049bc79e3b04df3997d0772191534632dae1e8aa
[oweals/u-boot.git] / drivers / mtd / nand / raw / mxc_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
6  */
7
8 #include <common.h>
9 #include <log.h>
10 #include <nand.h>
11 #include <linux/err.h>
12 #include <asm/io.h>
13 #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
14         defined(CONFIG_MX51) || defined(CONFIG_MX53)
15 #include <asm/arch/imx-regs.h>
16 #endif
17 #include "mxc_nand.h"
18
19 #define DRIVER_NAME "mxc_nand"
20
21 struct mxc_nand_host {
22         struct nand_chip                *nand;
23
24         struct mxc_nand_regs __iomem    *regs;
25 #ifdef MXC_NFC_V3_2
26         struct mxc_nand_ip_regs __iomem *ip_regs;
27 #endif
28         int                             spare_only;
29         int                             status_request;
30         int                             pagesize_2k;
31         int                             clk_act;
32         uint16_t                        col_addr;
33         unsigned int                    page_addr;
34 };
35
36 static struct mxc_nand_host mxc_host;
37 static struct mxc_nand_host *host = &mxc_host;
38
39 /* Define delays in microsec for NAND device operations */
40 #define TROP_US_DELAY   2000
41 /* Macros to get byte and bit positions of ECC */
42 #define COLPOS(x)  ((x) >> 3)
43 #define BITPOS(x) ((x) & 0xf)
44
45 /* Define single bit Error positions in Main & Spare area */
46 #define MAIN_SINGLEBIT_ERROR 0x4
47 #define SPARE_SINGLEBIT_ERROR 0x1
48
49 /* OOB placement block for use with hardware ecc generation */
50 #if defined(MXC_NFC_V1)
51 #ifndef CONFIG_SYS_NAND_LARGEPAGE
52 static struct nand_ecclayout nand_hw_eccoob = {
53         .eccbytes = 5,
54         .eccpos = {6, 7, 8, 9, 10},
55         .oobfree = { {0, 5}, {11, 5}, }
56 };
57 #else
58 static struct nand_ecclayout nand_hw_eccoob2k = {
59         .eccbytes = 20,
60         .eccpos = {
61                 6, 7, 8, 9, 10,
62                 22, 23, 24, 25, 26,
63                 38, 39, 40, 41, 42,
64                 54, 55, 56, 57, 58,
65         },
66         .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
67 };
68 #endif
69 #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
70 #ifndef CONFIG_SYS_NAND_LARGEPAGE
71 static struct nand_ecclayout nand_hw_eccoob = {
72         .eccbytes = 9,
73         .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
74         .oobfree = { {2, 5} }
75 };
76 #else
77 static struct nand_ecclayout nand_hw_eccoob2k = {
78         .eccbytes = 36,
79         .eccpos = {
80                 7, 8, 9, 10, 11, 12, 13, 14, 15,
81                 23, 24, 25, 26, 27, 28, 29, 30, 31,
82                 39, 40, 41, 42, 43, 44, 45, 46, 47,
83                 55, 56, 57, 58, 59, 60, 61, 62, 63,
84         },
85         .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
86 };
87 #endif
88 #endif
89
90 static int is_16bit_nand(void)
91 {
92 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
93         return 1;
94 #else
95         return 0;
96 #endif
97 }
98
99 static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
100 {
101         uint32_t *d = dest;
102
103         size >>= 2;
104         while (size--)
105                 __raw_writel(__raw_readl(source++), d++);
106         return dest;
107 }
108
109 /*
110  * This function polls the NANDFC to wait for the basic operation to
111  * complete by checking the INT bit.
112  */
113 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
114                                 uint16_t param)
115 {
116         uint32_t tmp;
117
118         while (max_retries-- > 0) {
119 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
120                 tmp = readnfc(&host->regs->config2);
121                 if (tmp & NFC_V1_V2_CONFIG2_INT) {
122                         tmp &= ~NFC_V1_V2_CONFIG2_INT;
123                         writenfc(tmp, &host->regs->config2);
124 #elif defined(MXC_NFC_V3_2)
125                 tmp = readnfc(&host->ip_regs->ipc);
126                 if (tmp & NFC_V3_IPC_INT) {
127                         tmp &= ~NFC_V3_IPC_INT;
128                         writenfc(tmp, &host->ip_regs->ipc);
129 #endif
130                         break;
131                 }
132                 udelay(1);
133         }
134         if (max_retries < 0) {
135                 pr_debug("%s(%d): INT not set\n",
136                                 __func__, param);
137         }
138 }
139
140 /*
141  * This function issues the specified command to the NAND device and
142  * waits for completion.
143  */
144 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
145 {
146         pr_debug("send_cmd(host, 0x%x)\n", cmd);
147
148         writenfc(cmd, &host->regs->flash_cmd);
149         writenfc(NFC_CMD, &host->regs->operation);
150
151         /* Wait for operation to complete */
152         wait_op_done(host, TROP_US_DELAY, cmd);
153 }
154
155 /*
156  * This function sends an address (or partial address) to the
157  * NAND device. The address is used to select the source/destination for
158  * a NAND command.
