cc7942d0ba33f047b687fabd0fbb61e4b08b5406
[oweals/u-boot.git] / drivers / ddr / marvell / a38x / mv_ddr_plat.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) Marvell International Ltd. and its affiliates
4  */
5
6 #include "ddr3_init.h"
7 #include "mv_ddr_training_db.h"
8 #include "mv_ddr_regs.h"
9 #include "mv_ddr_sys_env_lib.h"
10
11 #define DDR_INTERFACES_NUM              1
12 #define DDR_INTERFACE_OCTETS_NUM        5
13
14 /*
15  * 1. L2 filter should be set at binary header to 0xD000000,
16  *    to avoid conflict with internal register IO.
17  * 2. U-Boot modifies internal registers base to 0xf100000,
18  *    and than should update L2 filter accordingly to 0xf000000 (3.75 GB)
19  */
20 #define L2_FILTER_FOR_MAX_MEMORY_SIZE   0xC0000000 /* temporary limit l2 filter to 3gb (LSP issue) */
21 #define ADDRESS_FILTERING_END_REGISTER  0x8c04
22
23 #define DYNAMIC_CS_SIZE_CONFIG
24 #define DISABLE_L2_FILTERING_DURING_DDR_TRAINING
25
26 /* Termal Sensor Registers */
27 #define TSEN_CONTROL_LSB_REG            0xE4070
28 #define TSEN_CONTROL_LSB_TC_TRIM_OFFSET 0
29 #define TSEN_CONTROL_LSB_TC_TRIM_MASK   (0x7 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET)
30 #define TSEN_CONTROL_MSB_REG            0xE4074
31 #define TSEN_CONTROL_MSB_RST_OFFSET     8
32 #define TSEN_CONTROL_MSB_RST_MASK       (0x1 << TSEN_CONTROL_MSB_RST_OFFSET)
33 #define TSEN_STATUS_REG                 0xe4078
34 #define TSEN_STATUS_READOUT_VALID_OFFSET        10
35 #define TSEN_STATUS_READOUT_VALID_MASK  (0x1 <<                         \
36                                          TSEN_STATUS_READOUT_VALID_OFFSET)
37 #define TSEN_STATUS_TEMP_OUT_OFFSET     0
38 #define TSEN_STATUS_TEMP_OUT_MASK       (0x3ff << TSEN_STATUS_TEMP_OUT_OFFSET)
39
40 static struct dlb_config ddr3_dlb_config_table[] = {
41         {DLB_CTRL_REG, 0x2000005c},
42         {DLB_BUS_OPT_WT_REG, 0x00880000},
43         {DLB_AGING_REG, 0x0f7f007f},
44         {DLB_EVICTION_CTRL_REG, 0x0000129f},
45         {DLB_EVICTION_TIMERS_REG, 0x00ff0000},
46         {DLB_WTS_DIFF_CS_REG, 0x04030802},
47         {DLB_WTS_DIFF_BG_REG, 0x00000a02},
48         {DLB_WTS_SAME_BG_REG, 0x09000a01},
49         {DLB_WTS_CMDS_REG, 0x00020005},
50         {DLB_WTS_ATTR_PRIO_REG, 0x00060f10},
51         {DLB_QUEUE_MAP_REG, 0x00000543},
52         {DLB_SPLIT_REG, 0x00000000},
53         {DLB_USER_CMD_REG, 0x00000000},
54         {0x0, 0x0}
55 };
56
57 static struct dlb_config *sys_env_dlb_config_ptr_get(void)
58 {
59         return &ddr3_dlb_config_table[0];
60 }
61
62 static u8 a38x_bw_per_freq[MV_DDR_FREQ_LAST] = {
63         0x3,                    /* MV_DDR_FREQ_100 */
64         0x4,                    /* MV_DDR_FREQ_400 */
65         0x4,                    /* MV_DDR_FREQ_533 */
66         0x5,                    /* MV_DDR_FREQ_667 */
67         0x5,                    /* MV_DDR_FREQ_800 */
68         0x5,                    /* MV_DDR_FREQ_933 */
69         0x5,                    /* MV_DDR_FREQ_1066 */
70         0x3,                    /* MV_DDR_FREQ_311 */
71         0x3,                    /* MV_DDR_FREQ_333 */
72         0x4,                    /* MV_DDR_FREQ_467 */
73         0x5,                    /* MV_DDR_FREQ_850 */
74         0x5,                    /* MV_DDR_FREQ_600 */
75         0x3,                    /* MV_DDR_FREQ_300 */
76         0x5,                    /* MV_DDR_FREQ_900 */
77         0x3,                    /* MV_DDR_FREQ_360 */
78         0x5                     /* MV_DDR_FREQ_1000 */
79 };
80
81 static u8 a38x_rate_per_freq[MV_DDR_FREQ_LAST] = {
82         0x1,                    /* MV_DDR_FREQ_100 */
83         0x2,                    /* MV_DDR_FREQ_400 */
84         0x2,                    /* MV_DDR_FREQ_533 */
85         0x2,                    /* MV_DDR_FREQ_667 */
86         0x2,                    /* MV_DDR_FREQ_800 */
87         0x3,                    /* MV_DDR_FREQ_933 */
88         0x3,                    /* MV_DDR_FREQ_1066 */
89         0x1,                    /* MV_DDR_FREQ_311 */
90         0x1,                    /* MV_DDR_FREQ_333 */
91         0x2,                    /* MV_DDR_FREQ_467 */
92         0x2,                    /* MV_DDR_FREQ_850 */
93         0x2,                    /* MV_DDR_FREQ_600 */
94         0x1,                    /* MV_DDR_FREQ_300 */
95         0x2,                    /* MV_DDR_FREQ_900 */
96         0x1,                    /* MV_DDR_FREQ_360 */
97         0x2                     /* MV_DDR_FREQ_1000 */
98 };
99
100 static u16 a38x_vco_freq_per_sar_ref_clk_25_mhz[] = {
101         666,                    /* 0 */
102         1332,
103         800,
104         1600,
105         1066,
106         2132,
107         1200,
108         2400,
109         1332,
110         1332,
111         1500,
112         1500,
113         1600,                   /* 12 */
114         1600,
115         1700,
116         1700,
117         1866,
118         1866,
119         1800,                   /* 18 */
120         2000,
121         2000,
122         4000,
123         2132,
124         2132,
125         2300,
126         2300,
127         2400,
128         2400,
129         2500,
130         2500,
131         800
132 };
133
134 static u16 a38x_vco_freq_per_sar_ref_clk_40_mhz[] = {
135         666,                    /* 0 */
136         1332,
137         800,
138         800,                    /* 0x3 */
139         1066,
140         1066,                   /* 0x5 */
141         1200,
142         2400,
143         1332,
144         1332,
145         1500,                   /* 10 */
146         1600,                   /* 0xB */
147         1600,
148         1600,
149         1700,
150         1560,                   /* 0xF */
151         1866,
152         1866,
153         1800,
154         2000,
155         2000,                   /* 20 */
156         4000,
157         2132,
158         2132,
159         2300,
160         2300,
161         2400,
162         2400,
163         2500,
164         2500,
165         1800                    /* 30 - 0x1E */
166 };
167
168
169 static u32 async_mode_at_tf;
170
171 static u32 dq_bit_map_2_phy_pin[] = {
