common: Drop linux/delay.h from common header
[oweals/u-boot.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) STMicroelectronics 2019
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #include <common.h>
8 #include <clk.h>
9 #include <dm.h>
10 #include <log.h>
11 #include <nand.h>
12 #include <reset.h>
13 #include <linux/delay.h>
14 #include <linux/err.h>
15 #include <linux/iopoll.h>
16 #include <linux/ioport.h>
17
18 /* Bad block marker length */
19 #define FMC2_BBM_LEN                    2
20
21 /* ECC step size */
22 #define FMC2_ECC_STEP_SIZE              512
23
24 /* Command delay */
25 #define FMC2_RB_DELAY_US                30
26
27 /* Max chip enable */
28 #define FMC2_MAX_CE                     2
29
30 /* Timings */
31 #define FMC2_THIZ                       1
32 #define FMC2_TIO                        8000
33 #define FMC2_TSYNC                      3000
34 #define FMC2_PCR_TIMING_MASK            0xf
35 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
36
37 /* FMC2 Controller Registers */
38 #define FMC2_BCR1                       0x0
39 #define FMC2_PCR                        0x80
40 #define FMC2_SR                         0x84
41 #define FMC2_PMEM                       0x88
42 #define FMC2_PATT                       0x8c
43 #define FMC2_HECCR                      0x94
44 #define FMC2_BCHISR                     0x254
45 #define FMC2_BCHICR                     0x258
46 #define FMC2_BCHPBR1                    0x260
47 #define FMC2_BCHPBR2                    0x264
48 #define FMC2_BCHPBR3                    0x268
49 #define FMC2_BCHPBR4                    0x26c
50 #define FMC2_BCHDSR0                    0x27c
51 #define FMC2_BCHDSR1                    0x280
52 #define FMC2_BCHDSR2                    0x284
53 #define FMC2_BCHDSR3                    0x288
54 #define FMC2_BCHDSR4                    0x28c
55
56 /* Register: FMC2_BCR1 */
57 #define FMC2_BCR1_FMC2EN                BIT(31)
58
59 /* Register: FMC2_PCR */
60 #define FMC2_PCR_PWAITEN                BIT(1)
61 #define FMC2_PCR_PBKEN                  BIT(2)
62 #define FMC2_PCR_PWID_MASK              GENMASK(5, 4)
63 #define FMC2_PCR_PWID(x)                (((x) & 0x3) << 4)
64 #define FMC2_PCR_PWID_BUSWIDTH_8        0
65 #define FMC2_PCR_PWID_BUSWIDTH_16       1
66 #define FMC2_PCR_ECCEN                  BIT(6)
67 #define FMC2_PCR_ECCALG                 BIT(8)
68 #define FMC2_PCR_TCLR_MASK              GENMASK(12, 9)
69 #define FMC2_PCR_TCLR(x)                (((x) & 0xf) << 9)
70 #define FMC2_PCR_TCLR_DEFAULT           0xf
71 #define FMC2_PCR_TAR_MASK               GENMASK(16, 13)
72 #define FMC2_PCR_TAR(x)                 (((x) & 0xf) << 13)
73 #define FMC2_PCR_TAR_DEFAULT            0xf
74 #define FMC2_PCR_ECCSS_MASK             GENMASK(19, 17)
75 #define FMC2_PCR_ECCSS(x)               (((x) & 0x7) << 17)
76 #define FMC2_PCR_ECCSS_512              1
77 #define FMC2_PCR_ECCSS_2048             3
78 #define FMC2_PCR_BCHECC                 BIT(24)
79 #define FMC2_PCR_WEN                    BIT(25)
80
81 /* Register: FMC2_SR */
82 #define FMC2_SR_NWRF                    BIT(6)
83
84 /* Register: FMC2_PMEM */
85 #define FMC2_PMEM_MEMSET(x)             (((x) & 0xff) << 0)
86 #define FMC2_PMEM_MEMWAIT(x)            (((x) & 0xff) << 8)
87 #define FMC2_PMEM_MEMHOLD(x)            (((x) & 0xff) << 16)
88 #define FMC2_PMEM_MEMHIZ(x)             (((x) & 0xff) << 24)
89 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
90
91 /* Register: FMC2_PATT */
92 #define FMC2_PATT_ATTSET(x)             (((x) & 0xff) << 0)
93 #define FMC2_PATT_ATTWAIT(x)            (((x) & 0xff) << 8)
94 #define FMC2_PATT_ATTHOLD(x)            (((x) & 0xff) << 16)
95 #define FMC2_PATT_ATTHIZ(x)             (((x) & 0xff) << 24)
96 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
97
98 /* Register: FMC2_BCHISR */
99 #define FMC2_BCHISR_DERF                BIT(1)
100 #define FMC2_BCHISR_EPBRF               BIT(4)
101
102 /* Register: FMC2_BCHICR */
103 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
104
105 /* Register: FMC2_BCHDSR0 */
106 #define FMC2_BCHDSR0_DUE                BIT(0)
107 #define FMC2_BCHDSR0_DEF                BIT(1)
108 #define FMC2_BCHDSR0_DEN_MASK           GENMASK(7, 4)
109 #define FMC2_BCHDSR0_DEN_SHIFT          4
110
111 /* Register: FMC2_BCHDSR1 */
112 #define FMC2_BCHDSR1_EBP1_MASK          GENMASK(12, 0)
113 #define FMC2_BCHDSR1_EBP2_MASK          GENMASK(28, 16)
114 #define FMC2_BCHDSR1_EBP2_SHIFT         16
115
116 /* Register: FMC2_BCHDSR2 */
117 #define FMC2_BCHDSR2_EBP3_MASK          GENMASK(12, 0)
118 #define FMC2_BCHDSR2_EBP4_MASK          GENMASK(28, 16)
119 #define FMC2_BCHDSR2_EBP4_SHIFT         16
120
121 /* Register: FMC2_BCHDSR3 */
122 #define FMC2_BCHDSR3_EBP5_MASK          GENMASK(12, 0)
123 #define FMC2_BCHDSR3_EBP6_MASK          GENMASK(28, 16)
124 #define FMC2_BCHDSR3_EBP6_SHIFT         16
125
126 /* Register: FMC2_BCHDSR4 */
127 #define FMC2_BCHDSR4_EBP7_MASK          GENMASK(12, 0)