159  */
160 static void send_addr(struct mxc_nand_host *host, uint16_t addr)
161 {
162         pr_debug("send_addr(host, 0x%x)\n", addr);
163
164         writenfc(addr, &host->regs->flash_addr);
165         writenfc(NFC_ADDR, &host->regs->operation);
166
167         /* Wait for operation to complete */
168         wait_op_done(host, TROP_US_DELAY, addr);
169 }
170
171 /*
172  * This function requests the NANDFC to initiate the transfer
173  * of data currently in the NANDFC RAM buffer to the NAND device.
174  */
175 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
176                         int spare_only)
177 {
178         if (spare_only)
179                 pr_debug("send_prog_page (%d)\n", spare_only);
180
181         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
182                 int i;
183                 /*
184                  *  The controller copies the 64 bytes of spare data from
185                  *  the first 16 bytes of each of the 4 64 byte spare buffers.
186                  *  Copy the contiguous data starting in spare_area[0] to
187                  *  the four spare area buffers.
188                  */
189                 for (i = 1; i < 4; i++) {
190                         void __iomem *src = &host->regs->spare_area[0][i * 16];
191                         void __iomem *dst = &host->regs->spare_area[i][0];
192
193                         mxc_nand_memcpy32(dst, src, 16);
194                 }
195         }
196
197 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
198         writenfc(buf_id, &host->regs->buf_addr);
199 #elif defined(MXC_NFC_V3_2)
200         uint32_t tmp = readnfc(&host->regs->config1);
201         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
202         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
203         writenfc(tmp, &host->regs->config1);
204 #endif
205
206         /* Configure spare or page+spare access */
207         if (!host->pagesize_2k) {
208                 uint32_t config1 = readnfc(&host->regs->config1);
209                 if (spare_only)
210                         config1 |= NFC_CONFIG1_SP_EN;
211                 else
212                         config1 &= ~NFC_CONFIG1_SP_EN;
213                 writenfc(config1, &host->regs->config1);
214         }
215
216         writenfc(NFC_INPUT, &host->regs->operation);
217
218         /* Wait for operation to complete */
219         wait_op_done(host, TROP_US_DELAY, spare_only);
220 }
221
222 /*
223  * Requests NANDFC to initiate the transfer of data from the
224  * NAND device into in the NANDFC ram buffer.
225  */
226 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
227                 int spare_only)
228 {
229         pr_debug("send_read_page (%d)\n", spare_only);
230
231 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
232         writenfc(buf_id, &host->regs->buf_addr);
233 #elif defined(MXC_NFC_V3_2)
234         uint32_t tmp = readnfc(&host->regs->config1);
235         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
236         tmp |= NFC_V3_CONFIG1_RBA(buf_id);
237         writenfc(tmp, &host->regs->config1);
238 #endif
239
240         /* Configure spare or page+spare access */
241         if (!host->pagesize_2k) {
242                 uint32_t config1 = readnfc(&host->regs->config1);
243                 if (spare_only)
244                         config1 |= NFC_CONFIG1_SP_EN;
245                 else
246                         config1 &= ~NFC_CONFIG1_SP_EN;
247                 writenfc(config1, &host->regs->config1);
248         }
249
250         writenfc(NFC_OUTPUT, &host->regs->operation);
251
252         /* Wait for operation to complete */
253         wait_op_done(host, TROP_US_DELAY, spare_only);
254
255         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
256                 int i;
257
258                 /*
259                  *  The controller copies the 64 bytes of spare data to
260                  *  the first 16 bytes of each of the 4 spare buffers.
261                  *  Make the data contiguous starting in spare_area[0].
262                  */
263                 for (i = 1; i < 4; i++) {
264                         void __iomem *src = &host->regs->spare_area[i][0];
265                         void __iomem *dst = &host->regs->spare_area[0][i * 16];
266
267                         mxc_nand_memcpy32(dst, src, 16);
268                 }
269         }
270 }
271
272 /* Request the NANDFC to perform a read of the NAND device ID. */
273 static void send_read_id(struct mxc_nand_host *host)
274 {
275         uint32_t tmp;
276
277 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
278         /* NANDFC buffer 0 is used for device ID output */
279         writenfc(0x0, &host->regs->buf_addr);
280 #elif defined(MXC_NFC_V3_2)
281         tmp = readnfc(&host->regs->config1);
282         tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
283         writenfc(tmp, &host->regs->config1);
284 #endif
285
286         /* Read ID into main buffer */
287         tmp = readnfc(&host->regs->config1);
288         tmp &= ~NFC_CONFIG1_SP_EN;
289         writenfc(tmp, &host->regs->config1);
290
291         writenfc(NFC_ID, &host->regs->operation);
292
293         /* Wait for operation to complete */
294         wait_op_done(host, TROP_US_DELAY, 0);
295 }
296
297 /*
298  * This function requests the NANDFC to perform a read of the
299  * NAND device status and returns the current status.
