Merge branch 'master' of git://git.denx.de/u-boot-ubi
[oweals/u-boot.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  * (C) Copyright 2007-2008
3  * Stelian Pop <stelian@popies.net>
4  * Lead Tech Design <www.leadtechdesign.com>
5  *
6  * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
7  *
8  * Add Programmable Multibit ECC support for various AT91 SoC
9  *     (C) Copyright 2012 ATMEL, Hong Xu
10  *
11  * SPDX-License-Identifier:     GPL-2.0+
12  */
13
14 #include <common.h>
15 #include <asm/gpio.h>
16 #include <asm/arch/gpio.h>
17
18 #include <malloc.h>
19 #include <nand.h>
20 #include <watchdog.h>
21 #include <linux/mtd/nand_ecc.h>
22
23 #ifdef CONFIG_ATMEL_NAND_HWECC
24
25 /* Register access macros */
26 #define ecc_readl(add, reg)                             \
27         readl(add + ATMEL_ECC_##reg)
28 #define ecc_writel(add, reg, value)                     \
29         writel((value), add + ATMEL_ECC_##reg)
30
31 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
32
33 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
34
35 #ifdef CONFIG_SPL_BUILD
36 #undef CONFIG_SYS_NAND_ONFI_DETECTION
37 #endif
38
39 struct atmel_nand_host {
40         struct pmecc_regs __iomem *pmecc;
41         struct pmecc_errloc_regs __iomem *pmerrloc;
42         void __iomem            *pmecc_rom_base;
43
44         u8              pmecc_corr_cap;
45         u16             pmecc_sector_size;
46         u32             pmecc_index_table_offset;
47         u32             pmecc_version;
48
49         int             pmecc_bytes_per_sector;
50         int             pmecc_sector_number;
51         int             pmecc_degree;   /* Degree of remainders */
52         int             pmecc_cw_len;   /* Length of codeword */
53
54         /* lookup table for alpha_to and index_of */
55         void __iomem    *pmecc_alpha_to;
56         void __iomem    *pmecc_index_of;
57
58         /* data for pmecc computation */
59         int16_t *pmecc_smu;
60         int16_t *pmecc_partial_syn;
61         int16_t *pmecc_si;
62         int16_t *pmecc_lmu; /* polynomal order */
63         int     *pmecc_mu;
64         int     *pmecc_dmu;
65         int     *pmecc_delta;
66 };
67
68 static struct atmel_nand_host pmecc_host;
69 static struct nand_ecclayout atmel_pmecc_oobinfo;
70
71 /*
72  * Return number of ecc bytes per sector according to sector size and
73  * correction capability
74  *
75  * Following table shows what at91 PMECC supported:
76  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
77  * =====================        ================        =================
78  *                2-bits                 4-bytes                  4-bytes
79  *                4-bits                 7-bytes                  7-bytes
80  *                8-bits                13-bytes                 14-bytes
81  *               12-bits                20-bytes                 21-bytes
82  *               24-bits                39-bytes                 42-bytes
83  *               32-bits                52-bytes                 56-bytes
84  */
85 static int pmecc_get_ecc_bytes(int cap, int sector_size)
86 {
87         int m = 12 + sector_size / 512;
88         return (m * cap + 7) / 8;
89 }
90
91 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
92         int oobsize, int ecc_len)
93 {
94         int i;
95
96         layout->eccbytes = ecc_len;
97
98         /* ECC will occupy the last ecc_len bytes continuously */
99         for (i = 0; i < ecc_len; i++)
100                 layout->eccpos[i] = oobsize - ecc_len + i;
101
102         layout->oobfree[0].offset = 2;
103         layout->oobfree[0].length =
104                 oobsize - ecc_len - layout->oobfree[0].offset;
105 }
106
107 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
108 {
109         int table_size;
110
111         table_size = host->pmecc_sector_size == 512 ?
112                 PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
113
114         /* the ALPHA lookup table is right behind the INDEX lookup table. */
115         return host->pmecc_rom_base + host->pmecc_index_table_offset +
116                         table_size * sizeof(int16_t);
117 }
118
119 static void pmecc_data_free(struct atmel_nand_host *host)
120 {
121         free(host->pmecc_partial_syn);
122         free(host->pmecc_si);
123         free(host->pmecc_lmu);
124         free(host->pmecc_smu);
125         free(host->pmecc_mu);
126         free(host->pmecc_dmu);
127         free(host->pmecc_delta);
128 }
129
130 static int pmecc_data_alloc(struct atmel_nand_host *host)
131 {
132         const int cap = host->pmecc_corr_cap;
133         int size;
134
135         size = (2 * cap + 1) * sizeof(int16_t);
136         host->pmecc_partial_syn = malloc(size);
137         host->pmecc_si = malloc(size);
138         host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
139         host->pmecc_smu = malloc((cap + 2) * size);
140
141         size = (cap + 1) * sizeof(int);
142         host->pmecc_mu = malloc(size);
143         host->pmecc_dmu = malloc(size);
144         host->pmecc_delta = malloc(size);
145
146         if (host->pmecc_partial_syn &&
147                         host->pmecc_si &&
148                         host->pmecc_lmu &&
149                         host->pmecc_smu &&
150                         host->pmecc_mu &&
151                         host->pmecc_dmu &&
152                         host->pmecc_delta)
153                 return 0;
154
155         /* error happened */
156         pmecc_data_free(host);
157         return -ENOMEM;
158
159 }
160
161 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
162 {
163         struct nand_chip *nand_chip = mtd_to_nand(mtd);
164         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
165         int i;
166         uint32_t value;
167
168         /* Fill odd syndromes */
169         for (i = 0; i < host->pmecc_corr_cap; i++) {
170                 value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
171                 if (i & 1)
172                         value >>= 16;
173                 value &= 0xffff;
174                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
175         }
176 }
177
178 static void pmecc_substitute(struct mtd_info *mtd)
179 {
180         struct nand_chip *nand_chip = mtd_to_nand(mtd);
181         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
182         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
183         int16_t __iomem *index_of = host->pmecc_index_of;
184         int16_t *partial_syn = host->pmecc_partial_syn;
185         const int cap = host->pmecc_corr_cap;
186         int16_t *si;
187         int i, j;
188
189         /* si[] is a table that holds the current syndrome value,
190          * an element of that table belongs to the field
191          */
192         si = host->pmecc_si;
193
194         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
195
196         /* Computation 2t syndromes based on S(x) */
197         /* Odd syndromes */
198         for (i = 1; i < 2 * cap; i += 2) {
199                 for (j = 0; j < host->pmecc_degree; j++) {
200                         if (partial_syn[i] & (0x1 << j))
201                                 si[i] = readw(alpha_to + i * j) ^ si[i];
202                 }
203         }
204         /* Even syndrome = (Odd syndrome) ** 2 */
205         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
206                 if (si[j] == 0) {
207                         si[i] = 0;
208                 } else {
209                         int16_t tmp;
210
211                         tmp = readw(index_of + si[j]);
212                         tmp = (tmp * 2) % host->pmecc_cw_len;
213                         si[i] = readw(alpha_to + tmp);
214                 }
215         }
216 }
217
218 /*
219  * This function defines a Berlekamp iterative procedure for
220  * finding the value of the error location polynomial.