172         1, 0, 2, 6, 9, 8, 3, 7, /* 0 */
173         8, 9, 1, 7, 2, 6, 3, 0, /* 1 */
174         3, 9, 7, 8, 1, 0, 2, 6, /* 2 */
175         1, 0, 6, 2, 8, 3, 7, 9, /* 3 */
176         0, 1, 2, 9, 7, 8, 3, 6, /* 4 */
177 };
178
179 void mv_ddr_mem_scrubbing(void)
180 {
181         ddr3_new_tip_ecc_scrub();
182 }
183
184 static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
185                                      enum mv_ddr_freq freq);
186
187 /*
188  * Read temperature TJ value
189  */
190 static u32 ddr3_ctrl_get_junc_temp(u8 dev_num)
191 {
192         int reg = 0;
193
194         /* Initiates TSEN hardware reset once */
195         if ((reg_read(TSEN_CONTROL_MSB_REG) & TSEN_CONTROL_MSB_RST_MASK) == 0) {
196                 reg_bit_set(TSEN_CONTROL_MSB_REG, TSEN_CONTROL_MSB_RST_MASK);
197                 /* set Tsen Tc Trim to correct default value (errata #132698) */
198                 reg = reg_read(TSEN_CONTROL_LSB_REG);
199                 reg &= ~TSEN_CONTROL_LSB_TC_TRIM_MASK;
200                 reg |= 0x3 << TSEN_CONTROL_LSB_TC_TRIM_OFFSET;
201                 reg_write(TSEN_CONTROL_LSB_REG, reg);
202         }
203         mdelay(10);
204
205         /* Check if the readout field is valid */
206         if ((reg_read(TSEN_STATUS_REG) & TSEN_STATUS_READOUT_VALID_MASK) == 0) {
207                 printf("%s: TSEN not ready\n", __func__);
208                 return 0;
209         }
210
211         reg = reg_read(TSEN_STATUS_REG);
212         reg = (reg & TSEN_STATUS_TEMP_OUT_MASK) >> TSEN_STATUS_TEMP_OUT_OFFSET;
213
214         return ((((10000 * reg) / 21445) * 1000) - 272674) / 1000;
215 }
216
217 /*
218  * Name:     ddr3_tip_a38x_get_freq_config.
219  * Desc:
220  * Args:
221  * Notes:
222  * Returns:  MV_OK if success, other error code if fail.
223  */
224 static int ddr3_tip_a38x_get_freq_config(u8 dev_num, enum mv_ddr_freq freq,
225                                   struct hws_tip_freq_config_info
226                                   *freq_config_info)
227 {
228         if (a38x_bw_per_freq[freq] == 0xff)
229                 return MV_NOT_SUPPORTED;
230
231         if (freq_config_info == NULL)
232                 return MV_BAD_PARAM;
233
234         freq_config_info->bw_per_freq = a38x_bw_per_freq[freq];
235         freq_config_info->rate_per_freq = a38x_rate_per_freq[freq];
236         freq_config_info->is_supported = 1;
237
238         return MV_OK;
239 }
240
241 static void dunit_read(u32 addr, u32 mask, u32 *data)
242 {
243         *data = reg_read(addr) & mask;
244 }
245
246 static void dunit_write(u32 addr, u32 mask, u32 data)
247 {
248         u32 reg_val = data;
249
250         if (mask != MASK_ALL_BITS) {
251                 dunit_read(addr, MASK_ALL_BITS, &reg_val);
252                 reg_val &= (~mask);
253                 reg_val |= (data & mask);
254         }
255
256         reg_write(addr, reg_val);
257 }
258
259 #define ODPG_ENABLE_REG                         0x186d4
260 #define ODPG_EN_OFFS                            0
261 #define ODPG_EN_MASK                            0x1
262 #define ODPG_EN_ENA                             1
263 #define ODPG_EN_DONE                            0
264 #define ODPG_DIS_OFFS                           8
265 #define ODPG_DIS_MASK                           0x1
266 #define ODPG_DIS_DIS                            1
267 void mv_ddr_odpg_enable(void)
268 {
269         dunit_write(ODPG_ENABLE_REG,
270                     ODPG_EN_MASK << ODPG_EN_OFFS,
271                     ODPG_EN_ENA << ODPG_EN_OFFS);
272 }
273
274 void mv_ddr_odpg_disable(void)
275 {
276         dunit_write(ODPG_ENABLE_REG,
277                     ODPG_DIS_MASK << ODPG_DIS_OFFS,
278                     ODPG_DIS_DIS << ODPG_DIS_OFFS);
279 }
280
281 void mv_ddr_odpg_done_clr(void)
282 {
283         return;
284 }
285
286 int mv_ddr_is_odpg_done(u32 count)
287 {
288         u32 i, data;
289
290         for (i = 0; i < count; i++) {
291                 dunit_read(ODPG_ENABLE_REG, MASK_ALL_BITS, &data);
292                 if (((data >> ODPG_EN_OFFS) & ODPG_EN_MASK) ==
293                      ODPG_EN_DONE)
294                         break;
295         }
296
297         if (i >= count) {
298                 printf("%s: timeout\n", __func__);
299                 return MV_FAIL;
300         }
301
302         return MV_OK;
303 }
304
305 void mv_ddr_training_enable(void)
306 {
307         dunit_write(GLOB_CTRL_STATUS_REG,
308                     TRAINING_TRIGGER_MASK << TRAINING_TRIGGER_OFFS,
309                     TRAINING_TRIGGER_ENA << TRAINING_TRIGGER_OFFS);
310 }
311
312 #define DRAM_INIT_CTRL_STATUS_REG       0x18488
313 #define TRAINING_TRIGGER_OFFS           0
314 #define TRAINING_TRIGGER_MASK           0x1
315 #define TRAINING_TRIGGER_ENA            1
316 #define TRAINING_DONE_OFFS              1
317 #define TRAINING_DONE_MASK              0x1
318 #define TRAINING_DONE_DONE              1
319 #define TRAINING_DONE_NOT_DONE          0
320 #define TRAINING_RESULT_OFFS            2
321 #define TRAINING_RESULT_MASK            0x1
322 #define TRAINING_RESULT_PASS            0
323 #define TRAINING_RESULT_FAIL            1
324 int mv_ddr_is_training_done(u32 count, u32 *result)
325 {
326         u32 i, data;
327
328         if (result == NULL) {
329                 printf("%s: NULL result pointer found\n", __func__);
330                 return MV_FAIL;
331         }
332
333         for (i = 0; i < count; i++) {
334                 dunit_read(DRAM_INIT_CTRL_STATUS_REG, MASK_ALL_BITS, &data);
335                 if (((data >> TRAINING_DONE_OFFS) & TRAINING_DONE_MASK) ==
336                      TRAINING_DONE_DONE)
337                         break;
338         }
339
340         if (i >= count) {
341                 printf("%s: timeout\n", __func__);
342                 return MV_FAIL;
343         }
344
345         *result = (data >> TRAINING_RESULT_OFFS) & TRAINING_RESULT_MASK;
346
347         return MV_OK;
348 }
349
350 #define DM_PAD  10
351 u32 mv_ddr_dm_pad_get(void)
352 {
353         return DM_PAD;
354 }
355
356 /*
357  * Name:     ddr3_tip_a38x_select_ddr_controller.
