common: Drop linux/delay.h from common header
[oweals/u-boot.git] / drivers / mtd / nand / raw / mxc_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
6  */
7
8 #include <common.h>
9 #include <log.h>
10 #include <nand.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <asm/io.h>
14 #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
15         defined(CONFIG_MX51) || defined(CONFIG_MX53)
16 #include <asm/arch/imx-regs.h>
17 #endif
18 #include "mxc_nand.h"
19
20 #define DRIVER_NAME "mxc_nand"
21
22 struct mxc_nand_host {
23         struct nand_chip                *nand;
24
25         struct mxc_nand_regs __iomem    *regs;
26 #ifdef MXC_NFC_V3_2
27         struct mxc_nand_ip_regs __iomem *ip_regs;
28 #endif
29         int                             spare_only;
30         int                             status_request;
31         int                             pagesize_2k;
32         int                             clk_act;
33         uint16_t                        col_addr;
34         unsigned int                    page_addr;
35 };
36
37 static struct mxc_nand_host mxc_host;
38 static struct mxc_nand_host *host = &mxc_host;
39
40 /* Define delays in microsec for NAND device operations */
41 #define TROP_US_DELAY   2000
42 /* Macros to get byte and bit positions of ECC */
43 #define COLPOS(x)  ((x) >> 3)
44 #define BITPOS(x) ((x) & 0xf)
45
46 /* Define single bit Error positions in Main & Spare area */
47 #define MAIN_SINGLEBIT_ERROR 0x4
48 #define SPARE_SINGLEBIT_ERROR 0x1
49
50 /* OOB placement block for use with hardware ecc generation */
51 #if defined(MXC_NFC_V1)
52 #ifndef CONFIG_SYS_NAND_LARGEPAGE
53 static struct nand_ecclayout nand_hw_eccoob = {
54         .eccbytes = 5,
55         .eccpos = {6, 7, 8, 9, 10},
56         .oobfree = { {0, 5}, {11, 5}, }
57 };
58 #else
59 static struct nand_ecclayout nand_hw_eccoob2k = {
60         .eccbytes = 20,
61         .eccpos = {
62                 6, 7, 8, 9, 10,
63                 22, 23, 24, 25, 26,
64                 38, 39, 40, 41, 42,
65                 54, 55, 56, 57, 58,
66         },
67         .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
68 };
69 #endif
70 #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
71 #ifndef CONFIG_SYS_NAND_LARGEPAGE
72 static struct nand_ecclayout nand_hw_eccoob = {
73         .eccbytes = 9,
74         .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
75         .oobfree = { {2, 5} }
76 };
77 #else
78 static struct nand_ecclayout nand_hw_eccoob2k = {
79         .eccbytes = 36,
80         .eccpos = {
81                 7, 8, 9, 10, 11, 12, 13, 14, 15,
82                 23, 24, 25, 26, 27, 28, 29, 30, 31,
83                 39, 40, 41, 42, 43, 44, 45, 46, 47,
84                 55, 56, 57, 58, 59, 60, 61, 62, 63,
85         },
86         .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
87 };
88 #endif
89 #endif
90
91 static int is_16bit_nand(void)
92 {
93 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
94         return 1;
95 #else
96         return 0;
97 #endif
98 }
99
100 static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
101 {
102         uint32_t *d = dest;
103
104         size >>= 2;
105         while (size--)
106                 __raw_writel(__raw_readl(source++), d++);
107         return dest;
108 }
109
110 /*
111  * This function polls the NANDFC to wait for the basic operation to
112  * complete by checking the INT bit.
113  */
114 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
115                                 uint16_t param)
116 {
117         uint32_t tmp;
118
119         while (max_retries-- > 0) {
120 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
121                 tmp = readnfc(&host->regs->config2);
122                 if (tmp & NFC_V1_V2_CONFIG2_INT) {
123                         tmp &= ~NFC_V1_V2_CONFIG2_INT;
124                         writenfc(tmp, &host->regs->config2);
125 #elif defined(MXC_NFC_V3_2)
126                 tmp = readnfc(&host->ip_regs->ipc);
127                 if (tmp & NFC_V3_IPC_INT) {
128                         tmp &= ~NFC_V3_IPC_INT;
129                         writenfc(tmp, &host->ip_regs->ipc);
130 #endif
131                         break;
132                 }
133                 udelay(1);
134         }
135         if (max_retries < 0) {
136                 pr_debug("%s(%d): INT not set\n",
137                                 __func__, param);
138         }
139 }
140
141 /*
142  * This function issues the specified command to the NAND device and
143  * waits for completion.
144  */
145 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
146 {
147         pr_debug("send_cmd(host, 0x%x)\n", cmd);
148
149         writenfc(cmd, &host->regs->flash_cmd);
150         writenfc(NFC_CMD, &host->regs->operation);
151
152         /* Wait for operation to complete */
153         wait_op_done(host, TROP_US_DELAY, cmd);
154 }
155
156 /*
157  * This function sends an address (or partial address) to the
158  * NAND device. The address is used to select the source/destination for
159  * a NAND command.
