ARM: uniphier: remove dram_nr_ch from board parameters
[oweals/u-boot.git] / arch / arm / mach-uniphier / dram / umc-pxs2.c
1 /*
2  * Copyright (C) 2015-2017 Socionext Inc.
3  *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
4  *
5  * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
6  * Copyright (C) 2015 Socionext Inc.
7  *
8  * SPDX-License-Identifier:     GPL-2.0+
9  */
10
11 #include <common.h>
12 #include <linux/errno.h>
13 #include <linux/io.h>
14 #include <linux/sizes.h>
15 #include <asm/processor.h>
16
17 #include "../init.h"
18 #include "../soc-info.h"
19 #include "ddrmphy-regs.h"
20 #include "umc-regs.h"
21
22 #define DRAM_CH_NR      3
23
24 enum dram_freq {
25         DRAM_FREQ_1866M,
26         DRAM_FREQ_2133M,
27         DRAM_FREQ_NR,
28 };
29
30 enum dram_size {
31         DRAM_SZ_256M,
32         DRAM_SZ_512M,
33         DRAM_SZ_NR,
34 };
35
36 /* PHY */
37 static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
38 static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
39 static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
40 static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357};
41 static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
42 static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88};
43 static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0};
44 static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00};
45 static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89};
46 static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125};
47 static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8};
48
49 /* dependent on package and board design */
50 static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};
51
52 /* DDR multiPHY */
53 static inline int ddrphy_get_rank(int dx)
54 {
55         return dx / 2;
56 }
57
58 static void ddrphy_fifo_reset(void __iomem *phy_base)
59 {
60         u32 tmp;
61
62         tmp = readl(phy_base + MPHY_PGCR0);
63         tmp &= ~MPHY_PGCR0_PHYFRST;
64         writel(tmp, phy_base + MPHY_PGCR0);
65
66         udelay(1);
67
68         tmp |= MPHY_PGCR0_PHYFRST;
69         writel(tmp, phy_base + MPHY_PGCR0);
70
71         udelay(1);
72 }
73
74 static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
75 {
76         u32 tmp;
77
78         tmp = readl(phy_base + MPHY_PGCR1);
79
80         if (enable)
81                 tmp &= ~MPHY_PGCR1_INHVT;
82         else
83                 tmp |= MPHY_PGCR1_INHVT;
84
85         writel(tmp, phy_base + MPHY_PGCR1);
86
87         if (!enable) {
88                 while (!(readl(phy_base + MPHY_PGSR1) & MPHY_PGSR1_VTSTOP))
89                         cpu_relax();
90         }
91 }
92
93 static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
94 {
95         int dx;
96         u32 lcdlr1, rdqsd;
97         void __iomem *dx_base = phy_base + MPHY_DX_BASE;
98
99         ddrphy_vt_ctrl(phy_base, 0);
100
101         for (dx = 0; dx < nr_dx; dx++) {
102                 lcdlr1 = readl(dx_base + MPHY_DX_LCDLR1);
103                 rdqsd = (lcdlr1 >> 8) & 0xff;
104                 rdqsd = clamp(rdqsd + step, 0U, 0xffU);
105                 lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
106                 writel(lcdlr1, dx_base + MPHY_DX_LCDLR1);
107                 readl(dx_base + MPHY_DX_LCDLR1); /* relax */
108                 dx_base += MPHY_DX_STRIDE;
109         }
110
111         ddrphy_vt_ctrl(phy_base, 1);
112 }
113
114 static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
115 {
116         void __iomem *dx_base = phy_base + MPHY_DX_BASE;
117         const int nr_dx = width / 8;
118         int dx, rank;
119         u32 gtr;
120         int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
121
122         for (dx = 0; dx < nr_dx; dx++) {
123                 gtr = readl(dx_base + MPHY_DX_GTR);
124                 for (rank = 0; rank < 4; rank++) {
125                         dgsl = gtr & 0x7;
126                         /* if dgsl is zero, this rank was not trained. skip. */
127                         if (dgsl) {
128                                 dgsl_min = min(dgsl_min, dgsl);
129                                 dgsl_max = max(dgsl_max, dgsl);
130                         }
131                         gtr >>= 3;
132                 }
133                 dx_base += MPHY_DX_STRIDE;
134         }
135
136         if (dgsl_min != dgsl_max)
137                 printf("DQS Gateing System Latencies are not all leveled.\n");
138
139         return dgsl_max;
140 }
141
142 static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
143                         int ch)
144 {
145         u32 tmp;
146         void __iomem *zq_base, *dx_base;
147         int zq, dx;
148         int nr_dx;
149
150         nr_dx = width / 8;
151
152         writel(MPHY_PIR_ZCALBYP,        phy_base + MPHY_PIR);
153         /*
154          * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
155          * to avoid read error issue.
