000_SUCCESS;
2342
2343         if (hw->mac_type == e1000_ich8lan) {
2344                 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
2345         } else if (hw->mac_type == e1000_igb) {
2346                 phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
2347         } else {
2348                 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
2349                                 &phy_data);
2350                 if (ret_val)
2351                         return ret_val;
2352         }
2353
2354         if (!active) {
2355                 if (hw->mac_type == e1000_ich8lan) {
2356                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2357                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2358                 } else if (hw->mac_type == e1000_igb) {
2359                         phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2360                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2361                 } else {
2362                         phy_data &= ~IGP02E1000_PM_D0_LPLU;
2363                         ret_val = e1000_write_phy_reg(hw,
2364                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2365                         if (ret_val)
2366                                 return ret_val;
2367                 }
2368
2369                 if (hw->mac_type == e1000_igb)
2370                         return E1000_SUCCESS;
2371
2372         /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
2373          * Dx states where the power conservation is most important.  During
2374          * driver activity we should enable SmartSpeed, so performance is
2375          * maintained. */
2376                 if (hw->smart_speed == e1000_smart_speed_on) {
2377                         ret_val = e1000_read_phy_reg(hw,
2378                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2379                         if (ret_val)
2380                                 return ret_val;
2381
2382                         phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
2383                         ret_val = e1000_write_phy_reg(hw,
2384                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2385                         if (ret_val)
2386                                 return ret_val;
2387                 } else if (hw->smart_speed == e1000_smart_speed_off) {
2388                         ret_val = e1000_read_phy_reg(hw,
2389                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2390                         if (ret_val)
2391                                 return ret_val;
2392
2393                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2394                         ret_val = e1000_write_phy_reg(hw,
2395                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2396                         if (ret_val)
2397                                 return ret_val;
2398                 }
2399
2400
2401         } else {
2402
2403                 if (hw->mac_type == e1000_ich8lan) {
2404                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2405                         E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
2406                 } else if (hw->mac_type == e1000_igb) {
2407                         phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2408                         E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
2409                 } else {
2410                         phy_data |= IGP02E1000_PM_D0_LPLU;
2411                         ret_val = e1000_write_phy_reg(hw,
2412                                         IGP02E1000_PHY_POWER_MGMT, phy_data);
2413                         if (ret_val)
2414                                 return ret_val;
2415                 }
2416
2417                 if (hw->mac_type == e1000_igb)
2418                         return E1000_SUCCESS;
2419
2420                 /* When LPLU is enabled we should disable SmartSpeed */
2421                 ret_val = e1000_read_phy_reg(hw,
2422                                 IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2423                 if (ret_val)
2424                         return ret_val;
2425
2426                 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2427                 ret_val = e1000_write_phy_reg(hw,
2428                                 IGP01E1000_PHY_PORT_CONFIG, phy_data);
2429                 if (ret_val)
2430                         return ret_val;
2431
2432         }
2433         return E1000_SUCCESS;
2434 }
2435
2436 /********************************************************************
2437 * Copper link setup for e1000_phy_igp series.
2438 *
2439 * hw - Struct containing variables accessed by shared code
2440 *********************************************************************/
2441 static int32_t
2442 e1000_copper_link_igp_setup(struct e1000_hw *hw)
2443 {
2444         uint32_t led_ctrl;
2445         int32_t ret_val;
2446         uint16_t phy_data;
2447
2448         DEBUGFUNC();
2449
2450         if (hw->phy_reset_disable)
2451                 return E1000_SUCCESS;
2452
2453         ret_val = e1000_phy_reset(hw);
2454         if (ret_val) {
2455                 DEBUGOUT("Error Resetting the PHY\n");
2456                 return ret_val;
2457         }
2458
2459         /* Wait 15ms for MAC to configure PHY from eeprom settings */
2460         mdelay(15);
2461         if (hw->mac_type != e1000_ich8lan) {
2462                 /* Configure activity LED after PHY reset */
2463                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2464                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2465                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2466                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2467         }
2468
2469         /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
2470         if (hw->phy_type == e1000_phy_igp) {
2471                 /* disable lplu d3 during driver init */
2472                 ret_val = e1000_set_d3_lplu_state(hw, false);
2473                 if (ret_val) {
2474                         DEBUGOUT("Error Disabling LPLU D3\n");
2475                         return ret_val;
2476                 }
2477         }
2478
2479         /* disable lplu d0 during driver init */
2480         ret_val = e1000_set_d0_lplu_state(hw, false);
2481         if (ret_val) {
2482                 DEBUGOUT("Error Disabling LPLU D0\n");
2483                 return ret_val;
2484         }
2485         /* Configure mdi-mdix settings */
2486         ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
2487         if (ret_val)
2488                 return ret_val;
2489
2490         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2491                 hw->dsp_config_state = e1000_dsp_config_disabled;
2492                 /* Force MDI for earlier revs of the IGP PHY */
2493                 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
2494                                 | IGP01E1000_PSCR_FORCE_MDI_MDIX);
2495                 hw->mdix = 1;
2496
2497         } else {
2498                 hw->dsp_config_state = e1000_dsp_config_enabled;
2499                 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2500
2501                 switch (hw->mdix) {
2502                 case 1:
2503                         phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2504                         break;
2505                 case 2:
2506                         phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
2507                         break;
2508                 case 0:
2509                 default:
2510                         phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
2511                         break;
2512                 }
2513         }
2514         ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
2515         if (ret_val)
2516                 return ret_val;
2517
2518         /* set auto-master slave resolution settings */
2519         if (hw->autoneg) {
2520                 e1000_ms_type phy_ms_setting = hw->master_slave;
2521
2522                 if (hw->ffe_config_state == e1000_ffe_config_active)
2523                         hw->ffe_config_state = e1000_ffe_config_enabled;
2524
2525                 if (hw->dsp_config_state == e1000_dsp_config_activated)
2526                         hw->dsp_config_state = e1000_dsp_config_enabled;
2527
2528                 /* when autonegotiation advertisment is only 1000Mbps then we
2529                   * should disable SmartSpeed and enable Auto MasterSlave
2530                   * resolution as hardware default. */
2531                 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
2532                         /* Disable SmartSpeed */
2533                         ret_val = e1000_read_phy_reg(hw,
2534                                         IGP01E1000_PHY_PORT_CONFIG, &phy_data);
2535                         if (ret_val)
2536                                 return ret_val;
2537                         phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2538                         ret_val = e1000_write_phy_reg(hw,
2539                                         IGP01E1000_PHY_PORT_CONFIG, phy_data);
2540                         if (ret_val)
2541                                 return ret_val;
2542                         /* Set auto Master/Slave resolution process */
2543                         ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
2544                                         &phy_data);
2545                         if (ret_val)
2546                                 return ret_val;
2547                         phy_data &= ~CR_1000T_MS_ENABLE;
2548                         ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
2549                                         phy_data);
2550                         if (ret_val)
2551                                 return ret_val;
2552                 }
2553
2554                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
2555                 if (ret_val)
2556                         return ret_val;
2557
2558                 /* load defaults for future use */
2559                 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
2560                                 ((phy_data & CR_1000T_MS_VALUE) ?
2561                                 e1000_ms_force_master :
2562                                 e1000_ms_force_slave) :
2563                                 e1000_ms_auto;
2564
2565                 switch (phy_ms_setting) {
2566                 case e1000_ms_force_master:
2567                         phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2568                         break;
2569                 case e1000_ms_force_slave:
2570                         phy_data |= CR_1000T_MS_ENABLE;
2571                         phy_data &= ~(CR_1000T_MS_VALUE);
2572                         break;
2573                 case e1000_ms_auto:
2574                         phy_data &= ~CR_1000T_MS_ENABLE;
2575                 default:
2576                         break;
2577                 }
2578                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
2579                 if (ret_val)
2580                         return ret_val;
2581         }
2582
2583         return E1000_SUCCESS;
2584 }
2585
2586 /*****************************************************************************
2587  * This function checks the mode of the firmware.
2588  *
2589  * returns  - true when the mode is IAMT or false.
2590  ****************************************************************************/
2591 bool
2592 e1000_check_mng_mode(struct e1000_hw *hw)
2593 {
2594         uint32_t fwsm;
2595         DEBUGFUNC();
2596
2597         fwsm = E1000_READ_REG(hw, FWSM);
2598
2599         if (hw->mac_type == e1000_ich8lan) {
2600                 if ((fwsm & E1000_FWSM_MODE_MASK) ==
2601                     (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2602                         return true;
2603         } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
2604                        (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
2605                         return true;
2606
2607         return false;
2608 }
2609
2610 static int32_t
2611 e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
2612 {
2613         uint16_t swfw = E1000_SWFW_PHY0_SM;
2614         uint32_t reg_val;
2615         DEBUGFUNC();
2616
2617         if (e1000_is_second_port(hw))
2618                 swfw = E1000_SWFW_PHY1_SM;
2619
2620         if (e1000_swfw_sync_acquire(hw, swfw))
2621                 return -E1000_ERR_SWFW_SYNC;
2622
2623         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
2624                         & E1000_KUMCTRLSTA_OFFSET) | data;
2625         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2626         udelay(2);
2627
2628         return E1000_SUCCESS;
2629 }
2630
2631 static int32_t
2632 e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
2633 {
2634         uint16_t swfw = E1000_SWFW_PHY0_SM;
2635         uint32_t reg_val;
2636         DEBUGFUNC();
2637
2638         if (e1000_is_second_port(hw))
2639                 swfw = E1000_SWFW_PHY1_SM;
2640
2641         if (e1000_swfw_sync_acquire(hw, swfw)) {
2642                 debug("%s[%i]\n", __func__, __LINE__);
2643                 return -E1000_ERR_SWFW_SYNC;
2644         }
2645
2646         /* Write register address */
2647         reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
2648                         E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
2649         E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
2650         udelay(2);
2651
2652         /* Read the data returned */
2653         reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
2654         *data = (uint16_t)reg_val;
2655
2656         return E1000_SUCCESS;
2657 }
2658
2659 /********************************************************************
2660 * Copper link setup for e1000_phy_gg82563 series.
2661 *
2662 * hw - Struct containing variables accessed by shared code
2663 *********************************************************************/
2664 static int32_t
2665 e1000_copper_link_ggp_setup(struct e1000_hw *hw)
2666 {
2667         int32_t ret_val;
2668         uint16_t phy_data;
2669         uint32_t reg_data;
2670
2671         DEBUGFUNC();
2672
2673         if (!hw->phy_reset_disable) {
2674                 /* Enable CRS on TX for half-duplex operation. */
2675                 ret_val = e1000_read_phy_reg(hw,
2676                                 GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2677                 if (ret_val)
2678                         return ret_val;
2679
2680                 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2681                 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
2682                 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
2683
2684                 ret_val = e1000_write_phy_reg(hw,
2685                                 GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2686                 if (ret_val)
2687                         return ret_val;
2688
2689                 /* Options:
2690                  *   MDI/MDI-X = 0 (default)
2691                  *   0 - Auto for all speeds
2692                  *   1 - MDI mode
2693                  *   2 - MDI-X mode
2694                  *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2695                  */
2696                 ret_val = e1000_read_phy_reg(hw,
2697                                 GG82563_PHY_SPEC_CTRL, &phy_data);
2698                 if (ret_val)
2699                         return ret_val;
2700
2701                 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
2702
2703                 switch (hw->mdix) {
2704                 case 1:
2705                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
2706                         break;
2707                 case 2:
2708                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
2709                         break;
2710                 case 0:
2711                 default:
2712                         phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
2713                         break;
2714                 }
2715
2716                 /* Options:
2717                  *   disable_polarity_correction = 0 (default)
2718                  *       Automatic Correction for Reversed Cable Polarity
2719                  *   0 - Disabled
2720                  *   1 - Enabled
2721                  */
2722                 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
2723                 ret_val = e1000_write_phy_reg(hw,
2724                                 GG82563_PHY_SPEC_CTRL, phy_data);
2725
2726                 if (ret_val)
2727                         return ret_val;
2728
2729                 /* SW Reset the PHY so all changes take effect */
2730                 ret_val = e1000_phy_reset(hw);
2731                 if (ret_val) {
2732                         DEBUGOUT("Error Resetting the PHY\n");
2733                         return ret_val;
2734                 }
2735         } /* phy_reset_disable */
2736
2737         if (hw->mac_type == e1000_80003es2lan) {
2738                 /* Bypass RX and TX FIFO's */
2739                 ret_val = e1000_write_kmrn_reg(hw,
2740                                 E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
2741                                 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
2742                                 | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
2743                 if (ret_val)
2744                         return ret_val;
2745
2746                 ret_val = e1000_read_phy_reg(hw,
2747                                 GG82563_PHY_SPEC_CTRL_2, &phy_data);
2748                 if (ret_val)
2749                         return ret_val;
2750
2751                 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
2752                 ret_val = e1000_write_phy_reg(hw,
2753                                 GG82563_PHY_SPEC_CTRL_2, phy_data);
2754
2755                 if (ret_val)
2756                         return ret_val;
2757
2758                 reg_data = E1000_READ_REG(hw, CTRL_EXT);
2759                 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
2760                 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
2761
2762                 ret_val = e1000_read_phy_reg(hw,
2763                                 GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
2764                 if (ret_val)
2765                         return ret_val;
2766
2767         /* Do not init these registers when the HW is in IAMT mode, since the
2768          * firmware will have already initialized them.  We only initialize
2769          * them if the HW is not in IAMT mode.
2770          */
2771                 if (e1000_check_mng_mode(hw) == false) {
2772                         /* Enable Electrical Idle on the PHY */
2773                         phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
2774                         ret_val = e1000_write_phy_reg(hw,
2775                                         GG82563_PHY_PWR_MGMT_CTRL, phy_data);
2776                         if (ret_val)
2777                                 return ret_val;
2778
2779                         ret_val = e1000_read_phy_reg(hw,
2780                                         GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
2781                         if (ret_val)
2782                                 return ret_val;
2783
2784                         phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2785                         ret_val = e1000_write_phy_reg(hw,
2786                                         GG82563_PHY_KMRN_MODE_CTRL, phy_data);
2787
2788                         if (ret_val)
2789                                 return ret_val;
2790                 }
2791
2792                 /* Workaround: Disable padding in Kumeran interface in the MAC
2793                  * and in the PHY to avoid CRC errors.