160  */
161 static void send_addr(struct mxc_nand_host *host, uint16_t addr)
162 {
163         pr_debug("send_addr(host, 0x%x)\n", addr);
164
165         writenfc(addr, &host->regs->flash_addr);
166         writenfc(NFC_ADDR, &host->regs->operation);
167
168         /* Wait for operation to complete */
169         wait_op_done(host, TROP_US_DELAY, addr);
170 }
171
172 /*
173  * This function requests the NANDFC to initiate the transfer
174  * of data currently in the NANDFC RAM buffer to the NAND device.
175  */
176 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
177                         int spare_only)
178 {
179         if (spare_only)
180                 pr_debug("send_prog_page (%d)\n", spare_only);
181
182         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
183                 int i;
184                 /*
185                  *  The controller copies the 64 bytes of spare data from
186                  *  the first 16 bytes of each of the 4 64 byte spare buffers.
187                  *  Copy the contiguous data starting in spare_area[0] to
188                  *  the four spare area buffers.
189                  */
190                 for (i = 1; i < 4; i++) {
191                         void __iomem *src = &host->regs->spare_area[0][i * 16];
192                         void __iomem *dst = &host->regs->spare_area[i][0];
193
194                         mxc_nand_memcpy32(dst, src, 16);
195                 }
196         }
197
198 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
199         writenfc(buf_id, &host->regs->buf_addr);
200 #elif defined(MXC_NFC_V3_2)
201         uint32_t tmp = readnfc(&host->regs->config1);
202         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
203         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
204         writenfc(tmp, &host->regs->config1);
205 #endif
206
207         /* Configure spare or page+spare access */
208         if (!host->pagesize_2k) {
209                 uint32_t config1 = readnfc(&host->regs->config1);
210                 if (spare_only)
211                         config1 |= NFC_CONFIG1_SP_EN;
212                 else
213                         config1 &= ~NFC_CONFIG1_SP_EN;
214                 writenfc(config1, &host->regs->config1);
215         }
216
217         writenfc(NFC_INPUT, &host->regs->operation);
218
219         /* Wait for operation to complete */
220         wait_op_done(host, TROP_US_DELAY, spare_only);
221 }
222
223 /*
224  * Requests NANDFC to initiate the transfer of data from the
225  * NAND device into in the NANDFC ram buffer.
226  */
227 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
228                 int spare_only)
229 {
230         pr_debug("send_read_page (%d)\n", spare_only);
231
232 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
233         writenfc(buf_id, &host->regs->buf_addr);
234 #elif defined(MXC_NFC_V3_2)
235         uint32_t tmp = readnfc(&host->regs->config1);
236         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
237         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
238         writenfc(tmp, &host->regs->config1);
239 #endif
240
241         /* Configure spare or page+spare access */
242         if (!host->pagesize_2k) {
243                 uint32_t config1 = readnfc(&host->regs->config1);
244                 if (spare_only)
245                         config1 |= NFC_CONFIG1_SP_EN;
246                 else
247                         config1 &= ~NFC_CONFIG1_SP_EN;
248                 writenfc(config1, &host->regs->config1);
249         }
250
251         writenfc(NFC_OUTPUT, &host->regs->operation);
252
253         /* Wait for operation to complete */
254         wait_op_done(host, TROP_US_DELAY, spare_only);
255
256         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
257                 int i;
258
259                 /*
260                  *  The controller copies the 64 bytes of spare data to
261                  *  the first 16 bytes of each of the 4 spare buffers.
262                  *  Make the data contiguous starting in spare_area[0].
263                  */
264                 for (i = 1; i < 4; i++) {
265                         void __iomem *src = &host->regs->spare_area[i][0];
266                         void __iomem *dst = &host->regs->spare_area[0][i * 16];
267
268                         mxc_nand_memcpy32(dst, src, 16);
269                 }
270         }
271 }
272
273 /* Request the NANDFC to perform a read of the NAND device ID. */
274 static void send_read_id(struct mxc_nand_host *host)
275 {
276         uint32_t tmp;
277
278 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
279         /* NANDFC buffer 0 is used for device ID output */
280         writenfc(0x0, &host->regs->buf_addr);
281 #elif defined(MXC_NFC_V3_2)
282         tmp = readnfc(&host->regs->config1);
283         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
284         writenfc(tmp, &host->regs->config1);
285 #endif
286
287         /* Read ID into main buffer */
288         tmp = readnfc(&host->regs->config1);
289         tmp &= ~NFC_CONFIG1_SP_EN;
290         writenfc(tmp, &host->regs->config1);
291
292         writenfc(NFC_ID, &host->regs->operation);
293
294         /* Wait for operation to complete */
295         wait_op_done(host, TROP_US_DELAY, 0);
296 }
297
298 /*
299  * This function requests the NANDFC to perform a read of the
300  * NAND device status and returns the current status.