156          */
157         writel(0x07d81e37, phy_base + MPHY_PGCR0);
158         writel(0x0200c4e0, phy_base + MPHY_PGCR1);
159
160         tmp = ddrphy_pgcr2[freq];
161         if (width >= 32)
162                 tmp |= MPHY_PGCR2_DUALCHN | MPHY_PGCR2_ACPDDC;
163         writel(tmp, phy_base + MPHY_PGCR2);
164
165         writel(ddrphy_ptr0[freq], phy_base + MPHY_PTR0);
166         writel(ddrphy_ptr1[freq], phy_base + MPHY_PTR1);
167         writel(0x00083def, phy_base + MPHY_PTR2);
168         writel(ddrphy_ptr3[freq], phy_base + MPHY_PTR3);
169         writel(ddrphy_ptr4[freq], phy_base + MPHY_PTR4);
170
171         writel(ddrphy_acbdlr0[ch], phy_base + MPHY_ACBDLR0);
172
173         writel(0x55555555, phy_base + MPHY_ACIOCR1);
174         writel(0x00000000, phy_base + MPHY_ACIOCR2);
175         writel(0x55555555, phy_base + MPHY_ACIOCR3);
176         writel(0x00000000, phy_base + MPHY_ACIOCR4);
177         writel(0x00000055, phy_base + MPHY_ACIOCR5);
178         writel(0x00181aa4, phy_base + MPHY_DXCCR);
179
180         writel(0x0024641e, phy_base + MPHY_DSGCR);
181         writel(0x0000040b, phy_base + MPHY_DCR);
182         writel(ddrphy_dtpr0[freq], phy_base + MPHY_DTPR0);
183         writel(ddrphy_dtpr1[freq], phy_base + MPHY_DTPR1);
184         writel(ddrphy_dtpr2[freq], phy_base + MPHY_DTPR2);
185         writel(ddrphy_dtpr3[freq], phy_base + MPHY_DTPR3);
186         writel(ddrphy_mr0[freq], phy_base + MPHY_MR0);
187         writel(0x00000006, phy_base + MPHY_MR1);
188         writel(ddrphy_mr2[freq], phy_base + MPHY_MR2);
189         writel(0x00000000, phy_base + MPHY_MR3);
190
191         tmp = 0;
192         for (dx = 0; dx < nr_dx; dx++)
193                 tmp |= BIT(MPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
194         writel(0x90003087 | tmp, phy_base + MPHY_DTCR);
195
196         writel(0x00000000, phy_base + MPHY_DTAR0);
197         writel(0x00000008, phy_base + MPHY_DTAR1);
198         writel(0x00000010, phy_base + MPHY_DTAR2);
199         writel(0x00000018, phy_base + MPHY_DTAR3);
200         writel(0xdd22ee11, phy_base + MPHY_DTDR0);
201         writel(0x7788bb44, phy_base + MPHY_DTDR1);
202
203         /* impedance control settings */
204         writel(0x04048900, phy_base + MPHY_ZQCR);
205
206         zq_base = phy_base + MPHY_ZQ_BASE;
207         for (zq = 0; zq < 4; zq++) {
208                 /*
209                  * board-dependent
210                  * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
211                  */
212                 writel(0x0007BB5D, zq_base + MPHY_ZQ_PR);
213                 zq_base += MPHY_ZQ_STRIDE;
214         }
215
216         /* DATX8 settings */
217         dx_base = phy_base + MPHY_DX_BASE;
218         for (dx = 0; dx < 4; dx++) {
219                 tmp = readl(dx_base + MPHY_DX_GCR0);
220                 tmp &= ~MPHY_DX_GCR0_WLRKEN_MASK;
221                 tmp |= BIT(MPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
222                                                 MPHY_DX_GCR0_WLRKEN_MASK;
223                 writel(tmp, dx_base + MPHY_DX_GCR0);
224
225                 writel(0x00000000, dx_base + MPHY_DX_GCR1);
226                 writel(0x00000000, dx_base + MPHY_DX_GCR2);
227                 writel(0x00000000, dx_base + MPHY_DX_GCR3);
228                 dx_base += MPHY_DX_STRIDE;
229         }
