31ad2cfa8882eb6c354e56a09c2589e7c0b1cd8e
[oweals/u-boot.git] / drivers / mtd / nand / raw / atmel_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2007-2008
4  * Stelian Pop <stelian@popies.net>
5  * Lead Tech Design <www.leadtechdesign.com>
6  *
7  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
8  *
9  * Add Programmable Multibit ECC support for various AT91 SoC
10  *     (C) Copyright 2012 ATMEL, Hong Xu
11  */
12
13 #include <common.h>
14 #include <asm/gpio.h>
15 #include <asm/arch/gpio.h>
16
17 #include <malloc.h>
18 #include <nand.h>
19 #include <watchdog.h>
20 #include <linux/mtd/nand_ecc.h>
21
22 #ifdef CONFIG_ATMEL_NAND_HWECC
23
24 /* Register access macros */
25 #define ecc_readl(add, reg)                             \
26         readl(add + ATMEL_ECC_##reg)
27 #define ecc_writel(add, reg, value)                     \
28         writel((value), add + ATMEL_ECC_##reg)
29
30 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
31
32 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
33
34 #ifdef CONFIG_SPL_BUILD
35 #undef CONFIG_SYS_NAND_ONFI_DETECTION
36 #endif
37
38 struct atmel_nand_host {
39         struct pmecc_regs __iomem *pmecc;
40         struct pmecc_errloc_regs __iomem *pmerrloc;
41         void __iomem            *pmecc_rom_base;
42
43         u8              pmecc_corr_cap;
44         u16             pmecc_sector_size;
45         u32             pmecc_index_table_offset;
46         u32             pmecc_version;
47
48         int             pmecc_bytes_per_sector;
49         int             pmecc_sector_number;
50         int             pmecc_degree;   /* Degree of remainders */
51         int             pmecc_cw_len;   /* Length of codeword */
52
53         /* lookup table for alpha_to and index_of */
54         void __iomem    *pmecc_alpha_to;
55         void __iomem    *pmecc_index_of;
56
57         /* data for pmecc computation */
58         int16_t *pmecc_smu;
59         int16_t *pmecc_partial_syn;
60         int16_t *pmecc_si;
61         int16_t *pmecc_lmu; /* polynomal order */
62         int     *pmecc_mu;
63         int     *pmecc_dmu;
64         int     *pmecc_delta;
65 };
66
67 static struct atmel_nand_host pmecc_host;
68 static struct nand_ecclayout atmel_pmecc_oobinfo;
69
70 /*
71  * Return number of ecc bytes per sector according to sector size and
72  * correction capability
73  *
74  * Following table shows what at91 PMECC supported:
75  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
76  * =====================        ================        =================
77  *                2-bits                 4-bytes                  4-bytes
78  *                4-bits                 7-bytes                  7-bytes
79  *                8-bits                13-bytes                 14-bytes
80  *               12-bits                20-bytes                 21-bytes
81  *               24-bits                39-bytes                 42-bytes
82  *               32-bits                52-bytes                 56-bytes
83  */
84 static int pmecc_get_ecc_bytes(int cap, int sector_size)
85 {
86         int m = 12 + sector_size / 512;
87         return (m * cap + 7) / 8;
88 }
89
90 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
91         int oobsize, int ecc_len)
92 {
93         int i;
94
95         layout->eccbytes = ecc_len;
96
97         /* ECC will occupy the last ecc_len bytes continuously */
98         for (i = 0; i < ecc_len; i++)
99                 layout->eccpos[i] = oobsize - ecc_len + i;
100
101         layout->oobfree[0].offset = 2;
102         layout->oobfree[0].length =
103                 oobsize - ecc_len - layout->oobfree[0].offset;
104 }
105
106 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
107 {
108         int table_size;
109
110         table_size = host->pmecc_sector_size == 512 ?
111                 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
112
113         /* the ALPHA lookup table is right behind the INDEX lookup table. */
114         return host->pmecc_rom_base + host->pmecc_index_table_offset +
115                         table_size * sizeof(int16_t);
116 }
117
118 static void pmecc_data_free(struct atmel_nand_host *host)
119 {
120         free(host->pmecc_partial_syn);
121         free(host->pmecc_si);
122         free(host->pmecc_lmu);
123         free(host->pmecc_smu);
124         free(host->pmecc_mu);
125         free(host->pmecc_dmu);
126         free(host->pmecc_delta);
127 }
128
129 static int pmecc_data_alloc(struct atmel_nand_host *host)
130 {
131         const int cap = host->pmecc_corr_cap;
132         int size;
133
134         size = (2 * cap + 1) * sizeof(int16_t);
135         host->pmecc_partial_syn = malloc(size);
136         host->pmecc_si = malloc(size);
137         host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
138         host->pmecc_smu = malloc((cap + 2) * size);
139
140         size = (cap + 1) * sizeof(int);
141         host->pmecc_mu = malloc(size);
142         host->pmecc_dmu = malloc(size);
143         host->pmecc_delta = malloc(size);
144
145         if (host->pmecc_partial_syn &&
146                         host->pmecc_si &&
147                         host->pmecc_lmu &&
148                         host->pmecc_smu &&
149                         host->pmecc_mu &&
150                         host->pmecc_dmu &&
151                         host->pmecc_delta)
152                 return 0;
153
154         /* error happened */
155         pmecc_data_free(host);
156         return -ENOMEM;
157
158 }
159
160 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
161 {
162         struct nand_chip *nand_chip = mtd_to_nand(mtd);
163         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
164         int i;
165         uint32_t value;
166
167         /* Fill odd syndromes */
168         for (i = 0; i < host->pmecc_corr_cap; i++) {
169                 value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
170                 if (i & 1)
171                         value >>= 16;
172                 value &= 0xffff;
173                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
174         }
175 }
176
177 static void pmecc_substitute(struct mtd_info *mtd)
178 {
179         struct nand_chip *nand_chip = mtd_to_nand(mtd);
180         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
181         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
182         int16_t __iomem *index_of = host->pmecc_index_of;
183         int16_t *partial_syn = host->pmecc_partial_syn;
184         const int cap = host->pmecc_corr_cap;
185         int16_t *si;
186         int i, j;
187
188         /* si[] is a table that holds the current syndrome value,
189          * an element of that table belongs to the field
190          */
191         si = host->pmecc_si;
192
193         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
194
195         /* Computation 2t syndromes based on S(x) */
196         /* Odd syndromes */
197         for (i = 1; i < 2 * cap; i += 2) {
198                 for (j = 0; j < host->pmecc_degree; j++) {
199                         if (partial_syn[i] & (0x1 << j))
200                                 si[i] = readw(alpha_to + i * j) ^ si[i];
201                 }
202         }
203         /* Even syndrome = (Odd syndrome) ** 2 */
204         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
205                 if (si[j] == 0) {
206                         si[i] = 0;
207                 } else {
208                         int16_t tmp;
209
210                         tmp = readw(index_of + si[j]);
211                         tmp = (tmp * 2) % host->pmecc_cw_len;
212                         si[i] = readw(alpha_to + tmp);
213                 }
214         }
215 }
216
217 /*
218  * This function defines a Berlekamp iterative procedure for
219  * finding the value of the error location polynomial.
