912fe480e8aa454ba327fc162cb74660bb6eea4e
[oweals/u-boot.git] / drivers / mtd / nand / raw / stm32_fmc2_nand.c
1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) STMicroelectronics 2019
4  * Author: Christophe Kerello <christophe.kerello@st.com>
5  */
6
7 #include <common.h>
8 #include <clk.h>
9 #include <dm.h>
10 #include <log.h>
11 #include <nand.h>
12 #include <reset.h>
13 #include <linux/err.h>
14 #include <linux/iopoll.h>
15 #include <linux/ioport.h>
16
17 /* Bad block marker length */
18 #define FMC2_BBM_LEN                    2
19
20 /* ECC step size */
21 #define FMC2_ECC_STEP_SIZE              512
22
23 /* Command delay */
24 #define FMC2_RB_DELAY_US                30
25
26 /* Max chip enable */
27 #define FMC2_MAX_CE                     2
28
29 /* Timings */
30 #define FMC2_THIZ                       1
31 #define FMC2_TIO                        8000
32 #define FMC2_TSYNC                      3000
33 #define FMC2_PCR_TIMING_MASK            0xf
34 #define FMC2_PMEM_PATT_TIMING_MASK      0xff
35
36 /* FMC2 Controller Registers */
37 #define FMC2_BCR1                       0x0
38 #define FMC2_PCR                        0x80
39 #define FMC2_SR                         0x84
40 #define FMC2_PMEM                       0x88
41 #define FMC2_PATT                       0x8c
42 #define FMC2_HECCR                      0x94
43 #define FMC2_BCHISR                     0x254
44 #define FMC2_BCHICR                     0x258
45 #define FMC2_BCHPBR1                    0x260
46 #define FMC2_BCHPBR2                    0x264
47 #define FMC2_BCHPBR3                    0x268
48 #define FMC2_BCHPBR4                    0x26c
49 #define FMC2_BCHDSR0                    0x27c
50 #define FMC2_BCHDSR1                    0x280
51 #define FMC2_BCHDSR2                    0x284
52 #define FMC2_BCHDSR3                    0x288
53 #define FMC2_BCHDSR4                    0x28c
54
55 /* Register: FMC2_BCR1 */
56 #define FMC2_BCR1_FMC2EN                BIT(31)
57
58 /* Register: FMC2_PCR */
59 #define FMC2_PCR_PWAITEN                BIT(1)
60 #define FMC2_PCR_PBKEN                  BIT(2)
61 #define FMC2_PCR_PWID_MASK              GENMASK(5, 4)
62 #define FMC2_PCR_PWID(x)                (((x) & 0x3) << 4)
63 #define FMC2_PCR_PWID_BUSWIDTH_8        0
64 #define FMC2_PCR_PWID_BUSWIDTH_16       1
65 #define FMC2_PCR_ECCEN                  BIT(6)
66 #define FMC2_PCR_ECCALG                 BIT(8)
67 #define FMC2_PCR_TCLR_MASK              GENMASK(12, 9)
68 #define FMC2_PCR_TCLR(x)                (((x) & 0xf) << 9)
69 #define FMC2_PCR_TCLR_DEFAULT           0xf
70 #define FMC2_PCR_TAR_MASK               GENMASK(16, 13)
71 #define FMC2_PCR_TAR(x)                 (((x) & 0xf) << 13)
72 #define FMC2_PCR_TAR_DEFAULT            0xf
73 #define FMC2_PCR_ECCSS_MASK             GENMASK(19, 17)
74 #define FMC2_PCR_ECCSS(x)               (((x) & 0x7) << 17)
75 #define FMC2_PCR_ECCSS_512              1
76 #define FMC2_PCR_ECCSS_2048             3
77 #define FMC2_PCR_BCHECC                 BIT(24)
78 #define FMC2_PCR_WEN                    BIT(25)
79
80 /* Register: FMC2_SR */
81 #define FMC2_SR_NWRF                    BIT(6)
82
83 /* Register: FMC2_PMEM */
84 #define FMC2_PMEM_MEMSET(x)             (((x) & 0xff) << 0)
85 #define FMC2_PMEM_MEMWAIT(x)            (((x) & 0xff) << 8)
86 #define FMC2_PMEM_MEMHOLD(x)            (((x) & 0xff) << 16)
87 #define FMC2_PMEM_MEMHIZ(x)             (((x) & 0xff) << 24)
88 #define FMC2_PMEM_DEFAULT               0x0a0a0a0a
89
90 /* Register: FMC2_PATT */
91 #define FMC2_PATT_ATTSET(x)             (((x) & 0xff) << 0)
92 #define FMC2_PATT_ATTWAIT(x)            (((x) & 0xff) << 8)
93 #define FMC2_PATT_ATTHOLD(x)            (((x) & 0xff) << 16)
94 #define FMC2_PATT_ATTHIZ(x)             (((x) & 0xff) << 24)
95 #define FMC2_PATT_DEFAULT               0x0a0a0a0a
96
97 /* Register: FMC2_BCHISR */
98 #define FMC2_BCHISR_DERF                BIT(1)
99 #define FMC2_BCHISR_EPBRF               BIT(4)
100
101 /* Register: FMC2_BCHICR */
102 #define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
103
104 /* Register: FMC2_BCHDSR0 */
105 #define FMC2_BCHDSR0_DUE                BIT(0)
106 #define FMC2_BCHDSR0_DEF                BIT(1)
107 #define FMC2_BCHDSR0_DEN_MASK           GENMASK(7, 4)
108 #define FMC2_BCHDSR0_DEN_SHIFT          4
109
110 /* Register: FMC2_BCHDSR1 */
111 #define FMC2_BCHDSR1_EBP1_MASK          GENMASK(12, 0)
112 #define FMC2_BCHDSR1_EBP2_MASK          GENMASK(28, 16)
113 #define FMC2_BCHDSR1_EBP2_SHIFT         16
114
115 /* Register: FMC2_BCHDSR2 */
116 #define FMC2_BCHDSR2_EBP3_MASK          GENMASK(12, 0)
117 #define FMC2_BCHDSR2_EBP4_MASK          GENMASK(28, 16)
118 #define FMC2_BCHDSR2_EBP4_SHIFT         16
119
120 /* Register: FMC2_BCHDSR3 */
121 #define FMC2_BCHDSR3_EBP5_MASK          GENMASK(12, 0)
122 #define FMC2_BCHDSR3_EBP6_MASK          GENMASK(28, 16)
123 #define FMC2_BCHDSR3_EBP6_SHIFT         16
124
125 /* Register: FMC2_BCHDSR4 */
126 #define FMC2_BCHDSR4_EBP7_MASK          GENMASK(12, 0)