358  * Desc:     Enable/Disable access to Marvell's server.
359  * Args:     dev_num     - device number
360  *           enable        - whether to enable or disable the server
361  * Notes:
362  * Returns:  MV_OK if success, other error code if fail.
363  */
364 static int ddr3_tip_a38x_select_ddr_controller(u8 dev_num, int enable)
365 {
366         u32 reg;
367
368         reg = reg_read(DUAL_DUNIT_CFG_REG);
369
370         if (enable)
371                 reg |= (1 << 6);
372         else
373                 reg &= ~(1 << 6);
374
375         reg_write(DUAL_DUNIT_CFG_REG, reg);
376
377         return MV_OK;
378 }
379
380 static u8 ddr3_tip_clock_mode(u32 frequency)
381 {
382         if ((frequency == MV_DDR_FREQ_LOW_FREQ) || (mv_ddr_freq_get(frequency) <= 400))
383                 return 1;
384
385         return 2;
386 }
387
388 static int mv_ddr_sar_freq_get(int dev_num, enum mv_ddr_freq *freq)
389 {
390         u32 reg, ref_clk_satr;
391
392         /* Read sample at reset setting */
393         reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
394                RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
395                 RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
396
397         ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
398         if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
399             DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
400                 switch (reg) {
401                 case 0x1:
402                         DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
403                                               ("Warning: Unsupported freq mode for 333Mhz configured(%d)\n",
404                                               reg));
405                         /* fallthrough */
406                 case 0x0:
407                         *freq = MV_DDR_FREQ_333;
408                         break;
409                 case 0x3:
410                         DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
411                                               ("Warning: Unsupported freq mode for 400Mhz configured(%d)\n",
412                                               reg));
413                         /* fallthrough */
414                 case 0x2:
415                         *freq = MV_DDR_FREQ_400;
416                         break;
417                 case 0xd:
418                         DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
419                                               ("Warning: Unsupported freq mode for 533Mhz configured(%d)\n",
420                                               reg));
421                         /* fallthrough */
422                 case 0x4:
423                         *freq = MV_DDR_FREQ_533;
424                         break;
425                 case 0x6:
426                         *freq = MV_DDR_FREQ_600;
427                         break;
428                 case 0x11:
429                 case 0x14:
430                         DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
431                                               ("Warning: Unsupported freq mode for 667Mhz configured(%d)\n",
432                                               reg));
433                         /* fallthrough */
434                 case 0x8:
435                         *freq = MV_DDR_FREQ_667;
436                         break;
437                 case 0x15:
438                 case 0x1b:
439                         DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
440                                               ("Warning: Unsupported freq mode for 800Mhz configured(%d)\n",
441                                               reg));
442                         /* fallthrough */
443                 case 0xc:
444                         *freq = MV_DDR_FREQ_800;
445                         break;
446                 case 0x10:
447                         *freq = MV_DDR_FREQ_933;
448                         break;
449                 case 0x12:
450                         *freq = MV_DDR_FREQ_900;
451                         break;
452                 case 0x13:
453                         *freq = MV_DDR_FREQ_933;
454                         break;
455                 default:
456                         *freq = 0;
457                         return MV_NOT_SUPPORTED;
458                 }
459         } else { /* REFCLK 40MHz case */
460                 switch (reg) {
461                 case 0x3:
462                         *freq = MV_DDR_FREQ_400;
463                         break;
464                 case 0x5:
465                         *freq = MV_DDR_FREQ_533;
466                         break;
467                 case 0xb:
468                         *freq = MV_DDR_FREQ_800;
469                         break;
470                 case 0x1e:
471                         *freq = MV_DDR_FREQ_900;
472                         break;
473                 default:
474                         *freq = 0;
475                         return MV_NOT_SUPPORTED;
476                 }
477         }
478
479         return MV_OK;
480 }
481
482 static int ddr3_tip_a38x_get_medium_freq(int dev_num, enum mv_ddr_freq *freq)
483 {
484         u32 reg, ref_clk_satr;
485
486         /* Read sample at reset setting */
487         reg = (reg_read(REG_DEVICE_SAR1_ADDR) >>
488         RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
489         RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
490
491         ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
492         if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
493             DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ) {
494                 switch (reg) {
495                 case 0x0:
496                 case 0x1:
497                         /* Medium is same as TF to run PBS in this freq */
498                         *freq = MV_DDR_FREQ_333;
499                         break;
500                 case 0x2:
501                 case 0x3:
502                         /* Medium is same as TF to run PBS in this freq */
503                         *freq = MV_DDR_FREQ_400;
504                         break;
505                 case 0x4:
506                 case 0xd:
507                         /* Medium is same as TF to run PBS in this freq */
508                         *freq = MV_DDR_FREQ_533;
509                         break;
510                 case 0x8:
511                 case 0x10:
512                 case 0x11:
513                 case 0x14:
514                         *freq = MV_DDR_FREQ_333;
515                         break;
516                 case 0xc:
517                 case 0x15:
518                 case 0x1b:
519                         *freq = MV_DDR_FREQ_400;
520                         break;
521                 case 0x6:
522                         *freq = MV_DDR_FREQ_300;
523                         break;
524                 case 0x12:
525                         *freq = MV_DDR_FREQ_360;
526                         break;
527                 case 0x13:
528                         *freq = MV_DDR_FREQ_400;
529                         break;
530                 default:
531                         *freq = 0;
532                         return MV_NOT_SUPPORTED;
533                 }
534         } else { /* REFCLK 40MHz case */
535                 switch (reg) {
536                 case 0x3:
537                         /* Medium is same as TF to run PBS in this freq */
538                         *freq = MV_DDR_FREQ_400;
539                         break;
540                 case 0x5:
541                         /* Medium is same as TF to run PBS in this freq */
542                         *freq = MV_DDR_FREQ_533;
543                         break;
544                 case 0xb:
545                         *freq = MV_DDR_FREQ_400;
546                         break;
547                 case 0x1e:
548                         *freq = MV_DDR_FREQ_360;