220  * The input is si[], initialize by pmecc_substitute().
221  * The output is smu[][].
222  *
223  * This function is written according to chip datasheet Chapter:
224  * Find the Error Location Polynomial Sigma(x) of Section:
225  * Programmable Multibit ECC Control (PMECC).
226  */
227 static void pmecc_get_sigma(struct mtd_info *mtd)
228 {
229         struct nand_chip *nand_chip = mtd_to_nand(mtd);
230         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
231
232         int16_t *lmu = host->pmecc_lmu;
233         int16_t *si = host->pmecc_si;
234         int *mu = host->pmecc_mu;
235         int *dmu = host->pmecc_dmu;     /* Discrepancy */
236         int *delta = host->pmecc_delta; /* Delta order */
237         int cw_len = host->pmecc_cw_len;
238         const int16_t cap = host->pmecc_corr_cap;
239         const int num = 2 * cap + 1;
240         int16_t __iomem *index_of = host->pmecc_index_of;
241         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
242         int i, j, k;
243         uint32_t dmu_0_count, tmp;
244         int16_t *smu = host->pmecc_smu;
245
246         /* index of largest delta */
247         int ro;
248         int largest;
249         int diff;
250
251         /* Init the Sigma(x) */
252         memset(smu, 0, sizeof(int16_t) * num * (cap + 2));
253
254         dmu_0_count = 0;
255
256         /* First Row */
257
258         /* Mu */
259         mu[0] = -1;
260
261         smu[0] = 1;
262
263         /* discrepancy set to 1 */
264         dmu[0] = 1;
265         /* polynom order set to 0 */
266         lmu[0] = 0;
267         /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
268         delta[0] = -1;
269
270         /* Second Row */
271
272         /* Mu */
273         mu[1] = 0;
274         /* Sigma(x) set to 1 */
275         smu[num] = 1;
276
277         /* discrepancy set to S1 */
278         dmu[1] = si[1];
279
280         /* polynom order set to 0 */
281         lmu[1] = 0;
282
283         /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
284         delta[1] = 0;
285
286         for (i = 1; i <= cap; i++) {
287                 mu[i + 1] = i << 1;
288                 /* Begin Computing Sigma (Mu+1) and L(mu) */
289                 /* check if discrepancy is set to 0 */
290                 if (dmu[i] == 0) {
291                         dmu_0_count++;
292
293                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
294                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
295                                 tmp += 2;
296                         else
297                                 tmp += 1;
298
299                         if (dmu_0_count == tmp) {
300                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
301                                         smu[(cap + 1) * num + j] =
302                                                         smu[i * num + j];
303
304                                 lmu[cap + 1] = lmu[i];
305                                 return;
306                         }
307
308                         /* copy polynom */
309                         for (j = 0; j <= lmu[i] >> 1; j++)
310                                 smu[(i + 1) * num + j] = smu[i * num + j];
311
312                         /* copy previous polynom order to the next */
313                         lmu[i + 1] = lmu[i];
314                 } else {
315                         ro = 0;
316                         largest = -1;
317                         /* find largest delta with dmu != 0 */
318                         for (j = 0; j < i; j++) {
319                                 if ((dmu[j]) && (delta[j] > largest)) {
320                                         largest = delta[j];
321                                         ro = j;
322                                 }
323                         }
324
325                         /* compute difference */
326                         diff = (mu[i] - mu[ro]);
327
328                         /* Compute degree of the new smu polynomial */
329                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
330                                 lmu[i + 1] = lmu[i];
331                         else
332                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
333
334                         /* Init smu[i+1] with 0 */
335                         for (k = 0; k < num; k++)
336                                 smu[(i + 1) * num + k] = 0;
337
338                         /* Compute smu[i+1] */
339                         for (k = 0; k <= lmu[ro] >> 1; k++) {
340                                 int16_t a, b, c;
341
342                                 if (!(smu[ro * num + k] && dmu[i]))
343                                         continue;
344                                 a = readw(index_of + dmu[i]);
345                                 b = readw(index_of + dmu[ro]);
346                                 c = readw(index_of + smu[ro * num + k]);
347                                 tmp = a + (cw_len - b) + c;
348                                 a = readw(alpha_to + tmp % cw_len);
349                                 smu[(i + 1) * num + (k + diff)] = a;
350                         }
351
352                         for (k = 0; k <= lmu[i] >> 1; k++)
353                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
354                 }
355
356                 /* End Computing Sigma (Mu+1) and L(mu) */
357                 /* In either case compute delta */
358                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
359
360                 /* Do not compute discrepancy for the last iteration */
361                 if (i >= cap)
362                         continue;
363
364                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
365                         tmp = 2 * (i - 1);
366                         if (k == 0) {
367                                 dmu[i + 1] = si[tmp + 3];
368                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
369                                 int16_t a, b, c;
370                                 a = readw(index_of +
371                                                 smu[(i + 1) * num + k]);
372                                 b = si[2 * (i - 1) + 3 - k];
373                                 c = readw(index_of + b);
374                                 tmp = a + c;
375                                 tmp %= cw_len;
376                                 dmu[i + 1] = readw(alpha_to + tmp) ^
377                                         dmu[i + 1];
378                         }
379                 }
380         }
381 }
382
383 static int pmecc_err_location(struct mtd_info *mtd)
384 {
385         struct nand_chip *nand_chip = mtd_to_nand(mtd);
386         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
387         const int cap = host->pmecc_corr_cap;
388         const int num = 2 * cap + 1;
389         int sector_size = host->pmecc_sector_size;
390         int err_nbr = 0;        /* number of error */
391         int roots_nbr;          /* number of roots */
392         int i;
393         uint32_t val;
394         int16_t *smu = host->pmecc_smu;
395         int timeout = PMECC_MAX_TIMEOUT_US;
396
397         pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
398
399         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