127 #define FMC2_BCHDSR4_EBP8_MASK          GENMASK(28, 16)
128 #define FMC2_BCHDSR4_EBP8_SHIFT         16
129
130 #define FMC2_NSEC_PER_SEC               1000000000L
131
132 enum stm32_fmc2_ecc {
133         FMC2_ECC_HAM = 1,
134         FMC2_ECC_BCH4 = 4,
135         FMC2_ECC_BCH8 = 8
136 };
137
138 struct stm32_fmc2_timings {
139         u8 tclr;
140         u8 tar;
141         u8 thiz;
142         u8 twait;
143         u8 thold_mem;
144         u8 tset_mem;
145         u8 thold_att;
146         u8 tset_att;
147 };
148
149 struct stm32_fmc2_nand {
150         struct nand_chip chip;
151         struct stm32_fmc2_timings timings;
152         int ncs;
153         int cs_used[FMC2_MAX_CE];
154 };
155
156 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
157 {
158         return container_of(chip, struct stm32_fmc2_nand, chip);
159 }
160
161 struct stm32_fmc2_nfc {
162         struct nand_hw_control base;
163         struct stm32_fmc2_nand nand;
164         struct nand_ecclayout ecclayout;
165         void __iomem *io_base;
166         void __iomem *data_base[FMC2_MAX_CE];
167         void __iomem *cmd_base[FMC2_MAX_CE];
168         void __iomem *addr_base[FMC2_MAX_CE];
169         struct clk clk;
170
171         u8 cs_assigned;
172         int cs_sel;
173 };
174
175 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
176 {
177         return container_of(base, struct stm32_fmc2_nfc, base);
178 }
179
180 /* Timings configuration */
181 static void stm32_fmc2_timings_init(struct nand_chip *chip)
182 {
183         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
184         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
185         struct stm32_fmc2_timings *timings = &nand->timings;
186         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
187         u32 pmem, patt;
188
189         /* Set tclr/tar timings */
190         pcr &= ~FMC2_PCR_TCLR_MASK;
191         pcr |= FMC2_PCR_TCLR(timings->tclr);
192         pcr &= ~FMC2_PCR_TAR_MASK;
193         pcr |= FMC2_PCR_TAR(timings->tar);
194
195         /* Set tset/twait/thold/thiz timings in common bank */
196         pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
197         pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
198         pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
199         pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
200
201         /* Set tset/twait/thold/thiz timings in attribut bank */
202         patt = FMC2_PATT_ATTSET(timings->tset_att);
203         patt |= FMC2_PATT_ATTWAIT(timings->twait);
204         patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
205         patt |= FMC2_PATT_ATTHIZ(timings->thiz);
206
207         writel(pcr, fmc2->io_base + FMC2_PCR);
208         writel(pmem, fmc2->io_base + FMC2_PMEM);
209         writel(patt, fmc2->io_base + FMC2_PATT);
210 }
211
212 /* Controller configuration */
213 static void stm32_fmc2_setup(struct nand_chip *chip)
214 {
215         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
216         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
217
218         /* Configure ECC algorithm (default configuration is Hamming) */
219         pcr &= ~FMC2_PCR_ECCALG;
220         pcr &= ~FMC2_PCR_BCHECC;
221         if (chip->ecc.strength == FMC2_ECC_BCH8) {
222                 pcr |= FMC2_PCR_ECCALG;
223                 pcr |= FMC2_PCR_BCHECC;
224         } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
225                 pcr |= FMC2_PCR_ECCALG;
226         }
227
228         /* Set buswidth */
229         pcr &= ~FMC2_PCR_PWID_MASK;
230         if (chip->options & NAND_BUSWIDTH_16)
231                 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
232
233         /* Set ECC sector size */
234         pcr &= ~FMC2_PCR_ECCSS_MASK;
235         pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
236
237         writel(pcr, fmc2->io_base + FMC2_PCR);
238 }
239
240 /* Select target */
241 static void stm32_fmc2_select_chip(struct mtd_info *mtd, int chipnr)
242 {
243         struct nand_chip *chip = mtd_to_nand(mtd);
244         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
245         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
246
247         if (chipnr < 0 || chipnr >= nand->ncs)
248                 return;
249
250         if (nand->cs_used[chipnr] == fmc2->cs_sel)
251                 return;
252
253         fmc2->cs_sel = nand->cs_used[chipnr];
254         chip->IO_ADDR_R = fmc2->data_base[fmc2->cs_sel];
255         chip->IO_ADDR_W = fmc2->data_base[fmc2->cs_sel];
256
257         /* FMC2 setup routine */
258         stm32_fmc2_setup(chip);
259
260         /* Apply timings */
261         stm32_fmc2_timings_init(chip);
262 }
263
264 /* Set bus width to 16-bit or 8-bit */
265 static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
266 {
267         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
268
269         pcr &= ~FMC2_PCR_PWID_MASK;
270         if (set)