221  * The input is si[], initialize by pmecc_substitute().
222  * The output is smu[][].
223  *
224  * This function is written according to chip datasheet Chapter:
225  * Find the Error Location Polynomial Sigma(x) of Section:
226  * Programmable Multibit ECC Control (PMECC).
227  */
228 static void pmecc_get_sigma(struct mtd_info *mtd)
229 {
230         struct nand_chip *nand_chip = mtd_to_nand(mtd);
231         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
232
233         int16_t *lmu = host->pmecc_lmu;
234         int16_t *si = host->pmecc_si;
235         int *mu = host->pmecc_mu;
236         int *dmu = host->pmecc_dmu;     /* Discrepancy */
237         int *delta = host->pmecc_delta; /* Delta order */
238         int cw_len = host->pmecc_cw_len;
239         const int16_t cap = host->pmecc_corr_cap;
240         const int num = 2 * cap + 1;
241         int16_t __iomem *index_of = host->pmecc_index_of;
242         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
243         int i, j, k;
244         uint32_t dmu_0_count, tmp;
245         int16_t *smu = host->pmecc_smu;
246
247         /* index of largest delta */
248         int ro;
249         int largest;
250         int diff;
251
252         /* Init the Sigma(x) */
253         memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
254
255         dmu_0_count = 0;
256
257         /* First Row */
258
259         /* Mu */
260         mu[0] = -1;
261
262         smu[0] = 1;
263
264         /* discrepancy set to 1 */
265         dmu[0] = 1;
266         /* polynom order set to 0 */
267         lmu[0] = 0;
268         /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
269         delta[0] = -1;
270
271         /* Second Row */
272
273         /* Mu */
274         mu[1] = 0;
275         /* Sigma(x) set to 1 */
276         smu[num] = 1;
277
278         /* discrepancy set to S1 */
279         dmu[1] = si[1];
280
281         /* polynom order set to 0 */
282         lmu[1] = 0;
283
284         /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
285         delta[1] = 0;
286
287         for (i = 1; i <= cap; i++) {
288                 mu[i + 1] = i << 1;
289                 /* Begin Computing Sigma (Mu+1) and L(mu) */
290                 /* check if discrepancy is set to 0 */
291                 if (dmu[i] == 0) {
292                         dmu_0_count++;
293
294                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
295                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
296                                 tmp += 2;
297                         else
298                                 tmp += 1;
299
300                         if (dmu_0_count == tmp) {
301                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
302                                         smu[(cap + 1) * num + j] =
303                                                         smu[i * num + j];
304
305                                 lmu[cap + 1] = lmu[i];
306                                 return;
307                         }
308
309                         /* copy polynom */
310                         for (j = 0; j <= lmu[i] >> 1; j++)
311                                 smu[(i + 1) * num + j] = smu[i * num + j];
312
313                         /* copy previous polynom order to the next */
314                         lmu[i + 1] = lmu[i];
315                 } else {
316                         ro = 0;
317                         largest = -1;
318                         /* find largest delta with dmu != 0 */
319                         for (j = 0; j < i; j++) {
320                                 if ((dmu[j]) && (delta[j] > largest)) {
321                                         largest = delta[j];
322                                         ro = j;
323                                 }
324                         }
325
326                         /* compute difference */
327                         diff = (mu[i] - mu[ro]);
328
329                         /* Compute degree of the new smu polynomial */
330                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
331                                 lmu[i + 1] = lmu[i];
332                         else
333                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
334
335                         /* Init smu[i+1] with 0 */
336                         for (k = 0; k < num; k++)
337                                 smu[(i + 1) * num + k] = 0;
338
339                         /* Compute smu[i+1] */
340                         for (k = 0; k <= lmu[ro] >> 1; k++) {
341                                 int16_t a, b, c;
342
343                                 if (!(smu[ro * num + k] && dmu[i]))
344                                         continue;
345                                 a = readw(index_of + dmu[i]);
346                                 b = readw(index_of + dmu[ro]);
347                                 c = readw(index_of + smu[ro * num + k]);
348                                 tmp = a + (cw_len - b) + c;
349                                 a = readw(alpha_to + tmp % cw_len);
350                                 smu[(i + 1) * num + (k + diff)] = a;
351                         }
352
353                         for (k = 0; k <= lmu[i] >> 1; k++)
354                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
355                 }
356
357                 /* End Computing Sigma (Mu+1) and L(mu) */
358                 /* In either case compute delta */
359                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
360
361                 /* Do not compute discrepancy for the last iteration */
362                 if (i >= cap)
363                         continue;
364
365                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
366                         tmp = 2 * (i - 1);
367                         if (k == 0) {
368                                 dmu[i + 1] = si[tmp + 3];
369                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
370                                 int16_t a, b, c;
371                                 a = readw(index_of +
372                                                 smu[(i + 1) * num + k]);
373                                 b = si[2 * (i - 1) + 3 - k];
374                                 c = readw(index_of + b);
375                                 tmp = a + c;
376                                 tmp %= cw_len;
377                                 dmu[i + 1] = readw(alpha_to + tmp) ^
378                                         dmu[i + 1];
379                         }
380                 }
381         }
382 }
383
384 static int pmecc_err_location(struct mtd_info *mtd)
385 {
386         struct nand_chip *nand_chip = mtd_to_nand(mtd);
387         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
388         const int cap = host->pmecc_corr_cap;
389         const int num = 2 * cap + 1;
390         int sector_size = host->pmecc_sector_size;
391         int err_nbr = 0;        /* number of error */
392         int roots_nbr;          /* number of roots */
393         int i;
394         uint32_t val;
395         int16_t *smu = host->pmecc_smu;
396         int timeout = PMECC_MAX_TIMEOUT_US;
397
398         pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
399
400         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