400                 pmecc_writel(host->pmerrloc, sigma[i],
401                              smu[(cap + 1) * num + i]);
402                 err_nbr++;
403         }
404
405         val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
406         if (sector_size == 1024)
407                 val |= PMERRLOC_ELCFG_SECTOR_1024;
408
409         pmecc_writel(host->pmerrloc, elcfg, val);
410         pmecc_writel(host->pmerrloc, elen,
411                      sector_size * 8 + host->pmecc_degree * cap);
412
413         while (--timeout) {
414                 if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
415                         break;
416                 WATCHDOG_RESET();
417                 udelay(1);
418         }
419
420         if (!timeout) {
421                 dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
422                 return -1;
423         }
424
425         roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
426                         >> 8;
427         /* Number of roots == degree of smu hence <= cap */
428         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
429                 return err_nbr - 1;
430
431         /* Number of roots does not match the degree of smu
432          * unable to correct error */
433         return -1;
434 }
435
436 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
437                 int sector_num, int extra_bytes, int err_nbr)
438 {
439         struct nand_chip *nand_chip = mtd_to_nand(mtd);
440         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
441         int i = 0;
442         int byte_pos, bit_pos, sector_size, pos;
443         uint32_t tmp;
444         uint8_t err_byte;
445
446         sector_size = host->pmecc_sector_size;
447
448         while (err_nbr) {
449                 tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
450                 byte_pos = tmp / 8;
451                 bit_pos  = tmp % 8;
452
453                 if (byte_pos >= (sector_size + extra_bytes))
454                         BUG();  /* should never happen */
455
456                 if (byte_pos < sector_size) {
457                         err_byte = *(buf + byte_pos);
458                         *(buf + byte_pos) ^= (1 << bit_pos);
459
460                         pos = sector_num * host->pmecc_sector_size + byte_pos;
461                         dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
462                                 pos, bit_pos, err_byte, *(buf + byte_pos));
463                 } else {
464                         /* Bit flip in OOB area */
465                         tmp = sector_num * host->pmecc_bytes_per_sector
466                                         + (byte_pos - sector_size);
467                         err_byte = ecc[tmp];
468                         ecc[tmp] ^= (1 << bit_pos);
469
470                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
471                         dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
472                                 pos, bit_pos, err_byte, ecc[tmp]);
473                 }
474
475                 i++;
476                 err_nbr--;
477         }
478
479         return;
480 }
481
482 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
483         u8 *ecc)
484 {
485         struct nand_chip *nand_chip = mtd_to_nand(mtd);
486         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
487         int i, err_nbr, eccbytes;
488         uint8_t *buf_pos;
489
490         /* SAMA5D4 PMECC IP can correct errors for all 0xff page */
491         if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
492                 goto normal_check;
493
494         eccbytes = nand_chip->ecc.bytes;
495         for (i = 0; i < eccbytes; i++)
496                 if (ecc[i] != 0xff)
497                         goto normal_check;
498         /* Erased page, return OK */
499         return 0;
500
501 normal_check:
502         for (i = 0; i < host->pmecc_sector_number; i++) {
503                 err_nbr = 0;
504                 if (pmecc_stat & 0x1) {
505                         buf_pos = buf + i * host->pmecc_sector_size;
506
507                         pmecc_gen_syndrome(mtd, i);
508                         pmecc_substitute(mtd);
509                         pmecc_get_sigma(mtd);
510
511                         err_nbr = pmecc_err_location(mtd);
512                         if (err_nbr == -1) {
513                                 dev_err(host->dev, "PMECC: Too many errors\n");
514                                 mtd->ecc_stats.failed++;
515                                 return -EBADMSG;
516                         } else {
517                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
518                                         host->pmecc_bytes_per_sector, err_nbr);
519                                 mtd->ecc_stats.corrected += err_nbr;
520                         }
521                 }
522                 pmecc_stat >>= 1;
523         }
524
525         return 0;
526 }
527
528 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
529         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
530 {
531         struct atmel_nand_host *host = nand_get_controller_data(chip);
532         int eccsize = chip->ecc.size;
533         uint8_t *oob = chip->oob_poi;
534         uint32_t *eccpos = chip->ecc.layout->eccpos;
535         uint32_t stat;
536         int timeout = PMECC_MAX_TIMEOUT_US;
537
538         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
539         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
540         pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
541                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
542
543         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
544         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
545
546         chip->read_buf(mtd, buf, eccsize);
547         chip->read_buf(mtd, oob, mtd->oobsize);
548
549         while (--timeout) {
550                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
551                         break;
552                 WATCHDOG_RESET();
553                 udelay(1);
554         }
555
556         if (!timeout) {
557                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
558                 return -1;
559         }
560
561         stat = pmecc_readl(host->pmecc, isr);
562         if (stat != 0)
563                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
564                         return -EBADMSG;
565
566         return 0;
567 }
568
569 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
570                 struct nand_chip *chip, const uint8_t *buf,
571                 int oob_required, int page)
572 {
573         struct atmel_nand_host *host = nand_get_controller_data(chip);
574         uint32_t *eccpos = chip->ecc.layout->eccpos;
575         int i, j;
576         int timeout = PMECC_MAX_TIMEOUT_US;
577
578         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
579         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
580
581         pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
582                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
583
584         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
585         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
586
587         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