301  */
302 static uint16_t get_dev_status(struct mxc_nand_host *host)
303 {
304 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
305         void __iomem *main_buf = host->regs->main_area[1];
306         uint32_t store;
307 #endif
308         uint32_t ret, tmp;
309         /* Issue status request to NAND device */
310
311 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
312         /* store the main area1 first word, later do recovery */
313         store = readl(main_buf);
314         /* NANDFC buffer 1 is used for device status */
315         writenfc(1, &host->regs->buf_addr);
316 #endif
317
318         /* Read status into main buffer */
319         tmp = readnfc(&host->regs->config1);
320         tmp &= ~NFC_CONFIG1_SP_EN;
321         writenfc(tmp, &host->regs->config1);
322
323         writenfc(NFC_STATUS, &host->regs->operation);
324
325         /* Wait for operation to complete */
326         wait_op_done(host, TROP_US_DELAY, 0);
327
328 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
329         /*
330          *  Status is placed in first word of main buffer
331          * get status, then recovery area 1 data
332          */
333         ret = readw(main_buf);
334         writel(store, main_buf);
335 #elif defined(MXC_NFC_V3_2)
336         ret = readnfc(&host->regs->config1) >> 16;
337 #endif
338
339         return ret;
340 }
341
342 /* This function is used by upper layer to checks if device is ready */
343 static int mxc_nand_dev_ready(struct mtd_info *mtd)
344 {
345         /*
346          * NFC handles R/B internally. Therefore, this function
347          * always returns status as ready.
348          */
349         return 1;
350 }
351
352 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
353 {
354         struct nand_chip *nand_chip = mtd_to_nand(mtd);
355         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
356 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
357         uint16_t tmp = readnfc(&host->regs->config1);
358
359         if (on)
360                 tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
361         else
362                 tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
363         writenfc(tmp, &host->regs->config1);
364 #elif defined(MXC_NFC_V3_2)
365         uint32_t tmp = readnfc(&host->ip_regs->config2);
366
367         if (on)
368                 tmp |= NFC_V3_CONFIG2_ECC_EN;
369         else
370                 tmp &= ~NFC_V3_CONFIG2_ECC_EN;
371         writenfc(tmp, &host->ip_regs->config2);
372 #endif
373 }
374
375 #ifdef CONFIG_MXC_NAND_HWECC
376 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
377 {
378         /*
379          * If HW ECC is enabled, we turn it on during init. There is
380          * no need to enable again here.
381          */
382 }
383
384 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
385 static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
386                                       struct nand_chip *chip,
387                                       int page)
388 {
389         struct mxc_nand_host *host = nand_get_controller_data(chip);
390         uint8_t *buf = chip->oob_poi;
391         int length = mtd->oobsize;
392         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
393         uint8_t *bufpoi = buf;
394         int i, toread;
395
396         pr_debug("%s: Reading OOB area of page %u to oob %p\n",
397                          __func__, page, buf);
398
399         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
400         for (i = 0; i < chip->ecc.steps; i++) {
401                 toread = min_t(int, length, chip->ecc.prepad);
402                 if (toread) {
403                         chip->read_buf(mtd, bufpoi, toread);
404                         bufpoi += toread;
405                         length -= toread;
406                 }
407                 bufpoi += chip->ecc.bytes;
408                 host->col_addr += chip->ecc.bytes;
409                 length -= chip->ecc.bytes;
410
411                 toread = min_t(int, length, chip->ecc.postpad);
412                 if (toread) {
413                         chip->read_buf(mtd, bufpoi, toread);
414                         bufpoi += toread;
415                         length -= toread;
416                 }
417         }
418         if (length > 0)
419                 chip->read_buf(mtd, bufpoi, length);
420
421         _mxc_nand_enable_hwecc(mtd, 0);
422         chip->cmdfunc(mtd, NAND_CMD_READOOB,
423                         mtd->writesize + chip->ecc.prepad, page);
424         bufpoi = buf + chip->ecc.prepad;
425         length = mtd->oobsize - chip->ecc.prepad;
426         for (i = 0; i < chip->ecc.steps; i++) {
427                 toread = min_t(int, length, chip->ecc.bytes);
428                 chip->read_buf(mtd, bufpoi, toread);
429                 bufpoi += eccpitch;
430                 length -= eccpitch;
431                 host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
432         }
433         _mxc_nand_enable_hwecc(mtd, 1);
434         return 1;
435 }
436
437 static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
438                                            struct nand_chip *chip,
439                                            uint8_t *buf,
440                                            int oob_required,
441                                            int page)
442 {
443         struct mxc_nand_host *host = nand_get_controller_data(chip);
444         int eccsize = chip->ecc.size;
445         int eccbytes = chip->ecc.bytes;
446         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
447         uint8_t *oob = chip->oob_poi;
448         int steps, size;
449         int n;
450
451         _mxc_nand_enable_hwecc(mtd, 0);
452         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
453
454         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
455                 host->col_addr = n * eccsize;
456                 chip->read_buf(mtd, buf, eccsize);
457                 buf += eccsize;
458
459                 host->col_addr = mtd->writesize + n * eccpitch;
460                 if (chip->ecc.prepad) {
461                         chip->read_buf(mtd, oob, chip->ecc.prepad);
462                         oob += chip->ecc.prepad;
463                 }
464
465                 chip->read_buf(mtd, oob, eccbytes);
466                 oob += eccbytes;
467
468                 if (chip->ecc.postpad) {
469                         chip->read_buf(mtd, oob, chip->ecc.postpad);
470                         oob += chip->ecc.postpad;
471                 }
472         }
473
474         size = mtd->oobsize - (oob - chip->oob_poi);
475         if (size)
476                 chip->read_buf(mtd, oob, size);
477         _mxc_nand_enable_hwecc(mtd, 1);