128 #define FMC2_BCHDSR4_EBP8_MASK          GENMASK(28, 16)
129 #define FMC2_BCHDSR4_EBP8_SHIFT         16
130
131 #define FMC2_NSEC_PER_SEC               1000000000L
132
133 enum stm32_fmc2_ecc {
134         FMC2_ECC_HAM = 1,
135         FMC2_ECC_BCH4 = 4,
136         FMC2_ECC_BCH8 = 8
137 };
138
139 struct stm32_fmc2_timings {
140         u8 tclr;
141         u8 tar;
142         u8 thiz;
143         u8 twait;
144         u8 thold_mem;
145         u8 tset_mem;
146         u8 thold_att;
147         u8 tset_att;
148 };
149
150 struct stm32_fmc2_nand {
151         struct nand_chip chip;
152         struct stm32_fmc2_timings timings;
153         int ncs;
154         int cs_used[FMC2_MAX_CE];
155 };
156
157 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
158 {
159         return container_of(chip, struct stm32_fmc2_nand, chip);
160 }
161
162 struct stm32_fmc2_nfc {
163         struct nand_hw_control base;
164         struct stm32_fmc2_nand nand;
165         struct nand_ecclayout ecclayout;
166         void __iomem *io_base;
167         void __iomem *data_base[FMC2_MAX_CE];
168         void __iomem *cmd_base[FMC2_MAX_CE];
169         void __iomem *addr_base[FMC2_MAX_CE];
170         struct clk clk;
171
172         u8 cs_assigned;
173         int cs_sel;
174 };
175
176 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
177 {
178         return container_of(base, struct stm32_fmc2_nfc, base);
179 }
180
181 /* Timings configuration */
182 static void stm32_fmc2_timings_init(struct nand_chip *chip)
183 {
184         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
185         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
186         struct stm32_fmc2_timings *timings = &nand->timings;
187         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
188         u32 pmem, patt;
189
190         /* Set tclr/tar timings */
191         pcr &= ~FMC2_PCR_TCLR_MASK;
192         pcr |= FMC2_PCR_TCLR(timings->tclr);
193         pcr &= ~FMC2_PCR_TAR_MASK;
194         pcr |= FMC2_PCR_TAR(timings->tar);
195
196         /* Set tset/twait/thold/thiz timings in common bank */
197         pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
198         pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
199         pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
200         pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
201
202         /* Set tset/twait/thold/thiz timings in attribut bank */
203         patt = FMC2_PATT_ATTSET(timings->tset_att);
204         patt |= FMC2_PATT_ATTWAIT(timings->twait);
205         patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
206         patt |= FMC2_PATT_ATTHIZ(timings->thiz);
207
208         writel(pcr, fmc2->io_base + FMC2_PCR);
209         writel(pmem, fmc2->io_base + FMC2_PMEM);
210         writel(patt, fmc2->io_base + FMC2_PATT);
211 }
212
213 /* Controller configuration */
214 static void stm32_fmc2_setup(struct nand_chip *chip)
215 {
216         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
217         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
218
219         /* Configure ECC algorithm (default configuration is Hamming) */
220         pcr &= ~FMC2_PCR_ECCALG;
221         pcr &= ~FMC2_PCR_BCHECC;
222         if (chip->ecc.strength == FMC2_ECC_BCH8) {
223                 pcr |= FMC2_PCR_ECCALG;
224                 pcr |= FMC2_PCR_BCHECC;
225         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
226                 pcr |= FMC2_PCR_ECCALG;
227         }
228
229         /* Set buswidth */
230         pcr &= ~FMC2_PCR_PWID_MASK;
231         if (chip->options & NAND_BUSWIDTH_16)
232                 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
233
234         /* Set ECC sector size */
235         pcr &= ~FMC2_PCR_ECCSS_MASK;
236         pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
237
238         writel(pcr, fmc2->io_base + FMC2_PCR);
239 }
240
241 /* Select target */
242 static void stm32_fmc2_select_chip(struct mtd_info *mtd, int chipnr)
243 {
244         struct nand_chip *chip = mtd_to_nand(mtd);
245         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
246         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
247
248         if (chipnr < 0 || chipnr >= nand->ncs)
249                 return;
250
251         if (nand->cs_used[chipnr] == fmc2->cs_sel)
252                 return;
253
254         fmc2->cs_sel = nand->cs_used[chipnr];
255         chip->IO_ADDR_R = fmc2->data_base[fmc2->cs_sel];
256         chip->IO_ADDR_W = fmc2->data_base[fmc2->cs_sel];
257
258         /* FMC2 setup routine */
259         stm32_fmc2_setup(chip);
260
261         /* Apply timings */
262         stm32_fmc2_timings_init(chip);
263 }
264
265 /* Set bus width to 16-bit or 8-bit */
266 static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
267 {
268         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
269
270         pcr &= ~FMC2_PCR_PWID_MASK;
271         if (set)