588
589         while (--timeout) {
590                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
591                         break;
592                 WATCHDOG_RESET();
593                 udelay(1);
594         }
595
596         if (!timeout) {
597                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
598                 goto out;
599         }
600
601         for (i = 0; i < host->pmecc_sector_number; i++) {
602                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
603                         int pos;
604
605                         pos = i * host->pmecc_bytes_per_sector + j;
606                         chip->oob_poi[eccpos[pos]] =
607                                 pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
608                 }
609         }
610         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
611 out:
612         return 0;
613 }
614
615 static void atmel_pmecc_core_init(struct mtd_info *mtd)
616 {
617         struct nand_chip *nand_chip = mtd_to_nand(mtd);
618         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
619         uint32_t val = 0;
620         struct nand_ecclayout *ecc_layout;
621
622         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
623         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
624
625         switch (host->pmecc_corr_cap) {
626         case 2:
627                 val = PMECC_CFG_BCH_ERR2;
628                 break;
629         case 4:
630                 val = PMECC_CFG_BCH_ERR4;
631                 break;
632         case 8:
633                 val = PMECC_CFG_BCH_ERR8;
634                 break;
635         case 12:
636                 val = PMECC_CFG_BCH_ERR12;
637                 break;
638         case 24:
639                 val = PMECC_CFG_BCH_ERR24;
640                 break;
641         case 32:
642                 val = PMECC_CFG_BCH_ERR32;
643                 break;
644         }
645
646         if (host->pmecc_sector_size == 512)
647                 val |= PMECC_CFG_SECTOR512;
648         else if (host->pmecc_sector_size == 1024)
649                 val |= PMECC_CFG_SECTOR1024;
650
651         switch (host->pmecc_sector_number) {
652         case 1:
653                 val |= PMECC_CFG_PAGE_1SECTOR;
654                 break;
655         case 2:
656                 val |= PMECC_CFG_PAGE_2SECTORS;
657                 break;
658         case 4:
659                 val |= PMECC_CFG_PAGE_4SECTORS;
660                 break;
661         case 8:
662                 val |= PMECC_CFG_PAGE_8SECTORS;
663                 break;
664         }
665
666         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
667                 | PMECC_CFG_AUTO_DISABLE);
668         pmecc_writel(host->pmecc, cfg, val);
669
670         ecc_layout = nand_chip->ecc.layout;
671         pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
672         pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
673         pmecc_writel(host->pmecc, eaddr,
674                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
675         /* See datasheet about PMECC Clock Control Register */
676         pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
677         pmecc_writel(host->pmecc, idr, 0xff);
678         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
679 }
680
681 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
682 /*
683  * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
684  *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
685  *                    ONFI ECC parameters.
686  * @host: point to an atmel_nand_host structure.
687  *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
688  *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
689  * @chip: point to an nand_chip structure.
690  * @cap: store the ONFI ECC correct bits capbility
691  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
692  *
693  * Return 0 if success. otherwise return the error code.
694  */
695 static int pmecc_choose_ecc(struct atmel_nand_host *host,
696                 struct nand_chip *chip,
697                 int *cap, int *sector_size)
698 {
699         /* Get ECC requirement from ONFI parameters */
700         *cap = *sector_size = 0;
701         if (chip->onfi_version) {
702                 *cap = chip->ecc_strength_ds;
703                 *sector_size = chip->ecc_step_ds;
704                 pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
705                          *cap, *sector_size);
706         }
707
708         if (*cap == 0 && *sector_size == 0) {
709                 /* Non-ONFI compliant */
710                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
711                 *cap = 2;
712                 *sector_size = 512;
713         }
714
715         /* If head file doesn't specify then use the one in ONFI parameters */
716         if (host->pmecc_corr_cap == 0) {
717                 /* use the most fitable ecc bits (the near bigger one ) */
718                 if (*cap <= 2)
719                         host->pmecc_corr_cap = 2;
720                 else if (*cap <= 4)
721                         host->pmecc_corr_cap = 4;
722                 else if (*cap <= 8)
723                         host->pmecc_corr_cap = 8;
724                 else if (*cap <= 12)
725                         host->pmecc_corr_cap = 12;
726                 else if (*cap <= 24)
727                         host->pmecc_corr_cap = 24;
728                 else
729 #ifdef CONFIG_SAMA5D2
730                         host->pmecc_corr_cap = 32;
731 #else
732                         host->pmecc_corr_cap = 24;
733 #endif
734         }
735         if (host->pmecc_sector_size == 0) {
736                 /* use the most fitable sector size (the near smaller one ) */
737                 if (*sector_size >= 1024)
738                         host->pmecc_sector_size = 1024;
739                 else if (*sector_size >= 512)
740                         host->pmecc_sector_size = 512;
741                 else
742                         return -EINVAL;
743         }
744         return 0;
745 }
746 #endif
747
748 #if defined(NO_GALOIS_TABLE_IN_ROM)
749 static uint16_t *pmecc_galois_table;
750 static inline int deg(unsigned int poly)
751 {
752         /* polynomial degree is the most-significant bit index */
753         return fls(poly) - 1;
754 }
755
756 static int build_gf_tables(int mm, unsigned int poly,
757                            int16_t *index_of, int16_t *alpha_to)
758 {
759         unsigned int i, x = 1;
760         const unsigned int k = 1 << deg(poly);
761         unsigned int nn = (1 << mm) - 1;
762
763         /* primitive polynomial must be of degree m */
764         if (k != (1u << mm))
765                 return -EINVAL;
766
767         for (i = 0; i < nn; i++) {
768                 alpha_to[i] = x;
769                 index_of[x] = i;
770                 if (i && (x == 1))
771                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
772                         return -EINVAL;
773                 x <<= 1;
774                 if (x & k)
775                         x ^= poly;
776         }
777
778         alpha_to[nn] = 1;
779         index_of[0] = 0;
780
781         return 0;
782 }
783
784 static uint16_t *create_lookup_table(int sector_size)
785 {
786         int degree = (sector_size == 512) ?