300  */
301 static uint16_t get_dev_status(struct mxc_nand_host *host)
302 {
303 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
304         void __iomem *main_buf = host->regs->main_area[1];
305         uint32_t store;
306 #endif
307         uint32_t ret, tmp;
308         /* Issue status request to NAND device */
309
310 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
311         /* store the main area1 first word, later do recovery */
312         store = readl(main_buf);
313         /* NANDFC buffer 1 is used for device status */
314         writenfc(1, &host->regs->buf_addr);
315 #endif
316
317         /* Read status into main buffer */
318         tmp = readnfc(&host->regs->config1);
319         tmp &= ~NFC_CONFIG1_SP_EN;
320         writenfc(tmp, &host->regs->config1);
321
322         writenfc(NFC_STATUS, &host->regs->operation);
323
324         /* Wait for operation to complete */
325         wait_op_done(host, TROP_US_DELAY, 0);
326
327 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
328         /*
329          *  Status is placed in first word of main buffer
330          * get status, then recovery area 1 data
331          */
332         ret = readw(main_buf);
333         writel(store, main_buf);
334 #elif defined(MXC_NFC_V3_2)
335         ret = readnfc(&host->regs->config1) >> 16;
336 #endif
337
338         return ret;
339 }
340
341 /* This function is used by upper layer to checks if device is ready */
342 static int mxc_nand_dev_ready(struct mtd_info *mtd)
343 {
344         /*
345          * NFC handles R/B internally. Therefore, this function
346          * always returns status as ready.
347          */
348         return 1;
349 }
350
351 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
352 {
353         struct nand_chip *nand_chip = mtd_to_nand(mtd);
354         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
355 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
356         uint16_t tmp = readnfc(&host->regs->config1);
357
358         if (on)
359                 tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
360         else
361                 tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
362         writenfc(tmp, &host->regs->config1);
363 #elif defined(MXC_NFC_V3_2)
364         uint32_t tmp = readnfc(&host->ip_regs->config2);
365
366         if (on)
367                 tmp |= NFC_V3_CONFIG2_ECC_EN;
368         else
369                 tmp &= ~NFC_V3_CONFIG2_ECC_EN;
370         writenfc(tmp, &host->ip_regs->config2);
371 #endif
372 }
373
374 #ifdef CONFIG_MXC_NAND_HWECC
375 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
376 {
377         /*
378          * If HW ECC is enabled, we turn it on during init. There is
379          * no need to enable again here.
380          */
381 }
382
383 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
384 static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
385                                       struct nand_chip *chip,
386                                       int page)
387 {
388         struct mxc_nand_host *host = nand_get_controller_data(chip);
389         uint8_t *buf = chip->oob_poi;
390         int length = mtd->oobsize;
391         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
392         uint8_t *bufpoi = buf;
393         int i, toread;
394
395         pr_debug("%s: Reading OOB area of page %u to oob %p\n",
396                          __func__, page, buf);
397
398         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
399         for (i = 0; i < chip->ecc.steps; i++) {
400                 toread = min_t(int, length, chip->ecc.prepad);
401                 if (toread) {
402                         chip->read_buf(mtd, bufpoi, toread);
403                         bufpoi += toread;
404                         length -= toread;
405                 }
406                 bufpoi += chip->ecc.bytes;
407                 host->col_addr += chip->ecc.bytes;
408                 length -= chip->ecc.bytes;
409
410                 toread = min_t(int, length, chip->ecc.postpad);
411                 if (toread) {
412                         chip->read_buf(mtd, bufpoi, toread);
413                         bufpoi += toread;
414                         length -= toread;
415                 }
416         }
417         if (length > 0)
418                 chip->read_buf(mtd, bufpoi, length);
419
420         _mxc_nand_enable_hwecc(mtd, 0);
421         chip->cmdfunc(mtd, NAND_CMD_READOOB,
422                         mtd->writesize + chip->ecc.prepad, page);
423         bufpoi = buf + chip->ecc.prepad;
424         length = mtd->oobsize - chip->ecc.prepad;
425         for (i = 0; i < chip->ecc.steps; i++) {
426                 toread = min_t(int, length, chip->ecc.bytes);
427                 chip->read_buf(mtd, bufpoi, toread);
428                 bufpoi += eccpitch;
429                 length -= eccpitch;
430                 host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
431         }
432         _mxc_nand_enable_hwecc(mtd, 1);
433         return 1;
434 }
435
436 static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
437                                            struct nand_chip *chip,
438                                            uint8_t *buf,
439                                            int oob_required,
440                                            int page)
441 {
442         struct mxc_nand_host *host = nand_get_controller_data(chip);
443         int eccsize = chip->ecc.size;
444         int eccbytes = chip->ecc.bytes;
445         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
446         uint8_t *oob = chip->oob_poi;
447         int steps, size;
448         int n;
449
450         _mxc_nand_enable_hwecc(mtd, 0);
451         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
452
453         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
454                 host->col_addr = n * eccsize;
455                 chip->read_buf(mtd, buf, eccsize);
456                 buf += eccsize;
457
458                 host->col_addr = mtd->writesize + n * eccpitch;
459                 if (chip->ecc.prepad) {
460                         chip->read_buf(mtd, oob, chip->ecc.prepad);
461                         oob += chip->ecc.prepad;
462                 }
463
464                 chip->read_buf(mtd, oob, eccbytes);
465                 oob += eccbytes;
466
467                 if (chip->ecc.postpad) {
468                         chip->read_buf(mtd, oob, chip->ecc.postpad);
469                         oob += chip->ecc.postpad;
470                 }
471         }
472
473         size = mtd->oobsize - (oob - chip->oob_poi);
474         if (size)
475                 chip->read_buf(mtd, oob, size);
476         _mxc_nand_enable_hwecc(mtd, 1);