401                 pmecc_writel(host->pmerrloc, sigma[i],
402                              smu[(cap + 1) * num + i]);
403                 err_nbr++;
404         }
405
406         val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
407         if (sector_size == 1024)
408                 val |= PMERRLOC_ELCFG_SECTOR_1024;
409
410         pmecc_writel(host->pmerrloc, elcfg, val);
411         pmecc_writel(host->pmerrloc, elen,
412                      sector_size * 8 + host->pmecc_degree * cap);
413
414         while (--timeout) {
415                 if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
416                         break;
417                 WATCHDOG_RESET();
418                 udelay(1);
419         }
420
421         if (!timeout) {
422                 dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
423                 return -1;
424         }
425
426         roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
427                         >> 8;
428         /* Number of roots == degree of smu hence <= cap */
429         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
430                 return err_nbr - 1;
431
432         /* Number of roots does not match the degree of smu
433          * unable to correct error */
434         return -1;
435 }
436
437 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
438                 int sector_num, int extra_bytes, int err_nbr)
439 {
440         struct nand_chip *nand_chip = mtd_to_nand(mtd);
441         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
442         int i = 0;
443         int byte_pos, bit_pos, sector_size, pos;
444         uint32_t tmp;
445         uint8_t err_byte;
446
447         sector_size = host->pmecc_sector_size;
448
449         while (err_nbr) {
450                 tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
451                 byte_pos = tmp / 8;
452                 bit_pos  = tmp % 8;
453
454                 if (byte_pos >= (sector_size + extra_bytes))
455                         BUG();  /* should never happen */
456
457                 if (byte_pos < sector_size) {
458                         err_byte = *(buf + byte_pos);
459                         *(buf + byte_pos) ^= (1 << bit_pos);
460
461                         pos = sector_num * host->pmecc_sector_size + byte_pos;
462                         dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
463                                 pos, bit_pos, err_byte, *(buf + byte_pos));
464                 } else {
465                         /* Bit flip in OOB area */
466                         tmp = sector_num * host->pmecc_bytes_per_sector
467                                         + (byte_pos - sector_size);
468                         err_byte = ecc[tmp];
469                         ecc[tmp] ^= (1 << bit_pos);
470
471                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
472                         dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
473                                 pos, bit_pos, err_byte, ecc[tmp]);
474                 }
475
476                 i++;
477                 err_nbr--;
478         }
479
480         return;
481 }
482
483 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
484         u8 *ecc)
485 {
486         struct nand_chip *nand_chip = mtd_to_nand(mtd);
487         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
488         int i, err_nbr, eccbytes;
489         uint8_t *buf_pos;
490
491         /* SAMA5D4 PMECC IP can correct errors for all 0xff page */
492         if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
493                 goto normal_check;
494
495         eccbytes = nand_chip->ecc.bytes;
496         for (i = 0; i < eccbytes; i++)
497                 if (ecc[i] != 0xff)
498                         goto normal_check;
499         /* Erased page, return OK */
500         return 0;
501
502 normal_check:
503         for (i = 0; i < host->pmecc_sector_number; i++) {
504                 err_nbr = 0;
505                 if (pmecc_stat & 0x1) {
506                         buf_pos = buf + i * host->pmecc_sector_size;
507
508                         pmecc_gen_syndrome(mtd, i);
509                         pmecc_substitute(mtd);
510                         pmecc_get_sigma(mtd);
511
512                         err_nbr = pmecc_err_location(mtd);
513                         if (err_nbr == -1) {
514                                 dev_err(host->dev, "PMECC: Too many errors\n");
515                                 mtd->ecc_stats.failed++;
516                                 return -EBADMSG;
517                         } else {
518                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
519                                         host->pmecc_bytes_per_sector, err_nbr);
520                                 mtd->ecc_stats.corrected += err_nbr;
521                         }
522                 }
523                 pmecc_stat >>= 1;
524         }
525
526         return 0;
527 }
528
529 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
530         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
531 {
532         struct atmel_nand_host *host = nand_get_controller_data(chip);
533         int eccsize = chip->ecc.size;
534         uint8_t *oob = chip->oob_poi;
535         uint32_t *eccpos = chip->ecc.layout->eccpos;
536         uint32_t stat;
537         int timeout = PMECC_MAX_TIMEOUT_US;
538
539         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
540         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
541         pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
542                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
543
544         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
545         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
546
547         chip->read_buf(mtd, buf, eccsize);
548         chip->read_buf(mtd, oob, mtd->oobsize);
549
550         while (--timeout) {
551                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
552                         break;
553                 WATCHDOG_RESET();
554                 udelay(1);
555         }
556
557         if (!timeout) {
558                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
559                 return -1;
560         }
561
562         stat = pmecc_readl(host->pmecc, isr);
563         if (stat != 0)
564                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
565                         return -EBADMSG;
566
567         return 0;
568 }
569
570 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
571                 struct nand_chip *chip, const uint8_t *buf,
572                 int oob_required, int page)
573 {
574         struct atmel_nand_host *host = nand_get_controller_data(chip);
575         uint32_t *eccpos = chip->ecc.layout->eccpos;
576         int i, j;
577         int timeout = PMECC_MAX_TIMEOUT_US;
578
579         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
580         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
581
582         pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
583                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
584
585         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
586         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
587
588         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