2794                  */
2795                 ret_val = e1000_read_phy_reg(hw,
2796                                 GG82563_PHY_INBAND_CTRL, &phy_data);
2797                 if (ret_val)
2798                         return ret_val;
2799                 phy_data |= GG82563_ICR_DIS_PADDING;
2800                 ret_val = e1000_write_phy_reg(hw,
2801                                 GG82563_PHY_INBAND_CTRL, phy_data);
2802                 if (ret_val)
2803                         return ret_val;
2804         }
2805         return E1000_SUCCESS;
2806 }
2807
2808 /********************************************************************
2809 * Copper link setup for e1000_phy_m88 series.
2810 *
2811 * hw - Struct containing variables accessed by shared code
2812 *********************************************************************/
2813 static int32_t
2814 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
2815 {
2816         int32_t ret_val;
2817         uint16_t phy_data;
2818
2819         DEBUGFUNC();
2820
2821         if (hw->phy_reset_disable)
2822                 return E1000_SUCCESS;
2823
2824         /* Enable CRS on TX. This must be set for half-duplex operation. */
2825         ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2826         if (ret_val)
2827                 return ret_val;
2828
2829         phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2830
2831         /* Options:
2832          *   MDI/MDI-X = 0 (default)
2833          *   0 - Auto for all speeds
2834          *   1 - MDI mode
2835          *   2 - MDI-X mode
2836          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
2837          */
2838         phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2839
2840         switch (hw->mdix) {
2841         case 1:
2842                 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
2843                 break;
2844         case 2:
2845                 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
2846                 break;
2847         case 3:
2848                 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
2849                 break;
2850         case 0:
2851         default:
2852                 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
2853                 break;
2854         }
2855
2856         /* Options:
2857          *   disable_polarity_correction = 0 (default)
2858          *       Automatic Correction for Reversed Cable Polarity
2859          *   0 - Disabled
2860          *   1 - Enabled
2861          */
2862         phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
2863         ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
2864         if (ret_val)
2865                 return ret_val;
2866
2867         if (hw->phy_revision < M88E1011_I_REV_4) {
2868                 /* Force TX_CLK in the Extended PHY Specific Control Register
2869                  * to 25MHz clock.
2870                  */
2871                 ret_val = e1000_read_phy_reg(hw,
2872                                 M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
2873                 if (ret_val)
2874                         return ret_val;
2875
2876                 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2877
2878                 if ((hw->phy_revision == E1000_REVISION_2) &&
2879                         (hw->phy_id == M88E1111_I_PHY_ID)) {
2880                         /* Vidalia Phy, set the downshift counter to 5x */
2881                         phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
2882                         phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
2883                         ret_val = e1000_write_phy_reg(hw,
2884                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2885                         if (ret_val)
2886                                 return ret_val;
2887                 } else {
2888                         /* Configure Master and Slave downshift values */
2889                         phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
2890                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
2891                         phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
2892                                         | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
2893                         ret_val = e1000_write_phy_reg(hw,
2894                                         M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
2895                         if (ret_val)
2896                                 return ret_val;
2897                 }
2898         }
2899
2900         /* SW Reset the PHY so all changes take effect */
2901         ret_val = e1000_phy_reset(hw);
2902         if (ret_val) {
2903                 DEBUGOUT("Error Resetting the PHY\n");
2904                 return ret_val;
2905         }
2906
2907         return E1000_SUCCESS;
2908 }
2909
2910 /********************************************************************
2911 * Setup auto-negotiation and flow control advertisements,
2912 * and then perform auto-negotiation.
2913 *
2914 * hw - Struct containing variables accessed by shared code
2915 *********************************************************************/
2916 static int32_t
2917 e1000_copper_link_autoneg(struct e1000_hw *hw)
2918 {
2919         int32_t ret_val;
2920         uint16_t phy_data;
2921
2922         DEBUGFUNC();
2923
2924         /* Perform some bounds checking on the hw->autoneg_advertised
2925          * parameter.  If this variable is zero, then set it to the default.
2926          */
2927         hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
2928
2929         /* If autoneg_advertised is zero, we assume it was not defaulted
2930          * by the calling code so we set to advertise full capability.
2931          */
2932         if (hw->autoneg_advertised == 0)
2933                 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
2934
2935         /* IFE phy only supports 10/100 */
2936         if (hw->phy_type == e1000_phy_ife)
2937                 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
2938
2939         DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
2940         ret_val = e1000_phy_setup_autoneg(hw);
2941         if (ret_val) {
2942                 DEBUGOUT("Error Setting up Auto-Negotiation\n");
2943                 return ret_val;
2944         }
2945         DEBUGOUT("Restarting Auto-Neg\n");
2946
2947         /* Restart auto-negotiation by setting the Auto Neg Enable bit and
2948          * the Auto Neg Restart bit in the PHY control register.
2949          */
2950         ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2951         if (ret_val)
2952                 return ret_val;
2953
2954         phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
2955         ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2956         if (ret_val)
2957                 return ret_val;
2958
2959         /* Does the user want to wait for Auto-Neg to complete here, or
2960          * check at a later time (for example, callback routine).
2961          */
2962         /* If we do not wait for autonegtation to complete I
2963          * do not see a valid link status.
2964          * wait_autoneg_complete = 1 .
2965          */
2966         if (hw->wait_autoneg_complete) {
2967                 ret_val = e1000_wait_autoneg(hw);
2968                 if (ret_val) {
2969                         DEBUGOUT("Error while waiting for autoneg"
2970                                         "to complete\n");
2971                         return ret_val;
2972                 }
2973         }
2974
2975         hw->get_link_status = true;
2976
2977         return E1000_SUCCESS;
2978 }
2979
2980 /******************************************************************************
2981 * Config the MAC and the PHY after link is up.
2982 *   1) Set up the MAC to the current PHY speed/duplex
2983 *      if we are on 82543.  If we
2984 *      are on newer silicon, we only need to configure
2985 *      collision distance in the Transmit Control Register.
2986 *   2) Set up flow control on the MAC to that established with
2987 *      the link partner.
2988 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
2989 *
2990 * hw - Struct containing variables accessed by shared code
2991 ******************************************************************************/
2992 static int32_t
2993 e1000_copper_link_postconfig(struct e1000_hw *hw)
2994 {
2995         int32_t ret_val;
2996         DEBUGFUNC();
2997
2998         if (hw->mac_type >= e1000_82544) {
2999                 e1000_config_collision_dist(hw);
3000         } else {
3001                 ret_val = e1000_config_mac_to_phy(hw);
3002                 if (ret_val) {
3003                         DEBUGOUT("Error configuring MAC to PHY settings\n");
3004                         return ret_val;
3005                 }
3006         }
3007         ret_val = e1000_config_fc_after_link_up(hw);
3008         if (ret_val) {
3009                 DEBUGOUT("Error Configuring Flow Control\n");
3010                 return ret_val;
3011         }
3012         return E1000_SUCCESS;
3013 }
3014
3015 /******************************************************************************
3016 * Detects which PHY is present and setup the speed and duplex
3017 *
3018 * hw - Struct containing variables accessed by shared code
3019 ******************************************************************************/
3020 static int
3021 e1000_setup_copper_link(struct e1000_hw *hw)
3022 {
3023         int32_t ret_val;
3024         uint16_t i;
3025         uint16_t phy_data;
3026         uint16_t reg_data;
3027
3028         DEBUGFUNC();
3029
3030         switch (hw->mac_type) {
3031         case e1000_80003es2lan:
3032         case e1000_ich8lan:
3033                 /* Set the mac to wait the maximum time between each
3034                  * iteration and increase the max iterations when
3035                  * polling the phy; this fixes erroneous timeouts at 10Mbps. */
3036                 ret_val = e1000_write_kmrn_reg(hw,
3037                                 GG82563_REG(0x34, 4), 0xFFFF);
3038                 if (ret_val)
3039                         return ret_val;
3040                 ret_val = e1000_read_kmrn_reg(hw,
3041                                 GG82563_REG(0x34, 9), &reg_data);
3042                 if (ret_val)
3043                         return ret_val;
3044                 reg_data |= 0x3F;
3045                 ret_val = e1000_write_kmrn_reg(hw,
3046                                 GG82563_REG(0x34, 9), reg_data);
3047                 if (ret_val)
3048                         return ret_val;
3049         default:
3050                 break;
3051         }
3052
3053         /* Check if it is a valid PHY and set PHY mode if necessary. */
3054         ret_val = e1000_copper_link_preconfig(hw);
3055         if (ret_val)
3056                 return ret_val;
3057         switch (hw->mac_type) {
3058         case e1000_80003es2lan:
3059                 /* Kumeran registers are written-only */
3060                 reg_data =
3061                 E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
3062                 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
3063                 ret_val = e1000_write_kmrn_reg(hw,
3064                                 E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
3065                 if (ret_val)
3066                         return ret_val;
3067                 break;
3068         default:
3069                 break;
3070         }
3071
3072         if (hw->phy_type == e1000_phy_igp ||
3073                 hw->phy_type == e1000_phy_igp_3 ||
3074                 hw->phy_type == e1000_phy_igp_2) {
3075                 ret_val = e1000_copper_link_igp_setup(hw);
3076                 if (ret_val)
3077                         return ret_val;
3078         } else if (hw->phy_type == e1000_phy_m88 ||
3079                 hw->phy_type == e1000_phy_igb) {
3080                 ret_val = e1000_copper_link_mgp_setup(hw);
3081                 if (ret_val)
3082                         return ret_val;
3083         } else if (hw->phy_type == e1000_phy_gg82563) {
3084                 ret_val = e1000_copper_link_ggp_setup(hw);
3085                 if (ret_val)
3086                         return ret_val;
3087         }
3088
3089         /* always auto */
3090         /* Setup autoneg and flow control advertisement
3091           * and perform autonegotiation */
3092         ret_val = e1000_copper_link_autoneg(hw);
3093         if (ret_val)
3094                 return ret_val;
3095
3096         /* Check link status. Wait up to 100 microseconds for link to become
3097          * valid.
3098          */
3099         for (i = 0; i < 10; i++) {
3100                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3101                 if (ret_val)
3102                         return ret_val;
3103                 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3104                 if (ret_val)
3105                         return ret_val;
3106
3107                 if (phy_data & MII_SR_LINK_STATUS) {
3108                         /* Config the MAC and PHY after link is up */
3109                         ret_val = e1000_copper_link_postconfig(hw);
3110                         if (ret_val)
3111                                 return ret_val;
3112
3113                         DEBUGOUT("Valid link established!!!\n");
3114                         return E1000_SUCCESS;
3115                 }
3116                 udelay(10);
3117         }
3118
3119         DEBUGOUT("Unable to establish link!!!\n");
3120         return E1000_SUCCESS;
3121 }
3122
3123 /******************************************************************************
3124 * Configures PHY autoneg and flow control advertisement settings
3125 *
3126 * hw - Struct containing variables accessed by shared code
3127 ******************************************************************************/
3128 int32_t
3129 e1000_phy_setup_autoneg(struct e1000_hw *hw)
3130 {
3131         int32_t ret_val;
3132         uint16_t mii_autoneg_adv_reg;
3133         uint16_t mii_1000t_ctrl_reg;
3134
3135         DEBUGFUNC();
3136
3137         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
3138         ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
3139         if (ret_val)
3140                 return ret_val;
3141
3142         if (hw->phy_type != e1000_phy_ife) {
3143                 /* Read the MII 1000Base-T Control Register (Address 9). */
3144                 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
3145                                 &mii_1000t_ctrl_reg);
3146                 if (ret_val)
3147                         return ret_val;
3148         } else
3149                 mii_1000t_ctrl_reg = 0;
3150
3151         /* Need to parse both autoneg_advertised and fc and set up
3152          * the appropriate PHY registers.  First we will parse for
3153          * autoneg_advertised software override.  Since we can advertise
3154          * a plethora of combinations, we need to check each bit
3155          * individually.
3156          */
3157
3158         /* First we clear all the 10/100 mb speed bits in the Auto-Neg
3159          * Advertisement Register (Address 4) and the 1000 mb speed bits in
3160          * the  1000Base-T Control Register (Address 9).
3161          */
3162         mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
3163         mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
3164
3165         DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
3166
3167         /* Do we want to advertise 10 Mb Half Duplex? */
3168         if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
3169                 DEBUGOUT("Advertise 10mb Half duplex\n");
3170                 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
3171         }
3172
3173         /* Do we want to advertise 10 Mb Full Duplex? */
3174         if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
3175                 DEBUGOUT("Advertise 10mb Full duplex\n");
3176                 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
3177         }
3178
3179         /* Do we want to advertise 100 Mb Half Duplex? */
3180         if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
3181                 DEBUGOUT("Advertise 100mb Half duplex\n");
3182                 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
3183         }
3184
3185         /* Do we want to advertise 100 Mb Full Duplex? */
3186         if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
3187                 DEBUGOUT("Advertise 100mb Full duplex\n");
3188                 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
3189         }
3190
3191         /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
3192         if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
3193                 DEBUGOUT
3194                     ("Advertise 1000mb Half duplex requested, request denied!\n");
3195         }
3196
3197         /* Do we want to advertise 1000 Mb Full Duplex? */
3198         if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
3199                 DEBUGOUT("Advertise 1000mb Full duplex\n");
3200                 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
3201         }
3202
3203         /* Check for a software override of the flow control settings, and
3204          * setup the PHY advertisement registers accordingly.  If
3205          * auto-negotiation is enabled, then software will have to set the
3206          * "PAUSE" bits to the correct value in the Auto-Negotiation
3207          * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
3208          *
3209          * The possible values of the "fc" parameter are:
3210          *      0:  Flow control is completely disabled
3211          *      1:  Rx flow control is enabled (we can receive pause frames
3212          *          but not send pause frames).
3213          *      2:  Tx flow control is enabled (we can send pause frames
3214          *          but we do not support receiving pause frames).
3215          *      3:  Both Rx and TX flow control (symmetric) are enabled.
3216          *  other:  No software override.  The flow control configuration
3217          *          in the EEPROM is used.