787                         PMECC_GF_DIMENSION_13 :
788                         PMECC_GF_DIMENSION_14;
789         unsigned int poly = (sector_size == 512) ?
790                         PMECC_GF_13_PRIMITIVE_POLY :
791                         PMECC_GF_14_PRIMITIVE_POLY;
792         int table_size = (sector_size == 512) ?
793                         PMECC_INDEX_TABLE_SIZE_512 :
794                         PMECC_INDEX_TABLE_SIZE_1024;
795
796         int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
797         if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
798                 return NULL;
799
800         return (uint16_t *)addr;
801 }
802 #endif
803
804 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
805                 struct mtd_info *mtd)
806 {
807         struct atmel_nand_host *host;
808         int cap, sector_size;
809
810         host = &pmecc_host;
811         nand_set_controller_data(nand, host);
812
813         nand->ecc.mode = NAND_ECC_HW;
814         nand->ecc.calculate = NULL;
815         nand->ecc.correct = NULL;
816         nand->ecc.hwctl = NULL;
817
818 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
819         host->pmecc_corr_cap = host->pmecc_sector_size = 0;
820
821 #ifdef CONFIG_PMECC_CAP
822         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
823 #endif
824 #ifdef CONFIG_PMECC_SECTOR_SIZE
825         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
826 #endif
827         /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
828          * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
829          * from ONFI.
830          */
831         if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
832                 dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
833                         cap, sector_size);
834                 return -EINVAL;
835         }
836
837         if (cap > host->pmecc_corr_cap)
838                 dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
839                                 host->pmecc_corr_cap, cap);
840         if (sector_size < host->pmecc_sector_size)
841                 dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
842                                 host->pmecc_sector_size, sector_size);
843 #else   /* CONFIG_SYS_NAND_ONFI_DETECTION */
844         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
845         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
846 #endif
847
848         cap = host->pmecc_corr_cap;
849         sector_size = host->pmecc_sector_size;
850
851         /* TODO: need check whether cap & sector_size is validate */
852 #if defined(NO_GALOIS_TABLE_IN_ROM)
853         /*
854          * As pmecc_rom_base is the begin of the gallois field table, So the
855          * index offset just set as 0.
856          */
857         host->pmecc_index_table_offset = 0;
858 #else
859         if (host->pmecc_sector_size == 512)
860                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
861         else
862                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
863 #endif
864
865         pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
866                  cap, sector_size);
867
868         host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
869         host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
870                         ATMEL_BASE_PMERRLOC;
871 #if defined(NO_GALOIS_TABLE_IN_ROM)
872         pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
873         if (!pmecc_galois_table) {
874                 dev_err(host->dev, "out of memory\n");
875                 return -ENOMEM;
876         }
877
878         host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
879 #else
880         host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
881 #endif
882
883         /* ECC is calculated for the whole page (1 step) */
884         nand->ecc.size = mtd->writesize;
885
886         /* set ECC page size and oob layout */
887         switch (mtd->writesize) {
888         case 2048:
889         case 4096:
890         case 8192:
891                 host->pmecc_degree = (sector_size == 512) ?