272                 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
273         writel(pcr, fmc2->io_base + FMC2_PCR);
274 }
275
276 /* Enable/disable ECC */
277 static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
278 {
279         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
280
281         pcr &= ~FMC2_PCR_ECCEN;
282         if (enable)
283                 pcr |= FMC2_PCR_ECCEN;
284         writel(pcr, fmc2->io_base + FMC2_PCR);
285 }
286
287 /* Clear irq sources in case of bch is used */
288 static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
289 {
290         writel(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
291 }
292
293 /* Send command and address cycles */
294 static void stm32_fmc2_cmd_ctrl(struct mtd_info *mtd, int cmd,
295                                 unsigned int ctrl)
296 {
297         struct nand_chip *chip = mtd_to_nand(mtd);
298         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
299
300         if (cmd == NAND_CMD_NONE)
301                 return;
302
303         if (ctrl & NAND_CLE) {
304                 writeb(cmd, fmc2->cmd_base[fmc2->cs_sel]);
305                 return;
306         }
307
308         writeb(cmd, fmc2->addr_base[fmc2->cs_sel]);
309 }
310
311 /*
312  * Enable ECC logic and reset syndrome/parity bits previously calculated
313  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
314  */
315 static void stm32_fmc2_hwctl(struct mtd_info *mtd, int mode)
316 {
317         struct nand_chip *chip = mtd_to_nand(mtd);
318         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
319
320         stm32_fmc2_set_ecc(fmc2, false);
321
322         if (chip->ecc.strength != FMC2_ECC_HAM) {
323                 u32 pcr = readl(fmc2->io_base + FMC2_PCR);
324
325                 if (mode == NAND_ECC_WRITE)
326                         pcr |= FMC2_PCR_WEN;
327                 else
328                         pcr &= ~FMC2_PCR_WEN;
329                 writel(pcr, fmc2->io_base + FMC2_PCR);
330
331                 stm32_fmc2_clear_bch_irq(fmc2);
332         }
333
334         stm32_fmc2_set_ecc(fmc2, true);
335 }
336
337 /*
338  * ECC Hamming calculation
339  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
340  * max of 1-bit)
341  */
342 static int stm32_fmc2_ham_calculate(struct mtd_info *mtd, const u8 *data,
343                                     u8 *ecc)
344 {
345         struct nand_chip *chip = mtd_to_nand(mtd);
346         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
347         u32 heccr, sr;
348         int ret;
349
350         ret = readl_poll_timeout(fmc2->io_base + FMC2_SR, sr,
351                                  sr & FMC2_SR_NWRF, 10000);
352         if (ret < 0) {
353                 pr_err("Ham timeout\n");
354                 return ret;
355         }
356
357         heccr = readl(fmc2->io_base + FMC2_HECCR);
358
359         ecc[0] = heccr;
360         ecc[1] = heccr >> 8;
361         ecc[2] = heccr >> 16;
362
363         /* Disable ecc */
364         stm32_fmc2_set_ecc(fmc2, false);
365
366         return 0;
367 }
368
369 static int stm32_fmc2_ham_correct(struct mtd_info *mtd, u8 *dat,
370                                   u8 *read_ecc, u8 *calc_ecc)
371 {
372         u8 bit_position = 0, b0, b1, b2;
373         u32 byte_addr = 0, b;
374         u32 i, shifting = 1;
375
376         /* Indicate which bit and byte is faulty (if any) */
377         b0 = read_ecc[0] ^ calc_ecc[0];
378         b1 = read_ecc[1] ^ calc_ecc[1];
379         b2 = read_ecc[2] ^ calc_ecc[2];
380         b = b0 | (b1 << 8) | (b2 << 16);
381
382         /* No errors */
383         if (likely(!b))
384                 return 0;
385
386         /* Calculate bit position */
387         for (i = 0; i < 3; i++) {
388                 switch (b % 4) {
389                 case 2:
390                         bit_position += shifting;
391                 case 1:
392                         break;
393                 default:
394                         return -EBADMSG;
395                 }
396                 shifting <<= 1;
397                 b >>= 2;
398         }
399
400         /* Calculate byte position */
401         shifting = 1;
402         for (i = 0; i < 9; i++) {
403                 switch (b % 4) {
404                 case 2:
405                         byte_addr += shifting;
406                 case 1:
407                         break;
408                 default:
409                         return -EBADMSG;
410                 }
411                 shifting <<= 1;
412                 b >>= 2;
413         }
414
415         /* Flip the bit */
416         dat[byte_addr] ^= (1 << bit_position);
417
418         return 1;
419 }
420
421 /*
422  * ECC BCH calculation and correction
423  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
424  * max of 4-bit/8-bit)
425  */
426
427 static int stm32_fmc2_bch_calculate(struct mtd_info *mtd, const u8 *data,
428                                     u8 *ecc)
429 {