271                 pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
272         writel(pcr, fmc2->io_base + FMC2_PCR);
273 }
274
275 /* Enable/disable ECC */
276 static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
277 {
278         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
279
280         pcr &= ~FMC2_PCR_ECCEN;
281         if (enable)
282                 pcr |= FMC2_PCR_ECCEN;
283         writel(pcr, fmc2->io_base + FMC2_PCR);
284 }
285
286 /* Clear irq sources in case of bch is used */
287 static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
288 {
289         writel(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
290 }
291
292 /* Send command and address cycles */
293 static void stm32_fmc2_cmd_ctrl(struct mtd_info *mtd, int cmd,
294                                 unsigned int ctrl)
295 {
296         struct nand_chip *chip = mtd_to_nand(mtd);
297         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
298
299         if (cmd == NAND_CMD_NONE)
300                 return;
301
302         if (ctrl & NAND_CLE) {
303                 writeb(cmd, fmc2->cmd_base[fmc2->cs_sel]);
304                 return;
305         }
306
307         writeb(cmd, fmc2->addr_base[fmc2->cs_sel]);
308 }
309
310 /*
311  * Enable ECC logic and reset syndrome/parity bits previously calculated
312  * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
313  */
314 static void stm32_fmc2_hwctl(struct mtd_info *mtd, int mode)
315 {
316         struct nand_chip *chip = mtd_to_nand(mtd);
317         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
318
319         stm32_fmc2_set_ecc(fmc2, false);
320
321         if (chip->ecc.strength != FMC2_ECC_HAM) {
322                 u32 pcr = readl(fmc2->io_base + FMC2_PCR);
323
324                 if (mode == NAND_ECC_WRITE)
325                         pcr |= FMC2_PCR_WEN;
326                 else
327                         pcr &= ~FMC2_PCR_WEN;
328                 writel(pcr, fmc2->io_base + FMC2_PCR);
329
330                 stm32_fmc2_clear_bch_irq(fmc2);
331         }
332
333         stm32_fmc2_set_ecc(fmc2, true);
334 }
335
336 /*
337  * ECC Hamming calculation
338  * ECC is 3 bytes for 512 bytes of data (supports error correction up to
339  * max of 1-bit)
340  */
341 static int stm32_fmc2_ham_calculate(struct mtd_info *mtd, const u8 *data,
342                                     u8 *ecc)
343 {
344         struct nand_chip *chip = mtd_to_nand(mtd);
345         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
346         u32 heccr, sr;
347         int ret;
348
349         ret = readl_poll_timeout(fmc2->io_base + FMC2_SR, sr,
350                                  sr & FMC2_SR_NWRF, 10000);
351         if (ret < 0) {
352                 pr_err("Ham timeout\n");
353                 return ret;
354         }
355
356         heccr = readl(fmc2->io_base + FMC2_HECCR);
357
358         ecc[0] = heccr;
359         ecc[1] = heccr >> 8;
360         ecc[2] = heccr >> 16;
361
362         /* Disable ecc */
363         stm32_fmc2_set_ecc(fmc2, false);
364
365         return 0;
366 }
367
368 static int stm32_fmc2_ham_correct(struct mtd_info *mtd, u8 *dat,
369                                   u8 *read_ecc, u8 *calc_ecc)
370 {
371         u8 bit_position = 0, b0, b1, b2;
372         u32 byte_addr = 0, b;
373         u32 i, shifting = 1;
374
375         /* Indicate which bit and byte is faulty (if any) */
376         b0 = read_ecc[0] ^ calc_ecc[0];
377         b1 = read_ecc[1] ^ calc_ecc[1];
378         b2 = read_ecc[2] ^ calc_ecc[2];
379         b = b0 | (b1 << 8) | (b2 << 16);
380
381         /* No errors */
382         if (likely(!b))
383                 return 0;
384
385         /* Calculate bit position */
386         for (i = 0; i < 3; i++) {
387                 switch (b % 4) {
388                 case 2:
389                         bit_position += shifting;
390                 case 1:
391                         break;
392                 default:
393                         return -EBADMSG;
394                 }
395                 shifting <<= 1;
396                 b >>= 2;
397         }
398
399         /* Calculate byte position */
400         shifting = 1;
401         for (i = 0; i < 9; i++) {
402                 switch (b % 4) {
403                 case 2:
404                         byte_addr += shifting;
405                 case 1:
406                         break;
407                 default:
408                         return -EBADMSG;
409                 }
410                 shifting <<= 1;
411                 b >>= 2;
412         }
413
414         /* Flip the bit */
415         dat[byte_addr] ^= (1 << bit_position);
416
417         return 1;
418 }
419
420 /*
421  * ECC BCH calculation and correction
422  * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
423  * max of 4-bit/8-bit)
424  */
425
426 static int stm32_fmc2_bch_calculate(struct mtd_info *mtd, const u8 *data,
427                                     u8 *ecc)