3218          */
3219         switch (hw->fc) {
3220         case e1000_fc_none:     /* 0 */
3221                 /* Flow control (RX & TX) is completely disabled by a
3222                  * software over-ride.
3223                  */
3224                 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3225                 break;
3226         case e1000_fc_rx_pause: /* 1 */
3227                 /* RX Flow control is enabled, and TX Flow control is
3228                  * disabled, by a software over-ride.
3229                  */
3230                 /* Since there really isn't a way to advertise that we are
3231                  * capable of RX Pause ONLY, we will advertise that we
3232                  * support both symmetric and asymmetric RX PAUSE.  Later
3233                  * (in e1000_config_fc_after_link_up) we will disable the
3234                  *hw's ability to send PAUSE frames.
3235                  */
3236                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3237                 break;
3238         case e1000_fc_tx_pause: /* 2 */
3239                 /* TX Flow control is enabled, and RX Flow control is
3240                  * disabled, by a software over-ride.
3241                  */
3242                 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
3243                 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
3244                 break;
3245         case e1000_fc_full:     /* 3 */
3246                 /* Flow control (both RX and TX) is enabled by a software
3247                  * over-ride.
3248                  */
3249                 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
3250                 break;
3251         default:
3252                 DEBUGOUT("Flow control param set incorrectly\n");
3253                 return -E1000_ERR_CONFIG;
3254         }
3255
3256         ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
3257         if (ret_val)
3258                 return ret_val;
3259
3260         DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
3261
3262         if (hw->phy_type != e1000_phy_ife) {
3263                 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
3264                                 mii_1000t_ctrl_reg);
3265                 if (ret_val)
3266                         return ret_val;
3267         }
3268
3269         return E1000_SUCCESS;
3270 }
3271
3272 /******************************************************************************
3273 * Sets the collision distance in the Transmit Control register
3274 *
3275 * hw - Struct containing variables accessed by shared code
3276 *
3277 * Link should have been established previously. Reads the speed and duplex
3278 * information from the Device Status register.
3279 ******************************************************************************/
3280 static void
3281 e1000_config_collision_dist(struct e1000_hw *hw)
3282 {
3283         uint32_t tctl, coll_dist;
3284
3285         DEBUGFUNC();
3286
3287         if (hw->mac_type < e1000_82543)
3288                 coll_dist = E1000_COLLISION_DISTANCE_82542;
3289         else
3290                 coll_dist = E1000_COLLISION_DISTANCE;
3291
3292         tctl = E1000_READ_REG(hw, TCTL);
3293
3294         tctl &= ~E1000_TCTL_COLD;
3295         tctl |= coll_dist << E1000_COLD_SHIFT;
3296
3297         E1000_WRITE_REG(hw, TCTL, tctl);
3298         E1000_WRITE_FLUSH(hw);
3299 }
3300
3301 /******************************************************************************
3302 * Sets MAC speed and duplex settings to reflect the those in the PHY
3303 *
3304 * hw - Struct containing variables accessed by shared code
3305 * mii_reg - data to write to the MII control register
3306 *
3307 * The contents of the PHY register containing the needed information need to
3308 * be passed in.
3309 ******************************************************************************/
3310 static int
3311 e1000_config_mac_to_phy(struct e1000_hw *hw)
3312 {
3313         uint32_t ctrl;
3314         uint16_t phy_data;
3315
3316         DEBUGFUNC();
3317
3318         /* Read the Device Control Register and set the bits to Force Speed
3319          * and Duplex.
3320          */
3321         ctrl = E1000_READ_REG(hw, CTRL);
3322         ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3323         ctrl &= ~(E1000_CTRL_ILOS);
3324         ctrl |= (E1000_CTRL_SPD_SEL);
3325
3326         /* Set up duplex in the Device Control and Transmit Control
3327          * registers depending on negotiated values.
3328          */
3329         if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
3330                 DEBUGOUT("PHY Read Error\n");
3331                 return -E1000_ERR_PHY;
3332         }
3333         if (phy_data & M88E1000_PSSR_DPLX)
3334                 ctrl |= E1000_CTRL_FD;
3335         else
3336                 ctrl &= ~E1000_CTRL_FD;
3337
3338         e1000_config_collision_dist(hw);
3339
3340         /* Set up speed in the Device Control register depending on
3341          * negotiated values.
3342          */
3343         if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
3344                 ctrl |= E1000_CTRL_SPD_1000;
3345         else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
3346                 ctrl |= E1000_CTRL_SPD_100;
3347         /* Write the configured values back to the Device Control Reg. */
3348         E1000_WRITE_REG(hw, CTRL, ctrl);
3349         return 0;
3350 }
3351
3352 /******************************************************************************
3353  * Forces the MAC's flow control settings.
3354  *
3355  * hw - Struct containing variables accessed by shared code
3356  *
3357  * Sets the TFCE and RFCE bits in the device control register to reflect
3358  * the adapter settings. TFCE and RFCE need to be explicitly set by
3359  * software when a Copper PHY is used because autonegotiation is managed
3360  * by the PHY rather than the MAC. Software must also configure these
3361  * bits when link is forced on a fiber connection.
3362  *****************************************************************************/
3363 static int
3364 e1000_force_mac_fc(struct e1000_hw *hw)
3365 {
3366         uint32_t ctrl;
3367
3368         DEBUGFUNC();
3369
3370         /* Get the current configuration of the Device Control Register */
3371         ctrl = E1000_READ_REG(hw, CTRL);
3372
3373         /* Because we didn't get link via the internal auto-negotiation
3374          * mechanism (we either forced link or we got link via PHY
3375          * auto-neg), we have to manually enable/disable transmit an
3376          * receive flow control.
3377          *
3378          * The "Case" statement below enables/disable flow control
3379          * according to the "hw->fc" parameter.
3380          *
3381          * The possible values of the "fc" parameter are:
3382          *      0:  Flow control is completely disabled
3383          *      1:  Rx flow control is enabled (we can receive pause
3384          *          frames but not send pause frames).
3385          *      2:  Tx flow control is enabled (we can send pause frames
3386          *          frames but we do not receive pause frames).
3387          *      3:  Both Rx and TX flow control (symmetric) is enabled.
3388          *  other:  No other values should be possible at this point.
3389          */
3390
3391         switch (hw->fc) {
3392         case e1000_fc_none:
3393                 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
3394                 break;
3395         case e1000_fc_rx_pause:
3396                 ctrl &= (~E1000_CTRL_TFCE);
3397                 ctrl |= E1000_CTRL_RFCE;
3398                 break;
3399         case e1000_fc_tx_pause:
3400                 ctrl &= (~E1000_CTRL_RFCE);
3401                 ctrl |= E1000_CTRL_TFCE;
3402                 break;
3403         case e1000_fc_full:
3404                 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
3405                 break;
3406         default:
3407                 DEBUGOUT("Flow control param set incorrectly\n");
3408                 return -E1000_ERR_CONFIG;
3409         }
3410
3411         /* Disable TX Flow Control for 82542 (rev 2.0) */
3412         if (hw->mac_type == e1000_82542_rev2_0)
3413                 ctrl &= (~E1000_CTRL_TFCE);
3414
3415         E1000_WRITE_REG(hw, CTRL, ctrl);
3416         return 0;
3417 }
3418
3419 /******************************************************************************
3420  * Configures flow control settings after link is established
3421  *
3422  * hw - Struct containing variables accessed by shared code
3423  *
3424  * Should be called immediately after a valid link has been established.
3425  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
3426  * and autonegotiation is enabled, the MAC flow control settings will be set
3427  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
3428  * and RFCE bits will be automaticaly set to the negotiated flow control mode.
3429  *****************************************************************************/
3430 static int32_t
3431 e1000_config_fc_after_link_up(struct e1000_hw *hw)
3432 {
3433         int32_t ret_val;
3434         uint16_t mii_status_reg;
3435         uint16_t mii_nway_adv_reg;
3436         uint16_t mii_nway_lp_ability_reg;
3437         uint16_t speed;
3438         uint16_t duplex;
3439
3440         DEBUGFUNC();
3441
3442         /* Check for the case where we have fiber media and auto-neg failed
3443          * so we had to force link.  In this case, we need to force the
3444          * configuration of the MAC to match the "fc" parameter.
3445          */
3446         if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
3447                 || ((hw->media_type == e1000_media_type_internal_serdes)
3448                 && (hw->autoneg_failed))
3449                 || ((hw->media_type == e1000_media_type_copper)
3450                 && (!hw->autoneg))) {
3451                 ret_val = e1000_force_mac_fc(hw);
3452                 if (ret_val < 0) {
3453                         DEBUGOUT("Error forcing flow control settings\n");
3454                         return ret_val;
3455                 }
3456         }
3457
3458         /* Check for the case where we have copper media and auto-neg is
3459          * enabled.  In this case, we need to check and see if Auto-Neg
3460          * has completed, and if so, how the PHY and link partner has
3461          * flow control configured.
3462          */
3463         if (hw->media_type == e1000_media_type_copper) {
3464                 /* Read the MII Status Register and check to see if AutoNeg
3465                  * has completed.  We read this twice because this reg has
3466                  * some "sticky" (latched) bits.
3467                  */
3468                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3469                         DEBUGOUT("PHY Read Error\n");
3470                         return -E1000_ERR_PHY;
3471                 }
3472                 if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
3473                         DEBUGOUT("PHY Read Error\n");
3474                         return -E1000_ERR_PHY;
3475                 }
3476
3477                 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
3478                         /* The AutoNeg process has completed, so we now need to
3479                          * read both the Auto Negotiation Advertisement Register
3480                          * (Address 4) and the Auto_Negotiation Base Page Ability
3481                          * Register (Address 5) to determine how flow control was
3482                          * negotiated.
3483                          */
3484                         if (e1000_read_phy_reg
3485                             (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
3486                                 DEBUGOUT("PHY Read Error\n");
3487                                 return -E1000_ERR_PHY;
3488                         }
3489                         if (e1000_read_phy_reg
3490                             (hw, PHY_LP_ABILITY,
3491                              &mii_nway_lp_ability_reg) < 0) {
3492                                 DEBUGOUT("PHY Read Error\n");
3493                                 return -E1000_ERR_PHY;
3494                         }
3495
3496                         /* Two bits in the Auto Negotiation Advertisement Register
3497                          * (Address 4) and two bits in the Auto Negotiation Base
3498                          * Page Ability Register (Address 5) determine flow control
3499                          * for both the PHY and the link partner.  The following
3500                          * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
3501                          * 1999, describes these PAUSE resolution bits and how flow
3502                          * control is determined based upon these settings.
3503                          * NOTE:  DC = Don't Care
3504                          *
3505                          *   LOCAL DEVICE  |   LINK PARTNER
3506                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
3507                          *-------|---------|-------|---------|--------------------
3508                          *   0   |    0    |  DC   |   DC    | e1000_fc_none
3509                          *   0   |    1    |   0   |   DC    | e1000_fc_none
3510                          *   0   |    1    |   1   |    0    | e1000_fc_none
3511                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3512                          *   1   |    0    |   0   |   DC    | e1000_fc_none
3513                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3514                          *   1   |    1    |   0   |    0    | e1000_fc_none
3515                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3516                          *
3517                          */
3518                         /* Are both PAUSE bits set to 1?  If so, this implies
3519                          * Symmetric Flow Control is enabled at both ends.  The
3520                          * ASM_DIR bits are irrelevant per the spec.
3521                          *
3522                          * For Symmetric Flow Control:
3523                          *
3524                          *   LOCAL DEVICE  |   LINK PARTNER
3525                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3526                          *-------|---------|-------|---------|--------------------
3527                          *   1   |   DC    |   1   |   DC    | e1000_fc_full
3528                          *
3529                          */
3530                         if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3531                             (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
3532                                 /* Now we need to check if the user selected RX ONLY
3533                                  * of pause frames.  In this case, we had to advertise
3534                                  * FULL flow control because we could not advertise RX
3535                                  * ONLY. Hence, we must now check to see if we need to
3536                                  * turn OFF  the TRANSMISSION of PAUSE frames.
3537                                  */
3538                                 if (hw->original_fc == e1000_fc_full) {
3539                                         hw->fc = e1000_fc_full;
3540                                         DEBUGOUT("Flow Control = FULL.\r\n");
3541                                 } else {
3542                                         hw->fc = e1000_fc_rx_pause;
3543                                         DEBUGOUT
3544                                             ("Flow Control = RX PAUSE frames only.\r\n");
3545                                 }
3546                         }
3547                         /* For receiving PAUSE frames ONLY.
3548                          *
3549                          *   LOCAL DEVICE  |   LINK PARTNER
3550                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3551                          *-------|---------|-------|---------|--------------------
3552                          *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
3553                          *
3554                          */
3555                         else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3556                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3557                                  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3558                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3559                         {
3560                                 hw->fc = e1000_fc_tx_pause;
3561                                 DEBUGOUT
3562                                     ("Flow Control = TX PAUSE frames only.\r\n");
3563                         }
3564                         /* For transmitting PAUSE frames ONLY.
3565                          *
3566                          *   LOCAL DEVICE  |   LINK PARTNER
3567                          * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
3568                          *-------|---------|-------|---------|--------------------
3569                          *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
3570                          *
3571                          */
3572                         else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
3573                                  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
3574                                  !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
3575                                  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
3576                         {
3577                                 hw->fc = e1000_fc_rx_pause;
3578                                 DEBUGOUT
3579                                     ("Flow Control = RX PAUSE frames only.\r\n");
3580                         }
3581                         /* Per the IEEE spec, at this point flow control should be
3582                          * disabled.  However, we want to consider that we could
3583                          * be connected to a legacy switch that doesn't advertise
3584                          * desired flow control, but can be forced on the link
3585                          * partner.  So if we advertised no flow control, that is
3586                          * what we will resolve to.  If we advertised some kind of
3587                          * receive capability (Rx Pause Only or Full Flow Control)
3588                          * and the link partner advertised none, we will configure
3589                          * ourselves to enable Rx Flow Control only.  We can do
3590                          * this safely for two reasons:  If the link partner really
3591                          * didn't want flow control enabled, and we enable Rx, no
3592                          * harm done since we won't be receiving any PAUSE frames
3593                          * anyway.  If the intent on the link partner was to have
3594                          * flow control enabled, then by us enabling RX only, we
3595                          * can at least receive pause frames and process them.