478
479         return 0;
480 }
481
482 static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
483                                        struct nand_chip *chip,
484                                        uint8_t *buf,
485                                        int oob_required,
486                                        int page)
487 {
488         struct mxc_nand_host *host = nand_get_controller_data(chip);
489         int n, eccsize = chip->ecc.size;
490         int eccbytes = chip->ecc.bytes;
491         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
492         int eccsteps = chip->ecc.steps;
493         uint8_t *p = buf;
494         uint8_t *oob = chip->oob_poi;
495
496         pr_debug("Reading page %u to buf %p oob %p\n",
497                  page, buf, oob);
498
499         /* first read the data area and the available portion of OOB */
500         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
501                 int stat;
502
503                 host->col_addr = n * eccsize;
504
505                 chip->read_buf(mtd, p, eccsize);
506
507                 host->col_addr = mtd->writesize + n * eccpitch;
508
509                 if (chip->ecc.prepad) {
510                         chip->read_buf(mtd, oob, chip->ecc.prepad);
511                         oob += chip->ecc.prepad;
512                 }
513
514                 stat = chip->ecc.correct(mtd, p, oob, NULL);
515
516                 if (stat < 0)
517                         mtd->ecc_stats.failed++;
518                 else
519                         mtd->ecc_stats.corrected += stat;
520                 oob += eccbytes;
521
522                 if (chip->ecc.postpad) {
523                         chip->read_buf(mtd, oob, chip->ecc.postpad);
524                         oob += chip->ecc.postpad;
525                 }
526         }
527
528         /* Calculate remaining oob bytes */
529         n = mtd->oobsize - (oob - chip->oob_poi);
530         if (n)
531                 chip->read_buf(mtd, oob, n);
532
533         /* Then switch ECC off and read the OOB area to get the ECC code */
534         _mxc_nand_enable_hwecc(mtd, 0);
535         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
536         eccsteps = chip->ecc.steps;
537         oob = chip->oob_poi + chip->ecc.prepad;
538         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
539                 host->col_addr = mtd->writesize +
540                                  n * eccpitch +
541                                  chip->ecc.prepad;
542                 chip->read_buf(mtd, oob, eccbytes);
543                 oob += eccbytes + chip->ecc.postpad;
544         }
545         _mxc_nand_enable_hwecc(mtd, 1);
546         return 0;
547 }
548
549 static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
550                                        struct nand_chip *chip, int page)
551 {
552         struct mxc_nand_host *host = nand_get_controller_data(chip);
553         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
554         int length = mtd->oobsize;
555         int i, len, status, steps = chip->ecc.steps;
556         const uint8_t *bufpoi = chip->oob_poi;
557
558         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
559         for (i = 0; i < steps; i++) {
560                 len = min_t(int, length, eccpitch);
561
562                 chip->write_buf(mtd, bufpoi, len);
563                 bufpoi += len;
564                 length -= len;
565                 host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
566         }
567         if (length > 0)
568                 chip->write_buf(mtd, bufpoi, length);
569
570         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
571         status = chip->waitfunc(mtd, chip);
572         return status & NAND_STATUS_FAIL ? -EIO : 0;
573 }
574
575 static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
576                                              struct nand_chip *chip,
577                                              const uint8_t *buf,
578                                              int oob_required, int page)
579 {
580         struct mxc_nand_host *host = nand_get_controller_data(chip);
581         int eccsize = chip->ecc.size;
582         int eccbytes = chip->ecc.bytes;
583         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
584         uint8_t *oob = chip->oob_poi;
585         int steps, size;
586         int n;
587
588         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
589                 host->col_addr = n * eccsize;
590                 chip->write_buf(mtd, buf, eccsize);
591                 buf += eccsize;
592
593                 host->col_addr = mtd->writesize + n * eccpitch;
594
595                 if (chip->ecc.prepad) {
596                         chip->write_buf(mtd, oob, chip->ecc.prepad);
597                         oob += chip->ecc.prepad;
598                 }
599
600                 host->col_addr += eccbytes;
601                 oob += eccbytes;
602
603                 if (chip->ecc.postpad) {
604                         chip->write_buf(mtd, oob, chip->ecc.postpad);
605                         oob += chip->ecc.postpad;
606                 }
607         }
608
609         size = mtd->oobsize - (oob - chip->oob_poi);
610         if (size)
611                 chip->write_buf(mtd, oob, size);
612         return 0;
613 }
614
615 static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
616                                          struct nand_chip *chip,
617                                          const uint8_t *buf,
618                                          int oob_required, int page)
619 {
620         struct mxc_nand_host *host = nand_get_controller_data(chip);
621         int i, n, eccsize = chip->ecc.size;
622         int eccbytes = chip->ecc.bytes;
623         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
624         int eccsteps = chip->ecc.steps;
625         const uint8_t *p = buf;
626         uint8_t *oob = chip->oob_poi;
627
628         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
629
630         for (i = n = 0;
631              eccsteps;
632              n++, eccsteps--, i += eccbytes, p += eccsize) {
633                 host->col_addr = n * eccsize;
634
635                 chip->write_buf(mtd, p, eccsize);
636
637                 host->col_addr = mtd->writesize + n * eccpitch;
638
639                 if (chip->ecc.prepad) {
640                         chip->write_buf(mtd, oob, chip->ecc.prepad);
641                         oob += chip->ecc.prepad;
642                 }
643
644                 chip->write_buf(mtd, oob, eccbytes);
645                 oob += eccbytes;
646
647                 if (chip->ecc.postpad) {
648                         chip->write_buf(mtd, oob, chip->ecc.postpad);