428 {
429         struct nand_chip *chip = mtd_to_nand(mtd);
430         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
431         u32 bchpbr, bchisr;
432         int ret;
433
434         /* Wait until the BCH code is ready */
435         ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
436                                  bchisr & FMC2_BCHISR_EPBRF, 10000);
437         if (ret < 0) {
438                 pr_err("Bch timeout\n");
439                 return ret;
440         }
441
442         /* Read parity bits */
443         bchpbr = readl(fmc2->io_base + FMC2_BCHPBR1);
444         ecc[0] = bchpbr;
445         ecc[1] = bchpbr >> 8;
446         ecc[2] = bchpbr >> 16;
447         ecc[3] = bchpbr >> 24;
448
449         bchpbr = readl(fmc2->io_base + FMC2_BCHPBR2);
450         ecc[4] = bchpbr;
451         ecc[5] = bchpbr >> 8;
452         ecc[6] = bchpbr >> 16;
453
454         if (chip->ecc.strength == FMC2_ECC_BCH8) {
455                 ecc[7] = bchpbr >> 24;
456
457                 bchpbr = readl(fmc2->io_base + FMC2_BCHPBR3);
458                 ecc[8] = bchpbr;
459                 ecc[9] = bchpbr >> 8;
460                 ecc[10] = bchpbr >> 16;
461                 ecc[11] = bchpbr >> 24;
462
463                 bchpbr = readl(fmc2->io_base + FMC2_BCHPBR4);
464                 ecc[12] = bchpbr;
465         }
466
467         /* Disable ecc */
468         stm32_fmc2_set_ecc(fmc2, false);
469
470         return 0;
471 }
472
473 /* BCH algorithm correction */
474 static int stm32_fmc2_bch_correct(struct mtd_info *mtd, u8 *dat,
475                                   u8 *read_ecc, u8 *calc_ecc)
476 {
477         struct nand_chip *chip = mtd_to_nand(mtd);
478         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
479         u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
480         u16 pos[8];
481         int i, ret, den, eccsize = chip->ecc.size;
482         unsigned int nb_errs = 0;
483
484         /* Wait until the decoding error is ready */
485         ret = readl_poll_timeout(fmc2->io_base + FMC2_BCHISR, bchisr,
486                                  bchisr & FMC2_BCHISR_DERF, 10000);
487         if (ret < 0) {
488                 pr_err("Bch timeout\n");
489                 return ret;
490         }
491
492         bchdsr0 = readl(fmc2->io_base + FMC2_BCHDSR0);
493         bchdsr1 = readl(fmc2->io_base + FMC2_BCHDSR1);
494         bchdsr2 = readl(fmc2->io_base + FMC2_BCHDSR2);
495         bchdsr3 = readl(fmc2->io_base + FMC2_BCHDSR3);
496         bchdsr4 = readl(fmc2->io_base + FMC2_BCHDSR4);
497
498         /* Disable ECC */
499         stm32_fmc2_set_ecc(fmc2, false);
500
501         /* No errors found */
502         if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
503                 return 0;
504
505         /* Too many errors detected */
506         if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
507                 return -EBADMSG;
508
509         pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
510         pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
511         pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
512         pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
513         pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
514         pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
515         pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
516         pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
517
518         den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
519         for (i = 0; i < den; i++) {
520                 if (pos[i] < eccsize * 8) {
521                         __change_bit(pos[i], (unsigned long *)dat);
522                         nb_errs++;
523                 }
524         }
525
526         return nb_errs;
527 }
528
529 static int stm32_fmc2_read_page(struct mtd_info *mtd,
530                                 struct nand_chip *chip, u8 *buf,
531                                 int oob_required, int page)
532 {
533         int i, s, stat, eccsize = chip->ecc.size;
534         int eccbytes = chip->ecc.bytes;
535         int eccsteps = chip->ecc.steps;
536         int eccstrength = chip->ecc.strength;
537         u8 *p = buf;
538         u8 *ecc_calc = chip->buffers->ecccalc;
539         u8 *ecc_code = chip->buffers->ecccode;
540         unsigned int max_bitflips = 0;
541
542         for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
543              s++, i += eccbytes, p += eccsize) {
544                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
545
546                 /* Read the nand page sector (512 bytes) */
547                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
548                 chip->read_buf(mtd, p, eccsize);
549
550                 /* Read the corresponding ECC bytes */
551                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
552                 chip->read_buf(mtd, ecc_code, eccbytes);
553