589
590         while (--timeout) {
591                 if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
592                         break;
593                 WATCHDOG_RESET();
594                 udelay(1);
595         }
596
597         if (!timeout) {
598                 dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
599                 goto out;
600         }
601
602         for (i = 0; i < host->pmecc_sector_number; i++) {
603                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
604                         int pos;
605
606                         pos = i * host->pmecc_bytes_per_sector + j;
607                         chip->oob_poi[eccpos[pos]] =
608                                 pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
609                 }
610         }
611         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
612 out:
613         return 0;
614 }
615
616 static void atmel_pmecc_core_init(struct mtd_info *mtd)
617 {
618         struct nand_chip *nand_chip = mtd_to_nand(mtd);
619         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
620         uint32_t val = 0;
621         struct nand_ecclayout *ecc_layout;
622
623         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
624         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
625
626         switch (host->pmecc_corr_cap) {
627         case 2:
628                 val = PMECC_CFG_BCH_ERR2;
629                 break;
630         case 4:
631                 val = PMECC_CFG_BCH_ERR4;
632                 break;
633         case 8:
634                 val = PMECC_CFG_BCH_ERR8;
635                 break;
636         case 12:
637                 val = PMECC_CFG_BCH_ERR12;
638                 break;
639         case 24:
640                 val = PMECC_CFG_BCH_ERR24;
641                 break;
642         case 32:
643                 val = PMECC_CFG_BCH_ERR32;
644                 break;
645         }
646
647         if (host->pmecc_sector_size == 512)
648                 val |= PMECC_CFG_SECTOR512;
649         else if (host->pmecc_sector_size == 1024)
650                 val |= PMECC_CFG_SECTOR1024;
651
652         switch (host->pmecc_sector_number) {
653         case 1:
654                 val |= PMECC_CFG_PAGE_1SECTOR;
655                 break;
656         case 2:
657                 val |= PMECC_CFG_PAGE_2SECTORS;
658                 break;
659         case 4:
660                 val |= PMECC_CFG_PAGE_4SECTORS;
661                 break;
662         case 8:
663                 val |= PMECC_CFG_PAGE_8SECTORS;
664                 break;
665         }
666
667         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
668                 | PMECC_CFG_AUTO_DISABLE);
669         pmecc_writel(host->pmecc, cfg, val);
670
671         ecc_layout = nand_chip->ecc.layout;
672         pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
673         pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
674         pmecc_writel(host->pmecc, eaddr,
675                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
676         /* See datasheet about PMECC Clock Control Register */
677         pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
678         pmecc_writel(host->pmecc, idr, 0xff);
679         pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
680 }
681
682 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
683 /*
684  * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
685  *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
686  *                    ONFI ECC parameters.
687  * @host: point to an atmel_nand_host structure.
688  *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
689  *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
690  * @chip: point to an nand_chip structure.
691  * @cap: store the ONFI ECC correct bits capbility
692  * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
693  *
694  * Return 0 if success. otherwise return the error code.
695  */
696 static int pmecc_choose_ecc(struct atmel_nand_host *host,
697                 struct nand_chip *chip,
698                 int *cap, int *sector_size)
699 {
700         /* Get ECC requirement from ONFI parameters */
701         *cap = *sector_size = 0;
702         if (chip->onfi_version) {
703                 *cap = chip->ecc_strength_ds;
704                 *sector_size = chip->ecc_step_ds;
705                 MTDDEBUG(MTD_DEBUG_LEVEL1, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
706                          *cap, *sector_size);
707         }
708
709         if (*cap == 0 && *sector_size == 0) {
710                 /* Non-ONFI compliant */
711                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
712                 *cap = 2;
713                 *sector_size = 512;
714         }
715
716         /* If head file doesn't specify then use the one in ONFI parameters */
717         if (host->pmecc_corr_cap == 0) {
718                 /* use the most fitable ecc bits (the near bigger one ) */
719                 if (*cap <= 2)
720                         host->pmecc_corr_cap = 2;
721                 else if (*cap <= 4)
722                         host->pmecc_corr_cap = 4;
723                 else if (*cap <= 8)
724                         host->pmecc_corr_cap = 8;
725                 else if (*cap <= 12)
726                         host->pmecc_corr_cap = 12;
727                 else if (*cap <= 24)
728                         host->pmecc_corr_cap = 24;
729                 else
730 #ifdef CONFIG_SAMA5D2
731                         host->pmecc_corr_cap = 32;
732 #else
733                         host->pmecc_corr_cap = 24;
734 #endif
735         }
736         if (host->pmecc_sector_size == 0) {
737                 /* use the most fitable sector size (the near smaller one ) */
738                 if (*sector_size >= 1024)
739                         host->pmecc_sector_size = 1024;
740                 else if (*sector_size >= 512)
741                         host->pmecc_sector_size = 512;
742                 else
743                         return -EINVAL;
744         }
745         return 0;
746 }
747 #endif
748
749 #if defined(NO_GALOIS_TABLE_IN_ROM)
750 static uint16_t *pmecc_galois_table;
751 static inline int deg(unsigned int poly)
752 {
753         /* polynomial degree is the most-significant bit index */
754         return fls(poly) - 1;
755 }
756
757 static int build_gf_tables(int mm, unsigned int poly,
758                            int16_t *index_of, int16_t *alpha_to)
759 {
760         unsigned int i, x = 1;
761         const unsigned int k = 1 << deg(poly);
762         unsigned int nn = (1 << mm) - 1;
763
764         /* primitive polynomial must be of degree m */
765         if (k != (1u << mm))
766                 return -EINVAL;
767
768         for (i = 0; i < nn; i++) {
769                 alpha_to[i] = x;
770                 index_of[x] = i;
771                 if (i && (x == 1))
772                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
773                         return -EINVAL;
774                 x <<= 1;
775                 if (x & k)
776                         x ^= poly;
777         }
778
779         alpha_to[nn] = 1;
780         index_of[0] = 0;
781
782         return 0;
783 }
784
785 static uint16_t *create_lookup_table(int sector_size)
786 {
787         int degree = (sector_size == 512) ?