549                         break;
550                 default:
551                         *freq = 0;
552                         return MV_NOT_SUPPORTED;
553                 }
554         }
555
556         return MV_OK;
557 }
558
559 static int ddr3_tip_a38x_get_device_info(u8 dev_num, struct ddr3_device_info *info_ptr)
560 {
561 #if defined(CONFIG_ARMADA_39X)
562         info_ptr->device_id = 0x6900;
563 #else
564         info_ptr->device_id = 0x6800;
565 #endif
566         info_ptr->ck_delay = ck_delay;
567
568         return MV_OK;
569 }
570
571 /* check indirect access to phy register file completed */
572 static int is_prfa_done(void)
573 {
574         u32 reg_val;
575         u32 iter = 0;
576
577         do {
578                 if (iter++ > MAX_POLLING_ITERATIONS) {
579                         printf("error: %s: polling timeout\n", __func__);
580                         return MV_FAIL;
581                 }
582                 dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
583                 reg_val >>= PRFA_REQ_OFFS;
584                 reg_val &= PRFA_REQ_MASK;
585         } while (reg_val == PRFA_REQ_ENA); /* request pending */
586
587         return MV_OK;
588 }
589
590 /* write to phy register thru indirect access */
591 static int prfa_write(enum hws_access_type phy_access, u32 phy,
592                       enum hws_ddr_phy phy_type, u32 addr,
593                       u32 data, enum hws_operation op_type)
594 {
595         u32 reg_val = ((data & PRFA_DATA_MASK) << PRFA_DATA_OFFS) |
596                       ((addr & PRFA_REG_NUM_MASK) << PRFA_REG_NUM_OFFS) |
597                       ((phy & PRFA_PUP_NUM_MASK) << PRFA_PUP_NUM_OFFS) |
598                       ((phy_type & PRFA_PUP_CTRL_DATA_MASK) << PRFA_PUP_CTRL_DATA_OFFS) |
599                       ((phy_access & PRFA_PUP_BCAST_WR_ENA_MASK) << PRFA_PUP_BCAST_WR_ENA_OFFS) |
600                       (((addr >> 6) & PRFA_REG_NUM_HI_MASK) << PRFA_REG_NUM_HI_OFFS) |
601                       ((op_type & PRFA_TYPE_MASK) << PRFA_TYPE_OFFS);
602         dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
603         reg_val |= (PRFA_REQ_ENA << PRFA_REQ_OFFS);
604         dunit_write(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, reg_val);
605
606         /* polling for prfa request completion */
607         if (is_prfa_done() != MV_OK)
608                 return MV_FAIL;
609
610         return MV_OK;
611 }
612
613 /* read from phy register thru indirect access */
614 static int prfa_read(enum hws_access_type phy_access, u32 phy,
615                      enum hws_ddr_phy phy_type, u32 addr, u32 *data)
616 {
617         struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
618         u32 max_phy = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
619         u32 i, reg_val;
620
621         if (phy_access == ACCESS_TYPE_MULTICAST) {
622                 for (i = 0; i < max_phy; i++) {
623                         VALIDATE_BUS_ACTIVE(tm->bus_act_mask, i);
624                         if (prfa_write(ACCESS_TYPE_UNICAST, i, phy_type, addr, 0, OPERATION_READ) != MV_OK)
625                                 return MV_FAIL;
626                         dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
627                         data[i] = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
628                 }
629         } else {
630                 if (prfa_write(phy_access, phy, phy_type, addr, 0, OPERATION_READ) != MV_OK)
631                         return MV_FAIL;
632                 dunit_read(PHY_REG_FILE_ACCESS_REG, MASK_ALL_BITS, &reg_val);
633                 *data = (reg_val >> PRFA_DATA_OFFS) & PRFA_DATA_MASK;
634         }
635
636         return MV_OK;
637 }
638
639 static int mv_ddr_sw_db_init(u32 dev_num, u32 board_id)
640 {
641         struct hws_tip_config_func_db config_func;
642
643         /* new read leveling version */
644         config_func.mv_ddr_dunit_read = dunit_read;
645         config_func.mv_ddr_dunit_write = dunit_write;
646         config_func.tip_dunit_mux_select_func =
647                 ddr3_tip_a38x_select_ddr_controller;
648         config_func.tip_get_freq_config_info_func =
649                 ddr3_tip_a38x_get_freq_config;
650         config_func.tip_set_freq_divider_func = ddr3_tip_a38x_set_divider;
651         config_func.tip_get_device_info_func = ddr3_tip_a38x_get_device_info;
652         config_func.tip_get_temperature = ddr3_ctrl_get_junc_temp;
653         config_func.tip_get_clock_ratio = ddr3_tip_clock_mode;
654         config_func.tip_external_read = ddr3_tip_ext_read;
655         config_func.tip_external_write = ddr3_tip_ext_write;
656         config_func.mv_ddr_phy_read = prfa_read;
657         config_func.mv_ddr_phy_write = prfa_write;
658
659         ddr3_tip_init_config_func(dev_num, &config_func);
660
661         ddr3_tip_register_dq_table(dev_num, dq_bit_map_2_phy_pin);
662
663         /* set device attributes*/
664         ddr3_tip_dev_attr_init(dev_num);
665         ddr3_tip_dev_attr_set(dev_num, MV_ATTR_TIP_REV, MV_TIP_REV_4);
666         ddr3_tip_dev_attr_set(dev_num, MV_ATTR_PHY_EDGE, MV_DDR_PHY_EDGE_POSITIVE);
667         ddr3_tip_dev_attr_set(dev_num, MV_ATTR_OCTET_PER_INTERFACE, DDR_INTERFACE_OCTETS_NUM);
668 #ifdef CONFIG_ARMADA_39X
669         ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 1);
670 #else
671         ddr3_tip_dev_attr_set(dev_num, MV_ATTR_INTERLEAVE_WA, 0);
672 #endif
673
674         ca_delay = 0;
675         delay_enable = 1;
676         dfs_low_freq = DFS_LOW_FREQ_VALUE;
677         calibration_update_control = 1;
678
679         ddr3_tip_a38x_get_medium_freq(dev_num, &medium_freq);
680
681         return MV_OK;
682 }
683
684 static int mv_ddr_training_mask_set(void)
685 {
686         struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
687         enum mv_ddr_freq ddr_freq = tm->interface_params[0].memory_freq;
688
689         mask_tune_func = (SET_LOW_FREQ_MASK_BIT |
690                           LOAD_PATTERN_MASK_BIT |
691                           SET_MEDIUM_FREQ_MASK_BIT | WRITE_LEVELING_MASK_BIT |
692                           WRITE_LEVELING_SUPP_MASK_BIT |
693                           READ_LEVELING_MASK_BIT |
694                           PBS_RX_MASK_BIT |
695                           PBS_TX_MASK_BIT |
696                           SET_TARGET_FREQ_MASK_BIT |
697                           WRITE_LEVELING_TF_MASK_BIT |
698                           WRITE_LEVELING_SUPP_TF_MASK_BIT |
699                           READ_LEVELING_TF_MASK_BIT |
700                           CENTRALIZATION_RX_MASK_BIT |
701                           CENTRALIZATION_TX_MASK_BIT);
702         rl_mid_freq_wa = 1;
703
704         if ((ddr_freq == MV_DDR_FREQ_333) || (ddr_freq == MV_DDR_FREQ_400)) {
705                 mask_tune_func = (WRITE_LEVELING_MASK_BIT |
706                                   LOAD_PATTERN_2_MASK_BIT |
707                                   WRITE_LEVELING_SUPP_MASK_BIT |
708                                   READ_LEVELING_MASK_BIT |
709                                   PBS_RX_MASK_BIT |
710                                   PBS_TX_MASK_BIT |
711                                   CENTRALIZATION_RX_MASK_BIT |
712                                   CENTRALIZATION_TX_MASK_BIT);
713                 rl_mid_freq_wa = 0; /* WA not needed if 333/400 is TF */
714         }
715
716         /* Supplementary not supported for ECC modes */
717         if (mv_ddr_is_ecc_ena()) {
718                 mask_tune_func &= ~WRITE_LEVELING_SUPP_TF_MASK_BIT;
719                 mask_tune_func &= ~WRITE_LEVELING_SUPP_MASK_BIT;
720                 mask_tune_func &= ~PBS_TX_MASK_BIT;
721                 mask_tune_func &= ~PBS_RX_MASK_BIT;
722         }
723
724         return MV_OK;
725 }
726
727 /* function: mv_ddr_set_calib_controller
728  * this function sets the controller which will control
729  * the calibration cycle in the end of the training.