430         struct nand_chip *chip = mtd_to_nand(mtd);
431         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
432         u32 bchpbr, bchisr;
433         int ret;
434
435         /* Wait until the BCH code is ready */
436         ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
437                                  bchisr & FMC2_BCHISR_EPBRF, 10000);
438         if (ret < 0) {
439                 pr_err("Bch timeout\n");
440                 return ret;
441         }
442
443         /* Read parity bits */
444         bchpbr = readl(fmc2->io_base + FMC2_BCHPBR1);
445         ecc[0] = bchpbr;
446         ecc[1] = bchpbr >> 8;
447         ecc[2] = bchpbr >> 16;
448         ecc[3] = bchpbr >> 24;
449
450         bchpbr = readl(fmc2->io_base + FMC2_BCHPBR2);
451         ecc[4] = bchpbr;
452         ecc[5] = bchpbr >> 8;
453         ecc[6] = bchpbr >> 16;
454
455         if (chip->ecc.strength == FMC2_ECC_BCH8) {
456                 ecc[7] = bchpbr >> 24;
457
458                 bchpbr = readl(fmc2->io_base + FMC2_BCHPBR3);
459                 ecc[8] = bchpbr;
460                 ecc[9] = bchpbr >> 8;
461                 ecc[10] = bchpbr >> 16;
462                 ecc[11] = bchpbr >> 24;
463
464                 bchpbr = readl(fmc2->io_base + FMC2_BCHPBR4);
465                 ecc[12] = bchpbr;
466         }
467
468         /* Disable ecc */
469         stm32_fmc2_set_ecc(fmc2, false);
470
471         return 0;
472 }
473
474 /* BCH algorithm correction */
475 static int stm32_fmc2_bch_correct(struct mtd_info *mtd, u8 *dat,
476                                   u8 *read_ecc, u8 *calc_ecc)
477 {
478         struct nand_chip *chip = mtd_to_nand(mtd);
479         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
480         u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
481         u16 pos[8];
482         int i, ret, den, eccsize = chip->ecc.size;
483         unsigned int nb_errs = 0;
484
485         /* Wait until the decoding error is ready */
486         ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
487                                  bchisr & FMC2_BCHISR_DERF, 10000);
488         if (ret < 0) {
489                 pr_err("Bch timeout\n");
490                 return ret;
491         }
492
493         bchdsr0 = readl(fmc2->io_base + FMC2_BCHDSR0);
494         bchdsr1 = readl(fmc2->io_base + FMC2_BCHDSR1);
495         bchdsr2 = readl(fmc2->io_base + FMC2_BCHDSR2);
496         bchdsr3 = readl(fmc2->io_base + FMC2_BCHDSR3);
497         bchdsr4 = readl(fmc2->io_base + FMC2_BCHDSR4);
498
499         /* Disable ECC */
500         stm32_fmc2_set_ecc(fmc2, false);
501
502         /* No errors found */
503         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
504                 return 0;
505
506         /* Too many errors detected */
507         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
508                 return -EBADMSG;
509
510         pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
511         pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
512         pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
513         pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
514         pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
515         pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
516         pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
517         pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
518
519         den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
520         for (i = 0; i < den; i++) {
521                 if (pos[i] < eccsize * 8) {
522                         __change_bit(pos[i], (unsigned long *)dat);
523                         nb_errs++;
524                 }
525         }
526
527         return nb_errs;
528 }
529
530 static int stm32_fmc2_read_page(struct mtd_info *mtd,
531                                 struct nand_chip *chip, u8 *buf,
532                                 int oob_required, int page)
533 {
534         int i, s, stat, eccsize = chip->ecc.size;
535         int eccbytes = chip->ecc.bytes;
536         int eccsteps = chip->ecc.steps;
537         int eccstrength = chip->ecc.strength;
538         u8 *p = buf;
539         u8 *ecc_calc = chip->buffers->ecccalc;
540         u8 *ecc_code = chip->buffers->ecccode;
541         unsigned int max_bitflips = 0;
542
543         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
544              s++, i += eccbytes, p += eccsize) {
545                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
546
547                 /* Read the nand page sector (512 bytes) */
548                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
549                 chip->read_buf(mtd, p, eccsize);
550
551                 /* Read the corresponding ECC bytes */
552                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
553                 chip->read_buf(mtd, ecc_code, eccbytes);
554
555                 /* Correct the data */