892                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
893                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
894                 host->pmecc_sector_number = mtd->writesize / sector_size;
895                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
896                         cap, sector_size);
897                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
898                 host->pmecc_index_of = host->pmecc_rom_base +
899                         host->pmecc_index_table_offset;
900
901                 nand->ecc.steps = 1;
902                 nand->ecc.bytes = host->pmecc_bytes_per_sector *
903                                        host->pmecc_sector_number;
904
905                 if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
906                         dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
907                                         MTD_MAX_ECCPOS_ENTRIES_LARGE);
908                         return -EINVAL;
909                 }
910
911                 if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
912                         dev_err(host->dev, "No room for ECC bytes\n");
913                         return -EINVAL;
914                 }
915                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
916                                         mtd->oobsize,
917                                         nand->ecc.bytes);
918                 nand->ecc.layout = &atmel_pmecc_oobinfo;
919                 break;
920         case 512:
921         case 1024:
922                 /* TODO */
923                 dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
924         default:
925                 /* page size not handled by HW ECC */
926                 /* switching back to soft ECC */
927                 nand->ecc.mode = NAND_ECC_SOFT;
928                 nand->ecc.read_page = NULL;
929                 nand->ecc.postpad = 0;
930                 nand->ecc.prepad = 0;
931                 nand->ecc.bytes = 0;
932                 return 0;
933         }
934
935         /* Allocate data for PMECC computation */
936         if (pmecc_data_alloc(host)) {
937                 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
938                 return -ENOMEM;
939         }
940
941         nand->options |= NAND_NO_SUBPAGE_WRITE;
942         nand->ecc.read_page = atmel_nand_pmecc_read_page;
943         nand->ecc.write_page = atmel_nand_pmecc_write_page;
944         nand->ecc.strength = cap;
945
946         /* Check the PMECC ip version */
947         host->pmecc_version = pmecc_readl(host->pmerrloc, version);
948         dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
949
950         atmel_pmecc_core_init(mtd);
951
952         return 0;
953 }
954
955 #else
956
957 /* oob layout for large page size
958  * bad block info is on bytes 0 and 1
959  * the bytes have to be consecutives to avoid
960  * several NAND_CMD_RNDOUT during read
961  */
962 static struct nand_ecclayout atmel_oobinfo_large = {
963         .eccbytes = 4,
964         .eccpos = {60, 61, 62, 63},
965         .oobfree = {
966                 {2, 58}
967         },
968 };
969
970 /* oob layout for small page size
971  * bad block info is on bytes 4 and 5
972  * the bytes have to be consecutives to avoid
973  * several NAND_CMD_RNDOUT during read
974  */
975 static struct nand_ecclayout atmel_oobinfo_small = {
976         .eccbytes = 4,
977         .eccpos = {0, 1, 2, 3},
978         .oobfree = {
979                 {6, 10}
980         },
981 };
982
983 /*
984  * Calculate HW ECC
985  *
986  * function called after a write
987  *
988  * mtd:        MTD block structure
989  * dat:        raw data (unused)
990  * ecc_code:   buffer for ECC
991  */
992 static int atmel_nand_calculate(struct mtd_info *mtd,
993                 const u_char *dat, unsigned char *ecc_code)
994 {
995         unsigned int ecc_value;
996
997         /* get the first 2 ECC bytes */
998         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
999
1000         ecc_code[0] = ecc_value & 0xFF;
1001         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1002
1003         /* get the last 2 ECC bytes */
1004         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1005
1006         ecc_code[2] = ecc_value & 0xFF;
1007         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1008
1009         return 0;
1010 }
1011
1012 /*
1013  * HW ECC read page function
1014  *
1015  * mtd:        mtd info structure
1016  * chip:       nand chip info structure
1017  * buf:        buffer to store read data
1018  * oob_required:    caller expects OOB data read to chip->oob_poi
1019  */
1020 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1021                                 uint8_t *buf, int oob_required, int page)
1022 {
1023         int eccsize = chip->ecc.size;
1024         int eccbytes = chip->ecc.bytes;
1025         uint32_t *eccpos = chip->ecc.layout->eccpos;
1026         uint8_t *p = buf;
1027         uint8_t *oob = chip->oob_poi;
1028         uint8_t *ecc_pos;
1029         int stat;
1030
1031         /* read the page */
1032         chip->read_buf(mtd, p, eccsize);
1033
1034         /* move to ECC position if needed */
1035         if (eccpos[0] != 0) {
1036                 /* This only works on large pages
1037                  * because the ECC controller waits for
1038                  * NAND_CMD_RNDOUTSTART after the
1039                  * NAND_CMD_RNDOUT.
1040                  * anyway, for small pages, the eccpos[0] == 0
1041                  */
1042                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1043                                 mtd->writesize + eccpos[0], -1);
1044         }
1045
1046         /* the ECC controller needs to read the ECC just after the data */
1047         ecc_pos = oob + eccpos[0];
1048         chip->read_buf(mtd, ecc_pos, eccbytes);
1049
1050         /* check if there's an error */
1051         stat = chip->ecc.correct(mtd, p, oob, NULL);
1052
1053         if (stat < 0)
1054                 mtd->ecc_stats.failed++;
1055         else
1056                 mtd->ecc_stats.corrected += stat;
1057
1058         /* get back to oob start (end of page) */
1059         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1060
1061         /* read the oob */
1062         chip->read_buf(mtd, oob, mtd->oobsize);
1063
1064         return 0;
1065 }
1066
1067 /*
1068  * HW ECC Correction
1069  *
1070  * function called after a read
1071  *
1072  * mtd:        MTD block structure
1073  * dat:        raw data read from the chip
1074  * read_ecc:   ECC from the chip (unused)
1075  * isnull:     unused
1076  *
1077  * Detect and correct a 1 bit error for a page
1078  */
1079 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1080                 u_char *read_ecc, u_char *isnull)
1081 {
1082         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1083         unsigned int ecc_status;
1084         unsigned int ecc_word, ecc_bit;
1085
1086         /* get the status from the Status Register */
1087         ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1088
1089         /* if there's no error */
1090         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1091                 return 0;
1092
1093         /* get error bit offset (4 bits) */
1094         ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1095         /* get word address (12 bits) */
1096         ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1097         ecc_word >>= 4;
1098
1099         /* if there are multiple errors */
1100         if (ecc_status & ATMEL_ECC_MULERR) {
1101                 /* check if it is a freshly erased block
1102                  * (filled with 0xff) */
1103                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1104                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1105                         /* the block has just been erased, return OK */
1106                         return 0;
1107                 }
1108                 /* it doesn't seems to be a freshly
1109                  * erased block.
1110                  * We can't correct so many errors */
1111                 dev_warn(host->dev, "atmel_nand : multiple errors detected."
1112                                 " Unable to correct.\n");
1113                 return -EBADMSG;
1114         }
1115
1116         /* if there's a single bit error : we can correct it */
1117         if (ecc_status & ATMEL_ECC_ECCERR) {
1118                 /* there's nothing much to do here.
1119                  * the bit error is on the ECC itself.
1120                  */
1121                 dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
1122                                 " Nothing to correct\n");
1123                 return 0;
1124         }
1125
1126         dev_warn(host->dev, "atmel_nand : one bit error on data."