3596                          * This is a good idea because in most cases, since we are
3597                          * predominantly a server NIC, more times than not we will
3598                          * be asked to delay transmission of packets than asking
3599                          * our link partner to pause transmission of frames.
3600                          */
3601                         else if (hw->original_fc == e1000_fc_none ||
3602                                  hw->original_fc == e1000_fc_tx_pause) {
3603                                 hw->fc = e1000_fc_none;
3604                                 DEBUGOUT("Flow Control = NONE.\r\n");
3605                         } else {
3606                                 hw->fc = e1000_fc_rx_pause;
3607                                 DEBUGOUT
3608                                     ("Flow Control = RX PAUSE frames only.\r\n");
3609                         }
3610
3611                         /* Now we need to do one last check...  If we auto-
3612                          * negotiated to HALF DUPLEX, flow control should not be
3613                          * enabled per IEEE 802.3 spec.
3614                          */
3615                         e1000_get_speed_and_duplex(hw, &speed, &duplex);
3616
3617                         if (duplex == HALF_DUPLEX)
3618                                 hw->fc = e1000_fc_none;
3619
3620                         /* Now we call a subroutine to actually force the MAC
3621                          * controller to use the correct flow control settings.
3622                          */
3623                         ret_val = e1000_force_mac_fc(hw);
3624                         if (ret_val < 0) {
3625                                 DEBUGOUT
3626                                     ("Error forcing flow control settings\n");
3627                                 return ret_val;
3628                         }
3629                 } else {
3630                         DEBUGOUT
3631                             ("Copper PHY and Auto Neg has not completed.\r\n");
3632                 }
3633         }
3634         return E1000_SUCCESS;
3635 }
3636
3637 /******************************************************************************
3638  * Checks to see if the link status of the hardware has changed.
3639  *
3640  * hw - Struct containing variables accessed by shared code
3641  *
3642  * Called by any function that needs to check the link status of the adapter.
3643  *****************************************************************************/
3644 static int
3645 e1000_check_for_link(struct e1000_hw *hw)
3646 {
3647         uint32_t rxcw;
3648         uint32_t ctrl;
3649         uint32_t status;
3650         uint32_t rctl;
3651         uint32_t signal;
3652         int32_t ret_val;
3653         uint16_t phy_data;
3654         uint16_t lp_capability;
3655
3656         DEBUGFUNC();
3657
3658         /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
3659          * set when the optics detect a signal. On older adapters, it will be
3660          * cleared when there is a signal
3661          */
3662         ctrl = E1000_READ_REG(hw, CTRL);
3663         if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
3664                 signal = E1000_CTRL_SWDPIN1;
3665         else
3666                 signal = 0;
3667
3668         status = E1000_READ_REG(hw, STATUS);
3669         rxcw = E1000_READ_REG(hw, RXCW);
3670         DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
3671
3672         /* If we have a copper PHY then we only want to go out to the PHY
3673          * registers to see if Auto-Neg has completed and/or if our link
3674          * status has changed.  The get_link_status flag will be set if we
3675          * receive a Link Status Change interrupt or we have Rx Sequence
3676          * Errors.
3677          */
3678         if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
3679                 /* First we want to see if the MII Status Register reports
3680                  * link.  If so, then we want to get the current speed/duplex
3681                  * of the PHY.
3682                  * Read the register twice since the link bit is sticky.
3683                  */
3684                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3685                         DEBUGOUT("PHY Read Error\n");
3686                         return -E1000_ERR_PHY;
3687                 }
3688                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3689                         DEBUGOUT("PHY Read Error\n");
3690                         return -E1000_ERR_PHY;
3691                 }
3692
3693                 if (phy_data & MII_SR_LINK_STATUS) {
3694                         hw->get_link_status = false;
3695                 } else {
3696                         /* No link detected */
3697                         return -E1000_ERR_NOLINK;
3698                 }
3699
3700                 /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
3701                  * have Si on board that is 82544 or newer, Auto
3702                  * Speed Detection takes care of MAC speed/duplex
3703                  * configuration.  So we only need to configure Collision
3704                  * Distance in the MAC.  Otherwise, we need to force
3705                  * speed/duplex on the MAC to the current PHY speed/duplex
3706                  * settings.
3707                  */
3708                 if (hw->mac_type >= e1000_82544)
3709                         e1000_config_collision_dist(hw);
3710                 else {
3711                         ret_val = e1000_config_mac_to_phy(hw);
3712                         if (ret_val < 0) {
3713                                 DEBUGOUT
3714                                     ("Error configuring MAC to PHY settings\n");
3715                                 return ret_val;
3716                         }
3717                 }
3718
3719                 /* Configure Flow Control now that Auto-Neg has completed. First, we
3720                  * need to restore the desired flow control settings because we may
3721                  * have had to re-autoneg with a different link partner.
3722                  */
3723                 ret_val = e1000_config_fc_after_link_up(hw);
3724                 if (ret_val < 0) {
3725                         DEBUGOUT("Error configuring flow control\n");
3726                         return ret_val;
3727                 }
3728
3729                 /* At this point we know that we are on copper and we have
3730                  * auto-negotiated link.  These are conditions for checking the link
3731                  * parter capability register.  We use the link partner capability to
3732                  * determine if TBI Compatibility needs to be turned on or off.  If
3733                  * the link partner advertises any speed in addition to Gigabit, then
3734                  * we assume that they are GMII-based, and TBI compatibility is not
3735                  * needed. If no other speeds are advertised, we assume the link
3736                  * partner is TBI-based, and we turn on TBI Compatibility.
3737                  */
3738                 if (hw->tbi_compatibility_en) {
3739                         if (e1000_read_phy_reg
3740                             (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
3741                                 DEBUGOUT("PHY Read Error\n");
3742                                 return -E1000_ERR_PHY;
3743                         }
3744                         if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
3745                                              NWAY_LPAR_10T_FD_CAPS |
3746                                              NWAY_LPAR_100TX_HD_CAPS |
3747                                              NWAY_LPAR_100TX_FD_CAPS |
3748                                              NWAY_LPAR_100T4_CAPS)) {
3749                                 /* If our link partner advertises anything in addition to
3750                                  * gigabit, we do not need to enable TBI compatibility.
3751                                  */
3752                                 if (hw->tbi_compatibility_on) {
3753                                         /* If we previously were in the mode, turn it off. */
3754                                         rctl = E1000_READ_REG(hw, RCTL);
3755                                         rctl &= ~E1000_RCTL_SBP;
3756                                         E1000_WRITE_REG(hw, RCTL, rctl);
3757                                         hw->tbi_compatibility_on = false;
3758                                 }
3759                         } else {
3760                                 /* If TBI compatibility is was previously off, turn it on. For
3761                                  * compatibility with a TBI link partner, we will store bad
3762                                  * packets. Some frames have an additional byte on the end and
3763                                  * will look like CRC errors to to the hardware.
3764                                  */
3765                                 if (!hw->tbi_compatibility_on) {
3766                                         hw->tbi_compatibility_on = true;
3767                                         rctl = E1000_READ_REG(hw, RCTL);
3768                                         rctl |= E1000_RCTL_SBP;
3769                                         E1000_WRITE_REG(hw, RCTL, rctl);
3770                                 }
3771                         }
3772                 }
3773         }
3774         /* If we don't have link (auto-negotiation failed or link partner cannot
3775          * auto-negotiate), the cable is plugged in (we have signal), and our
3776          * link partner is not trying to auto-negotiate with us (we are receiving
3777          * idles or data), we need to force link up. We also need to give
3778          * auto-negotiation time to complete, in case the cable was just plugged
3779          * in. The autoneg_failed flag does this.
3780          */
3781         else if ((hw->media_type == e1000_media_type_fiber) &&
3782                  (!(status & E1000_STATUS_LU)) &&
3783                  ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
3784                  (!(rxcw & E1000_RXCW_C))) {
3785                 if (hw->autoneg_failed == 0) {
3786                         hw->autoneg_failed = 1;
3787                         return 0;
3788                 }
3789                 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
3790
3791                 /* Disable auto-negotiation in the TXCW register */
3792                 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3793
3794                 /* Force link-up and also force full-duplex. */
3795                 ctrl = E1000_READ_REG(hw, CTRL);
3796                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3797                 E1000_WRITE_REG(hw, CTRL, ctrl);
3798
3799                 /* Configure Flow Control after forcing link up. */
3800                 ret_val = e1000_config_fc_after_link_up(hw);
3801                 if (ret_val < 0) {
3802                         DEBUGOUT("Error configuring flow control\n");
3803                         return ret_val;
3804                 }
3805         }
3806         /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3807          * auto-negotiation in the TXCW register and disable forced link in the
3808          * Device Control register in an attempt to auto-negotiate with our link
3809          * partner.
3810          */
3811         else if ((hw->media_type == e1000_media_type_fiber) &&
3812                  (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
3813                 DEBUGOUT
3814                     ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
3815                 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3816                 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3817         }
3818         return 0;
3819 }
3820
3821 /******************************************************************************
3822 * Configure the MAC-to-PHY interface for 10/100Mbps
3823 *
3824 * hw - Struct containing variables accessed by shared code
3825 ******************************************************************************/
3826 static int32_t
3827 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
3828 {
3829         int32_t ret_val = E1000_SUCCESS;
3830         uint32_t tipg;
3831         uint16_t reg_data;
3832
3833         DEBUGFUNC();
3834
3835         reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
3836         ret_val = e1000_write_kmrn_reg(hw,
3837                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3838         if (ret_val)
3839                 return ret_val;
3840
3841         /* Configure Transmit Inter-Packet Gap */
3842         tipg = E1000_READ_REG(hw, TIPG);
3843         tipg &= ~E1000_TIPG_IPGT_MASK;
3844         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
3845         E1000_WRITE_REG(hw, TIPG, tipg);
3846
3847         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3848
3849         if (ret_val)
3850                 return ret_val;
3851
3852         if (duplex == HALF_DUPLEX)
3853                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
3854         else
3855                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3856
3857         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3858
3859         return ret_val;
3860 }
3861
3862 static int32_t
3863 e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
3864 {
3865         int32_t ret_val = E1000_SUCCESS;
3866         uint16_t reg_data;
3867         uint32_t tipg;
3868
3869         DEBUGFUNC();
3870
3871         reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
3872         ret_val = e1000_write_kmrn_reg(hw,
3873                         E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
3874         if (ret_val)
3875                 return ret_val;
3876
3877         /* Configure Transmit Inter-Packet Gap */
3878         tipg = E1000_READ_REG(hw, TIPG);
3879         tipg &= ~E1000_TIPG_IPGT_MASK;
3880         tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
3881         E1000_WRITE_REG(hw, TIPG, tipg);
3882
3883         ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
3884
3885         if (ret_val)
3886                 return ret_val;
3887
3888         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
3889         ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
3890
3891         return ret_val;
3892 }
3893
3894 /******************************************************************************
3895  * Detects the current speed and duplex settings of the hardware.
3896  *
3897  * hw - Struct containing variables accessed by shared code
3898  * speed - Speed of the connection
3899  * duplex - Duplex setting of the connection
3900  *****************************************************************************/
3901 static int
3902 e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
3903                 uint16_t *duplex)
3904 {
3905         uint32_t status;
3906         int32_t ret_val;
3907         uint16_t phy_data;
3908
3909         DEBUGFUNC();
3910
3911         if (hw->mac_type >= e1000_82543) {
3912                 status = E1000_READ_REG(hw, STATUS);
3913                 if (status & E1000_STATUS_SPEED_1000) {
3914                         *speed = SPEED_1000;
3915                         DEBUGOUT("1000 Mbs, ");
3916                 } else if (status & E1000_STATUS_SPEED_100) {
3917                         *speed = SPEED_100;
3918                         DEBUGOUT("100 Mbs, ");
3919                 } else {
3920                         *speed = SPEED_10;
3921                         DEBUGOUT("10 Mbs, ");
3922                 }
3923
3924                 if (status & E1000_STATUS_FD) {
3925                         *duplex = FULL_DUPLEX;
3926                         DEBUGOUT("Full Duplex\r\n");
3927                 } else {
3928                         *duplex = HALF_DUPLEX;
3929                         DEBUGOUT(" Half Duplex\r\n");
3930                 }
3931         } else {
3932                 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
3933                 *speed = SPEED_1000;
3934                 *duplex = FULL_DUPLEX;
3935         }
3936
3937         /* IGP01 PHY may advertise full duplex operation after speed downgrade
3938          * even if it is operating at half duplex.  Here we set the duplex
3939          * settings to match the duplex in the link partner's capabilities.
3940          */
3941         if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
3942                 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
3943                 if (ret_val)
3944                         return ret_val;
3945
3946                 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
3947                         *duplex = HALF_DUPLEX;
3948                 else {
3949                         ret_val = e1000_read_phy_reg(hw,
3950                                         PHY_LP_ABILITY, &phy_data);
3951                         if (ret_val)
3952                                 return ret_val;
3953                         if ((*speed == SPEED_100 &&
3954                                 !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
3955                                 || (*speed == SPEED_10
3956                                 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3957                                 *duplex = HALF_DUPLEX;
3958                 }
3959         }
3960
3961         if ((hw->mac_type == e1000_80003es2lan) &&
3962                 (hw->media_type == e1000_media_type_copper)) {
3963                 if (*speed == SPEED_1000)
3964                         ret_val = e1000_configure_kmrn_for_1000(hw);
3965                 else
3966                         ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3967                 if (ret_val)
3968                         return ret_val;
3969         }
3970         return E1000_SUCCESS;
3971 }
3972
3973 /******************************************************************************
3974 * Blocks until autoneg completes or times out (~4.5 seconds)
3975 *
3976 * hw - Struct containing variables accessed by shared code
3977 ******************************************************************************/
3978 static int
3979 e1000_wait_autoneg(struct e1000_hw *hw)
3980 {
3981         uint16_t i;
3982         uint16_t phy_data;
3983
3984         DEBUGFUNC();
3985         DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3986
3987         /* We will wait for autoneg to complete or timeout to expire. */
3988         for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
3989                 /* Read the MII Status Register and wait for Auto-Neg
3990                  * Complete bit to be set.