730  * 1 - internal controller
731  * 2 - external controller
732  */
733 void mv_ddr_set_calib_controller(void)
734 {
735         calibration_update_control = CAL_UPDATE_CTRL_INT;
736 }
737
738 static int ddr3_tip_a38x_set_divider(u8 dev_num, u32 if_id,
739                                      enum mv_ddr_freq frequency)
740 {
741         u32 divider = 0;
742         u32 sar_val, ref_clk_satr;
743         u32 async_val;
744         u32 freq = mv_ddr_freq_get(frequency);
745
746         if (if_id != 0) {
747                 DEBUG_TRAINING_ACCESS(DEBUG_LEVEL_ERROR,
748                                       ("A38x does not support interface 0x%x\n",
749                                        if_id));
750                 return MV_BAD_PARAM;
751         }
752
753         /* get VCO freq index */
754         sar_val = (reg_read(REG_DEVICE_SAR1_ADDR) >>
755                    RST2_CPU_DDR_CLOCK_SELECT_IN_OFFSET) &
756                 RST2_CPU_DDR_CLOCK_SELECT_IN_MASK;
757
758         ref_clk_satr = reg_read(DEVICE_SAMPLE_AT_RESET2_REG);
759         if (((ref_clk_satr >> DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_OFFSET) & 0x1) ==
760             DEVICE_SAMPLE_AT_RESET2_REG_REFCLK_25MHZ)
761                 divider = a38x_vco_freq_per_sar_ref_clk_25_mhz[sar_val] / freq;
762         else
763                 divider = a38x_vco_freq_per_sar_ref_clk_40_mhz[sar_val] / freq;
764
765         if ((async_mode_at_tf == 1) && (freq > 400)) {
766                 /* Set async mode */
767                 dunit_write(0x20220, 0x1000, 0x1000);
768                 dunit_write(0xe42f4, 0x200, 0x200);
769
770                 /* Wait for async mode setup */
771                 mdelay(5);
772
773                 /* Set KNL values */
774                 switch (frequency) {
775                 case MV_DDR_FREQ_467:
776                         async_val = 0x806f012;
777                         break;
778                 case MV_DDR_FREQ_533:
779                         async_val = 0x807f012;
780                         break;
781                 case MV_DDR_FREQ_600:
782                         async_val = 0x805f00a;
783                         break;
784                 case MV_DDR_FREQ_667:
785                         async_val = 0x809f012;
786                         break;
787                 case MV_DDR_FREQ_800:
788                         async_val = 0x807f00a;
789                         break;
790                 case MV_DDR_FREQ_850:
791                         async_val = 0x80cb012;
792                         break;
793                 case MV_DDR_FREQ_900:
794                         async_val = 0x80d7012;
795                         break;
796                 case MV_DDR_FREQ_933:
797                         async_val = 0x80df012;
798                         break;
799                 case MV_DDR_FREQ_1000:
800                         async_val = 0x80ef012;
801                         break;
802                 case MV_DDR_FREQ_1066:
803                         async_val = 0x80ff012;
804                         break;
805                 default:
806                         /* set MV_DDR_FREQ_667 as default */
807                         async_val = 0x809f012;
808                 }
809                 dunit_write(0xe42f0, 0xffffffff, async_val);
810         } else {
811                 /* Set sync mode */
812                 dunit_write(0x20220, 0x1000, 0x0);
813                 dunit_write(0xe42f4, 0x200, 0x0);
814
815                 /* cpupll_clkdiv_reset_mask */
816                 dunit_write(0xe4264, 0xff, 0x1f);
817
818                 /* cpupll_clkdiv_reload_smooth */
819                 dunit_write(0xe4260, (0xff << 8), (0x2 << 8));
820
821                 /* cpupll_clkdiv_relax_en */
822                 dunit_write(0xe4260, (0xff << 24), (0x2 << 24));
823
824                 /* write the divider */
825                 dunit_write(0xe4268, (0x3f << 8), (divider << 8));
826
827                 /* set cpupll_clkdiv_reload_ratio */
828                 dunit_write(0xe4264, (1 << 8), (1 << 8));
829
830                 /* undet cpupll_clkdiv_reload_ratio */
831                 dunit_write(0xe4264, (1 << 8), 0x0);
832
833                 /* clear cpupll_clkdiv_reload_force */
834                 dunit_write(0xe4260, (0xff << 8), 0x0);
835
836                 /* clear cpupll_clkdiv_relax_en */
837                 dunit_write(0xe4260, (0xff << 24), 0x0);
838
839                 /* clear cpupll_clkdiv_reset_mask */
840                 dunit_write(0xe4264, 0xff, 0x0);
841         }
842
843         /* Dunit training clock + 1:1/2:1 mode */
844         dunit_write(0x18488, (1 << 16), ((ddr3_tip_clock_mode(frequency) & 0x1) << 16));
845         dunit_write(0x1524, (1 << 15), ((ddr3_tip_clock_mode(frequency) - 1) << 15));
846
847         return MV_OK;
848 }
849
850 /*
851  * external read from memory
852  */
853 int ddr3_tip_ext_read(u32 dev_num, u32 if_id, u32 reg_addr,
854                       u32 num_of_bursts, u32 *data)
855 {
856         u32 burst_num;
857
858         for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
859                 data[burst_num] = readl(reg_addr + 4 * burst_num);
860
861         return MV_OK;
862 }
863
864 /*
865  * external write to memory
866  */
867 int ddr3_tip_ext_write(u32 dev_num, u32 if_id, u32 reg_addr,
868                        u32 num_of_bursts, u32 *data) {
869         u32 burst_num;
870
871         for (burst_num = 0; burst_num < num_of_bursts * 8; burst_num++)
872                 writel(data[burst_num], reg_addr + 4 * burst_num);
873
874         return MV_OK;
875 }
876
877 int mv_ddr_early_init(void)
878 {
879         struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
880
881         /* FIXME: change this configuration per ddr type
882          * configure a380 and a390 to work with receiver odt timing
883          * the odt_config is defined:
884          * '1' in ddr4
885          * '0' in ddr3
886          * here the parameter is run over in ddr4 and ddr3 to '1' (in ddr4 the default is '1')
887          * to configure the odt to work with timing restrictions
888          */
889
890         mv_ddr_sw_db_init(0, 0);
891
892         if (tm->interface_params[0].memory_freq != MV_DDR_FREQ_SAR)
893                 async_mode_at_tf = 1;
894
895         return MV_OK;
896 }
897
898 int mv_ddr_early_init2(void)
899 {
900         mv_ddr_training_mask_set();
901
902         return MV_OK;
903 }
904
905 int mv_ddr_pre_training_fixup(void)
906 {
907         return 0;
908 }
909
910 int mv_ddr_post_training_fixup(void)
911 {
912         return 0;
913 }
914
915 int ddr3_post_run_alg(void)
916 {
917         return MV_OK;
918 }
919
920 int ddr3_silicon_post_init(void)
921 {
922         struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
923
924         /* Set half bus width */
925         if (DDR3_IS_16BIT_DRAM_MODE(tm->bus_act_mask)) {
926                 CHECK_STATUS(ddr3_tip_if_write
927                              (0, ACCESS_TYPE_UNICAST, PARAM_NOT_CARE,
928                               SDRAM_CFG_REG, 0x0, 0x8000));
929         }
930
931         return MV_OK;
932 }
933
934 u32 mv_ddr_init_freq_get(void)