554                 /* Correct the data */
555                 stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
556                 if (stat == -EBADMSG)
557                         /* Check for empty pages with bitflips */
558                         stat = nand_check_erased_ecc_chunk(p, eccsize,
559                                                            ecc_code, eccbytes,
560                                                            NULL, 0,
561                                                            eccstrength);
562
563                 if (stat < 0) {
564                         mtd->ecc_stats.failed++;
565                 } else {
566                         mtd->ecc_stats.corrected += stat;
567                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
568                 }
569         }
570
571         /* Read oob */
572         if (oob_required) {
573                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
574                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
575         }
576
577         return max_bitflips;
578 }
579
580 /* Controller initialization */
581 static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
582 {
583         u32 pcr = readl(fmc2->io_base + FMC2_PCR);
584         u32 bcr1 = readl(fmc2->io_base + FMC2_BCR1);
585
586         /* Set CS used to undefined */
587         fmc2->cs_sel = -1;
588
589         /* Enable wait feature and nand flash memory bank */
590         pcr |= FMC2_PCR_PWAITEN;
591         pcr |= FMC2_PCR_PBKEN;
592
593         /* Set buswidth to 8 bits mode for identification */
594         pcr &= ~FMC2_PCR_PWID_MASK;
595
596         /* ECC logic is disabled */
597         pcr &= ~FMC2_PCR_ECCEN;
598
599         /* Default mode */
600         pcr &= ~FMC2_PCR_ECCALG;
601         pcr &= ~FMC2_PCR_BCHECC;
602         pcr &= ~FMC2_PCR_WEN;
603
604         /* Set default ECC sector size */
605         pcr &= ~FMC2_PCR_ECCSS_MASK;
606         pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
607
608         /* Set default tclr/tar timings */
609         pcr &= ~FMC2_PCR_TCLR_MASK;
610         pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
611         pcr &= ~FMC2_PCR_TAR_MASK;
612         pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
613
614         /* Enable FMC2 controller */
615         bcr1 |= FMC2_BCR1_FMC2EN;
616
617         writel(bcr1, fmc2->io_base + FMC2_BCR1);
618         writel(pcr, fmc2->io_base + FMC2_PCR);
619         writel(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
620         writel(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
621 }
622
623 /* Controller timings */
624 static void stm32_fmc2_calc_timings(struct nand_chip *chip,
625                                     const struct nand_sdr_timings *sdrt)
626 {
627         struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
628         struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
629         struct stm32_fmc2_timings *tims = &nand->timings;
630         unsigned long hclk = clk_get_rate(&fmc2->clk);
631         unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
632         unsigned long timing, tar, tclr, thiz, twait;
633         unsigned long tset_mem, tset_att, thold_mem, thold_att;
634
635         tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
636         timing = DIV_ROUND_UP(tar, hclkp) - 1;
637         tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
638
639         tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
640         timing = DIV_ROUND_UP(tclr, hclkp) - 1;
641         tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
642
643         tims->thiz = FMC2_THIZ;
644         thiz = (tims->thiz + 1) * hclkp;
645
646         /*
647          * tWAIT > tRP
648          * tWAIT > tWP
649          * tWAIT > tREA + tIO
650          */
651         twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
652         twait = max_t(unsigned long, twait, sdrt->tWP_min);
653         twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
654         timing = DIV_ROUND_UP(twait, hclkp);
655         tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
656
657         /*
658          * tSETUP_MEM > tCS - tWAIT
659          * tSETUP_MEM > tALS - tWAIT
660          * tSETUP_MEM > tDS - (tWAIT - tHIZ)
661          */
662         tset_mem = hclkp;
663         if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
664                 tset_mem = sdrt->tCS_min - twait;
665         if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
666                 tset_mem = sdrt->tALS_min - twait;
667         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
668             (tset_mem < sdrt->tDS_min - (twait - thiz)))
669                 tset_mem = sdrt->tDS_min - (twait - thiz);
670         timing = DIV_ROUND_UP(tset_mem, hclkp);
671         tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
672
673         /*
674          * tHOLD_MEM > tCH