3991                  */
3992                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3993                         DEBUGOUT("PHY Read Error\n");
3994                         return -E1000_ERR_PHY;
3995                 }
3996                 if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
3997                         DEBUGOUT("PHY Read Error\n");
3998                         return -E1000_ERR_PHY;
3999                 }
4000                 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
4001                         DEBUGOUT("Auto-Neg complete.\n");
4002                         return 0;
4003                 }
4004                 mdelay(100);
4005         }
4006         DEBUGOUT("Auto-Neg timedout.\n");
4007         return -E1000_ERR_TIMEOUT;
4008 }
4009
4010 /******************************************************************************
4011 * Raises the Management Data Clock
4012 *
4013 * hw - Struct containing variables accessed by shared code
4014 * ctrl - Device control register's current value
4015 ******************************************************************************/
4016 static void
4017 e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4018 {
4019         /* Raise the clock input to the Management Data Clock (by setting the MDC
4020          * bit), and then delay 2 microseconds.
4021          */
4022         E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
4023         E1000_WRITE_FLUSH(hw);
4024         udelay(2);
4025 }
4026
4027 /******************************************************************************
4028 * Lowers the Management Data Clock
4029 *
4030 * hw - Struct containing variables accessed by shared code
4031 * ctrl - Device control register's current value
4032 ******************************************************************************/
4033 static void
4034 e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
4035 {
4036         /* Lower the clock input to the Management Data Clock (by clearing the MDC
4037          * bit), and then delay 2 microseconds.
4038          */
4039         E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
4040         E1000_WRITE_FLUSH(hw);
4041         udelay(2);
4042 }
4043
4044 /******************************************************************************
4045 * Shifts data bits out to the PHY
4046 *
4047 * hw - Struct containing variables accessed by shared code
4048 * data - Data to send out to the PHY
4049 * count - Number of bits to shift out
4050 *
4051 * Bits are shifted out in MSB to LSB order.
4052 ******************************************************************************/
4053 static void
4054 e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
4055 {
4056         uint32_t ctrl;
4057         uint32_t mask;
4058
4059         /* We need to shift "count" number of bits out to the PHY. So, the value
4060          * in the "data" parameter will be shifted out to the PHY one bit at a
4061          * time. In order to do this, "data" must be broken down into bits.
4062          */
4063         mask = 0x01;
4064         mask <<= (count - 1);
4065
4066         ctrl = E1000_READ_REG(hw, CTRL);
4067
4068         /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
4069         ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
4070
4071         while (mask) {
4072                 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
4073                  * then raising and lowering the Management Data Clock. A "0" is
4074                  * shifted out to the PHY by setting the MDIO bit to "0" and then
4075                  * raising and lowering the clock.
4076                  */
4077                 if (data & mask)
4078                         ctrl |= E1000_CTRL_MDIO;
4079                 else
4080                         ctrl &= ~E1000_CTRL_MDIO;
4081
4082                 E1000_WRITE_REG(hw, CTRL, ctrl);
4083                 E1000_WRITE_FLUSH(hw);
4084
4085                 udelay(2);
4086
4087                 e1000_raise_mdi_clk(hw, &ctrl);
4088                 e1000_lower_mdi_clk(hw, &ctrl);
4089
4090                 mask = mask >> 1;
4091         }
4092 }
4093
4094 /******************************************************************************
4095 * Shifts data bits in from the PHY
4096 *
4097 * hw - Struct containing variables accessed by shared code
4098 *
4099 * Bits are shifted in in MSB to LSB order.
4100 ******************************************************************************/
4101 static uint16_t
4102 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
4103 {
4104         uint32_t ctrl;
4105         uint16_t data = 0;
4106         uint8_t i;
4107
4108         /* In order to read a register from the PHY, we need to shift in a total
4109          * of 18 bits from the PHY. The first two bit (turnaround) times are used
4110          * to avoid contention on the MDIO pin when a read operation is performed.
4111          * These two bits are ignored by us and thrown away. Bits are "shifted in"
4112          * by raising the input to the Management Data Clock (setting the MDC bit),
4113          * and then reading the value of the MDIO bit.
4114          */
4115         ctrl = E1000_READ_REG(hw, CTRL);
4116
4117         /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
4118         ctrl &= ~E1000_CTRL_MDIO_DIR;
4119         ctrl &= ~E1000_CTRL_MDIO;
4120
4121         E1000_WRITE_REG(hw, CTRL, ctrl);
4122         E1000_WRITE_FLUSH(hw);
4123
4124         /* Raise and Lower the clock before reading in the data. This accounts for
4125          * the turnaround bits. The first clock occurred when we clocked out the
4126          * last bit of the Register Address.
4127          */
4128         e1000_raise_mdi_clk(hw, &ctrl);
4129         e1000_lower_mdi_clk(hw, &ctrl);
4130
4131         for (data = 0, i = 0; i < 16; i++) {
4132                 data = data << 1;
4133                 e1000_raise_mdi_clk(hw, &ctrl);
4134                 ctrl = E1000_READ_REG(hw, CTRL);
4135                 /* Check to see if we shifted in a "1". */
4136                 if (ctrl & E1000_CTRL_MDIO)
4137                         data |= 1;
4138                 e1000_lower_mdi_clk(hw, &ctrl);
4139         }
4140
4141         e1000_raise_mdi_clk(hw, &ctrl);
4142         e1000_lower_mdi_clk(hw, &ctrl);
4143
4144         return data;
4145 }
4146
4147 /*****************************************************************************
4148 * Reads the value from a PHY register
4149 *
4150 * hw - Struct containing variables accessed by shared code
4151 * reg_addr - address of the PHY register to read
4152 ******************************************************************************/
4153 static int
4154 e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
4155 {
4156         uint32_t i;
4157         uint32_t mdic = 0;
4158         const uint32_t phy_addr = 1;
4159
4160         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4161                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4162                 return -E1000_ERR_PARAM;
4163         }
4164
4165         if (hw->mac_type > e1000_82543) {
4166                 /* Set up Op-code, Phy Address, and register address in the MDI
4167                  * Control register.  The MAC will take care of interfacing with the
4168                  * PHY to retrieve the desired data.
4169                  */
4170                 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
4171                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4172                         (E1000_MDIC_OP_READ));
4173
4174                 E1000_WRITE_REG(hw, MDIC, mdic);
4175
4176                 /* Poll the ready bit to see if the MDI read completed */
4177                 for (i = 0; i < 64; i++) {
4178                         udelay(10);
4179                         mdic = E1000_READ_REG(hw, MDIC);
4180                         if (mdic & E1000_MDIC_READY)
4181                                 break;
4182                 }
4183                 if (!(mdic & E1000_MDIC_READY)) {
4184                         DEBUGOUT("MDI Read did not complete\n");
4185                         return -E1000_ERR_PHY;
4186                 }
4187                 if (mdic & E1000_MDIC_ERROR) {
4188                         DEBUGOUT("MDI Error\n");
4189                         return -E1000_ERR_PHY;
4190                 }
4191                 *phy_data = (uint16_t) mdic;
4192         } else {
4193                 /* We must first send a preamble through the MDIO pin to signal the
4194                  * beginning of an MII instruction.  This is done by sending 32
4195                  * consecutive "1" bits.
4196                  */
4197                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4198
4199                 /* Now combine the next few fields that are required for a read
4200                  * operation.  We use this method instead of calling the
4201                  * e1000_shift_out_mdi_bits routine five different times. The format of
4202                  * a MII read instruction consists of a shift out of 14 bits and is
4203                  * defined as follows:
4204                  *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
4205                  * followed by a shift in of 18 bits.  This first two bits shifted in
4206                  * are TurnAround bits used to avoid contention on the MDIO pin when a
4207                  * READ operation is performed.  These two bits are thrown away
4208                  * followed by a shift in of 16 bits which contains the desired data.
4209                  */
4210                 mdic = ((reg_addr) | (phy_addr << 5) |
4211                         (PHY_OP_READ << 10) | (PHY_SOF << 12));
4212
4213                 e1000_shift_out_mdi_bits(hw, mdic, 14);
4214
4215                 /* Now that we've shifted out the read command to the MII, we need to
4216                  * "shift in" the 16-bit value (18 total bits) of the requested PHY
4217                  * register address.
4218                  */
4219                 *phy_data = e1000_shift_in_mdi_bits(hw);
4220         }
4221         return 0;
4222 }
4223
4224 /******************************************************************************
4225 * Writes a value to a PHY register
4226 *
4227 * hw - Struct containing variables accessed by shared code
4228 * reg_addr - address of the PHY register to write
4229 * data - data to write to the PHY
4230 ******************************************************************************/
4231 static int
4232 e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
4233 {
4234         uint32_t i;
4235         uint32_t mdic = 0;
4236         const uint32_t phy_addr = 1;
4237
4238         if (reg_addr > MAX_PHY_REG_ADDRESS) {
4239                 DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
4240                 return -E1000_ERR_PARAM;
4241         }
4242
4243         if (hw->mac_type > e1000_82543) {
4244                 /* Set up Op-code, Phy Address, register address, and data intended
4245                  * for the PHY register in the MDI Control register.  The MAC will take
4246                  * care of interfacing with the PHY to send the desired data.
4247                  */
4248                 mdic = (((uint32_t) phy_data) |
4249                         (reg_addr << E1000_MDIC_REG_SHIFT) |
4250                         (phy_addr << E1000_MDIC_PHY_SHIFT) |
4251                         (E1000_MDIC_OP_WRITE));
4252
4253                 E1000_WRITE_REG(hw, MDIC, mdic);
4254
4255                 /* Poll the ready bit to see if the MDI read completed */
4256                 for (i = 0; i < 64; i++) {
4257                         udelay(10);
4258                         mdic = E1000_READ_REG(hw, MDIC);
4259                         if (mdic & E1000_MDIC_READY)
4260                                 break;
4261                 }
4262                 if (!(mdic & E1000_MDIC_READY)) {
4263                         DEBUGOUT("MDI Write did not complete\n");
4264                         return -E1000_ERR_PHY;
4265                 }
4266         } else {
4267                 /* We'll need to use the SW defined pins to shift the write command
4268                  * out to the PHY. We first send a preamble to the PHY to signal the
4269                  * beginning of the MII instruction.  This is done by sending 32
4270                  * consecutive "1" bits.
4271                  */
4272                 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
4273
4274                 /* Now combine the remaining required fields that will indicate a
4275                  * write operation. We use this method instead of calling the
4276                  * e1000_shift_out_mdi_bits routine for each field in the command. The
4277                  * format of a MII write instruction is as follows:
4278                  * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
4279                  */
4280                 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
4281                         (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
4282                 mdic <<= 16;
4283                 mdic |= (uint32_t) phy_data;
4284
4285                 e1000_shift_out_mdi_bits(hw, mdic, 32);
4286         }
4287         return 0;
4288 }
4289
4290 /******************************************************************************
4291  * Checks if PHY reset is blocked due to SOL/IDER session, for example.
4292  * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
4293  * the caller to figure out how to deal with it.
4294  *
4295  * hw - Struct containing variables accessed by shared code
4296  *
4297  * returns: - E1000_BLK_PHY_RESET
4298  *            E1000_SUCCESS
4299  *
4300  *****************************************************************************/
4301 int32_t
4302 e1000_check_phy_reset_block(struct e1000_hw *hw)
4303 {
4304         uint32_t manc = 0;
4305         uint32_t fwsm = 0;
4306
4307         if (hw->mac_type == e1000_ich8lan) {
4308                 fwsm = E1000_READ_REG(hw, FWSM);
4309                 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
4310                                                 : E1000_BLK_PHY_RESET;
4311         }
4312
4313         if (hw->mac_type > e1000_82547_rev_2)
4314                 manc = E1000_READ_REG(hw, MANC);
4315         return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
4316                 E1000_BLK_PHY_RESET : E1000_SUCCESS;
4317 }
4318
4319 /***************************************************************************
4320  * Checks if the PHY configuration is done
4321  *
4322  * hw: Struct containing variables accessed by shared code
4323  *
4324  * returns: - E1000_ERR_RESET if fail to reset MAC
4325  *            E1000_SUCCESS at any other case.
4326  *
4327  ***************************************************************************/
4328 static int32_t
4329 e1000_get_phy_cfg_done(struct e1000_hw *hw)
4330 {
4331         int32_t timeout = PHY_CFG_TIMEOUT;
4332         uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
4333
4334         DEBUGFUNC();
4335
4336         switch (hw->mac_type) {
4337         default:
4338                 mdelay(10);
4339                 break;
4340
4341         case e1000_80003es2lan:
4342                 /* Separate *_CFG_DONE_* bit for each port */
4343                 if (e1000_is_second_port(hw))
4344                         cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
4345                 /* Fall Through */
4346
4347         case e1000_82571:
4348         case e1000_82572:
4349         case e1000_igb:
4350                 while (timeout) {
4351                         if (hw->mac_type == e1000_igb) {
4352                                 if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
4353                                         break;
4354                         } else {
4355                                 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
4356                                         break;
4357                         }
4358                         mdelay(1);
4359                         timeout--;
4360                 }
4361                 if (!timeout) {
4362                         DEBUGOUT("MNG configuration cycle has not "
4363                                         "completed.\n");
4364                         return -E1000_ERR_RESET;
4365                 }
4366                 break;
4367         }
4368
4369         return E1000_SUCCESS;
4370 }
4371
4372 /******************************************************************************
4373 * Returns the PHY to the power-on reset state
4374 *
4375 * hw - Struct containing variables accessed by shared code
4376 ******************************************************************************/
4377 int32_t
4378 e1000_phy_hw_reset(struct e1000_hw *hw)
4379 {
4380         uint16_t swfw = E1000_SWFW_PHY0_SM;
4381         uint32_t ctrl, ctrl_ext;
4382         uint32_t led_ctrl;
4383         int32_t ret_val;
4384
4385         DEBUGFUNC();
4386
4387         /* In the case of the phy reset being blocked, it's not an error, we
4388          * simply return success without performing the reset. */
4389         ret_val = e1000_check_phy_reset_block(hw);
4390         if (ret_val)
4391                 return E1000_SUCCESS;
4392
4393         DEBUGOUT("Resetting Phy...\n");
4394
4395         if (hw->mac_type > e1000_82543) {
4396                 if (e1000_is_second_port(hw))
4397                         swfw = E1000_SWFW_PHY1_SM;
4398
4399                 if (e1000_swfw_sync_acquire(hw, swfw)) {
4400                         DEBUGOUT("Unable to acquire swfw sync\n");
4401                         return -E1000_ERR_SWFW_SYNC;
4402                 }
4403
4404                 /* Read the device control register and assert the E1000_CTRL_PHY_RST
4405                  * bit. Then, take it out of reset.