556                 stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
557                 if (stat == -EBADMSG)
558                         /* Check for empty pages with bitflips */
559                         stat = nand_check_erased_ecc_chunk(p, eccsize,
560                                                            ecc_code, eccbytes,
561                                                            NULL, 0,
562                                                            eccstrength);
563
564                 if (stat < 0) {
565                         mtd->ecc_stats.failed++;
566                 } else {
567                         mtd->ecc_stats.corrected += stat;
568                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
569                 }
570         }
571
572         /* Read oob */
573         if (oob_required) {
574                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
575                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
576         }
577
578         return max_bitflips;
579 }
580
581 /* Controller initialization */
582 static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
583 {
584         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
585         u32 bcr1 = readl(fmc2->io_base + FMC2_BCR1);
586
587         /* Set CS used to undefined */
588         fmc2->cs_sel = -1;
589
590         /* Enable wait feature and nand flash memory bank */
591         pcr |= FMC2_PCR_PWAITEN;
592         pcr |= FMC2_PCR_PBKEN;
593
594         /* Set buswidth to 8 bits mode for identification */
595         pcr &= ~FMC2_PCR_PWID_MASK;
596
597         /* ECC logic is disabled */
598         pcr &= ~FMC2_PCR_ECCEN;
599
600         /* Default mode */
601         pcr &= ~FMC2_PCR_ECCALG;
602         pcr &= ~FMC2_PCR_BCHECC;
603         pcr &= ~FMC2_PCR_WEN;
604
605         /* Set default ECC sector size */
606         pcr &= ~FMC2_PCR_ECCSS_MASK;
607         pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
608
609         /* Set default tclr/tar timings */
610         pcr &= ~FMC2_PCR_TCLR_MASK;
611         pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
612         pcr &= ~FMC2_PCR_TAR_MASK;
613         pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
614
615         /* Enable FMC2 controller */
616         bcr1 |= FMC2_BCR1_FMC2EN;
617
618         writel(bcr1, fmc2->io_base + FMC2_BCR1);
619         writel(pcr, fmc2->io_base + FMC2_PCR);
620         writel(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
621         writel(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
622 }
623
624 /* Controller timings */
625 static void stm32_fmc2_calc_timings(struct nand_chip *chip,
626                                     const struct nand_sdr_timings *sdrt)
627 {
628         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
629         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
630         struct stm32_fmc2_timings *tims = &nand->timings;
631         unsigned long hclk = clk_get_rate(&fmc2->clk);
632         unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
633         unsigned long timing, tar, tclr, thiz, twait;
634         unsigned long tset_mem, tset_att, thold_mem, thold_att;
635
636         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
637         timing = DIV_ROUND_UP(tar, hclkp) - 1;
638         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
639
640         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
641         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
642         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
643
644         tims->thiz = FMC2_THIZ;
645         thiz = (tims->thiz + 1) * hclkp;
646
647         /*
648          * tWAIT > tRP
649          * tWAIT > tWP
650          * tWAIT > tREA + tIO
651          */
652         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
653         twait = max_t(unsigned long, twait, sdrt->tWP_min);
654         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
655         timing = DIV_ROUND_UP(twait, hclkp);
656         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
657
658         /*
659          * tSETUP_MEM > tCS - tWAIT
660          * tSETUP_MEM > tALS - tWAIT
661          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
662          */
663         tset_mem = hclkp;
664         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
665                 tset_mem = sdrt->tCS_min - twait;
666         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
667                 tset_mem = sdrt->tALS_min - twait;
668         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
669             (tset_mem < sdrt->tDS_min - (twait - thiz)))
670                 tset_mem = sdrt->tDS_min - (twait - thiz);
671         timing = DIV_ROUND_UP(tset_mem, hclkp);
672         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
673
674         /*
675          * tHOLD_MEM > tCH