477
478         return 0;
479 }
480
481 static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
482                                        struct nand_chip *chip,
483                                        uint8_t *buf,
484                                        int oob_required,
485                                        int page)
486 {
487         struct mxc_nand_host *host = nand_get_controller_data(chip);
488         int n, eccsize = chip->ecc.size;
489         int eccbytes = chip->ecc.bytes;
490         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
491         int eccsteps = chip->ecc.steps;
492         uint8_t *p = buf;
493         uint8_t *oob = chip->oob_poi;
494
495         pr_debug("Reading page %u to buf %p oob %p\n",
496                  page, buf, oob);
497
498         /* first read the data area and the available portion of OOB */
499         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
500                 int stat;
501
502                 host->col_addr = n * eccsize;
503
504                 chip->read_buf(mtd, p, eccsize);
505
506                 host->col_addr = mtd->writesize + n * eccpitch;
507
508                 if (chip->ecc.prepad) {
509                         chip->read_buf(mtd, oob, chip->ecc.prepad);
510                         oob += chip->ecc.prepad;
511                 }
512
513                 stat = chip->ecc.correct(mtd, p, oob, NULL);
514
515                 if (stat < 0)
516                         mtd->ecc_stats.failed++;
517                 else
518                         mtd->ecc_stats.corrected += stat;
519                 oob += eccbytes;
520
521                 if (chip->ecc.postpad) {
522                         chip->read_buf(mtd, oob, chip->ecc.postpad);
523                         oob += chip->ecc.postpad;
524                 }
525         }
526
527         /* Calculate remaining oob bytes */
528         n = mtd->oobsize - (oob - chip->oob_poi);
529         if (n)
530                 chip->read_buf(mtd, oob, n);
531
532         /* Then switch ECC off and read the OOB area to get the ECC code */
533         _mxc_nand_enable_hwecc(mtd, 0);
534         chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
535         eccsteps = chip->ecc.steps;
536         oob = chip->oob_poi + chip->ecc.prepad;
537         for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
538                 host->col_addr = mtd->writesize +
539                                  n * eccpitch +
540                                  chip->ecc.prepad;
541                 chip->read_buf(mtd, oob, eccbytes);
542                 oob += eccbytes + chip->ecc.postpad;
543         }
544         _mxc_nand_enable_hwecc(mtd, 1);
545         return 0;
546 }
547
548 static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
549                                        struct nand_chip *chip, int page)
550 {
551         struct mxc_nand_host *host = nand_get_controller_data(chip);
552         int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
553         int length = mtd->oobsize;
554         int i, len, status, steps = chip->ecc.steps;
555         const uint8_t *bufpoi = chip->oob_poi;
556
557         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
558         for (i = 0; i < steps; i++) {
559                 len = min_t(int, length, eccpitch);
560
561                 chip->write_buf(mtd, bufpoi, len);
562                 bufpoi += len;
563                 length -= len;
564                 host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
565         }
566         if (length > 0)
567                 chip->write_buf(mtd, bufpoi, length);
568
569         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
570         status = chip->waitfunc(mtd, chip);
571         return status & NAND_STATUS_FAIL ? -EIO : 0;
572 }
573
574 static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
575                                              struct nand_chip *chip,
576                                              const uint8_t *buf,
577                                              int oob_required, int page)
578 {
579         struct mxc_nand_host *host = nand_get_controller_data(chip);
580         int eccsize = chip->ecc.size;
581         int eccbytes = chip->ecc.bytes;
582         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
583         uint8_t *oob = chip->oob_poi;
584         int steps, size;
585         int n;
586
587         for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
588                 host->col_addr = n * eccsize;
589                 chip->write_buf(mtd, buf, eccsize);
590                 buf += eccsize;
591
592                 host->col_addr = mtd->writesize + n * eccpitch;
593
594                 if (chip->ecc.prepad) {
595                         chip->write_buf(mtd, oob, chip->ecc.prepad);
596                         oob += chip->ecc.prepad;
597                 }
598
599                 host->col_addr += eccbytes;
600                 oob += eccbytes;
601
602                 if (chip->ecc.postpad) {
603                         chip->write_buf(mtd, oob, chip->ecc.postpad);
604                         oob += chip->ecc.postpad;
605                 }
606         }
607
608         size = mtd->oobsize - (oob - chip->oob_poi);
609         if (size)
610                 chip->write_buf(mtd, oob, size);
611         return 0;
612 }
613
614 static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
615                                          struct nand_chip *chip,
616                                          const uint8_t *buf,
617                                          int oob_required, int page)
618 {
619         struct mxc_nand_host *host = nand_get_controller_data(chip);
620         int i, n, eccsize = chip->ecc.size;
621         int eccbytes = chip->ecc.bytes;
622         int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
623         int eccsteps = chip->ecc.steps;
624         const uint8_t *p = buf;
625         uint8_t *oob = chip->oob_poi;
626
627         chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
628
629         for (i = n = 0;
630              eccsteps;
631              n++, eccsteps--, i += eccbytes, p += eccsize) {
632                 host->col_addr = n * eccsize;
633
634                 chip->write_buf(mtd, p, eccsize);
635
636                 host->col_addr = mtd->writesize + n * eccpitch;
637
638                 if (chip->ecc.prepad) {
639                         chip->write_buf(mtd, oob, chip->ecc.prepad);
640                         oob += chip->ecc.prepad;
641                 }
642
643                 chip->write_buf(mtd, oob, eccbytes);
644                 oob += eccbytes;
645
646                 if (chip->ecc.postpad) {
647                         chip->write_buf(mtd, oob, chip->ecc.postpad);