4406                  */
4407                 ctrl = E1000_READ_REG(hw, CTRL);
4408                 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
4409                 E1000_WRITE_FLUSH(hw);
4410
4411                 if (hw->mac_type < e1000_82571)
4412                         udelay(10);
4413                 else
4414                         udelay(100);
4415
4416                 E1000_WRITE_REG(hw, CTRL, ctrl);
4417                 E1000_WRITE_FLUSH(hw);
4418
4419                 if (hw->mac_type >= e1000_82571)
4420                         mdelay(10);
4421
4422         } else {
4423                 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
4424                  * bit to put the PHY into reset. Then, take it out of reset.
4425                  */
4426                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
4427                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
4428                 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
4429                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4430                 E1000_WRITE_FLUSH(hw);
4431                 mdelay(10);
4432                 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
4433                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
4434                 E1000_WRITE_FLUSH(hw);
4435         }
4436         udelay(150);
4437
4438         if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
4439                 /* Configure activity LED after PHY reset */
4440                 led_ctrl = E1000_READ_REG(hw, LEDCTL);
4441                 led_ctrl &= IGP_ACTIVITY_LED_MASK;
4442                 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
4443                 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
4444         }
4445
4446         e1000_swfw_sync_release(hw, swfw);
4447
4448         /* Wait for FW to finish PHY configuration. */
4449         ret_val = e1000_get_phy_cfg_done(hw);
4450         if (ret_val != E1000_SUCCESS)
4451                 return ret_val;
4452
4453         return ret_val;
4454 }
4455
4456 /******************************************************************************
4457  * IGP phy init script - initializes the GbE PHY
4458  *
4459  * hw - Struct containing variables accessed by shared code
4460  *****************************************************************************/
4461 static void
4462 e1000_phy_init_script(struct e1000_hw *hw)
4463 {
4464         uint32_t ret_val;
4465         uint16_t phy_saved_data;
4466         DEBUGFUNC();
4467
4468         if (hw->phy_init_script) {
4469                 mdelay(20);
4470
4471                 /* Save off the current value of register 0x2F5B to be
4472                  * restored at the end of this routine. */
4473                 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
4474
4475                 /* Disabled the PHY transmitter */
4476                 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
4477
4478                 mdelay(20);
4479
4480                 e1000_write_phy_reg(hw, 0x0000, 0x0140);
4481
4482                 mdelay(5);
4483
4484                 switch (hw->mac_type) {
4485                 case e1000_82541:
4486                 case e1000_82547:
4487                         e1000_write_phy_reg(hw, 0x1F95, 0x0001);
4488
4489                         e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
4490
4491                         e1000_write_phy_reg(hw, 0x1F79, 0x0018);
4492
4493                         e1000_write_phy_reg(hw, 0x1F30, 0x1600);
4494
4495                         e1000_write_phy_reg(hw, 0x1F31, 0x0014);
4496
4497                         e1000_write_phy_reg(hw, 0x1F32, 0x161C);
4498
4499                         e1000_write_phy_reg(hw, 0x1F94, 0x0003);
4500
4501                         e1000_write_phy_reg(hw, 0x1F96, 0x003F);
4502
4503                         e1000_write_phy_reg(hw, 0x2010, 0x0008);
4504                         break;
4505
4506                 case e1000_82541_rev_2:
4507                 case e1000_82547_rev_2:
4508                         e1000_write_phy_reg(hw, 0x1F73, 0x0099);
4509                         break;
4510                 default:
4511                         break;
4512                 }
4513
4514                 e1000_write_phy_reg(hw, 0x0000, 0x3300);
4515
4516                 mdelay(20);
4517
4518                 /* Now enable the transmitter */
4519                 if (!ret_val)
4520                         e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
4521
4522                 if (hw->mac_type == e1000_82547) {
4523                         uint16_t fused, fine, coarse;
4524
4525                         /* Move to analog registers page */
4526                         e1000_read_phy_reg(hw,
4527                                 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
4528
4529                         if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
4530                                 e1000_read_phy_reg(hw,
4531                                         IGP01E1000_ANALOG_FUSE_STATUS, &fused);
4532
4533                                 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
4534                                 coarse = fused
4535                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
4536
4537                                 if (coarse >
4538                                         IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
4539                                         coarse -=
4540                                         IGP01E1000_ANALOG_FUSE_COARSE_10;
4541                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
4542                                 } else if (coarse
4543                                         == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
4544                                         fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
4545
4546                                 fused = (fused
4547                                         & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
4548                                         (fine
4549                                         & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
4550                                         (coarse
4551                                         & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
4552
4553                                 e1000_write_phy_reg(hw,
4554                                         IGP01E1000_ANALOG_FUSE_CONTROL, fused);
4555                                 e1000_write_phy_reg(hw,
4556                                         IGP01E1000_ANALOG_FUSE_BYPASS,
4557                                 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
4558                         }
4559                 }
4560         }
4561 }
4562
4563 /******************************************************************************
4564 * Resets the PHY
4565 *
4566 * hw - Struct containing variables accessed by shared code
4567 *
4568 * Sets bit 15 of the MII Control register
4569 ******************************************************************************/
4570 int32_t
4571 e1000_phy_reset(struct e1000_hw *hw)
4572 {
4573         int32_t ret_val;
4574         uint16_t phy_data;
4575
4576         DEBUGFUNC();
4577
4578         /* In the case of the phy reset being blocked, it's not an error, we
4579          * simply return success without performing the reset. */
4580         ret_val = e1000_check_phy_reset_block(hw);
4581         if (ret_val)
4582                 return E1000_SUCCESS;
4583
4584         switch (hw->phy_type) {
4585         case e1000_phy_igp:
4586         case e1000_phy_igp_2:
4587         case e1000_phy_igp_3:
4588         case e1000_phy_ife:
4589         case e1000_phy_igb:
4590                 ret_val = e1000_phy_hw_reset(hw);
4591                 if (ret_val)
4592                         return ret_val;
4593                 break;
4594         default:
4595                 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
4596                 if (ret_val)
4597                         return ret_val;
4598
4599                 phy_data |= MII_CR_RESET;
4600                 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
4601                 if (ret_val)
4602                         return ret_val;
4603
4604                 udelay(1);
4605                 break;
4606         }
4607
4608         if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
4609                 e1000_phy_init_script(hw);
4610
4611         return E1000_SUCCESS;
4612 }
4613
4614 static int e1000_set_phy_type (struct e1000_hw *hw)
4615 {
4616         DEBUGFUNC ();
4617
4618         if (hw->mac_type == e1000_undefined)
4619                 return -E1000_ERR_PHY_TYPE;
4620
4621         switch (hw->phy_id) {
4622         case M88E1000_E_PHY_ID:
4623         case M88E1000_I_PHY_ID:
4624         case M88E1011_I_PHY_ID:
4625         case M88E1111_I_PHY_ID:
4626                 hw->phy_type = e1000_phy_m88;
4627                 break;
4628         case IGP01E1000_I_PHY_ID:
4629                 if (hw->mac_type == e1000_82541 ||
4630                         hw->mac_type == e1000_82541_rev_2 ||
4631                         hw->mac_type == e1000_82547 ||
4632                         hw->mac_type == e1000_82547_rev_2) {
4633                         hw->phy_type = e1000_phy_igp;
4634                         break;
4635                 }
4636         case IGP03E1000_E_PHY_ID:
4637                 hw->phy_type = e1000_phy_igp_3;
4638                 break;
4639         case IFE_E_PHY_ID:
4640         case IFE_PLUS_E_PHY_ID:
4641         case IFE_C_E_PHY_ID:
4642                 hw->phy_type = e1000_phy_ife;
4643                 break;
4644         case GG82563_E_PHY_ID:
4645                 if (hw->mac_type == e1000_80003es2lan) {
4646                         hw->phy_type = e1000_phy_gg82563;
4647                         break;
4648                 }
4649         case BME1000_E_PHY_ID:
4650                 hw->phy_type = e1000_phy_bm;
4651                 break;
4652         case I210_I_PHY_ID:
4653                 hw->phy_type = e1000_phy_igb;
4654                 break;
4655                 /* Fall Through */
4656         default:
4657                 /* Should never have loaded on this device */
4658                 hw->phy_type = e1000_phy_undefined;
4659                 return -E1000_ERR_PHY_TYPE;
4660         }
4661
4662         return E1000_SUCCESS;
4663 }
4664
4665 /******************************************************************************
4666 * Probes the expected PHY address for known PHY IDs
4667 *
4668 * hw - Struct containing variables accessed by shared code
4669 ******************************************************************************/
4670 static int32_t
4671 e1000_detect_gig_phy(struct e1000_hw *hw)
4672 {
4673         int32_t phy_init_status, ret_val;
4674         uint16_t phy_id_high, phy_id_low;
4675         bool match = false;
4676
4677         DEBUGFUNC();
4678
4679         /* The 82571 firmware may still be configuring the PHY.  In this
4680          * case, we cannot access the PHY until the configuration is done.  So
4681          * we explicitly set the PHY values. */
4682         if (hw->mac_type == e1000_82571 ||
4683                 hw->mac_type == e1000_82572) {
4684                 hw->phy_id = IGP01E1000_I_PHY_ID;
4685                 hw->phy_type = e1000_phy_igp_2;
4686                 return E1000_SUCCESS;
4687         }
4688
4689         /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
4690          * work- around that forces PHY page 0 to be set or the reads fail.
4691          * The rest of the code in this routine uses e1000_read_phy_reg to
4692          * read the PHY ID.  So for ESB-2 we need to have this set so our
4693          * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
4694          * the routines below will figure this out as well. */
4695         if (hw->mac_type == e1000_80003es2lan)
4696                 hw->phy_type = e1000_phy_gg82563;
4697
4698         /* Read the PHY ID Registers to identify which PHY is onboard. */
4699         ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
4700         if (ret_val)
4701                 return ret_val;
4702
4703         hw->phy_id = (uint32_t) (phy_id_high << 16);
4704         udelay(20);
4705         ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
4706         if (ret_val)
4707                 return ret_val;
4708
4709         hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4710         hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4711
4712         switch (hw->mac_type) {
4713         case e1000_82543:
4714                 if (hw->phy_id == M88E1000_E_PHY_ID)
4715                         match = true;
4716                 break;
4717         case e1000_82544:
4718                 if (hw->phy_id == M88E1000_I_PHY_ID)
4719                         match = true;
4720                 break;
4721         case e1000_82540:
4722         case e1000_82545:
4723         case e1000_82545_rev_3:
4724         case e1000_82546:
4725         case e1000_82546_rev_3:
4726                 if (hw->phy_id == M88E1011_I_PHY_ID)
4727                         match = true;
4728                 break;
4729         case e1000_82541:
4730         case e1000_82541_rev_2:
4731         case e1000_82547:
4732         case e1000_82547_rev_2:
4733                 if(hw->phy_id == IGP01E1000_I_PHY_ID)
4734                         match = true;
4735
4736                 break;
4737         case e1000_82573:
4738                 if (hw->phy_id == M88E1111_I_PHY_ID)
4739                         match = true;
4740                 break;
4741         case e1000_82574:
4742                 if (hw->phy_id == BME1000_E_PHY_ID)
4743                         match = true;
4744                 break;
4745         case e1000_80003es2lan:
4746                 if (hw->phy_id == GG82563_E_PHY_ID)
4747                         match = true;
4748                 break;
4749         case e1000_ich8lan:
4750                 if (hw->phy_id == IGP03E1000_E_PHY_ID)
4751                         match = true;
4752                 if (hw->phy_id == IFE_E_PHY_ID)
4753                         match = true;
4754                 if (hw->phy_id == IFE_PLUS_E_PHY_ID)
4755                         match = true;
4756                 if (hw->phy_id == IFE_C_E_PHY_ID)
4757                         match = true;
4758                 break;
4759         case e1000_igb:
4760                 if (hw->phy_id == I210_I_PHY_ID)
4761                         match = true;
4762                 break;
4763         default:
4764                 DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
4765                 return -E1000_ERR_CONFIG;
4766         }
4767
4768         phy_init_status = e1000_set_phy_type(hw);
4769
4770         if ((match) && (phy_init_status == E1000_SUCCESS)) {
4771                 DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
4772                 return 0;
4773         }
4774         DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
4775         return -E1000_ERR_PHY;
4776 }
4777
4778 /*****************************************************************************
4779  * Set media type and TBI compatibility.
4780  *
4781  * hw - Struct containing variables accessed by shared code
4782  * **************************************************************************/
4783 void
4784 e1000_set_media_type(struct e1000_hw *hw)
4785 {
4786         uint32_t status;
4787
4788         DEBUGFUNC();
4789
4790         if (hw->mac_type != e1000_82543) {
4791                 /* tbi_compatibility is only valid on 82543 */
4792                 hw->tbi_compatibility_en = false;
4793         }
4794
4795         switch (hw->device_id) {
4796         case E1000_DEV_ID_82545GM_SERDES:
4797         case E1000_DEV_ID_82546GB_SERDES:
4798         case E1000_DEV_ID_82571EB_SERDES:
4799         case E1000_DEV_ID_82571EB_SERDES_DUAL:
4800         case E1000_DEV_ID_82571EB_SERDES_QUAD:
4801         case E1000_DEV_ID_82572EI_SERDES:
4802         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
4803                 hw->media_type = e1000_media_type_internal_serdes;
4804                 break;
4805         default:
4806                 switch (hw->mac_type) {
4807                 case e1000_82542_rev2_0:
4808                 case e1000_82542_rev2_1:
4809                         hw->media_type = e1000_media_type_fiber;
4810                         break;
4811                 case e1000_ich8lan:
4812                 case e1000_82573:
4813                 case e1000_82574:
4814                 case e1000_igb:
4815                         /* The STATUS_TBIMODE bit is reserved or reused
4816                          * for the this device.