1127                         " (word offset in the page :"
1128                         " 0x%x bit offset : 0x%x)\n",
1129                         ecc_word, ecc_bit);
1130         /* correct the error */
1131         if (nand_chip->options & NAND_BUSWIDTH_16) {
1132                 /* 16 bits words */
1133                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1134         } else {
1135                 /* 8 bits words */
1136                 dat[ecc_word] ^= (1 << ecc_bit);
1137         }
1138         dev_warn(host->dev, "atmel_nand : error corrected\n");
1139         return 1;
1140 }
1141
1142 /*
1143  * Enable HW ECC : unused on most chips
1144  */
1145 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1146 {
1147 }
1148
1149 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1150 {
1151         nand->ecc.mode = NAND_ECC_HW;
1152         nand->ecc.calculate = atmel_nand_calculate;
1153         nand->ecc.correct = atmel_nand_correct;
1154         nand->ecc.hwctl = atmel_nand_hwctl;
1155         nand->ecc.read_page = atmel_nand_read_page;
1156         nand->ecc.bytes = 4;
1157         nand->ecc.strength = 4;
1158
1159         if (nand->ecc.mode == NAND_ECC_HW) {
1160                 /* ECC is calculated for the whole page (1 step) */
1161                 nand->ecc.size = mtd->writesize;
1162
1163                 /* set ECC page size and oob layout */
1164                 switch (mtd->writesize) {
1165                 case 512:
1166                         nand->ecc.layout = &atmel_oobinfo_small;
1167                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1168                                         ATMEL_ECC_PAGESIZE_528);
1169                         break;
1170                 case 1024:
1171                         nand->ecc.layout = &atmel_oobinfo_large;
1172                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1173                                         ATMEL_ECC_PAGESIZE_1056);
1174                         break;
1175                 case 2048:
1176                         nand->ecc.layout = &atmel_oobinfo_large;
1177                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1178                                         ATMEL_ECC_PAGESIZE_2112);
1179                         break;
1180                 case 4096:
1181                         nand->ecc.layout = &atmel_oobinfo_large;
1182                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1183                                         ATMEL_ECC_PAGESIZE_4224);
1184                         break;
1185                 default:
1186                         /* page size not handled by HW ECC */
1187                         /* switching back to soft ECC */
1188                         nand->ecc.mode = NAND_ECC_SOFT;
1189                         nand->ecc.calculate = NULL;
1190                         nand->ecc.correct = NULL;
1191                         nand->ecc.hwctl = NULL;
1192                         nand->ecc.read_page = NULL;
1193                         nand->ecc.postpad = 0;
1194                         nand->ecc.prepad = 0;
1195                         nand->ecc.bytes = 0;
1196                         break;
1197                 }
1198         }
1199
1200         return 0;
1201 }
1202
1203 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1204
1205 #endif /* CONFIG_ATMEL_NAND_HWECC */
1206
1207 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1208                                          int cmd, unsigned int ctrl)
1209 {
1210         struct nand_chip *this = mtd_to_nand(mtd);
1211
1212         if (ctrl & NAND_CTRL_CHANGE) {
1213                 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1214                 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1215                              | CONFIG_SYS_NAND_MASK_CLE);
1216
1217                 if (ctrl & NAND_CLE)
1218                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1219                 if (ctrl & NAND_ALE)
1220                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1221
1222 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1223                 at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
1224                                     !(ctrl & NAND_NCE));
1225 #endif
1226                 this->IO_ADDR_W = (void *) IO_ADDR_W;
1227         }
1228
1229         if (cmd != NAND_CMD_NONE)
1230                 writeb(cmd, this->IO_ADDR_W);
1231 }
1232
1233 #ifdef CONFIG_SYS_NAND_READY_PIN
1234 static int at91_nand_ready(struct mtd_info *mtd)
1235 {
1236         return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
1237 }
1238 #endif
1239
1240 #ifdef CONFIG_SPL_BUILD
1241 /* The following code is for SPL */
1242 static struct mtd_info *mtd;
1243 static struct nand_chip nand_chip;
1244
1245 static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1246 {
1247         struct nand_chip *this = mtd_to_nand(mtd);
1248         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1249         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1250                         unsigned int ctrl) = this->cmd_ctrl;
1251
1252         while (!this->dev_ready(mtd))
1253                 ;
1254
1255         if (cmd == NAND_CMD_READOOB) {
1256                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
1257                 cmd = NAND_CMD_READ0;
1258         }
1259
1260         hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1261
1262         if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1263                 offs >>= 1;
1264
1265         hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1266         hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1267         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1268         hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1269 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1270         hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1271 #endif
1272         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1273
1274         hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1275         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1276
1277         while (!this->dev_ready(mtd))
1278                 ;
1279
1280         return 0;
1281 }
1282
1283 static int nand_is_bad_block(int block)
1284 {
1285         struct nand_chip *this = mtd_to_nand(mtd);
1286
1287         nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1288
1289         if (this->options & NAND_BUSWIDTH_16) {
1290                 if (readw(this->IO_ADDR_R) != 0xffff)
1291                         return 1;
1292         } else {
1293                 if (readb(this->IO_ADDR_R) != 0xff)
1294                         return 1;
1295         }
1296
1297         return 0;
1298 }
1299
1300 #ifdef CONFIG_SPL_NAND_ECC
1301 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1302 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1303                   CONFIG_SYS_NAND_ECCSIZE)