649                         oob += chip->ecc.postpad;
650                 }
651         }
652
653         /* Calculate remaining oob bytes */
654         i = mtd->oobsize - (oob - chip->oob_poi);
655         if (i)
656                 chip->write_buf(mtd, oob, i);
657         return 0;
658 }
659
660 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
661                                  u_char *read_ecc, u_char *calc_ecc)
662 {
663         struct nand_chip *nand_chip = mtd_to_nand(mtd);
664         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
665         uint32_t ecc_status = readl(&host->regs->ecc_status_result);
666         int subpages = mtd->writesize / nand_chip->subpagesize;
667         int pg2blk_shift = nand_chip->phys_erase_shift -
668                            nand_chip->page_shift;
669
670         do {
671                 if ((ecc_status & 0xf) > 4) {
672                         static int last_bad = -1;
673
674                         if (last_bad != host->page_addr >> pg2blk_shift) {
675                                 last_bad = host->page_addr >> pg2blk_shift;
676                                 printk(KERN_DEBUG
677                                        "MXC_NAND: HWECC uncorrectable ECC error"
678                                        " in block %u page %u subpage %d\n",
679                                        last_bad, host->page_addr,
680                                        mtd->writesize / nand_chip->subpagesize
681                                             - subpages);
682                         }
683                         return -EBADMSG;
684                 }
685                 ecc_status >>= 4;
686                 subpages--;
687         } while (subpages > 0);
688
689         return 0;
690 }
691 #else
692 #define mxc_nand_read_page_syndrome NULL
693 #define mxc_nand_read_page_raw_syndrome NULL
694 #define mxc_nand_read_oob_syndrome NULL
695 #define mxc_nand_write_page_syndrome NULL
696 #define mxc_nand_write_page_raw_syndrome NULL
697 #define mxc_nand_write_oob_syndrome NULL
698
699 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
700                                  u_char *read_ecc, u_char *calc_ecc)
701 {
702         struct nand_chip *nand_chip = mtd_to_nand(mtd);
703         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
704
705         /*
706          * 1-Bit errors are automatically corrected in HW.  No need for
707          * additional correction.  2-Bit errors cannot be corrected by
708          * HW ECC, so we need to return failure
709          */
710         uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
711
712         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
713                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
714                 return -EBADMSG;
715         }
716
717         return 0;
718 }
719 #endif
720
721 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
722                                   u_char *ecc_code)
723 {
724         return 0;
725 }
726 #endif
727
728 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
729 {
730         struct nand_chip *nand_chip = mtd_to_nand(mtd);
731         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
732         uint8_t ret = 0;
733         uint16_t col;
734         uint16_t __iomem *main_buf =
735                 (uint16_t __iomem *)host->regs->main_area[0];
736         uint16_t __iomem *spare_buf =
737                 (uint16_t __iomem *)host->regs->spare_area[0];
738         union {
739                 uint16_t word;
740                 uint8_t bytes[2];
741         } nfc_word;
742
743         /* Check for status request */
744         if (host->status_request)
745                 return get_dev_status(host) & 0xFF;
746
747         /* Get column for 16-bit access */
748         col = host->col_addr >> 1;
749
750         /* If we are accessing the spare region */
751         if (host->spare_only)
752                 nfc_word.word = readw(&spare_buf[col]);
753         else
754                 nfc_word.word = readw(&main_buf[col]);
755
756         /* Pick upper/lower byte of word from RAM buffer */
757         ret = nfc_word.bytes[host->col_addr & 0x1];
758
759         /* Update saved column address */
760         if (nand_chip->options & NAND_BUSWIDTH_16)
761                 host->col_addr += 2;
762         else
763                 host->col_addr++;
764
765         return ret;
766 }
767
768 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
769 {
770         struct nand_chip *nand_chip = mtd_to_nand(mtd);
771         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
772         uint16_t col, ret;
773         uint16_t __iomem *p;
774
775         pr_debug("mxc_nand_read_word(col = %d)\n", host->col_addr);
776
777         col = host->col_addr;
778         /* Adjust saved column address */
779         if (col < mtd->writesize && host->spare_only)
780                 col += mtd->writesize;
781
782         if (col < mtd->writesize) {
783                 p = (uint16_t __iomem *)(host->regs->main_area[0] +
784                                 (col >> 1));
785         } else {
786                 p = (uint16_t __iomem *)(host->regs->spare_area[0] +
787                                 ((col - mtd->writesize) >> 1));
788         }
789
790         if (col & 1) {
791                 union {
792                         uint16_t word;
793                         uint8_t bytes[2];
794                 } nfc_word[3];
795
796                 nfc_word[0].word = readw(p);
797                 nfc_word[1].word = readw(p + 1);
798
799                 nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
800                 nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
801
802                 ret = nfc_word[2].word;
803         } else {
804                 ret = readw(p);
805         }
806
807         /* Update saved column address */
808         host->col_addr = col + 2;
809
810         return ret;
811 }
812
813 /*
814  * Write data of length len to buffer buf. The data to be
815  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
816  * Operation by the NFC, the data is written to NAND Flash
817  */
818 static void mxc_nand_write_buf(struct mtd_info *mtd,
819                                 const u_char *buf, int len)
820 {
821         struct nand_chip *nand_chip = mtd_to_nand(mtd);
822         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
823         int n, col, i = 0;
824
825         pr_debug("mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
826                  len);
827
828         col = host->col_addr;
829
830         /* Adjust saved column address */
831         if (col < mtd->writesize && host->spare_only)
832                 col += mtd->writesize;