675          * tHOLD_MEM > tREH - tSETUP_MEM
676          * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
677          */
678         thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
679         if (sdrt->tREH_min > tset_mem &&
680             (thold_mem < sdrt->tREH_min - tset_mem))
681                 thold_mem = sdrt->tREH_min - tset_mem;
682         if ((sdrt->tRC_min > tset_mem + twait) &&
683             (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
684                 thold_mem = sdrt->tRC_min - (tset_mem + twait);
685         if ((sdrt->tWC_min > tset_mem + twait) &&
686             (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
687                 thold_mem = sdrt->tWC_min - (tset_mem + twait);
688         timing = DIV_ROUND_UP(thold_mem, hclkp);
689         tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
690
691         /*
692          * tSETUP_ATT > tCS - tWAIT
693          * tSETUP_ATT > tCLS - tWAIT
694          * tSETUP_ATT > tALS - tWAIT
695          * tSETUP_ATT > tRHW - tHOLD_MEM
696          * tSETUP_ATT > tDS - (tWAIT - tHIZ)
697          */
698         tset_att = hclkp;
699         if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
700                 tset_att = sdrt->tCS_min - twait;
701         if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
702                 tset_att = sdrt->tCLS_min - twait;
703         if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
704                 tset_att = sdrt->tALS_min - twait;
705         if (sdrt->tRHW_min > thold_mem &&
706             (tset_att < sdrt->tRHW_min - thold_mem))
707                 tset_att = sdrt->tRHW_min - thold_mem;
708         if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
709             (tset_att < sdrt->tDS_min - (twait - thiz)))
710                 tset_att = sdrt->tDS_min - (twait - thiz);
711         timing = DIV_ROUND_UP(tset_att, hclkp);
712         tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
713
714         /*
715          * tHOLD_ATT > tALH
716          * tHOLD_ATT > tCH
717          * tHOLD_ATT > tCLH
718          * tHOLD_ATT > tCOH
719          * tHOLD_ATT > tDH
720          * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
721          * tHOLD_ATT > tADL - tSETUP_MEM
722          * tHOLD_ATT > tWH - tSETUP_MEM
723          * tHOLD_ATT > tWHR - tSETUP_MEM
724          * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
725          * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
726          */
727         thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
728         thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
729         thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
730         thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
731         thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
732         if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
733             (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
734                 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
735         if (sdrt->tADL_min > tset_mem &&
736             (thold_att < sdrt->tADL_min - tset_mem))
737                 thold_att = sdrt->tADL_min - tset_mem;
738         if (sdrt->tWH_min > tset_mem &&
739             (thold_att < sdrt->tWH_min - tset_mem))
740                 thold_att = sdrt->tWH_min - tset_mem;
741         if (sdrt->tWHR_min > tset_mem &&
742             (thold_att < sdrt->tWHR_min - tset_mem))
743                 thold_att = sdrt->tWHR_min - tset_mem;
744         if ((sdrt->tRC_min > tset_att + twait) &&
745             (thold_att < sdrt->tRC_min - (tset_att + twait)))
746                 thold_att = sdrt->tRC_min - (tset_att + twait);
747         if ((sdrt->tWC_min > tset_att + twait) &&
748             (thold_att < sdrt->tWC_min - (tset_att + twait)))
749                 thold_att = sdrt->tWC_min - (tset_att + twait);
750         timing = DIV_ROUND_UP(thold_att, hclkp);
751         tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
752 }
753
754 static int stm32_fmc2_setup_interface(struct mtd_info *mtd, int chipnr,
755                                       const struct nand_data_interface *conf)
756 {
757         struct nand_chip *chip = mtd_to_nand(mtd);
758         const struct nand_sdr_timings *sdrt;
759
760         sdrt = nand_get_sdr_timings(conf);
761         if (IS_ERR(sdrt))
762                 return PTR_ERR(sdrt);
763
764         if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
765                 return 0;
766
767         stm32_fmc2_calc_timings(chip, sdrt);
768
769         /* Apply timings */
770         stm32_fmc2_timings_init(chip);
771
772         return 0;
773 }
774
775 /* NAND callbacks setup */
776 static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
777 {
778         chip->ecc.hwctl = stm32_fmc2_hwctl;
779
780         /*
781          * Specific callbacks to read/write a page depending on
782          * the algo used (Hamming, BCH).