788                         PMECC_GF_DIMENSION_13 :
789                         PMECC_GF_DIMENSION_14;
790         unsigned int poly = (sector_size == 512) ?
791                         PMECC_GF_13_PRIMITIVE_POLY :
792                         PMECC_GF_14_PRIMITIVE_POLY;
793         int table_size = (sector_size == 512) ?
794                         PMECC_INDEX_TABLE_SIZE_512 :
795                         PMECC_INDEX_TABLE_SIZE_1024;
796
797         int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
798         if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
799                 return NULL;
800
801         return (uint16_t *)addr;
802 }
803 #endif
804
805 static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
806                 struct mtd_info *mtd)
807 {
808         struct atmel_nand_host *host;
809         int cap, sector_size;
810
811         host = &pmecc_host;
812         nand_set_controller_data(nand, host);
813
814         nand->ecc.mode = NAND_ECC_HW;
815         nand->ecc.calculate = NULL;
816         nand->ecc.correct = NULL;
817         nand->ecc.hwctl = NULL;
818
819 #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
820         host->pmecc_corr_cap = host->pmecc_sector_size = 0;
821
822 #ifdef CONFIG_PMECC_CAP
823         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
824 #endif
825 #ifdef CONFIG_PMECC_SECTOR_SIZE
826         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
827 #endif
828         /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
829          * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
830          * from ONFI.
831          */
832         if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
833                 dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
834                         cap, sector_size);
835                 return -EINVAL;
836         }
837
838         if (cap > host->pmecc_corr_cap)
839                 dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
840                                 host->pmecc_corr_cap, cap);
841         if (sector_size < host->pmecc_sector_size)
842                 dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
843                                 host->pmecc_sector_size, sector_size);
844 #else   /* CONFIG_SYS_NAND_ONFI_DETECTION */
845         host->pmecc_corr_cap = CONFIG_PMECC_CAP;
846         host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
847 #endif
848
849         cap = host->pmecc_corr_cap;
850         sector_size = host->pmecc_sector_size;
851
852         /* TODO: need check whether cap & sector_size is validate */
853 #if defined(NO_GALOIS_TABLE_IN_ROM)
854         /*
855          * As pmecc_rom_base is the begin of the gallois field table, So the
856          * index offset just set as 0.
857          */
858         host->pmecc_index_table_offset = 0;
859 #else
860         if (host->pmecc_sector_size == 512)
861                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
862         else
863                 host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
864 #endif
865
866         MTDDEBUG(MTD_DEBUG_LEVEL1,
867                 "Initialize PMECC params, cap: %d, sector: %d\n",
868                 cap, sector_size);
869
870         host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
871         host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
872                         ATMEL_BASE_PMERRLOC;
873 #if defined(NO_GALOIS_TABLE_IN_ROM)
874         pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
875         if (!pmecc_galois_table) {
876                 dev_err(host->dev, "out of memory\n");
877                 return -ENOMEM;
878         }
879
880         host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
881 #else
882         host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
883 #endif
884
885         /* ECC is calculated for the whole page (1 step) */
886         nand->ecc.size = mtd->writesize;
887
888         /* set ECC page size and oob layout */
889         switch (mtd->writesize) {
890         case 2048:
891         case 4096:
892         case 8192:
893                 host->pmecc_degree = (sector_size == 512) ?
894                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
895                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
896                 host->pmecc_sector_number = mtd->writesize / sector_size;
897                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
898                         cap, sector_size);
899                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
900                 host->pmecc_index_of = host->pmecc_rom_base +
901                         host->pmecc_index_table_offset;
902
903                 nand->ecc.steps = 1;
904                 nand->ecc.bytes = host->pmecc_bytes_per_sector *
905                                        host->pmecc_sector_number;
906
907                 if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
908                         dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
909                                         MTD_MAX_ECCPOS_ENTRIES_LARGE);
910                         return -EINVAL;
911                 }
912
913                 if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
914                         dev_err(host->dev, "No room for ECC bytes\n");
915                         return -EINVAL;
916                 }
917                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
918                                         mtd->oobsize,
919                                         nand->ecc.bytes);
920                 nand->ecc.layout = &atmel_pmecc_oobinfo;
921                 break;
922         case 512:
923         case 1024:
924                 /* TODO */
925                 dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
926         default:
927                 /* page size not handled by HW ECC */
928                 /* switching back to soft ECC */
929                 nand->ecc.mode = NAND_ECC_SOFT;
930                 nand->ecc.read_page = NULL;
931                 nand->ecc.postpad = 0;
932                 nand->ecc.prepad = 0;
933                 nand->ecc.bytes = 0;
934                 return 0;
935         }
936
937         /* Allocate data for PMECC computation */
938         if (pmecc_data_alloc(host)) {
939                 dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
940                 return -ENOMEM;
941         }
942
943         nand->options |= NAND_NO_SUBPAGE_WRITE;