833
834         n = mtd->writesize + mtd->oobsize - col;
835         n = min(len, n);
836
837         pr_debug("%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
838
839         while (n > 0) {
840                 void __iomem *p;
841
842                 if (col < mtd->writesize) {
843                         p = host->regs->main_area[0] + (col & ~3);
844                 } else {
845                         p = host->regs->spare_area[0] -
846                                                 mtd->writesize + (col & ~3);
847                 }
848
849                 pr_debug("%s:%d: p = %p\n", __func__,
850                          __LINE__, p);
851
852                 if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
853                         union {
854                                 uint32_t word;
855                                 uint8_t bytes[4];
856                         } nfc_word;
857
858                         nfc_word.word = readl(p);
859                         nfc_word.bytes[col & 3] = buf[i++];
860                         n--;
861                         col++;
862
863                         writel(nfc_word.word, p);
864                 } else {
865                         int m = mtd->writesize - col;
866
867                         if (col >= mtd->writesize)
868                                 m += mtd->oobsize;
869
870                         m = min(n, m) & ~3;
871
872                         pr_debug("%s:%d: n = %d, m = %d, i = %d, col = %d\n",
873                                  __func__,  __LINE__, n, m, i, col);
874
875                         mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
876                         col += m;
877                         i += m;
878                         n -= m;
879                 }
880         }
881         /* Update saved column address */
882         host->col_addr = col;
883 }
884
885 /*
886  * Read the data buffer from the NAND Flash. To read the data from NAND
887  * Flash first the data output cycle is initiated by the NFC, which copies
888  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
889  */
890 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
891 {
892         struct nand_chip *nand_chip = mtd_to_nand(mtd);
893         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
894         int n, col, i = 0;
895
896         pr_debug("mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
897                  len);
898
899         col = host->col_addr;
900
901         /* Adjust saved column address */
902         if (col < mtd->writesize && host->spare_only)
903                 col += mtd->writesize;
904
905         n = mtd->writesize + mtd->oobsize - col;
906         n = min(len, n);
907
908         while (n > 0) {
909                 void __iomem *p;
910
911                 if (col < mtd->writesize) {
912                         p = host->regs->main_area[0] + (col & ~3);
913                 } else {
914                         p = host->regs->spare_area[0] -
915                                         mtd->writesize + (col & ~3);
916                 }
917
918                 if (((col | (int)&buf[i]) & 3) || n < 4) {
919                         union {
920                                 uint32_t word;
921                                 uint8_t bytes[4];
922                         } nfc_word;
923
924                         nfc_word.word = readl(p);
925                         buf[i++] = nfc_word.bytes[col & 3];
926                         n--;
927                         col++;
928                 } else {
929                         int m = mtd->writesize - col;
930
931                         if (col >= mtd->writesize)
932                                 m += mtd->oobsize;
933
934                         m = min(n, m) & ~3;
935                         mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
936
937                         col += m;
938                         i += m;
939                         n -= m;
940                 }
941         }
942         /* Update saved column address */
943         host->col_addr = col;
944 }
945
946 /*
947  * This function is used by upper layer for select and
948  * deselect of the NAND chip
949  */
950 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
951 {
952         struct nand_chip *nand_chip = mtd_to_nand(mtd);
953         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
954
955         switch (chip) {
956         case -1:
957                 /* TODO: Disable the NFC clock */
958                 if (host->clk_act)
959                         host->clk_act = 0;
960                 break;
961         case 0:
962                 /* TODO: Enable the NFC clock */
963                 if (!host->clk_act)
964                         host->clk_act = 1;
965                 break;
966
967         default:
968                 break;
969         }
970 }
971
972 /*
973  * Used by the upper layer to write command to NAND Flash for
974  * different operations to be carried out on NAND Flash
975  */
976 void mxc_nand_command(struct mtd_info *mtd, unsigned command,
977                                 int column, int page_addr)
978 {
979         struct nand_chip *nand_chip = mtd_to_nand(mtd);
980         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
981
982         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
983                  command, column, page_addr);
984
985         /* Reset command state information */
986         host->status_request = false;
987
988         /* Command pre-processing step */
989         switch (command) {
990
991         case NAND_CMD_STATUS:
992                 host->col_addr = 0;
993                 host->status_request = true;
994                 break;
995
996         case NAND_CMD_READ0:
997                 host->page_addr = page_addr;
998                 host->col_addr = column;
999                 host->spare_only = false;
1000                 break;
1001
1002         case NAND_CMD_READOOB:
1003                 host->col_addr = column;
1004                 host->spare_only = true;
1005                 if (host->pagesize_2k)
1006                         command = NAND_CMD_READ0; /* only READ0 is valid */
1007                 break;
1008
1009         case NAND_CMD_SEQIN:
1010                 if (column >= mtd->writesize) {
1011                         /*
1012                          * before sending SEQIN command for partial write,
1013                          * we need read one page out. FSL NFC does not support
1014                          * partial write. It always sends out 512+ecc+512+ecc
1015                          * for large page nand flash. But for small page nand
1016                          * flash, it does support SPARE ONLY operation.