783          */
784         if (chip->ecc.strength == FMC2_ECC_HAM) {
785                 /* Hamming is used */
786                 chip->ecc.calculate = stm32_fmc2_ham_calculate;
787                 chip->ecc.correct = stm32_fmc2_ham_correct;
788                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
789                 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
790                 return;
791         }
792
793         /* BCH is used */
794         chip->ecc.read_page = stm32_fmc2_read_page;
795         chip->ecc.calculate = stm32_fmc2_bch_calculate;
796         chip->ecc.correct = stm32_fmc2_bch_correct;
797
798         if (chip->ecc.strength == FMC2_ECC_BCH8)
799                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
800         else
801                 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
802 }
803
804 /* FMC2 caps */
805 static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
806 {
807         /* Hamming */
808         if (strength == FMC2_ECC_HAM)
809                 return 4;
810
811         /* BCH8 */
812         if (strength == FMC2_ECC_BCH8)
813                 return 14;
814
815         /* BCH4 */
816         return 8;
817 }
818
819 NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
820                      FMC2_ECC_STEP_SIZE,
821                      FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
822
823 /* FMC2 probe */
824 static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
825                                   ofnode node)
826 {
827         struct stm32_fmc2_nand *nand = &fmc2->nand;
828         u32 cs[FMC2_MAX_CE];
829         int ret, i;
830
831         if (!ofnode_get_property(node, "reg", &nand->ncs))
832                 return -EINVAL;
833
834         nand->ncs /= sizeof(u32);
835         if (!nand->ncs) {
836                 pr_err("Invalid reg property size\n");
837                 return -EINVAL;
838         }
839
840         ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
841         if (ret < 0) {
842                 pr_err("Could not retrieve reg property\n");
843                 return -EINVAL;
844         }
845
846         for (i = 0; i < nand->ncs; i++) {
847                 if (cs[i] > FMC2_MAX_CE) {
848                         pr_err("Invalid reg value: %d\n",
849                                nand->cs_used[i]);
850                         return -EINVAL;
851                 }
852
853                 if (fmc2->cs_assigned & BIT(cs[i])) {
854                         pr_err("Cs already assigned: %d\n",
855                                nand->cs_used[i]);
856                         return -EINVAL;
857                 }
858
859                 fmc2->cs_assigned |= BIT(cs[i]);
860                 nand->cs_used[i] = cs[i];
861         }
862
863         nand->chip.flash_node = ofnode_to_offset(node);
864
865         return 0;
866 }
867
868 static int stm32_fmc2_parse_dt(struct udevice *dev,
869                                struct stm32_fmc2_nfc *fmc2)
870 {
871         ofnode child;
872         int ret, nchips = 0;
873
874         dev_for_each_subnode(child, dev)
875                 nchips++;
876
877         if (!nchips) {
878                 pr_err("NAND chip not defined\n");
879                 return -EINVAL;
880         }
881
882         if (nchips > 1) {
883                 pr_err("Too many NAND chips defined\n");
884                 return -EINVAL;
885         }
886
887         dev_for_each_subnode(child, dev) {
888                 ret = stm32_fmc2_parse_child(fmc2, child);
889                 if (ret)
890                         return ret;
891         }
892
893         return 0;
894 }
895
896 static int stm32_fmc2_probe(struct udevice *dev)
897 {
898         struct stm32_fmc2_nfc *fmc2 = dev_get_priv(dev);
899         struct stm32_fmc2_nand *nand = &fmc2->nand;
900         struct nand_chip *chip = &nand->chip;
901         struct mtd_info *mtd = &chip->mtd;
902         struct nand_ecclayout *ecclayout;
903         struct resource resource;
904         struct reset_ctl reset;
905         int oob_index, chip_cs, mem_region, ret;
906         unsigned int i;
907
908         spin_lock_init(&fmc2->controller.lock);
909         init_waitqueue_head(&fmc2->controller.wq);
910
911         ret = stm32_fmc2_parse_dt(dev, fmc2);
912         if (ret)
913                 return ret;
914
915         /* Get resources */
916         ret = dev_read_resource(dev, 0, &resource);
917         if (ret) {
918                 pr_err("Resource io_base not found");
919                 return ret;
920         }
921         fmc2->io_base = (void __iomem *)resource.start;
922
923         for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
924              chip_cs++, mem_region += 3) {
925                 if (!(fmc2->cs_assigned & BIT(chip_cs)))
926                         continue;
927
928                 ret = dev_read_resource(dev, mem_region, &resource);
929                 if (ret) {
930                         pr_err("Resource data_base not found for cs%d",