944         nand->ecc.read_page = atmel_nand_pmecc_read_page;
945         nand->ecc.write_page = atmel_nand_pmecc_write_page;
946         nand->ecc.strength = cap;
947
948         /* Check the PMECC ip version */
949         host->pmecc_version = pmecc_readl(host->pmerrloc, version);
950         dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
951
952         atmel_pmecc_core_init(mtd);
953
954         return 0;
955 }
956
957 #else
958
959 /* oob layout for large page size
960  * bad block info is on bytes 0 and 1
961  * the bytes have to be consecutives to avoid
962  * several NAND_CMD_RNDOUT during read
963  */
964 static struct nand_ecclayout atmel_oobinfo_large = {
965         .eccbytes = 4,
966         .eccpos = {60, 61, 62, 63},
967         .oobfree = {
968                 {2, 58}
969         },
970 };
971
972 /* oob layout for small page size
973  * bad block info is on bytes 4 and 5
974  * the bytes have to be consecutives to avoid
975  * several NAND_CMD_RNDOUT during read
976  */
977 static struct nand_ecclayout atmel_oobinfo_small = {
978         .eccbytes = 4,
979         .eccpos = {0, 1, 2, 3},
980         .oobfree = {
981                 {6, 10}
982         },
983 };
984
985 /*
986  * Calculate HW ECC
987  *
988  * function called after a write
989  *
990  * mtd:        MTD block structure
991  * dat:        raw data (unused)
992  * ecc_code:   buffer for ECC
993  */
994 static int atmel_nand_calculate(struct mtd_info *mtd,
995                 const u_char *dat, unsigned char *ecc_code)
996 {
997         unsigned int ecc_value;
998
999         /* get the first 2 ECC bytes */
1000         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
1001
1002         ecc_code[0] = ecc_value & 0xFF;
1003         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1004
1005         /* get the last 2 ECC bytes */
1006         ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
1007
1008         ecc_code[2] = ecc_value & 0xFF;
1009         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1010
1011         return 0;
1012 }
1013
1014 /*
1015  * HW ECC read page function
1016  *
1017  * mtd:        mtd info structure
1018  * chip:       nand chip info structure
1019  * buf:        buffer to store read data
1020  * oob_required:    caller expects OOB data read to chip->oob_poi
1021  */
1022 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1023                                 uint8_t *buf, int oob_required, int page)
1024 {
1025         int eccsize = chip->ecc.size;
1026         int eccbytes = chip->ecc.bytes;
1027         uint32_t *eccpos = chip->ecc.layout->eccpos;
1028         uint8_t *p = buf;
1029         uint8_t *oob = chip->oob_poi;
1030         uint8_t *ecc_pos;
1031         int stat;
1032
1033         /* read the page */
1034         chip->read_buf(mtd, p, eccsize);
1035
1036         /* move to ECC position if needed */
1037         if (eccpos[0] != 0) {
1038                 /* This only works on large pages
1039                  * because the ECC controller waits for
1040                  * NAND_CMD_RNDOUTSTART after the
1041                  * NAND_CMD_RNDOUT.
1042                  * anyway, for small pages, the eccpos[0] == 0
1043                  */
1044                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1045                                 mtd->writesize + eccpos[0], -1);
1046         }
1047
1048         /* the ECC controller needs to read the ECC just after the data */
1049         ecc_pos = oob + eccpos[0];
1050         chip->read_buf(mtd, ecc_pos, eccbytes);
1051
1052         /* check if there's an error */
1053         stat = chip->ecc.correct(mtd, p, oob, NULL);
1054
1055         if (stat < 0)
1056                 mtd->ecc_stats.failed++;
1057         else
1058                 mtd->ecc_stats.corrected += stat;
1059
1060         /* get back to oob start (end of page) */
1061         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1062
1063         /* read the oob */
1064         chip->read_buf(mtd, oob, mtd->oobsize);
1065
1066         return 0;
1067 }
1068
1069 /*
1070  * HW ECC Correction
1071  *
1072  * function called after a read
1073  *
1074  * mtd:        MTD block structure
1075  * dat:        raw data read from the chip
1076  * read_ecc:   ECC from the chip (unused)
1077  * isnull:     unused
1078  *
1079  * Detect and correct a 1 bit error for a page
1080  */
1081 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1082                 u_char *read_ecc, u_char *isnull)
1083 {
1084         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1085         unsigned int ecc_status;
1086         unsigned int ecc_word, ecc_bit;
1087
1088         /* get the status from the Status Register */
1089         ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
1090
1091         /* if there's no error */
1092         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1093                 return 0;
1094
1095         /* get error bit offset (4 bits) */
1096         ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
1097         /* get word address (12 bits) */
1098         ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
1099         ecc_word >>= 4;
1100
1101         /* if there are multiple errors */
1102         if (ecc_status & ATMEL_ECC_MULERR) {
1103                 /* check if it is a freshly erased block
1104                  * (filled with 0xff) */
1105                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1106                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1107                         /* the block has just been erased, return OK */
1108                         return 0;
1109                 }
1110                 /* it doesn't seems to be a freshly
1111                  * erased block.
1112                  * We can't correct so many errors */
1113                 dev_warn(host->dev, "atmel_nand : multiple errors detected."
1114                                 " Unable to correct.\n");
1115                 return -EBADMSG;
1116         }
1117
1118         /* if there's a single bit error : we can correct it */
1119         if (ecc_status & ATMEL_ECC_ECCERR) {
1120                 /* there's nothing much to do here.
1121                  * the bit error is on the ECC itself.
1122                  */
1123                 dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
1124                                 " Nothing to correct\n");
1125                 return 0;
1126         }
1127
1128         dev_warn(host->dev, "atmel_nand : one bit error on data."