676          * tHOLD_MEM > tREH - tSETUP_MEM
677          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
678          */
679         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
680         if (sdrt->tREH_min > tset_mem &&
681             (thold_mem < sdrt->tREH_min - tset_mem))
682                 thold_mem = sdrt->tREH_min - tset_mem;
683         if ((sdrt->tRC_min > tset_mem + twait) &&
684             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
685                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
686         if ((sdrt->tWC_min > tset_mem + twait) &&
687             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
688                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
689         timing = DIV_ROUND_UP(thold_mem, hclkp);
690         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
691
692         /*
693          * tSETUP_ATT > tCS - tWAIT
694          * tSETUP_ATT > tCLS - tWAIT
695          * tSETUP_ATT > tALS - tWAIT
696          * tSETUP_ATT > tRHW - tHOLD_MEM
697          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
698          */
699         tset_att = hclkp;
700         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
701                 tset_att = sdrt->tCS_min - twait;
702         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
703                 tset_att = sdrt->tCLS_min - twait;
704         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
705                 tset_att = sdrt->tALS_min - twait;
706         if (sdrt->tRHW_min > thold_mem &&
707             (tset_att < sdrt->tRHW_min - thold_mem))
708                 tset_att = sdrt->tRHW_min - thold_mem;
709         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
710             (tset_att < sdrt->tDS_min - (twait - thiz)))
711                 tset_att = sdrt->tDS_min - (twait - thiz);
712         timing = DIV_ROUND_UP(tset_att, hclkp);
713         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
714
715         /*
716          * tHOLD_ATT > tALH
717          * tHOLD_ATT > tCH
718          * tHOLD_ATT > tCLH
719          * tHOLD_ATT > tCOH
720          * tHOLD_ATT > tDH
721          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
722          * tHOLD_ATT > tADL - tSETUP_MEM
723          * tHOLD_ATT > tWH - tSETUP_MEM
724          * tHOLD_ATT > tWHR - tSETUP_MEM
725          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
726          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
727          */
728         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
729         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
730         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
731         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
732         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
733         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
734             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
735                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
736         if (sdrt->tADL_min > tset_mem &&
737             (thold_att < sdrt->tADL_min - tset_mem))
738                 thold_att = sdrt->tADL_min - tset_mem;
739         if (sdrt->tWH_min > tset_mem &&
740             (thold_att < sdrt->tWH_min - tset_mem))
741                 thold_att = sdrt->tWH_min - tset_mem;
742         if (sdrt->tWHR_min > tset_mem &&
743             (thold_att < sdrt->tWHR_min - tset_mem))
744                 thold_att = sdrt->tWHR_min - tset_mem;
745         if ((sdrt->tRC_min > tset_att + twait) &&
746             (thold_att < sdrt->tRC_min - (tset_att + twait)))
747                 thold_att = sdrt->tRC_min - (tset_att + twait);
748         if ((sdrt->tWC_min > tset_att + twait) &&
749             (thold_att < sdrt->tWC_min - (tset_att + twait)))
750                 thold_att = sdrt->tWC_min - (tset_att + twait);
751         timing = DIV_ROUND_UP(thold_att, hclkp);
752         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
753 }
754
755 static int stm32_fmc2_setup_interface(struct mtd_info *mtd, int chipnr,
756                                       const struct nand_data_interface *conf)
757 {
758         struct nand_chip *chip = mtd_to_nand(mtd);
759         const struct nand_sdr_timings *sdrt;
760
761         sdrt = nand_get_sdr_timings(conf);
762         if (IS_ERR(sdrt))
763                 return PTR_ERR(sdrt);
764
765         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
766                 return 0;
767
768         stm32_fmc2_calc_timings(chip, sdrt);
769
770         /* Apply timings */
771         stm32_fmc2_timings_init(chip);
772
773         return 0;
774 }
775
776 /* NAND callbacks setup */
777 static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
778 {
779         chip->ecc.hwctl = stm32_fmc2_hwctl;
780
781         /*
782          * Specific callbacks to read/write a page depending on
783          * the algo used (Hamming, BCH).