931                                chip_cs);
932                         return ret;
933                 }
934                 fmc2->data_base[chip_cs] = (void __iomem *)resource.start;
935
936                 ret = dev_read_resource(dev, mem_region + 1, &resource);
937                 if (ret) {
938                         pr_err("Resource cmd_base not found for cs%d",
939                                chip_cs);
940                         return ret;
941                 }
942                 fmc2->cmd_base[chip_cs] = (void __iomem *)resource.start;
943
944                 ret = dev_read_resource(dev, mem_region + 2, &resource);
945                 if (ret) {
946                         pr_err("Resource addr_base not found for cs%d",
947                                chip_cs);
948                         return ret;
949                 }
950                 fmc2->addr_base[chip_cs] = (void __iomem *)resource.start;
951         }
952
953         /* Enable the clock */
954         ret = clk_get_by_index(dev, 0, &fmc2->clk);
955         if (ret)
956                 return ret;
957
958         ret = clk_enable(&fmc2->clk);
959         if (ret)
960                 return ret;
961
962         /* Reset */
963         ret = reset_get_by_index(dev, 0, &reset);
964         if (!ret) {
965                 reset_assert(&reset);
966                 udelay(2);
967                 reset_deassert(&reset);
968         }
969
970         /* FMC2 init routine */
971         stm32_fmc2_init(fmc2);
972
973         chip->controller = &fmc2->base;
974         chip->select_chip = stm32_fmc2_select_chip;
975         chip->setup_data_interface = stm32_fmc2_setup_interface;
976         chip->cmd_ctrl = stm32_fmc2_cmd_ctrl;
977         chip->chip_delay = FMC2_RB_DELAY_US;
978         chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
979                          NAND_USE_BOUNCE_BUFFER;
980
981         /* Default ECC settings */
982         chip->ecc.mode = NAND_ECC_HW;
983         chip->ecc.size = FMC2_ECC_STEP_SIZE;
984         chip->ecc.strength = FMC2_ECC_BCH8;
985
986         /* Scan to find existence of the device */
987         ret = nand_scan_ident(mtd, nand->ncs, NULL);
988         if (ret)
989                 return ret;
990
991         /*
992          * Only NAND_ECC_HW mode is actually supported
993          * Hamming => ecc.strength = 1
994          * BCH4 => ecc.strength = 4
995          * BCH8 => ecc.strength = 8
996          * ECC sector size = 512
997          */
998         if (chip->ecc.mode != NAND_ECC_HW) {
999                 pr_err("Nand_ecc_mode is not well defined in the DT\n");
1000                 return -EINVAL;
1001         }
1002
1003         ret = nand_check_ecc_caps(chip, &stm32_fmc2_ecc_caps,
1004                                   mtd->oobsize - FMC2_BBM_LEN);
1005         if (ret) {
1006                 pr_err("No valid ECC settings set\n");
1007                 return ret;
1008         }
1009
1010         if (chip->bbt_options & NAND_BBT_USE_FLASH)
1011                 chip->bbt_options |= NAND_BBT_NO_OOB;
1012
1013         /* NAND callbacks setup */
1014         stm32_fmc2_nand_callbacks_setup(chip);
1015
1016         /* Define ECC layout */
1017         ecclayout = &fmc2->ecclayout;
1018         ecclayout->eccbytes = chip->ecc.bytes *
1019                               (mtd->writesize / chip->ecc.size);
1020         oob_index = FMC2_BBM_LEN;
1021         for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
1022                 ecclayout->eccpos[i] = oob_index;
1023         ecclayout->oobfree->offset = oob_index;
1024         ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
1025         chip->ecc.layout = ecclayout;
1026
1027         /* Configure bus width to 16-bit */
1028         if (chip->options & NAND_BUSWIDTH_16)
1029                 stm32_fmc2_set_buswidth_16(fmc2, true);
1030
1031         /* Scan the device to fill MTD data-structures */
1032         ret = nand_scan_tail(mtd);
1033         if (ret)
1034                 return ret;
1035
1036         return nand_register(0, mtd);
1037 }
1038
1039 static const struct udevice_id stm32_fmc2_match[] = {
1040         { .compatible = "st,stm32mp15-fmc2" },
1041         { /* Sentinel */ }
1042 };
1043
1044 U_BOOT_DRIVER(stm32_fmc2_nand) = {
1045         .name = "stm32_fmc2_nand",
1046         .id = UCLASS_MTD,
1047         .of_match = stm32_fmc2_match,
1048         .probe = stm32_fmc2_probe,
1049         .priv_auto_alloc_size = sizeof(struct stm32_fmc2_nfc),
1050 };
1051
1052 void board_nand_init(void)
1053 {
1054         struct udevice *dev;
1055         int ret;
1056
1057         ret = uclass_get_device_by_driver(UCLASS_MTD,
1058                                           DM_GET_DRIVER(stm32_fmc2_nand),
1059                                           &dev);
1060         if (ret && ret != -ENODEV)
1061                 pr_err("Failed to initialize STM32 FMC2 NAND controller. (error %d)\n",
1062                        ret);
1063 }