1129                         " (word offset in the page :"
1130                         " 0x%x bit offset : 0x%x)\n",
1131                         ecc_word, ecc_bit);
1132         /* correct the error */
1133         if (nand_chip->options & NAND_BUSWIDTH_16) {
1134                 /* 16 bits words */
1135                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1136         } else {
1137                 /* 8 bits words */
1138                 dat[ecc_word] ^= (1 << ecc_bit);
1139         }
1140         dev_warn(host->dev, "atmel_nand : error corrected\n");
1141         return 1;
1142 }
1143
1144 /*
1145  * Enable HW ECC : unused on most chips
1146  */
1147 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1148 {
1149 }
1150
1151 int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
1152 {
1153         nand->ecc.mode = NAND_ECC_HW;
1154         nand->ecc.calculate = atmel_nand_calculate;
1155         nand->ecc.correct = atmel_nand_correct;
1156         nand->ecc.hwctl = atmel_nand_hwctl;
1157         nand->ecc.read_page = atmel_nand_read_page;
1158         nand->ecc.bytes = 4;
1159         nand->ecc.strength = 4;
1160
1161         if (nand->ecc.mode == NAND_ECC_HW) {
1162                 /* ECC is calculated for the whole page (1 step) */
1163                 nand->ecc.size = mtd->writesize;
1164
1165                 /* set ECC page size and oob layout */
1166                 switch (mtd->writesize) {
1167                 case 512:
1168                         nand->ecc.layout = &atmel_oobinfo_small;
1169                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1170                                         ATMEL_ECC_PAGESIZE_528);
1171                         break;
1172                 case 1024:
1173                         nand->ecc.layout = &atmel_oobinfo_large;
1174                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1175                                         ATMEL_ECC_PAGESIZE_1056);
1176                         break;
1177                 case 2048:
1178                         nand->ecc.layout = &atmel_oobinfo_large;
1179                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1180                                         ATMEL_ECC_PAGESIZE_2112);
1181                         break;
1182                 case 4096:
1183                         nand->ecc.layout = &atmel_oobinfo_large;
1184                         ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
1185                                         ATMEL_ECC_PAGESIZE_4224);
1186                         break;
1187                 default:
1188                         /* page size not handled by HW ECC */
1189                         /* switching back to soft ECC */
1190                         nand->ecc.mode = NAND_ECC_SOFT;
1191                         nand->ecc.calculate = NULL;
1192                         nand->ecc.correct = NULL;
1193                         nand->ecc.hwctl = NULL;
1194                         nand->ecc.read_page = NULL;
1195                         nand->ecc.postpad = 0;
1196                         nand->ecc.prepad = 0;
1197                         nand->ecc.bytes = 0;
1198                         break;
1199                 }
1200         }
1201
1202         return 0;
1203 }
1204
1205 #endif /* CONFIG_ATMEL_NAND_HW_PMECC */
1206
1207 #endif /* CONFIG_ATMEL_NAND_HWECC */
1208
1209 static void at91_nand_hwcontrol(struct mtd_info *mtd,
1210                                          int cmd, unsigned int ctrl)
1211 {
1212         struct nand_chip *this = mtd_to_nand(mtd);
1213
1214         if (ctrl & NAND_CTRL_CHANGE) {
1215                 ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
1216                 IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
1217                              | CONFIG_SYS_NAND_MASK_CLE);
1218
1219                 if (ctrl & NAND_CLE)
1220                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
1221                 if (ctrl & NAND_ALE)
1222                         IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
1223
1224 #ifdef CONFIG_SYS_NAND_ENABLE_PIN
1225                 gpio_set_value(CONFIG_SYS_NAND_ENABLE_PIN, !(ctrl & NAND_NCE));
1226 #endif
1227                 this->IO_ADDR_W = (void *) IO_ADDR_W;
1228         }
1229
1230         if (cmd != NAND_CMD_NONE)
1231                 writeb(cmd, this->IO_ADDR_W);
1232 }
1233
1234 #ifdef CONFIG_SYS_NAND_READY_PIN
1235 static int at91_nand_ready(struct mtd_info *mtd)
1236 {
1237         return gpio_get_value(CONFIG_SYS_NAND_READY_PIN);
1238 }
1239 #endif
1240
1241 #ifdef CONFIG_SPL_BUILD
1242 /* The following code is for SPL */
1243 static struct mtd_info *mtd;
1244 static struct nand_chip nand_chip;
1245
1246 static int nand_command(int block, int page, uint32_t offs, u8 cmd)
1247 {
1248         struct nand_chip *this = mtd_to_nand(mtd);
1249         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1250         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1251                         unsigned int ctrl) = this->cmd_ctrl;
1252
1253         while (!this->dev_ready(mtd))
1254                 ;
1255
1256         if (cmd == NAND_CMD_READOOB) {
1257                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
1258                 cmd = NAND_CMD_READ0;
1259         }
1260
1261         hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1262
1263         if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
1264                 offs >>= 1;
1265
1266         hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1267         hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
1268         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
1269         hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
1270 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1271         hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
1272 #endif
1273         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1274
1275         hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1276         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
1277
1278         while (!this->dev_ready(mtd))
1279                 ;
1280
1281         return 0;
1282 }
1283
1284 static int nand_is_bad_block(int block)
1285 {
1286         struct nand_chip *this = mtd_to_nand(mtd);
1287
1288         nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
1289
1290         if (this->options & NAND_BUSWIDTH_16) {
1291                 if (readw(this->IO_ADDR_R) != 0xffff)
1292                         return 1;
1293         } else {
1294                 if (readb(this->IO_ADDR_R) != 0xff)
1295                         return 1;
1296         }
1297
1298         return 0;
1299 }
1300
1301 #ifdef CONFIG_SPL_NAND_ECC
1302 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
1303 #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
1304                   CONFIG_SYS_NAND_ECCSIZE)
1305 #define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
1306
1307 static int nand_read_page(int block, int page, void *dst)
1308 {
1309         struct nand_chip *this = mtd_to_nand(mtd);
1310         u_char ecc_calc[ECCTOTAL];
1311         u_char ecc_code[ECCTOTAL];
1312         u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
1313         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
1314         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
1315         int eccsteps = ECCSTEPS;