648                         oob += chip->ecc.postpad;
649                 }
650         }
651
652         /* Calculate remaining oob bytes */
653         i = mtd->oobsize - (oob - chip->oob_poi);
654         if (i)
655                 chip->write_buf(mtd, oob, i);
656         return 0;
657 }
658
659 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
660                                  u_char *read_ecc, u_char *calc_ecc)
661 {
662         struct nand_chip *nand_chip = mtd_to_nand(mtd);
663         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
664         uint32_t ecc_status = readl(&host->regs->ecc_status_result);
665         int subpages = mtd->writesize / nand_chip->subpagesize;
666         int pg2blk_shift = nand_chip->phys_erase_shift -
667                            nand_chip->page_shift;
668
669         do {
670                 if ((ecc_status & 0xf) > 4) {
671                         static int last_bad = -1;
672
673                         if (last_bad != host->page_addr >> pg2blk_shift) {
674                                 last_bad = host->page_addr >> pg2blk_shift;
675                                 printk(KERN_DEBUG
676                                        "MXC_NAND: HWECC uncorrectable ECC error"
677                                        " in block %u page %u subpage %d\n",
678                                        last_bad, host->page_addr,
679                                        mtd->writesize / nand_chip->subpagesize
680                                             - subpages);
681                         }
682                         return -EBADMSG;
683                 }
684                 ecc_status >>= 4;
685                 subpages--;
686         } while (subpages > 0);
687
688         return 0;
689 }
690 #else
691 #define mxc_nand_read_page_syndrome NULL
692 #define mxc_nand_read_page_raw_syndrome NULL
693 #define mxc_nand_read_oob_syndrome NULL
694 #define mxc_nand_write_page_syndrome NULL
695 #define mxc_nand_write_page_raw_syndrome NULL
696 #define mxc_nand_write_oob_syndrome NULL
697
698 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
699                                  u_char *read_ecc, u_char *calc_ecc)
700 {
701         struct nand_chip *nand_chip = mtd_to_nand(mtd);
702         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
703
704         /*
705          * 1-Bit errors are automatically corrected in HW.  No need for
706          * additional correction.  2-Bit errors cannot be corrected by
707          * HW ECC, so we need to return failure
708          */
709         uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
710
711         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
712                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
713                 return -EBADMSG;
714         }
715
716         return 0;
717 }
718 #endif
719
720 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
721                                   u_char *ecc_code)
722 {
723         return 0;
724 }
725 #endif
726
727 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
728 {
729         struct nand_chip *nand_chip = mtd_to_nand(mtd);
730         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
731         uint8_t ret = 0;
732         uint16_t col;
733         uint16_t __iomem *main_buf =
734                 (uint16_t __iomem *)host->regs->main_area[0];
735         uint16_t __iomem *spare_buf =
736                 (uint16_t __iomem *)host->regs->spare_area[0];
737         union {
738                 uint16_t word;
739                 uint8_t bytes[2];
740         } nfc_word;
741
742         /* Check for status request */
743         if (host->status_request)
744                 return get_dev_status(host) & 0xFF;
745
746         /* Get column for 16-bit access */
747         col = host->col_addr >> 1;
748
749         /* If we are accessing the spare region */
750         if (host->spare_only)
751                 nfc_word.word = readw(&spare_buf[col]);
752         else
753                 nfc_word.word = readw(&main_buf[col]);
754
755         /* Pick upper/lower byte of word from RAM buffer */
756         ret = nfc_word.bytes[host->col_addr & 0x1];
757
758         /* Update saved column address */
759         if (nand_chip->options & NAND_BUSWIDTH_16)
760                 host->col_addr += 2;
761         else
762                 host->col_addr++;
763
764         return ret;
765 }
766
767 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
768 {
769         struct nand_chip *nand_chip = mtd_to_nand(mtd);
770         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
771         uint16_t col, ret;
772         uint16_t __iomem *p;
773
774         pr_debug("mxc_nand_read_word(col = %d)\n", host->col_addr);
775
776         col = host->col_addr;
777         /* Adjust saved column address */
778         if (col < mtd->writesize && host->spare_only)
779                 col += mtd->writesize;
780
781         if (col < mtd->writesize) {
782                 p = (uint16_t __iomem *)(host->regs->main_area[0] +
783                                 (col >> 1));
784         } else {
785                 p = (uint16_t __iomem *)(host->regs->spare_area[0] +
786                                 ((col - mtd->writesize) >> 1));
787         }
788
789         if (col & 1) {
790                 union {
791                         uint16_t word;
792                         uint8_t bytes[2];
793                 } nfc_word[3];
794
795                 nfc_word[0].word = readw(p);
796                 nfc_word[1].word = readw(p + 1);
797
798                 nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
799                 nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
800
801                 ret = nfc_word[2].word;
802         } else {
803                 ret = readw(p);
804         }
805
806         /* Update saved column address */
807         host->col_addr = col + 2;
808
809         return ret;
810 }
811
812 /*
813  * Write data of length len to buffer buf. The data to be
814  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
815  * Operation by the NFC, the data is written to NAND Flash
816  */
817 static void mxc_nand_write_buf(struct mtd_info *mtd,
818                                 const u_char *buf, int len)
819 {
820         struct nand_chip *nand_chip = mtd_to_nand(mtd);
821         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
822         int n, col, i = 0;
823
824         pr_debug("mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
825                  len);
826
827         col = host->col_addr;
828
829         /* Adjust saved column address */
830         if (col < mtd->writesize && host->spare_only)
831                 col += mtd->writesize;