784          */
785         if (chip->ecc.strength == FMC2_ECC_HAM) {
786                 /* Hamming is used */
787                 chip->ecc.calculate = stm32_fmc2_ham_calculate;
788                 chip->ecc.correct = stm32_fmc2_ham_correct;
789                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
790                 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
791                 return;
792         }
793
794         /* BCH is used */
795         chip->ecc.read_page = stm32_fmc2_read_page;
796         chip->ecc.calculate = stm32_fmc2_bch_calculate;
797         chip->ecc.correct = stm32_fmc2_bch_correct;
798
799         if (chip->ecc.strength == FMC2_ECC_BCH8)
800                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
801         else
802                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
803 }
804
805 /* FMC2 caps */
806 static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
807 {
808         /* Hamming */
809         if (strength == FMC2_ECC_HAM)
810                 return 4;
811
812         /* BCH8 */
813         if (strength == FMC2_ECC_BCH8)
814                 return 14;
815
816         /* BCH4 */
817         return 8;
818 }
819
820 NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
821                      FMC2_ECC_STEP_SIZE,
822                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
823
824 /* FMC2 probe */
825 static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
826                                   ofnode node)
827 {
828         struct stm32_fmc2_nand *nand = &fmc2->nand;
829         u32 cs[FMC2_MAX_CE];
830         int ret, i;
831
832         if (!ofnode_get_property(node, "reg", &nand->ncs))
833                 return -EINVAL;
834
835         nand->ncs /= sizeof(u32);
836         if (!nand->ncs) {
837                 pr_err("Invalid reg property size\n");
838                 return -EINVAL;
839         }
840
841         ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
842         if (ret < 0) {
843                 pr_err("Could not retrieve reg property\n");
844                 return -EINVAL;
845         }
846
847         for (i = 0; i < nand->ncs; i++) {
848                 if (cs[i] > FMC2_MAX_CE) {
849                         pr_err("Invalid reg value: %d\n",
850                                nand->cs_used[i]);
851                         return -EINVAL;
852                 }
853
854                 if (fmc2->cs_assigned & BIT(cs[i])) {
855                         pr_err("Cs already assigned: %d\n",
856                                nand->cs_used[i]);
857                         return -EINVAL;
858                 }
859
860                 fmc2->cs_assigned |= BIT(cs[i]);
861                 nand->cs_used[i] = cs[i];
862         }
863
864         nand->chip.flash_node = ofnode_to_offset(node);
865
866         return 0;
867 }
868
869 static int stm32_fmc2_parse_dt(struct udevice *dev,
870                                struct stm32_fmc2_nfc *fmc2)
871 {
872         ofnode child;
873         int ret, nchips = 0;
874
875         dev_for_each_subnode(child, dev)
876                 nchips++;
877
878         if (!nchips) {
879                 pr_err("NAND chip not defined\n");
880                 return -EINVAL;
881         }
882
883         if (nchips > 1) {
884                 pr_err("Too many NAND chips defined\n");
885                 return -EINVAL;
886         }
887
888         dev_for_each_subnode(child, dev) {
889                 ret = stm32_fmc2_parse_child(fmc2, child);
890                 if (ret)
891                         return ret;
892         }
893
894         return 0;
895 }
896
897 static int stm32_fmc2_probe(struct udevice *dev)
898 {
899         struct stm32_fmc2_nfc *fmc2 = dev_get_priv(dev);
900         struct stm32_fmc2_nand *nand = &fmc2->nand;
901         struct nand_chip *chip = &nand->chip;
902         struct mtd_info *mtd = &chip->mtd;
903         struct nand_ecclayout *ecclayout;
904         struct resource resource;
905         struct reset_ctl reset;
906         int oob_index, chip_cs, mem_region, ret;
907         unsigned int i;
908
909         spin_lock_init(&fmc2->controller.lock);
910         init_waitqueue_head(&fmc2->controller.wq);
911
912         ret = stm32_fmc2_parse_dt(dev, fmc2);
913         if (ret)
914                 return ret;
915
916         /* Get resources */
917         ret = dev_read_resource(dev, 0, &resource);
918         if (ret) {
919                 pr_err("Resource io_base not found");
920                 return ret;
921         }
922         fmc2->io_base = (void __iomem *)resource.start;
923
924         for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
925              chip_cs++, mem_region += 3) {
926                 if (!(fmc2->cs_assigned & BIT(chip_cs)))
927                         continue;
928
929                 ret = dev_read_resource(dev, mem_region, &resource);
930                 if (ret) {
931                         pr_err("Resource data_base not found for cs%d",