1017                          */
1018                         if (host->pagesize_2k) {
1019                                 /* call ourself to read a page */
1020                                 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1021                                                 page_addr);
1022                         }
1023
1024                         host->col_addr = column - mtd->writesize;
1025                         host->spare_only = true;
1026
1027                         /* Set program pointer to spare region */
1028                         if (!host->pagesize_2k)
1029                                 send_cmd(host, NAND_CMD_READOOB);
1030                 } else {
1031                         host->spare_only = false;
1032                         host->col_addr = column;
1033
1034                         /* Set program pointer to page start */
1035                         if (!host->pagesize_2k)
1036                                 send_cmd(host, NAND_CMD_READ0);
1037                 }
1038                 break;
1039
1040         case NAND_CMD_PAGEPROG:
1041                 send_prog_page(host, 0, host->spare_only);
1042
1043                 if (host->pagesize_2k && is_mxc_nfc_1()) {
1044                         /* data in 4 areas */
1045                         send_prog_page(host, 1, host->spare_only);
1046                         send_prog_page(host, 2, host->spare_only);
1047                         send_prog_page(host, 3, host->spare_only);
1048                 }
1049
1050                 break;
1051         }
1052
1053         /* Write out the command to the device. */
1054         send_cmd(host, command);
1055
1056         /* Write out column address, if necessary */
1057         if (column != -1) {
1058                 /*
1059                  * MXC NANDFC can only perform full page+spare or
1060                  * spare-only read/write. When the upper layers perform
1061                  * a read/write buffer operation, we will use the saved
1062                  * column address to index into the full page.
1063                  */
1064                 send_addr(host, 0);
1065                 if (host->pagesize_2k)
1066                         /* another col addr cycle for 2k page */
1067                         send_addr(host, 0);
1068         }
1069
1070         /* Write out page address, if necessary */
1071         if (page_addr != -1) {
1072                 u32 page_mask = nand_chip->pagemask;
1073                 do {
1074                         send_addr(host, page_addr & 0xFF);
1075                         page_addr >>= 8;
1076                         page_mask >>= 8;
1077                 } while (page_mask);
1078         }
1079
1080         /* Command post-processing step */
1081         switch (command) {
1082
1083         case NAND_CMD_RESET:
1084                 break;
1085
1086         case NAND_CMD_READOOB:
1087         case NAND_CMD_READ0:
1088                 if (host->pagesize_2k) {
1089                         /* send read confirm command */
1090                         send_cmd(host, NAND_CMD_READSTART);
1091                         /* read for each AREA */
1092                         send_read_page(host, 0, host->spare_only);
1093                         if (is_mxc_nfc_1()) {
1094                                 send_read_page(host, 1, host->spare_only);
1095                                 send_read_page(host, 2, host->spare_only);
1096                                 send_read_page(host, 3, host->spare_only);
1097                         }
1098                 } else {
1099                         send_read_page(host, 0, host->spare_only);
1100                 }
1101                 break;
1102
1103         case NAND_CMD_READID:
1104                 host->col_addr = 0;
1105                 send_read_id(host);
1106                 break;
1107
1108         case NAND_CMD_PAGEPROG:
1109                 break;
1110
1111         case NAND_CMD_STATUS:
1112                 break;
1113
1114         case NAND_CMD_ERASE2:
1115                 break;
1116         }
1117 }
1118
1119 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1120
1121 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1122 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1123
1124 static struct nand_bbt_descr bbt_main_descr = {
1125         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1126                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1127         .offs = 0,
1128         .len = 4,
1129         .veroffs = 4,
1130         .maxblocks = 4,
1131         .pattern = bbt_pattern,
1132 };
1133
1134 static struct nand_bbt_descr bbt_mirror_descr = {
1135         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1136                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1137         .offs = 0,
1138         .len = 4,
1139         .veroffs = 4,
1140         .maxblocks = 4,
1141         .pattern = mirror_pattern,
1142 };
1143
1144 #endif
1145
1146 int board_nand_init(struct nand_chip *this)
1147 {
1148         struct mtd_info *mtd;
1149 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1150         uint32_t tmp;
1151 #endif
1152
1153 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1154         this->bbt_options |= NAND_BBT_USE_FLASH;
1155         this->bbt_td = &bbt_main_descr;
1156         this->bbt_md = &bbt_mirror_descr;
1157 #endif
1158
1159         /* structures must be linked */
1160         mtd = &this->mtd;
1161         host->nand = this;
1162
1163         /* 5 us command delay time */
1164         this->chip_delay = 5;
1165
1166         nand_set_controller_data(this, host);
1167         this->dev_ready = mxc_nand_dev_ready;
1168         this->cmdfunc = mxc_nand_command;
1169         this->select_chip = mxc_nand_select_chip;
1170         this->read_byte = mxc_nand_read_byte;
1171         this->read_word = mxc_nand_read_word;