935 {
936         enum mv_ddr_freq freq;
937
938         mv_ddr_sar_freq_get(0, &freq);
939
940         return freq;
941 }
942
943 static u32 ddr3_get_bus_width(void)
944 {
945         u32 bus_width;
946
947         bus_width = (reg_read(SDRAM_CFG_REG) & 0x8000) >>
948                 BUS_IN_USE_OFFS;
949
950         return (bus_width == 0) ? 16 : 32;
951 }
952
953 static u32 ddr3_get_device_width(u32 cs)
954 {
955         u32 device_width;
956
957         device_width = (reg_read(SDRAM_ADDR_CTRL_REG) &
958                         (CS_STRUCT_MASK << CS_STRUCT_OFFS(cs))) >>
959                         CS_STRUCT_OFFS(cs);
960
961         return (device_width == 0) ? 8 : 16;
962 }
963
964 static u32 ddr3_get_device_size(u32 cs)
965 {
966         u32 device_size_low, device_size_high, device_size;
967         u32 data, cs_low_offset, cs_high_offset;
968
969         cs_low_offset = CS_SIZE_OFFS(cs);
970         cs_high_offset = CS_SIZE_HIGH_OFFS(cs);
971
972         data = reg_read(SDRAM_ADDR_CTRL_REG);
973         device_size_low = (data >> cs_low_offset) & 0x3;
974         device_size_high = (data >> cs_high_offset) & 0x1;
975
976         device_size = device_size_low | (device_size_high << 2);
977
978         switch (device_size) {
979         case 0:
980                 return 2048;
981         case 2:
982                 return 512;
983         case 3:
984                 return 1024;
985         case 4:
986                 return 4096;
987         case 5:
988                 return 8192;
989         case 1:
990         default:
991                 DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1);
992                 /* zeroes mem size in ddr3_calc_mem_cs_size */
993                 return 0;
994         }
995 }
996
997 int ddr3_calc_mem_cs_size(u32 cs, uint64_t *cs_size)
998 {
999         u32 cs_mem_size;
1000
1001         /* Calculate in MiB */
1002         cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) *
1003                        ddr3_get_device_size(cs)) / 8;
1004
1005         /*
1006          * Multiple controller bus width, 2x for 64 bit
1007          * (SoC controller may be 32 or 64 bit,
1008          * so bit 15 in 0x1400, that means if whole bus used or only half,
1009          * have a differnt meaning
1010          */
1011         cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER;
1012
1013         if ((cs_mem_size < 128) || (cs_mem_size > 4096)) {
1014                 DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1);
1015                 return MV_BAD_VALUE;
1016         }
1017
1018         *cs_size = cs_mem_size << 20; /* write cs size in bytes */
1019
1020         return MV_OK;
1021 }
1022
1023 static int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)
1024 {
1025         u32 reg, cs;
1026         uint64_t mem_total_size = 0;
1027         uint64_t cs_mem_size = 0;
1028         uint64_t mem_total_size_c, cs_mem_size_c;
1029
1030 #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1031         u32 physical_mem_size;
1032         u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
1033         struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1034 #endif
1035
1036         /* Open fast path windows */
1037         for (cs = 0; cs < MAX_CS_NUM; cs++) {
1038                 if (cs_ena & (1 << cs)) {
1039                         /* get CS size */
1040                         if (ddr3_calc_mem_cs_size(cs, &cs_mem_size) != MV_OK)
1041                                 return MV_FAIL;
1042
1043 #ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
1044                         /*
1045                          * if number of address pins doesn't allow to use max
1046                          * mem size that is defined in topology
1047                          * mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE
1048                          */
1049                         physical_mem_size = mem_size
1050                                 [tm->interface_params[0].memory_size];
1051
1052                         if (ddr3_get_device_width(cs) == 16) {
1053                                 /*
1054                                  * 16bit mem device can be twice more - no need
1055                                  * in less significant pin
1056                                  */
1057                                 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
1058                         }
1059
1060                         if (physical_mem_size > max_mem_size) {
1061                                 cs_mem_size = max_mem_size *
1062                                         (ddr3_get_bus_width() /
1063                                          ddr3_get_device_width(cs));
1064                                 printf("Updated Physical Mem size is from 0x%x to %x\n",
1065                                        physical_mem_size,
1066                                        DEVICE_MAX_DRAM_ADDRESS_SIZE);
1067                         }
1068 #endif
1069
1070                         /* set fast path window control for the cs */
1071                         reg = 0xffffe1;
1072                         reg |= (cs << 2);
1073                         reg |= (cs_mem_size - 1) & 0xffff0000;
1074                         /*Open fast path Window */
1075                         reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg);
1076
1077                         /* Set fast path window base address for the cs */
1078                         reg = ((cs_mem_size) * cs) & 0xffff0000;
1079                         /* Set base address */
1080                         reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg);
1081
1082                         /*
1083                          * Since memory size may be bigger than 4G the summ may
1084                          * be more than 32 bit word,
1085                          * so to estimate the result divide mem_total_size and
1086                          * cs_mem_size by 0x10000 (it is equal to >> 16)
1087                          */
1088                         mem_total_size_c = (mem_total_size >> 16) & 0xffffffffffff;
1089                         cs_mem_size_c = (cs_mem_size >> 16) & 0xffffffffffff;
1090                         /* if the sum less than 2 G - calculate the value */
1091                         if (mem_total_size_c + cs_mem_size_c < 0x10000)
1092                                 mem_total_size += cs_mem_size;
1093                         else    /* put max possible size */
1094                                 mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE;
1095                 }
1096         }
1097
1098         /* Set L2 filtering to Max Memory size */
1099         reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size);
1100
1101         return MV_OK;
1102 }
1103
1104 static int ddr3_restore_and_set_final_windows(u32 *win, const char *ddr_type)
1105 {
1106         u32 win_ctrl_reg, num_of_win_regs;
1107         u32 cs_ena = mv_ddr_sys_env_get_cs_ena_from_reg();
1108         u32 ui;
1109
1110         win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1111         num_of_win_regs = 16;
1112