832
833         n = mtd->writesize + mtd->oobsize - col;
834         n = min(len, n);
835
836         pr_debug("%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
837
838         while (n > 0) {
839                 void __iomem *p;
840
841                 if (col < mtd->writesize) {
842                         p = host->regs->main_area[0] + (col & ~3);
843                 } else {
844                         p = host->regs->spare_area[0] -
845                                                 mtd->writesize + (col & ~3);
846                 }
847
848                 pr_debug("%s:%d: p = %p\n", __func__,
849                          __LINE__, p);
850
851                 if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
852                         union {
853                                 uint32_t word;
854                                 uint8_t bytes[4];
855                         } nfc_word;
856
857                         nfc_word.word = readl(p);
858                         nfc_word.bytes[col & 3] = buf[i++];
859                         n--;
860                         col++;
861
862                         writel(nfc_word.word, p);
863                 } else {
864                         int m = mtd->writesize - col;
865
866                         if (col >= mtd->writesize)
867                                 m += mtd->oobsize;
868
869                         m = min(n, m) & ~3;
870
871                         pr_debug("%s:%d: n = %d, m = %d, i = %d, col = %d\n",
872                                  __func__,  __LINE__, n, m, i, col);
873
874                         mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
875                         col += m;
876                         i += m;
877                         n -= m;
878                 }
879         }
880         /* Update saved column address */
881         host->col_addr = col;
882 }
883
884 /*
885  * Read the data buffer from the NAND Flash. To read the data from NAND
886  * Flash first the data output cycle is initiated by the NFC, which copies
887  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
888  */
889 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
890 {
891         struct nand_chip *nand_chip = mtd_to_nand(mtd);
892         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
893         int n, col, i = 0;
894
895         pr_debug("mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
896                  len);
897
898         col = host->col_addr;
899
900         /* Adjust saved column address */
901         if (col < mtd->writesize && host->spare_only)
902                 col += mtd->writesize;
903
904         n = mtd->writesize + mtd->oobsize - col;
905         n = min(len, n);
906
907         while (n > 0) {
908                 void __iomem *p;
909
910                 if (col < mtd->writesize) {
911                         p = host->regs->main_area[0] + (col & ~3);
912                 } else {
913                         p = host->regs->spare_area[0] -
914                                         mtd->writesize + (col & ~3);
915                 }
916
917                 if (((col | (int)&buf[i]) & 3) || n < 4) {
918                         union {
919                                 uint32_t word;
920                                 uint8_t bytes[4];
921                         } nfc_word;
922
923                         nfc_word.word = readl(p);
924                         buf[i++] = nfc_word.bytes[col & 3];
925                         n--;
926                         col++;
927                 } else {
928                         int m = mtd->writesize - col;
929
930                         if (col >= mtd->writesize)
931                                 m += mtd->oobsize;
932
933                         m = min(n, m) & ~3;
934                         mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
935
936                         col += m;
937                         i += m;
938                         n -= m;
939                 }
940         }
941         /* Update saved column address */
942         host->col_addr = col;
943 }
944
945 /*
946  * This function is used by upper layer for select and
947  * deselect of the NAND chip
948  */
949 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
950 {
951         struct nand_chip *nand_chip = mtd_to_nand(mtd);
952         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
953
954         switch (chip) {
955         case -1:
956                 /* TODO: Disable the NFC clock */
957                 if (host->clk_act)
958                         host->clk_act = 0;
959                 break;
960         case 0:
961                 /* TODO: Enable the NFC clock */
962                 if (!host->clk_act)
963                         host->clk_act = 1;
964                 break;
965
966         default:
967                 break;
968         }
969 }
970
971 /*
972  * Used by the upper layer to write command to NAND Flash for
973  * different operations to be carried out on NAND Flash
974  */
975 void mxc_nand_command(struct mtd_info *mtd, unsigned command,
976                                 int column, int page_addr)
977 {
978         struct nand_chip *nand_chip = mtd_to_nand(mtd);
979         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
980
981         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
982                  command, column, page_addr);
983
984         /* Reset command state information */
985         host->status_request = false;
986
987         /* Command pre-processing step */
988         switch (command) {
989
990         case NAND_CMD_STATUS:
991                 host->col_addr = 0;
992                 host->status_request = true;
993                 break;
994
995         case NAND_CMD_READ0:
996                 host->page_addr = page_addr;
997                 host->col_addr = column;
998                 host->spare_only = false;
999                 break;
1000
1001         case NAND_CMD_READOOB:
1002                 host->col_addr = column;
1003                 host->spare_only = true;
1004                 if (host->pagesize_2k)
1005                         command = NAND_CMD_READ0; /* only READ0 is valid */
1006                 break;
1007
1008         case NAND_CMD_SEQIN:
1009                 if (column >= mtd->writesize) {
1010                         /*
1011                          * before sending SEQIN command for partial write,
1012                          * we need read one page out. FSL NFC does not support
1013                          * partial write. It always sends out 512+ecc+512+ecc
1014                          * for large page nand flash. But for small page nand
1015                          * flash, it does support SPARE ONLY operation.