4817                          */
4818                         hw->media_type = e1000_media_type_copper;
4819                         break;
4820                 default:
4821                         status = E1000_READ_REG(hw, STATUS);
4822                         if (status & E1000_STATUS_TBIMODE) {
4823                                 hw->media_type = e1000_media_type_fiber;
4824                                 /* tbi_compatibility not valid on fiber */
4825                                 hw->tbi_compatibility_en = false;
4826                         } else {
4827                                 hw->media_type = e1000_media_type_copper;
4828                         }
4829                         break;
4830                 }
4831         }
4832 }
4833
4834 /**
4835  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4836  *
4837  * e1000_sw_init initializes the Adapter private data structure.
4838  * Fields are initialized based on PCI device information and
4839  * OS network device settings (MTU size).
4840  **/
4841
4842 static int
4843 e1000_sw_init(struct e1000_hw *hw)
4844 {
4845         int result;
4846
4847         /* PCI config space info */
4848 #ifdef CONFIG_DM_ETH
4849         dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4850         dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4851         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4852                              &hw->subsystem_vendor_id);
4853         dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4854
4855         dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4856         dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4857 #else
4858         pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
4859         pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
4860         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
4861                              &hw->subsystem_vendor_id);
4862         pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
4863
4864         pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
4865         pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
4866 #endif
4867
4868         /* identify the MAC */
4869         result = e1000_set_mac_type(hw);
4870         if (result) {
4871                 E1000_ERR(hw, "Unknown MAC Type\n");
4872                 return result;
4873         }
4874
4875         switch (hw->mac_type) {
4876         default:
4877                 break;
4878         case e1000_82541:
4879         case e1000_82547:
4880         case e1000_82541_rev_2:
4881         case e1000_82547_rev_2:
4882                 hw->phy_init_script = 1;
4883                 break;
4884         }
4885
4886         /* flow control settings */
4887         hw->fc_high_water = E1000_FC_HIGH_THRESH;
4888         hw->fc_low_water = E1000_FC_LOW_THRESH;
4889         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
4890         hw->fc_send_xon = 1;
4891
4892         /* Media type - copper or fiber */
4893         hw->tbi_compatibility_en = true;
4894         e1000_set_media_type(hw);
4895
4896         if (hw->mac_type >= e1000_82543) {
4897                 uint32_t status = E1000_READ_REG(hw, STATUS);
4898
4899                 if (status & E1000_STATUS_TBIMODE) {
4900                         DEBUGOUT("fiber interface\n");
4901                         hw->media_type = e1000_media_type_fiber;
4902                 } else {
4903                         DEBUGOUT("copper interface\n");
4904                         hw->media_type = e1000_media_type_copper;
4905                 }
4906         } else {
4907                 hw->media_type = e1000_media_type_fiber;
4908         }
4909
4910         hw->wait_autoneg_complete = true;
4911         if (hw->mac_type < e1000_82543)
4912                 hw->report_tx_early = 0;
4913         else
4914                 hw->report_tx_early = 1;
4915
4916         return E1000_SUCCESS;
4917 }
4918
4919 void
4920 fill_rx(struct e1000_hw *hw)
4921 {
4922         struct e1000_rx_desc *rd;
4923         unsigned long flush_start, flush_end;
4924
4925         rx_last = rx_tail;
4926         rd = rx_base + rx_tail;
4927         rx_tail = (rx_tail + 1) % 8;
4928         memset(rd, 0, 16);
4929         rd->buffer_addr = cpu_to_le64((unsigned long)packet);
4930
4931         /*
4932          * Make sure there are no stale data in WB over this area, which
4933          * might get written into the memory while the e1000 also writes
4934          * into the same memory area.
4935          */
4936         invalidate_dcache_range((unsigned long)packet,
4937                                 (unsigned long)packet + 4096);
4938         /* Dump the DMA descriptor into RAM. */
4939         flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
4940         flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
4941         flush_dcache_range(flush_start, flush_end);
4942
4943         E1000_WRITE_REG(hw, RDT, rx_tail);
4944 }
4945
4946 /**
4947  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
4948  * @adapter: board private structure
4949  *
4950  * Configure the Tx unit of the MAC after a reset.
4951  **/
4952
4953 static void
4954 e1000_configure_tx(struct e1000_hw *hw)
4955 {
4956         unsigned long tctl;
4957         unsigned long tipg, tarc;
4958         uint32_t ipgr1, ipgr2;
4959
4960         E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
4961         E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
4962
4963         E1000_WRITE_REG(hw, TDLEN, 128);
4964
4965         /* Setup the HW Tx Head and Tail descriptor pointers */
4966         E1000_WRITE_REG(hw, TDH, 0);
4967         E1000_WRITE_REG(hw, TDT, 0);
4968         tx_tail = 0;
4969
4970         /* Set the default values for the Tx Inter Packet Gap timer */
4971         if (hw->mac_type <= e1000_82547_rev_2 &&
4972             (hw->media_type == e1000_media_type_fiber ||
4973              hw->media_type == e1000_media_type_internal_serdes))
4974                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
4975         else
4976                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
4977
4978         /* Set the default values for the Tx Inter Packet Gap timer */
4979         switch (hw->mac_type) {
4980         case e1000_82542_rev2_0:
4981         case e1000_82542_rev2_1:
4982                 tipg = DEFAULT_82542_TIPG_IPGT;
4983                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
4984                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
4985                 break;
4986         case e1000_80003es2lan:
4987                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4988                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
4989                 break;
4990         default:
4991                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
4992                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
4993                 break;
4994         }
4995         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
4996         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
4997         E1000_WRITE_REG(hw, TIPG, tipg);
4998         /* Program the Transmit Control Register */
4999         tctl = E1000_READ_REG(hw, TCTL);
5000         tctl &= ~E1000_TCTL_CT;
5001         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
5002             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
5003
5004         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
5005                 tarc = E1000_READ_REG(hw, TARC0);
5006                 /* set the speed mode bit, we'll clear it if we're not at
5007                  * gigabit link later */
5008                 /* git bit can be set to 1*/
5009         } else if (hw->mac_type == e1000_80003es2lan) {
5010                 tarc = E1000_READ_REG(hw, TARC0);
5011                 tarc |= 1;
5012                 E1000_WRITE_REG(hw, TARC0, tarc);
5013                 tarc = E1000_READ_REG(hw, TARC1);
5014                 tarc |= 1;
5015                 E1000_WRITE_REG(hw, TARC1, tarc);
5016         }
5017
5018
5019         e1000_config_collision_dist(hw);
5020         /* Setup Transmit Descriptor Settings for eop descriptor */
5021         hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
5022
5023         /* Need to set up RS bit */
5024         if (hw->mac_type < e1000_82543)
5025                 hw->txd_cmd |= E1000_TXD_CMD_RPS;
5026         else
5027                 hw->txd_cmd |= E1000_TXD_CMD_RS;
5028
5029
5030         if (hw->mac_type == e1000_igb) {
5031                 E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
5032
5033                 uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
5034                 reg_txdctl |= 1 << 25;
5035                 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
5036                 mdelay(20);
5037         }
5038
5039
5040
5041         E1000_WRITE_REG(hw, TCTL, tctl);
5042
5043
5044 }
5045
5046 /**
5047  * e1000_setup_rctl - configure the receive control register
5048  * @adapter: Board private structure
5049  **/
5050 static void
5051 e1000_setup_rctl(struct e1000_hw *hw)
5052 {
5053         uint32_t rctl;
5054
5055         rctl = E1000_READ_REG(hw, RCTL);
5056
5057         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
5058
5059         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
5060                 | E1000_RCTL_RDMTS_HALF;        /* |
5061                         (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
5062
5063         if (hw->tbi_compatibility_on == 1)
5064                 rctl |= E1000_RCTL_SBP;
5065         else
5066                 rctl &= ~E1000_RCTL_SBP;
5067
5068         rctl &= ~(E1000_RCTL_SZ_4096);
5069                 rctl |= E1000_RCTL_SZ_2048;
5070                 rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
5071         E1000_WRITE_REG(hw, RCTL, rctl);
5072 }
5073
5074 /**
5075  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
5076  * @adapter: board private structure
5077  *
5078  * Configure the Rx unit of the MAC after a reset.
5079  **/
5080 static void
5081 e1000_configure_rx(struct e1000_hw *hw)
5082 {
5083         unsigned long rctl, ctrl_ext;
5084         rx_tail = 0;
5085
5086         /* make sure receives are disabled while setting up the descriptors */
5087         rctl = E1000_READ_REG(hw, RCTL);
5088         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
5089         if (hw->mac_type >= e1000_82540) {
5090                 /* Set the interrupt throttling rate.  Value is calculated
5091                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
5092 #define MAX_INTS_PER_SEC        8000
5093 #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256)
5094                 E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
5095         }
5096
5097         if (hw->mac_type >= e1000_82571) {
5098                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5099                 /* Reset delay timers after every interrupt */
5100                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
5101                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5102                 E1000_WRITE_FLUSH(hw);
5103         }
5104         /* Setup the Base and Length of the Rx Descriptor Ring */
5105         E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
5106         E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
5107
5108         E1000_WRITE_REG(hw, RDLEN, 128);
5109
5110         /* Setup the HW Rx Head and Tail Descriptor Pointers */
5111         E1000_WRITE_REG(hw, RDH, 0);
5112         E1000_WRITE_REG(hw, RDT, 0);
5113         /* Enable Receives */
5114
5115         if (hw->mac_type == e1000_igb) {
5116
5117                 uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
5118                 reg_rxdctl |= 1 << 25;
5119                 E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
5120                 mdelay(20);
5121         }
5122
5123         E1000_WRITE_REG(hw, RCTL, rctl);
5124
5125         fill_rx(hw);
5126 }
5127
5128 /**************************************************************************
5129 POLL - Wait for a frame
5130 ***************************************************************************/
5131 static int
5132 _e1000_poll(struct e1000_hw *hw)
5133 {
5134         struct e1000_rx_desc *rd;
5135         unsigned long inval_start, inval_end;
5136         uint32_t len;
5137
5138         /* return true if there's an ethernet packet ready to read */
5139         rd = rx_base + rx_last;
5140
5141         /* Re-load the descriptor from RAM. */
5142         inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
5143         inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
5144         invalidate_dcache_range(inval_start, inval_end);
5145
5146         if (!(rd->status & E1000_RXD_STAT_DD))
5147                 return 0;
5148         /* DEBUGOUT("recv: packet len=%d\n", rd->length); */
5149         /* Packet received, make sure the data are re-loaded from RAM. */
5150         len = le16_to_cpu(rd->length);
5151         invalidate_dcache_range((unsigned long)packet,
5152                                 (unsigned long)packet +
5153                                 roundup(len, ARCH_DMA_MINALIGN));
5154         return len;
5155 }
5156
5157 static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
5158 {
5159         void *nv_packet = (void *)txpacket;
5160         struct e1000_tx_desc *txp;
5161         int i = 0;
5162         unsigned long flush_start, flush_end;
5163
5164         txp = tx_base + tx_tail;
5165         tx_tail = (tx_tail + 1) % 8;
5166
5167         txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
5168         txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
5169         txp->upper.data = 0;
5170
5171         /* Dump the packet into RAM so e1000 can pick them. */
5172         flush_dcache_range((unsigned long)nv_packet,
5173                            (unsigned long)nv_packet +
5174                            roundup(length, ARCH_DMA_MINALIGN));
5175         /* Dump the descriptor into RAM as well. */
5176         flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
5177         flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
5178         flush_dcache_range(flush_start, flush_end);
5179
5180         E1000_WRITE_REG(hw, TDT, tx_tail);
5181
5182         E1000_WRITE_FLUSH(hw);
5183         while (1) {
5184                 invalidate_dcache_range(flush_start, flush_end);
5185                 if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
5186                         break;
5187                 if (i++ > TOUT_LOOP) {
5188                         DEBUGOUT("e1000: tx timeout\n");
5189                         return 0;
5190                 }
5191                 udelay(10);     /* give the nic a chance to write to the register */
5192         }
5193         return 1;
5194 }
5195
5196 static void
5197 _e1000_disable(struct e1000_hw *hw)
5198 {
5199         /* Turn off the ethernet interface */
5200         E1000_WRITE_REG(hw, RCTL, 0);
5201         E1000_WRITE_REG(hw, TCTL, 0);
5202
5203         /* Clear the transmit ring */
5204         E1000_WRITE_REG(hw, TDH, 0);
5205         E1000_WRITE_REG(hw, TDT, 0);
5206
5207         /* Clear the receive ring */
5208         E1000_WRITE_REG(hw, RDH, 0);
5209         E1000_WRITE_REG(hw, RDT, 0);
5210
5211         mdelay(10);
5212 }
5213
5214 /*reset function*/
5215 static inline int
5216 e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
5217 {
5218         e1000_reset_hw(hw);
5219         if (hw->mac_type >= e1000_82544)