932                                chip_cs);
933                         return ret;
934                 }
935                 fmc2->data_base[chip_cs] = (void __iomem *)resource.start;
936
937                 ret = dev_read_resource(dev, mem_region + 1, &resource);
938                 if (ret) {
939                         pr_err("Resource cmd_base not found for cs%d",
940                                chip_cs);
941                         return ret;
942                 }
943                 fmc2->cmd_base[chip_cs] = (void __iomem *)resource.start;
944
945                 ret = dev_read_resource(dev, mem_region + 2, &resource);
946                 if (ret) {
947                         pr_err("Resource addr_base not found for cs%d",
948                                chip_cs);
949                         return ret;
950                 }
951                 fmc2->addr_base[chip_cs] = (void __iomem *)resource.start;
952         }
953
954         /* Enable the clock */
955         ret = clk_get_by_index(dev, 0, &fmc2->clk);
956         if (ret)
957                 return ret;
958
959         ret = clk_enable(&fmc2->clk);
960         if (ret)
961                 return ret;
962
963         /* Reset */
964         ret = reset_get_by_index(dev, 0, &reset);
965         if (!ret) {
966                 reset_assert(&reset);
967                 udelay(2);
968                 reset_deassert(&reset);
969         }
970
971         /* FMC2 init routine */
972         stm32_fmc2_init(fmc2);
973
974         chip->controller = &fmc2->base;
975         chip->select_chip = stm32_fmc2_select_chip;
976         chip->setup_data_interface = stm32_fmc2_setup_interface;
977         chip->cmd_ctrl = stm32_fmc2_cmd_ctrl;
978         chip->chip_delay = FMC2_RB_DELAY_US;
979         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
980                          NAND_USE_BOUNCE_BUFFER;
981
982         /* Default ECC settings */
983         chip->ecc.mode = NAND_ECC_HW;
984         chip->ecc.size = FMC2_ECC_STEP_SIZE;
985         chip->ecc.strength = FMC2_ECC_BCH8;
986
987         /* Scan to find existence of the device */
988         ret = nand_scan_ident(mtd, nand->ncs, NULL);
989         if (ret)
990                 return ret;
991
992         /*
993          * Only NAND_ECC_HW mode is actually supported
994          * Hamming => ecc.strength = 1
995          * BCH4 => ecc.strength = 4
996          * BCH8 => ecc.strength = 8
997          * ECC sector size = 512
998          */
999         if (chip->ecc.mode != NAND_ECC_HW) {
1000                 pr_err("Nand_ecc_mode is not well defined in the DT\n");
1001                 return -EINVAL;
1002         }
1003
1004         ret = nand_check_ecc_caps(chip, &stm32_fmc2_ecc_caps,
1005                                   mtd->oobsize - FMC2_BBM_LEN);
1006         if (ret) {
1007                 pr_err("No valid ECC settings set\n");
1008                 return ret;
1009         }
1010
1011         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1012                 chip->bbt_options |= NAND_BBT_NO_OOB;
1013
1014         /* NAND callbacks setup */
1015         stm32_fmc2_nand_callbacks_setup(chip);
1016
1017         /* Define ECC layout */
1018         ecclayout = &fmc2->ecclayout;
1019         ecclayout->eccbytes = chip->ecc.bytes *
1020                               (mtd->writesize / chip->ecc.size);
1021         oob_index = FMC2_BBM_LEN;
1022         for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1023                 ecclayout->eccpos[i] = oob_index;
1024         ecclayout->oobfree->offset = oob_index;
1025         ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1026         chip->ecc.layout = ecclayout;
1027
1028         /* Configure bus width to 16-bit */
1029         if (chip->options & NAND_BUSWIDTH_16)
1030                 stm32_fmc2_set_buswidth_16(fmc2, true);
1031
1032         /* Scan the device to fill MTD data-structures */
1033         ret = nand_scan_tail(mtd);
1034         if (ret)
1035                 return ret;
1036
1037         return nand_register(0, mtd);
1038 }
1039
1040 static const struct udevice_id stm32_fmc2_match[] = {
1041         { .compatible = "st,stm32mp15-fmc2" },
1042         { /* Sentinel */ }
1043 };
1044
1045 U_BOOT_DRIVER(stm32_fmc2_nand) = {
1046         .name = "stm32_fmc2_nand",
1047         .id = UCLASS_MTD,
1048         .of_match = stm32_fmc2_match,
1049         .probe = stm32_fmc2_probe,
1050         .priv_auto_alloc_size = sizeof(struct stm32_fmc2_nfc),
1051 };
1052
1053 void board_nand_init(void)
1054 {
1055         struct udevice *dev;
1056         int ret;
1057
1058         ret = uclass_get_device_by_driver(UCLASS_MTD,
1059                                           DM_GET_DRIVER(stm32_fmc2_nand),
1060                                           &dev);
1061         if (ret && ret != -ENODEV)
1062                 pr_err("Failed to initialize STM32 FMC2 NAND controller. (error %d)\n",
1063                        ret);
1064 }