1016                          */
1017                         if (host->pagesize_2k) {
1018                                 /* call ourself to read a page */
1019                                 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1020                                                 page_addr);
1021                         }
1022
1023                         host->col_addr = column - mtd->writesize;
1024                         host->spare_only = true;
1025
1026                         /* Set program pointer to spare region */
1027                         if (!host->pagesize_2k)
1028                                 send_cmd(host, NAND_CMD_READOOB);
1029                 } else {
1030                         host->spare_only = false;
1031                         host->col_addr = column;
1032
1033                         /* Set program pointer to page start */
1034                         if (!host->pagesize_2k)
1035                                 send_cmd(host, NAND_CMD_READ0);
1036                 }
1037                 break;
1038
1039         case NAND_CMD_PAGEPROG:
1040                 send_prog_page(host, 0, host->spare_only);
1041
1042                 if (host->pagesize_2k && is_mxc_nfc_1()) {
1043                         /* data in 4 areas */
1044                         send_prog_page(host, 1, host->spare_only);
1045                         send_prog_page(host, 2, host->spare_only);
1046                         send_prog_page(host, 3, host->spare_only);
1047                 }
1048
1049                 break;
1050         }
1051
1052         /* Write out the command to the device. */
1053         send_cmd(host, command);
1054
1055         /* Write out column address, if necessary */
1056         if (column != -1) {
1057                 /*
1058                  * MXC NANDFC can only perform full page+spare or
1059                  * spare-only read/write. When the upper layers perform
1060                  * a read/write buffer operation, we will use the saved
1061                  * column address to index into the full page.
1062                  */
1063                 send_addr(host, 0);
1064                 if (host->pagesize_2k)
1065                         /* another col addr cycle for 2k page */
1066                         send_addr(host, 0);
1067         }
1068
1069         /* Write out page address, if necessary */
1070         if (page_addr != -1) {
1071                 u32 page_mask = nand_chip->pagemask;
1072                 do {
1073                         send_addr(host, page_addr & 0xFF);
1074                         page_addr >>= 8;
1075                         page_mask >>= 8;
1076                 } while (page_mask);
1077         }
1078
1079         /* Command post-processing step */
1080         switch (command) {
1081
1082         case NAND_CMD_RESET:
1083                 break;
1084
1085         case NAND_CMD_READOOB:
1086         case NAND_CMD_READ0:
1087                 if (host->pagesize_2k) {
1088                         /* send read confirm command */
1089                         send_cmd(host, NAND_CMD_READSTART);
1090                         /* read for each AREA */
1091                         send_read_page(host, 0, host->spare_only);
1092                         if (is_mxc_nfc_1()) {
1093                                 send_read_page(host, 1, host->spare_only);
1094                                 send_read_page(host, 2, host->spare_only);
1095                                 send_read_page(host, 3, host->spare_only);
1096                         }
1097                 } else {
1098                         send_read_page(host, 0, host->spare_only);
1099                 }
1100                 break;
1101
1102         case NAND_CMD_READID:
1103                 host->col_addr = 0;
1104                 send_read_id(host);
1105                 break;
1106
1107         case NAND_CMD_PAGEPROG:
1108                 break;
1109
1110         case NAND_CMD_STATUS:
1111                 break;
1112
1113         case NAND_CMD_ERASE2:
1114                 break;
1115         }
1116 }
1117
1118 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1119
1120 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1121 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1122
1123 static struct nand_bbt_descr bbt_main_descr = {
1124         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1125                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1126         .offs = 0,
1127         .len = 4,
1128         .veroffs = 4,
1129         .maxblocks = 4,
1130         .pattern = bbt_pattern,
1131 };
1132
1133 static struct nand_bbt_descr bbt_mirror_descr = {
1134         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1135                    NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1136         .offs = 0,
1137         .len = 4,
1138         .veroffs = 4,
1139         .maxblocks = 4,
1140         .pattern = mirror_pattern,
1141 };
1142
1143 #endif
1144
1145 int board_nand_init(struct nand_chip *this)
1146 {
1147         struct mtd_info *mtd;
1148 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1149         uint32_t tmp;
1150 #endif
1151
1152 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1153         this->bbt_options |= NAND_BBT_USE_FLASH;
1154         this->bbt_td = &bbt_main_descr;
1155         this->bbt_md = &bbt_mirror_descr;
1156 #endif
1157
1158         /* structures must be linked */
1159         mtd = &this->mtd;
1160         host->nand = this;
1161
1162         /* 5 us command delay time */
1163         this->chip_delay = 5;
1164
1165         nand_set_controller_data(this, host);
1166         this->dev_ready = mxc_nand_dev_ready;
1167         this->cmdfunc = mxc_nand_command;
1168         this->select_chip = mxc_nand_select_chip;
1169         this->read_byte = mxc_nand_read_byte;
1170         this->read_word = mxc_nand_read_word;