1172         this->write_buf = mxc_nand_write_buf;
1173         this->read_buf = mxc_nand_read_buf;
1174
1175         host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
1176 #ifdef MXC_NFC_V3_2
1177         host->ip_regs =
1178                 (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
1179 #endif
1180         host->clk_act = 1;
1181
1182 #ifdef CONFIG_MXC_NAND_HWECC
1183         this->ecc.calculate = mxc_nand_calculate_ecc;
1184         this->ecc.hwctl = mxc_nand_enable_hwecc;
1185         this->ecc.correct = mxc_nand_correct_data;
1186         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1187                 this->ecc.mode = NAND_ECC_HW_SYNDROME;
1188                 this->ecc.read_page = mxc_nand_read_page_syndrome;
1189                 this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1190                 this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1191                 this->ecc.write_page = mxc_nand_write_page_syndrome;
1192                 this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1193                 this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1194                 this->ecc.bytes = 9;
1195                 this->ecc.prepad = 7;
1196         } else {
1197                 this->ecc.mode = NAND_ECC_HW;
1198         }
1199
1200         if (is_mxc_nfc_1())
1201                 this->ecc.strength = 1;
1202         else
1203                 this->ecc.strength = 4;
1204
1205         host->pagesize_2k = 0;
1206
1207         this->ecc.size = 512;
1208         _mxc_nand_enable_hwecc(mtd, 1);
1209 #else
1210         this->ecc.layout = &nand_soft_eccoob;
1211         this->ecc.mode = NAND_ECC_SOFT;
1212         _mxc_nand_enable_hwecc(mtd, 0);
1213 #endif
1214         /* Reset NAND */
1215         this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1216
1217         /* NAND bus width determines access functions used by upper layer */
1218         if (is_16bit_nand())
1219                 this->options |= NAND_BUSWIDTH_16;
1220
1221 #ifdef CONFIG_SYS_NAND_LARGEPAGE
1222         host->pagesize_2k = 1;
1223         this->ecc.layout = &nand_hw_eccoob2k;
1224 #else
1225         host->pagesize_2k = 0;
1226         this->ecc.layout = &nand_hw_eccoob;
1227 #endif
1228
1229 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1230 #ifdef MXC_NFC_V2_1
1231         tmp = readnfc(&host->regs->config1);
1232         tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1233         tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1234         writenfc(tmp, &host->regs->config1);
1235         if (host->pagesize_2k)
1236                 writenfc(64/2, &host->regs->spare_area_size);
1237         else
1238                 writenfc(16/2, &host->regs->spare_area_size);
1239 #endif
1240
1241         /*
1242          * preset operation
1243          * Unlock the internal RAM Buffer
1244          */
1245         writenfc(0x2, &host->regs->config);
1246
1247         /* Blocks to be unlocked */
1248         writenfc(0x0, &host->regs->unlockstart_blkaddr);
1249         /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1250          * unlockend_blkaddr, but the magic 0x4000 does not always work
1251          * when writing more than some 32 megabytes (on 2k page nands)
1252          * However 0xFFFF doesn't seem to have this kind
1253          * of limitation (tried it back and forth several times).
1254          * The linux kernel driver sets this to 0xFFFF for the v2 controller
1255          * only, but probably this was not tested there for v1.
1256          * The very same limitation seems to apply to this kernel driver.
1257          * This might be NAND chip specific and the i.MX31 datasheet is
1258          * extremely vague about the semantics of this register.
1259          */
1260         writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1261
1262         /* Unlock Block Command for given address range */
1263         writenfc(0x4, &host->regs->wrprot);
1264 #elif defined(MXC_NFC_V3_2)
1265         writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1266         writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1267
1268         /* Unlock the internal RAM Buffer */
1269         writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1270                         &host->ip_regs->wrprot);
1271
1272         /* Blocks to be unlocked */
1273         for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1274                 writenfc(0x0 | 0xFFFF << 16,
1275                                 &host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1276
1277         writenfc(0, &host->ip_regs->ipc);
1278
1279         tmp = readnfc(&host->ip_regs->config2);
1280         tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1281                         NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1282         tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1283
1284         if (host->pagesize_2k) {
1285                 tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1286                 tmp |= NFC_V3_CONFIG2_PS_2048;
1287         } else {
1288                 tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1289                 tmp |= NFC_V3_CONFIG2_PS_512;
1290         }
1291
1292         writenfc(tmp, &host->ip_regs->config2);
1293
1294         tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1295                         NFC_V3_CONFIG3_NO_SDMA |
1296                         NFC_V3_CONFIG3_RBB_MODE |
1297                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1298                         NFC_V3_CONFIG3_ADD_OP(0);
1299
1300         if (!(this->options & NAND_BUSWIDTH_16))
1301                 tmp |= NFC_V3_CONFIG3_FW8;
1302
1303         writenfc(tmp, &host->ip_regs->config3);
1304
1305         writenfc(0, &host->ip_regs->delay_line);
1306 #endif
1307
1308         return 0;
1309 }