5220                 E1000_WRITE_REG(hw, WUC, 0);
5221
5222         return e1000_init_hw(hw, enetaddr);
5223 }
5224
5225 static int
5226 _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
5227 {
5228         int ret_val = 0;
5229
5230         ret_val = e1000_reset(hw, enetaddr);
5231         if (ret_val < 0) {
5232                 if ((ret_val == -E1000_ERR_NOLINK) ||
5233                     (ret_val == -E1000_ERR_TIMEOUT)) {
5234                         E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
5235                 } else {
5236                         E1000_ERR(hw, "Hardware Initialization Failed\n");
5237                 }
5238                 return ret_val;
5239         }
5240         e1000_configure_tx(hw);
5241         e1000_setup_rctl(hw);
5242         e1000_configure_rx(hw);
5243         return 0;
5244 }
5245
5246 /******************************************************************************
5247  * Gets the current PCI bus type of hardware
5248  *
5249  * hw - Struct containing variables accessed by shared code
5250  *****************************************************************************/
5251 void e1000_get_bus_type(struct e1000_hw *hw)
5252 {
5253         uint32_t status;
5254
5255         switch (hw->mac_type) {
5256         case e1000_82542_rev2_0:
5257         case e1000_82542_rev2_1:
5258                 hw->bus_type = e1000_bus_type_pci;
5259                 break;
5260         case e1000_82571:
5261         case e1000_82572:
5262         case e1000_82573:
5263         case e1000_82574:
5264         case e1000_80003es2lan:
5265         case e1000_ich8lan:
5266         case e1000_igb:
5267                 hw->bus_type = e1000_bus_type_pci_express;
5268                 break;
5269         default:
5270                 status = E1000_READ_REG(hw, STATUS);
5271                 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5272                                 e1000_bus_type_pcix : e1000_bus_type_pci;
5273                 break;
5274         }
5275 }
5276
5277 #ifndef CONFIG_DM_ETH
5278 /* A list of all registered e1000 devices */
5279 static LIST_HEAD(e1000_hw_list);
5280 #endif
5281
5282 #ifdef CONFIG_DM_ETH
5283 static int e1000_init_one(struct e1000_hw *hw, int cardnum,
5284                           struct udevice *devno, unsigned char enetaddr[6])
5285 #else
5286 static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
5287                           unsigned char enetaddr[6])
5288 #endif
5289 {
5290         u32 val;
5291
5292         /* Assign the passed-in values */
5293 #ifdef CONFIG_DM_ETH
5294         hw->pdev = devno;
5295 #else
5296         hw->pdev = devno;
5297 #endif
5298         hw->cardnum = cardnum;
5299
5300         /* Print a debug message with the IO base address */
5301 #ifdef CONFIG_DM_ETH
5302         dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
5303 #else
5304         pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
5305 #endif
5306         E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
5307
5308         /* Try to enable I/O accesses and bus-mastering */
5309         val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
5310 #ifdef CONFIG_DM_ETH
5311         dm_pci_write_config32(devno, PCI_COMMAND, val);
5312 #else
5313         pci_write_config_dword(devno, PCI_COMMAND, val);
5314 #endif
5315
5316         /* Make sure it worked */
5317 #ifdef CONFIG_DM_ETH
5318         dm_pci_read_config32(devno, PCI_COMMAND, &val);
5319 #else
5320         pci_read_config_dword(devno, PCI_COMMAND, &val);
5321 #endif
5322         if (!(val & PCI_COMMAND_MEMORY)) {
5323                 E1000_ERR(hw, "Can't enable I/O memory\n");
5324                 return -ENOSPC;
5325         }
5326         if (!(val & PCI_COMMAND_MASTER)) {
5327                 E1000_ERR(hw, "Can't enable bus-mastering\n");
5328                 return -EPERM;
5329         }
5330
5331         /* Are these variables needed? */
5332         hw->fc = e1000_fc_default;
5333         hw->original_fc = e1000_fc_default;
5334         hw->autoneg_failed = 0;
5335         hw->autoneg = 1;
5336         hw->get_link_status = true;
5337 #ifndef CONFIG_E1000_NO_NVM
5338         hw->eeprom_semaphore_present = true;
5339 #endif
5340 #ifdef CONFIG_DM_ETH
5341         hw->hw_addr = dm_pci_map_bar(devno,     PCI_BASE_ADDRESS_0,
5342                                                 PCI_REGION_MEM);
5343 #else
5344         hw->hw_addr = pci_map_bar(devno,        PCI_BASE_ADDRESS_0,
5345                                                 PCI_REGION_MEM);
5346 #endif
5347         hw->mac_type = e1000_undefined;
5348
5349         /* MAC and Phy settings */
5350         if (e1000_sw_init(hw) < 0) {
5351                 E1000_ERR(hw, "Software init failed\n");
5352                 return -EIO;
5353         }
5354         if (e1000_check_phy_reset_block(hw))
5355                 E1000_ERR(hw, "PHY Reset is blocked!\n");
5356
5357         /* Basic init was OK, reset the hardware and allow SPI access */
5358         e1000_reset_hw(hw);
5359
5360 #ifndef CONFIG_E1000_NO_NVM
5361         /* Validate the EEPROM and get chipset information */
5362         if (e1000_init_eeprom_params(hw)) {
5363                 E1000_ERR(hw, "EEPROM is invalid!\n");
5364                 return -EINVAL;
5365         }
5366         if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
5367             e1000_validate_eeprom_checksum(hw))
5368                 return -ENXIO;
5369         e1000_read_mac_addr(hw, enetaddr);
5370 #endif
5371         e1000_get_bus_type(hw);
5372
5373 #ifndef CONFIG_E1000_NO_NVM
5374         printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
5375                enetaddr[0], enetaddr[1], enetaddr[2],
5376                enetaddr[3], enetaddr[4], enetaddr[5]);
5377 #else
5378         memset(enetaddr, 0, 6);
5379         printf("e1000: no NVM\n");
5380 #endif
5381
5382         return 0;
5383 }
5384
5385 /* Put the name of a device in a string */
5386 static void e1000_name(char *str, int cardnum)
5387 {
5388         sprintf(str, "e1000#%u", cardnum);
5389 }
5390
5391 #ifndef CONFIG_DM_ETH
5392 /**************************************************************************
5393 TRANSMIT - Transmit a frame
5394 ***************************************************************************/
5395 static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
5396 {
5397         struct e1000_hw *hw = nic->priv;
5398
5399         return _e1000_transmit(hw, txpacket, length);
5400 }
5401
5402 /**************************************************************************
5403 DISABLE - Turn off ethernet interface
5404 ***************************************************************************/
5405 static void
5406 e1000_disable(struct eth_device *nic)
5407 {
5408         struct e1000_hw *hw = nic->priv;
5409
5410         _e1000_disable(hw);
5411 }
5412
5413 /**************************************************************************
5414 INIT - set up ethernet interface(s)
5415 ***************************************************************************/
5416 static int
5417 e1000_init(struct eth_device *nic, bd_t *bis)
5418 {
5419         struct e1000_hw *hw = nic->priv;
5420
5421         return _e1000_init(hw, nic->enetaddr);
5422 }
5423
5424 static int
5425 e1000_poll(struct eth_device *nic)
5426 {
5427         struct e1000_hw *hw = nic->priv;
5428         int len;
5429
5430         len = _e1000_poll(hw);
5431         if (len) {
5432                 net_process_received_packet((uchar *)packet, len);
5433                 fill_rx(hw);
5434         }
5435
5436         return len ? 1 : 0;
5437 }
5438
5439 /**************************************************************************
5440 PROBE - Look for an adapter, this routine's visible to the outside
5441 You should omit the last argument struct pci_device * for a non-PCI NIC
5442 ***************************************************************************/
5443 int
5444 e1000_initialize(bd_t * bis)
5445 {
5446         unsigned int i;
5447         pci_dev_t devno;
5448         int ret;
5449
5450         DEBUGFUNC();
5451
5452         /* Find and probe all the matching PCI devices */
5453         for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
5454                 /*
5455                  * These will never get freed due to errors, this allows us to
5456                  * perform SPI EEPROM programming from U-Boot, for example.
5457                  */
5458                 struct eth_device *nic = malloc(sizeof(*nic));
5459                 struct e1000_hw *hw = malloc(sizeof(*hw));
5460                 if (!nic || !hw) {
5461                         printf("e1000#%u: Out of Memory!\n", i);
5462                         free(nic);
5463                         free(hw);
5464                         continue;
5465                 }
5466
5467                 /* Make sure all of the fields are initially zeroed */
5468                 memset(nic, 0, sizeof(*nic));
5469                 memset(hw, 0, sizeof(*hw));
5470                 nic->priv = hw;
5471
5472                 /* Generate a card name */
5473                 e1000_name(nic->name, i);
5474                 hw->name = nic->name;
5475
5476                 ret = e1000_init_one(hw, i, devno, nic->enetaddr);
5477                 if (ret)
5478                         continue;
5479                 list_add_tail(&hw->list_node, &e1000_hw_list);
5480
5481                 hw->nic = nic;
5482
5483                 /* Set up the function pointers and register the device */
5484                 nic->init = e1000_init;
5485                 nic->recv = e1000_poll;
5486                 nic->send = e1000_transmit;
5487                 nic->halt = e1000_disable;
5488                 eth_register(nic);
5489         }
5490
5491         return i;
5492 }
5493
5494 struct e1000_hw *e1000_find_card(unsigned int cardnum)
5495 {
5496         struct e1000_hw *hw;
5497
5498         list_for_each_entry(hw, &e1000_hw_list, list_node)
5499                 if (hw->cardnum == cardnum)
5500                         return hw;
5501
5502         return NULL;
5503 }
5504 #endif /* !CONFIG_DM_ETH */
5505
5506 #ifdef CONFIG_CMD_E1000
5507 static int do_e1000(cmd_tbl_t *cmdtp, int flag,
5508                 int argc, char * const argv[])
5509 {
5510         unsigned char *mac = NULL;
5511 #ifdef CONFIG_DM_ETH
5512         struct eth_pdata *plat;
5513         struct udevice *dev;
5514         char name[30];
5515         int ret;
5516 #else
5517         struct e1000_hw *hw;
5518 #endif
5519         int cardnum;
5520
5521         if (argc < 3) {
5522                 cmd_usage(cmdtp);
5523                 return 1;
5524         }
5525
5526         /* Make sure we can find the requested e1000 card */
5527         cardnum = simple_strtoul(argv[1], NULL, 10);
5528 #ifdef CONFIG_DM_ETH
5529         e1000_name(name, cardnum);
5530         ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
5531         if (!ret) {
5532                 plat = dev_get_platdata(dev);
5533                 mac = plat->enetaddr;
5534         }
5535 #else
5536         hw = e1000_find_card(cardnum);
5537         if (hw)
5538                 mac = hw->nic->enetaddr;
5539 #endif
5540         if (!mac) {
5541                 printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
5542                 return 1;
5543         }
5544
5545         if (!strcmp(argv[2], "print-mac-address")) {
5546                 printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
5547                         mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
5548                 return 0;
5549         }
5550
5551 #ifdef CONFIG_E1000_SPI
5552         /* Handle the "SPI" subcommand */
5553         if (!strcmp(argv[2], "spi"))
5554                 return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
5555 #endif
5556
5557         cmd_usage(cmdtp);
5558         return 1;
5559 }
5560
5561 U_BOOT_CMD(
5562         e1000, 7, 0, do_e1000,
5563         "Intel e1000 controller management",
5564         /*  */"<card#> print-mac-address\n"
5565 #ifdef CONFIG_E1000_SPI
5566         "e1000 <card#> spi show [<offset> [<length>]]\n"
5567         "e1000 <card#> spi dump <addr> <offset> <length>\n"
5568         "e1000 <card#> spi program <addr> <offset> <length>\n"
5569         "e1000 <card#> spi checksum [update]\n"
5570 #endif
5571         "       - Manage the Intel E1000 PCI device"
5572 );
5573 #endif /* not CONFIG_CMD_E1000 */
5574
5575 #ifdef CONFIG_DM_ETH
5576 static int e1000_eth_start(struct udevice *dev)
5577 {
5578         struct eth_pdata *plat = dev_get_platdata(dev);
5579         struct e1000_hw *hw = dev_get_priv(dev);
5580
5581         return _e1000_init(hw, plat->enetaddr);
5582 }
5583
5584 static void e1000_eth_stop(struct udevice *dev)
5585 {
5586         struct e1000_hw *hw = dev_get_priv(dev);
5587
5588         _e1000_disable(hw);
5589 }
5590
5591 static int e1000_eth_send(struct udevice *dev, void *packet, int length)
5592 {
5593         struct e1000_hw *hw = dev_get_priv(dev);
5594         int ret;
5595
5596         ret = _e1000_transmit(hw, packet, length);
5597
5598         return ret ? 0 : -ETIMEDOUT;
5599 }
5600
5601 static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
5602 {
5603         struct e1000_hw *hw = dev_get_priv(dev);
5604         int len;
5605
5606         len = _e1000_poll(hw);
5607         if (len)
5608                 *packetp = packet;
5609
5610         return len ? len : -EAGAIN;
5611 }
5612
5613 static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
5614 {
5615         struct e1000_hw *hw = dev_get_priv(dev);
5616
5617         fill_rx(hw);
5618
5619         return 0;
5620 }
5621
5622 static int e1000_eth_probe(struct udevice *dev)
5623 {
5624         struct eth_pdata *plat = dev_get_platdata(dev);
5625         struct e1000_hw *hw = dev_get_priv(dev);
5626         int ret;
5627
5628         hw->name = dev->name;
5629         ret = e1000_init_one(hw, trailing_strtol(dev->name),
5630                              dev, plat->enetaddr);
5631         if (ret < 0) {
5632                 printf(pr_fmt("failed to initialize card: %d\n"), ret);
5633                 return ret;
5634         }
5635
5636         return 0;
5637 }
5638
5639 static int e1000_eth_bind(struct udevice *dev)
5640 {
5641         char name[20];
5642
5643         /*
5644          * A simple way to number the devices. When device tree is used this
5645          * is unnecessary, but when the device is just discovered on the PCI
5646          * bus we need a name. We could instead have the uclass figure out
5647          * which devices are different and number them.
5648          */
5649         e1000_name(name, num_cards++);
5650
5651         return device_set_name(dev, name);
5652 }
5653
5654 static const struct eth_ops e1000_eth_ops = {
5655         .start  = e1000_eth_start,
5656         .send   = e1000_eth_send,
5657         .recv   = e1000_eth_recv,
5658         .stop   = e1000_eth_stop,
5659         .free_pkt = e1000_free_pkt,
5660 };
5661
5662 static const struct udevice_id e1000_eth_ids[] = {
5663         { .compatible = "intel,e1000" },
5664         { }
5665 };
5666
5667 U_BOOT_DRIVER(eth_e1000) = {
5668         .name   = "eth_e1000",
5669         .id     = UCLASS_ETH,
5670         .of_match = e1000_eth_ids,
5671         .bind   = e1000_eth_bind,
5672         .probe  = e1000_eth_probe,
5673         .ops    = &e1000_eth_ops,
5674         .priv_auto_alloc_size = sizeof(struct e1000_hw),
5675         .platdata_auto_alloc_size = sizeof(struct eth_pdata),
5676 };
5677
5678 U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
5679 #endif