1113         /* Return XBAR windows 4-7 or 16-19 init configuration */
1114         for (ui = 0; ui < num_of_win_regs; ui++)
1115                 reg_write((win_ctrl_reg + 0x4 * ui), win[ui]);
1116
1117         printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n",
1118                ddr_type);
1119
1120 #if defined DYNAMIC_CS_SIZE_CONFIG
1121         if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK)
1122                 printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n");
1123 #else
1124         u32 reg, cs;
1125         reg = 0x1fffffe1;
1126         for (cs = 0; cs < MAX_CS_NUM; cs++) {
1127                 if (cs_ena & (1 << cs)) {
1128                         reg |= (cs << 2);
1129                         break;
1130                 }
1131         }
1132         /* Open fast path Window to - 0.5G */
1133         reg_write(REG_FASTPATH_WIN_CTRL_ADDR(0), reg);
1134 #endif
1135
1136         return MV_OK;
1137 }
1138
1139 static int ddr3_save_and_set_training_windows(u32 *win)
1140 {
1141         u32 cs_ena;
1142         u32 reg, tmp_count, cs, ui;
1143         u32 win_ctrl_reg, win_base_reg, win_remap_reg;
1144         u32 num_of_win_regs, win_jump_index;
1145         win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
1146         win_base_reg = REG_XBAR_WIN_4_BASE_ADDR;
1147         win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR;
1148         win_jump_index = 0x10;
1149         num_of_win_regs = 16;
1150         struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1151
1152 #ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING
1153         /*
1154          * Disable L2 filtering during DDR training
1155          * (when Cross Bar window is open)
1156          */
1157         reg_write(ADDRESS_FILTERING_END_REGISTER, 0);
1158 #endif
1159
1160         cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask;
1161
1162         /* Close XBAR Window 19 - Not needed */
1163         /* {0x000200e8}  -   Open Mbus Window - 2G */
1164         reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0);
1165
1166         /* Save XBAR Windows 4-19 init configurations */
1167         for (ui = 0; ui < num_of_win_regs; ui++)
1168                 win[ui] = reg_read(win_ctrl_reg + 0x4 * ui);
1169
1170         /* Open XBAR Windows 4-7 or 16-19 for other CS */
1171         reg = 0;
1172         tmp_count = 0;
1173         for (cs = 0; cs < MAX_CS_NUM; cs++) {
1174                 if (cs_ena & (1 << cs)) {
1175                         switch (cs) {
1176                         case 0:
1177                                 reg = 0x0e00;
1178                                 break;
1179                         case 1:
1180                                 reg = 0x0d00;
1181                                 break;
1182                         case 2:
1183                                 reg = 0x0b00;
1184                                 break;
1185                         case 3:
1186                                 reg = 0x0700;
1187                                 break;
1188                         }
1189                         reg |= (1 << 0);
1190                         reg |= (SDRAM_CS_SIZE & 0xffff0000);
1191
1192                         reg_write(win_ctrl_reg + win_jump_index * tmp_count,
1193                                   reg);
1194                         reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) &
1195                                0xffff0000);
1196                         reg_write(win_base_reg + win_jump_index * tmp_count,
1197                                   reg);
1198
1199                         if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR)
1200                                 reg_write(win_remap_reg +
1201                                           win_jump_index * tmp_count, 0);
1202
1203                         tmp_count++;
1204                 }
1205         }
1206
1207         return MV_OK;
1208 }
1209
1210 static u32 win[16];
1211
1212 int mv_ddr_pre_training_soc_config(const char *ddr_type)
1213 {
1214         u32 soc_num;
1215         u32 reg_val;
1216
1217         /* Switching CPU to MRVL ID */
1218         soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >>
1219                 SAR1_CPU_CORE_OFFSET;
1220         switch (soc_num) {
1221         case 0x3:
1222                 reg_bit_set(CPU_CONFIGURATION_REG(3), CPU_MRVL_ID_OFFSET);
1223                 reg_bit_set(CPU_CONFIGURATION_REG(2), CPU_MRVL_ID_OFFSET);
1224                 /* fallthrough */
1225         case 0x1:
1226                 reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET);
1227                 /* fallthrough */
1228         case 0x0:
1229                 reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET);
1230                 /* fallthrough */
1231         default:
1232                 break;
1233         }
1234
1235         /*
1236          * Set DRAM Reset Mask in case detected GPIO indication of wakeup from
1237          * suspend i.e the DRAM values will not be overwritten / reset when
1238          * waking from suspend
1239          */
1240         if (mv_ddr_sys_env_suspend_wakeup_check() ==
1241             SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) {
1242                 reg_bit_set(SDRAM_INIT_CTRL_REG,
1243                             DRAM_RESET_MASK_MASKED << DRAM_RESET_MASK_OFFS);
1244         }
1245
1246         /* Check if DRAM is already initialized  */
1247         if (reg_read(REG_BOOTROM_ROUTINE_ADDR) &
1248             (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) {
1249                 printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type);
1250                 return MV_OK;
1251         }
1252
1253         /* Fix read ready phases for all SOC in reg 0x15c8 */
1254         reg_val = reg_read(TRAINING_DBG_3_REG);
1255
1256         reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));
1257         reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(0));    /* phase 0 */
1258
1259         reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));
1260         reg_val |= (0x4 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(1));    /* phase 1 */
1261
1262         reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));
1263         reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(3));    /* phase 3 */
1264
1265         reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));
1266         reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(4));    /* phase 4 */
1267
1268         reg_val &= ~(TRN_DBG_RDY_INC_PH_2TO1_MASK << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));
1269         reg_val |= (0x6 << TRN_DBG_RDY_INC_PH_2TO1_OFFS(5));    /* phase 5 */
1270
1271         reg_write(TRAINING_DBG_3_REG, reg_val);
1272
1273         /*
1274          * Axi_bresp_mode[8] = Compliant,
1275          * Axi_addr_decode_cntrl[11] = Internal,
1276          * Axi_data_bus_width[0] = 128bit
1277          * */
1278         /* 0x14a8 - AXI Control Register */
1279         reg_write(AXI_CTRL_REG, 0);
1280
1281         /*
1282          * Stage 2 - Training Values Setup
1283          */