1304 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1305
1306 static int nand_read_page(int block, int page, void *dst)
1307 {
1308         struct nand_chip *this = mtd_to_nand(mtd);
1309         u_char ecc_calc[ECCTOTAL];
1310         u_char ecc_code[ECCTOTAL];
1311         u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1312         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1313         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1314         int eccsteps = ECCSTEPS;
1315         int i;
1316         uint8_t *p = dst;
1317         nand_command(block, page, 0, NAND_CMD_READ0);
1318
1319         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1320                 if (this->ecc.mode != NAND_ECC_SOFT)
1321                         this->ecc.hwctl(mtd, NAND_ECC_READ);
1322                 this->read_buf(mtd, p, eccsize);
1323                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
1324         }
1325         this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1326
1327         for (i = 0; i < ECCTOTAL; i++)
1328                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
1329
1330         eccsteps = ECCSTEPS;
1331         p = dst;
1332
1333         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1334                 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1335
1336         return 0;
1337 }
1338
1339 int spl_nand_erase_one(int block, int page)
1340 {
1341         struct nand_chip *this = mtd_to_nand(mtd);
1342         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1343                         unsigned int ctrl) = this->cmd_ctrl;
1344         int page_addr;
1345
1346         if (nand_chip.select_chip)
1347                 nand_chip.select_chip(mtd, 0);
1348
1349         page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1350         hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1351         /* Row address */
1352         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1353         hwctrl(mtd, ((page_addr >> 8) & 0xff),
1354                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1355 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1356         /* One more address cycle for devices > 128MiB */
1357         hwctrl(mtd, (page_addr >> 16) & 0x0f,
1358                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1359 #endif
1360         hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1361
1362         while (!this->dev_ready(mtd))
1363                 ;
1364
1365         nand_deselect();
1366
1367         return 0;
1368 }
1369 #else
1370 static int nand_read_page(int block, int page, void *dst)
1371 {
1372         struct nand_chip *this = mtd_to_nand(mtd);
1373
1374         nand_command(block, page, 0, NAND_CMD_READ0);
1375         atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
1376
1377         return 0;
1378 }
1379 #endif /* CONFIG_SPL_NAND_ECC */
1380
1381 int at91_nand_wait_ready(struct mtd_info *mtd)
1382 {
1383         struct nand_chip *this = mtd_to_nand(mtd);
1384
1385         udelay(this->chip_delay);
1386
1387         return 1;
1388 }
1389
1390 int board_nand_init(struct nand_chip *nand)
1391 {
1392         int ret = 0;
1393
1394         nand->ecc.mode = NAND_ECC_SOFT;
1395 #ifdef CONFIG_SYS_NAND_DBW_16
1396         nand->options = NAND_BUSWIDTH_16;
1397         nand->read_buf = nand_read_buf16;
1398 #else
1399         nand->read_buf = nand_read_buf;
1400 #endif
1401         nand->cmd_ctrl = at91_nand_hwcontrol;
1402 #ifdef CONFIG_SYS_NAND_READY_PIN
1403         nand->dev_ready = at91_nand_ready;
1404 #else
1405         nand->dev_ready = at91_nand_wait_ready;
1406 #endif
1407         nand->chip_delay = 20;
1408 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1409         nand->bbt_options |= NAND_BBT_USE_FLASH;
1410 #endif
1411
1412 #ifdef CONFIG_ATMEL_NAND_HWECC
1413 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1414         ret = atmel_pmecc_nand_init_params(nand, mtd);
1415 #endif
1416 #endif
1417
1418         return ret;
1419 }
1420
1421 void nand_init(void)
1422 {
1423         mtd = nand_to_mtd(&nand_chip);
1424         mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1425         mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
1426         nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1427         nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1428         board_nand_init(&nand_chip);
1429
1430 #ifdef CONFIG_SPL_NAND_ECC
1431         if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1432                 nand_chip.ecc.calculate = nand_calculate_ecc;
1433                 nand_chip.ecc.correct = nand_correct_data;
1434         }
1435 #endif
1436
1437         if (nand_chip.select_chip)
1438                 nand_chip.select_chip(mtd, 0);
1439 }
1440
1441 void nand_deselect(void)
1442 {
1443         if (nand_chip.select_chip)
1444                 nand_chip.select_chip(mtd, -1);
1445 }
1446
1447 #include "nand_spl_loaders.c"
1448
1449 #else
1450
1451 #ifndef CONFIG_SYS_NAND_BASE_LIST
1452 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1453 #endif
1454 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1455 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1456
1457 int atmel_nand_chip_init(int devnum, ulong base_addr)
1458 {
1459         int ret;
1460         struct nand_chip *nand = &nand_chip[devnum];
1461         struct mtd_info *mtd = nand_to_mtd(nand);
1462
1463         nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1464
1465 #ifdef CONFIG_NAND_ECC_BCH
1466         nand->ecc.mode = NAND_ECC_SOFT_BCH;
1467 #else
1468         nand->ecc.mode = NAND_ECC_SOFT;
1469 #endif
1470 #ifdef CONFIG_SYS_NAND_DBW_16
1471         nand->options = NAND_BUSWIDTH_16;
1472 #endif
1473         nand->cmd_ctrl = at91_nand_hwcontrol;
1474 #ifdef CONFIG_SYS_NAND_READY_PIN
1475         nand->dev_ready = at91_nand_ready;
1476 #endif
1477         nand->chip_delay = 75;
1478 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1479         nand->bbt_options |= NAND_BBT_USE_FLASH;
1480 #endif
1481
1482         ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1483         if (ret)
1484                 return ret;
1485
1486 #ifdef CONFIG_ATMEL_NAND_HWECC
1487 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1488         ret = atmel_pmecc_nand_init_params(nand, mtd);
1489 #else
1490         ret = atmel_hwecc_nand_init_param(nand, mtd);
1491 #endif
1492         if (ret)
1493                 return ret;
1494 #endif
1495
1496         ret = nand_scan_tail(mtd);
1497         if (!ret)
1498                 nand_register(devnum, mtd);
1499
1500         return ret;
1501 }
1502
1503 void board_nand_init(void)
1504 {
1505         int i;
1506         for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1507                 if (atmel_nand_chip_init(i, base_addr[i]))
1508                         dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
1509                                 i);
1510 }
1511 #endif /* CONFIG_SPL_BUILD */