1171         this->write_buf = mxc_nand_write_buf;
1172         this->read_buf = mxc_nand_read_buf;
1173
1174         host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
1175 #ifdef MXC_NFC_V3_2
1176         host->ip_regs =
1177                 (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
1178 #endif
1179         host->clk_act = 1;
1180
1181 #ifdef CONFIG_MXC_NAND_HWECC
1182         this->ecc.calculate = mxc_nand_calculate_ecc;
1183         this->ecc.hwctl = mxc_nand_enable_hwecc;
1184         this->ecc.correct = mxc_nand_correct_data;
1185         if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1186                 this->ecc.mode = NAND_ECC_HW_SYNDROME;
1187                 this->ecc.read_page = mxc_nand_read_page_syndrome;
1188                 this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1189                 this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1190                 this->ecc.write_page = mxc_nand_write_page_syndrome;
1191                 this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1192                 this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1193                 this->ecc.bytes = 9;
1194                 this->ecc.prepad = 7;
1195         } else {
1196                 this->ecc.mode = NAND_ECC_HW;
1197         }
1198
1199         if (is_mxc_nfc_1())
1200                 this->ecc.strength = 1;
1201         else
1202                 this->ecc.strength = 4;
1203
1204         host->pagesize_2k = 0;
1205
1206         this->ecc.size = 512;
1207         _mxc_nand_enable_hwecc(mtd, 1);
1208 #else
1209         this->ecc.layout = &nand_soft_eccoob;
1210         this->ecc.mode = NAND_ECC_SOFT;
1211         _mxc_nand_enable_hwecc(mtd, 0);
1212 #endif
1213         /* Reset NAND */
1214         this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1215
1216         /* NAND bus width determines access functions used by upper layer */
1217         if (is_16bit_nand())
1218                 this->options |= NAND_BUSWIDTH_16;
1219
1220 #ifdef CONFIG_SYS_NAND_LARGEPAGE
1221         host->pagesize_2k = 1;
1222         this->ecc.layout = &nand_hw_eccoob2k;
1223 #else
1224         host->pagesize_2k = 0;
1225         this->ecc.layout = &nand_hw_eccoob;
1226 #endif
1227
1228 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1229 #ifdef MXC_NFC_V2_1
1230         tmp = readnfc(&host->regs->config1);
1231         tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1232         tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1233         writenfc(tmp, &host->regs->config1);
1234         if (host->pagesize_2k)
1235                 writenfc(64/2, &host->regs->spare_area_size);
1236         else
1237                 writenfc(16/2, &host->regs->spare_area_size);
1238 #endif
1239
1240         /*
1241          * preset operation
1242          * Unlock the internal RAM Buffer
1243          */
1244         writenfc(0x2, &host->regs->config);
1245
1246         /* Blocks to be unlocked */
1247         writenfc(0x0, &host->regs->unlockstart_blkaddr);
1248         /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1249          * unlockend_blkaddr, but the magic 0x4000 does not always work
1250          * when writing more than some 32 megabytes (on 2k page nands)
1251          * However 0xFFFF doesn't seem to have this kind
1252          * of limitation (tried it back and forth several times).
1253          * The linux kernel driver sets this to 0xFFFF for the v2 controller
1254          * only, but probably this was not tested there for v1.
1255          * The very same limitation seems to apply to this kernel driver.
1256          * This might be NAND chip specific and the i.MX31 datasheet is
1257          * extremely vague about the semantics of this register.
1258          */
1259         writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1260
1261         /* Unlock Block Command for given address range */
1262         writenfc(0x4, &host->regs->wrprot);
1263 #elif defined(MXC_NFC_V3_2)
1264         writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1265         writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1266
1267         /* Unlock the internal RAM Buffer */
1268         writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1269                         &host->ip_regs->wrprot);
1270
1271         /* Blocks to be unlocked */
1272         for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1273                 writenfc(0x0 | 0xFFFF << 16,
1274                                 &host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1275
1276         writenfc(0, &host->ip_regs->ipc);
1277
1278         tmp = readnfc(&host->ip_regs->config2);
1279         tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1280                         NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1281         tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1282
1283         if (host->pagesize_2k) {
1284                 tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1285                 tmp |= NFC_V3_CONFIG2_PS_2048;
1286         } else {
1287                 tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1288                 tmp |= NFC_V3_CONFIG2_PS_512;
1289         }
1290
1291         writenfc(tmp, &host->ip_regs->config2);
1292
1293         tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1294                         NFC_V3_CONFIG3_NO_SDMA |
1295                         NFC_V3_CONFIG3_RBB_MODE |
1296                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1297                         NFC_V3_CONFIG3_ADD_OP(0);
1298
1299         if (!(this->options & NAND_BUSWIDTH_16))
1300                 tmp |= NFC_V3_CONFIG3_FW8;
1301
1302         writenfc(tmp, &host->ip_regs->config3);
1303
1304         writenfc(0, &host->ip_regs->delay_line);
1305 #endif
1306
1307         return 0;
1308 }