1284         /* Set X-BAR windows for the training sequence */
1285         ddr3_save_and_set_training_windows(win);
1286
1287         return MV_OK;
1288 }
1289
1290 static int ddr3_new_tip_dlb_config(void)
1291 {
1292         u32 reg, i = 0;
1293         struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get();
1294
1295         /* Write the configuration */
1296         while (config_table_ptr[i].reg_addr != 0) {
1297                 reg_write(config_table_ptr[i].reg_addr,
1298                           config_table_ptr[i].reg_data);
1299                 i++;
1300         }
1301
1302
1303         /* Enable DLB */
1304         reg = reg_read(DLB_CTRL_REG);
1305         reg &= ~(DLB_EN_MASK << DLB_EN_OFFS) &
1306                ~(WR_COALESCE_EN_MASK << WR_COALESCE_EN_OFFS) &
1307                ~(AXI_PREFETCH_EN_MASK << AXI_PREFETCH_EN_OFFS) &
1308                ~(MBUS_PREFETCH_EN_MASK << MBUS_PREFETCH_EN_OFFS) &
1309                ~(PREFETCH_NXT_LN_SZ_TRIG_MASK << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1310
1311         reg |= (DLB_EN_ENA << DLB_EN_OFFS) |
1312                (WR_COALESCE_EN_ENA << WR_COALESCE_EN_OFFS) |
1313                (AXI_PREFETCH_EN_ENA << AXI_PREFETCH_EN_OFFS) |
1314                (MBUS_PREFETCH_EN_ENA << MBUS_PREFETCH_EN_OFFS) |
1315                (PREFETCH_NXT_LN_SZ_TRIG_ENA << PREFETCH_NXT_LN_SZ_TRIG_OFFS);
1316
1317         reg_write(DLB_CTRL_REG, reg);
1318
1319         return MV_OK;
1320 }
1321
1322 int mv_ddr_post_training_soc_config(const char *ddr_type)
1323 {
1324         u32 reg_val;
1325
1326         /* Restore and set windows */
1327         ddr3_restore_and_set_final_windows(win, ddr_type);
1328
1329         /* Update DRAM init indication in bootROM register */
1330         reg_val = reg_read(REG_BOOTROM_ROUTINE_ADDR);
1331         reg_write(REG_BOOTROM_ROUTINE_ADDR,
1332                   reg_val | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS));
1333
1334         /* DLB config */
1335         ddr3_new_tip_dlb_config();
1336
1337         return MV_OK;
1338 }
1339
1340 void mv_ddr_mc_config(void)
1341 {
1342         /* Memory controller initializations */
1343         struct init_cntr_param init_param;
1344         int status;
1345
1346         init_param.do_mrs_phy = 1;
1347         init_param.is_ctrl64_bit = 0;
1348         init_param.init_phy = 1;
1349         init_param.msys_init = 1;
1350         status = hws_ddr3_tip_init_controller(0, &init_param);
1351         if (status != MV_OK)
1352                 printf("DDR3 init controller - FAILED 0x%x\n", status);
1353
1354         status = mv_ddr_mc_init();
1355         if (status != MV_OK)
1356                 printf("DDR3 init_sequence - FAILED 0x%x\n", status);
1357 }
1358 /* function: mv_ddr_mc_init
1359  * this function enables the dunit after init controller configuration
1360  */
1361 int mv_ddr_mc_init(void)
1362 {
1363         CHECK_STATUS(ddr3_tip_enable_init_sequence(0));
1364
1365         return MV_OK;
1366 }
1367
1368 /* function: ddr3_tip_configure_phy
1369  * configures phy and electrical parameters
1370  */
1371 int ddr3_tip_configure_phy(u32 dev_num)
1372 {
1373         u32 if_id, phy_id;
1374         u32 octets_per_if_num = ddr3_tip_dev_attr_get(dev_num, MV_ATTR_OCTET_PER_INTERFACE);
1375         struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
1376
1377         CHECK_STATUS(ddr3_tip_bus_write
1378                 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1379                 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1380                 PAD_ZRI_CAL_PHY_REG,
1381                 ((0x7f & g_zpri_data) << 7 | (0x7f & g_znri_data))));
1382         CHECK_STATUS(ddr3_tip_bus_write
1383                 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1384                 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1385                 PAD_ZRI_CAL_PHY_REG,
1386                 ((0x7f & g_zpri_ctrl) << 7 | (0x7f & g_znri_ctrl))));
1387         CHECK_STATUS(ddr3_tip_bus_write
1388                 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1389                 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1390                 PAD_ODT_CAL_PHY_REG,
1391                 ((0x3f & g_zpodt_data) << 6 | (0x3f & g_znodt_data))));
1392         CHECK_STATUS(ddr3_tip_bus_write
1393                 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1394                 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1395                 PAD_ODT_CAL_PHY_REG,
1396                 ((0x3f & g_zpodt_ctrl) << 6 | (0x3f & g_znodt_ctrl))));
1397
1398         CHECK_STATUS(ddr3_tip_bus_write
1399                 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1400                 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1401                 PAD_PRE_DISABLE_PHY_REG, 0));
1402         CHECK_STATUS(ddr3_tip_bus_write
1403                 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1404                 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_DATA,
1405                 CMOS_CONFIG_PHY_REG, 0));
1406         CHECK_STATUS(ddr3_tip_bus_write
1407                 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1408                 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE, DDR_PHY_CONTROL,
1409                 CMOS_CONFIG_PHY_REG, 0));
1410
1411         for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
1412                 /* check if the interface is enabled */
1413                 VALIDATE_IF_ACTIVE(tm->if_act_mask, if_id);
1414
1415                 for (phy_id = 0;
1416                         phy_id < octets_per_if_num;
1417                         phy_id++) {
1418                                 VALIDATE_BUS_ACTIVE(tm->bus_act_mask, phy_id);
1419                                 /* Vref & clamp */
1420                                 CHECK_STATUS(ddr3_tip_bus_read_modify_write
1421                                         (dev_num, ACCESS_TYPE_UNICAST,
1422                                         if_id, phy_id, DDR_PHY_DATA,
1423                                         PAD_CFG_PHY_REG,
1424                                         ((clamp_tbl[if_id] << 4) | vref_init_val),
1425                                         ((0x7 << 4) | 0x7)));
1426                                 /* clamp not relevant for control */
1427                                 CHECK_STATUS(ddr3_tip_bus_read_modify_write
1428                                         (dev_num, ACCESS_TYPE_UNICAST,
1429                                         if_id, phy_id, DDR_PHY_CONTROL,
1430                                         PAD_CFG_PHY_REG, 0x4, 0x7));
1431                 }
1432         }
1433
1434         if (ddr3_tip_dev_attr_get(dev_num, MV_ATTR_PHY_EDGE) ==
1435                 MV_DDR_PHY_EDGE_POSITIVE)
1436                 CHECK_STATUS(ddr3_tip_bus_write
1437                 (dev_num, ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1438                 ACCESS_TYPE_MULTICAST, PARAM_NOT_CARE,
1439                 DDR_PHY_DATA, 0x90, 0x6002));
1440
1441
1442         return MV_OK;
1443 }
1444
1445
1446 int mv_ddr_manual_cal_do(void)
1447 {
1448         return 0;
1449 }