1316         int i;
1317         uint8_t *p = dst;
1318         nand_command(block, page, 0, NAND_CMD_READ0);
1319
1320         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1321                 if (this->ecc.mode != NAND_ECC_SOFT)
1322                         this->ecc.hwctl(mtd, NAND_ECC_READ);
1323                 this->read_buf(mtd, p, eccsize);
1324                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
1325         }
1326         this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
1327
1328         for (i = 0; i < ECCTOTAL; i++)
1329                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
1330
1331         eccsteps = ECCSTEPS;
1332         p = dst;
1333
1334         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1335                 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1336
1337         return 0;
1338 }
1339
1340 int spl_nand_erase_one(int block, int page)
1341 {
1342         struct nand_chip *this = mtd_to_nand(mtd);
1343         void (*hwctrl)(struct mtd_info *mtd, int cmd,
1344                         unsigned int ctrl) = this->cmd_ctrl;
1345         int page_addr;
1346
1347         if (nand_chip.select_chip)
1348                 nand_chip.select_chip(mtd, 0);
1349
1350         page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
1351         hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1352         /* Row address */
1353         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1354         hwctrl(mtd, ((page_addr >> 8) & 0xff),
1355                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1356 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
1357         /* One more address cycle for devices > 128MiB */
1358         hwctrl(mtd, (page_addr >> 16) & 0x0f,
1359                NAND_CTRL_ALE | NAND_CTRL_CHANGE);
1360 #endif
1361         hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
1362
1363         while (!this->dev_ready(mtd))
1364                 ;
1365
1366         nand_deselect();
1367
1368         return 0;
1369 }
1370 #else
1371 static int nand_read_page(int block, int page, void *dst)
1372 {
1373         struct nand_chip *this = mtd_to_nand(mtd);
1374
1375         nand_command(block, page, 0, NAND_CMD_READ0);
1376         atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
1377
1378         return 0;
1379 }
1380 #endif /* CONFIG_SPL_NAND_ECC */
1381
1382 int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
1383 {
1384         unsigned int block, lastblock;
1385         unsigned int page;
1386
1387         block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
1388         lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
1389         page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
1390
1391         while (block <= lastblock) {
1392                 if (!nand_is_bad_block(block)) {
1393                         while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
1394                                 nand_read_page(block, page, dst);
1395                                 dst += CONFIG_SYS_NAND_PAGE_SIZE;
1396                                 page++;
1397                         }
1398
1399                         page = 0;
1400                 } else {
1401                         lastblock++;
1402                 }
1403
1404                 block++;
1405         }
1406
1407         return 0;
1408 }
1409
1410 int at91_nand_wait_ready(struct mtd_info *mtd)
1411 {
1412         struct nand_chip *this = mtd_to_nand(mtd);
1413
1414         udelay(this->chip_delay);
1415
1416         return 1;
1417 }
1418
1419 int board_nand_init(struct nand_chip *nand)
1420 {
1421         int ret = 0;
1422
1423         nand->ecc.mode = NAND_ECC_SOFT;
1424 #ifdef CONFIG_SYS_NAND_DBW_16
1425         nand->options = NAND_BUSWIDTH_16;
1426         nand->read_buf = nand_read_buf16;
1427 #else
1428         nand->read_buf = nand_read_buf;
1429 #endif
1430         nand->cmd_ctrl = at91_nand_hwcontrol;
1431 #ifdef CONFIG_SYS_NAND_READY_PIN
1432         nand->dev_ready = at91_nand_ready;
1433 #else
1434         nand->dev_ready = at91_nand_wait_ready;
1435 #endif
1436         nand->chip_delay = 20;
1437 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1438         nand->bbt_options |= NAND_BBT_USE_FLASH;
1439 #endif
1440
1441 #ifdef CONFIG_ATMEL_NAND_HWECC
1442 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1443         ret = atmel_pmecc_nand_init_params(nand, mtd);
1444 #endif
1445 #endif
1446
1447         return ret;
1448 }
1449
1450 void nand_init(void)
1451 {
1452         mtd = &nand_chip.mtd;
1453         mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
1454         mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
1455         nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
1456         nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
1457         board_nand_init(&nand_chip);
1458
1459 #ifdef CONFIG_SPL_NAND_ECC
1460         if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
1461                 nand_chip.ecc.calculate = nand_calculate_ecc;
1462                 nand_chip.ecc.correct = nand_correct_data;
1463         }
1464 #endif
1465
1466         if (nand_chip.select_chip)
1467                 nand_chip.select_chip(mtd, 0);
1468 }
1469
1470 void nand_deselect(void)
1471 {
1472         if (nand_chip.select_chip)
1473                 nand_chip.select_chip(mtd, -1);
1474 }
1475
1476 #else
1477
1478 #ifndef CONFIG_SYS_NAND_BASE_LIST
1479 #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
1480 #endif
1481 static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
1482 static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
1483
1484 int atmel_nand_chip_init(int devnum, ulong base_addr)
1485 {
1486         int ret;
1487         struct nand_chip *nand = &nand_chip[devnum];
1488         struct mtd_info *mtd = nand_to_mtd(nand);
1489
1490         nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;
1491
1492 #ifdef CONFIG_NAND_ECC_BCH
1493         nand->ecc.mode = NAND_ECC_SOFT_BCH;
1494 #else
1495         nand->ecc.mode = NAND_ECC_SOFT;
1496 #endif
1497 #ifdef CONFIG_SYS_NAND_DBW_16
1498         nand->options = NAND_BUSWIDTH_16;
1499 #endif
1500         nand->cmd_ctrl = at91_nand_hwcontrol;
1501 #ifdef CONFIG_SYS_NAND_READY_PIN
1502         nand->dev_ready = at91_nand_ready;
1503 #endif
1504         nand->chip_delay = 75;
1505 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1506         nand->bbt_options |= NAND_BBT_USE_FLASH;
1507 #endif
1508
1509         ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
1510         if (ret)
1511                 return ret;
1512
1513 #ifdef CONFIG_ATMEL_NAND_HWECC
1514 #ifdef CONFIG_ATMEL_NAND_HW_PMECC
1515         ret = atmel_pmecc_nand_init_params(nand, mtd);
1516 #else
1517         ret = atmel_hwecc_nand_init_param(nand, mtd);
1518 #endif
1519         if (ret)
1520                 return ret;
1521 #endif
1522
1523         ret = nand_scan_tail(mtd);
1524         if (!ret)
1525                 nand_register(devnum, mtd);
1526
1527         return ret;
1528 }
1529
1530 void board_nand_init(void)
1531 {
1532         int i;
1533         for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
1534                 if (atmel_nand_chip_init(i, base_addr[i]))
1535                         dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
1536                                 i);
1537 }
1538 #endif /* CONFIG_SPL_BUILD */