230
231         while (!(readl(phy_base + MPHY_PGSR0) & MPHY_PGSR0_IDONE))
232                 cpu_relax();
233
234         ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
235 }
236
237 struct ddrphy_init_sequence {
238         char *description;
239         u32 init_flag;
240         u32 done_flag;
241         u32 err_flag;
242 };
243
244 static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
245         {
246                 "Impedance Calibration",
247                 MPHY_PIR_ZCAL,
248                 MPHY_PGSR0_ZCDONE,
249                 MPHY_PGSR0_ZCERR,
250         },
251         { /* sentinel */ }
252 };
253
254 static const struct ddrphy_init_sequence dram_init_sequence[] = {
255         {
256                 "DRAM Initialization",
257                 MPHY_PIR_DRAMRST | MPHY_PIR_DRAMINIT,
258                 MPHY_PGSR0_DIDONE,
259                 0,
260         },
261         { /* sentinel */ }
262 };
263
264 static const struct ddrphy_init_sequence training_sequence[] = {
265         {
266                 "Write Leveling",
267                 MPHY_PIR_WL,
268                 MPHY_PGSR0_WLDONE,
269                 MPHY_PGSR0_WLERR,
270         },
271         {
272                 "Read DQS Gate Training",
273                 MPHY_PIR_QSGATE,
274                 MPHY_PGSR0_QSGDONE,
275                 MPHY_PGSR0_QSGERR,
276         },
277         {
278                 "Write Leveling Adjustment",
279                 MPHY_PIR_WLADJ,
280                 MPHY_PGSR0_WLADONE,
281                 MPHY_PGSR0_WLAERR,
282         },
283         {
284                 "Read Bit Deskew",
285                 MPHY_PIR_RDDSKW,
286                 MPHY_PGSR0_RDDONE,
287                 MPHY_PGSR0_RDERR,
288         },
289         {
290                 "Write Bit Deskew",
291                 MPHY_PIR_WRDSKW,
292                 MPHY_PGSR0_WDDONE,
293                 MPHY_PGSR0_WDERR,
294         },
295         {
296                 "Read Eye Training",
297                 MPHY_PIR_RDEYE,
298                 MPHY_PGSR0_REDONE,
299                 MPHY_PGSR0_REERR,
300         },
301         {
302                 "Write Eye Training",
303                 MPHY_PIR_WREYE,
304                 MPHY_PGSR0_WEDONE,
305                 MPHY_PGSR0_WEERR,
306         },
307         { /* sentinel */ }
308 };
309
310 static int __ddrphy_training(void __iomem *phy_base,
311                              const struct ddrphy_init_sequence *seq)
312 {
313         const struct ddrphy_init_sequence *s;
314         u32 pgsr0;
315         u32 init_flag = MPHY_PIR_INIT;
316         u32 done_flag = MPHY_PGSR0_IDONE;
317         int timeout = 50000; /* 50 msec is long enough */
318 #ifdef DISPLAY_ELAPSED_TIME
319         ulong start = get_timer(0);
320 #endif
321
322         for (s = seq; s->description; s++) {
323                 init_flag |= s->init_flag;
324                 done_flag |= s->done_flag;
325         }
326
327         writel(init_flag, phy_base + MPHY_PIR);
328
329         do {
330                 if (--timeout < 0) {
331                         pr_err("%s: error: timeout during DDR training\n",
332                                __func__);
333                         return -ETIMEDOUT;
334                 }
335                 udelay(1);
336                 pgsr0 = readl(phy_base + MPHY_PGSR0);
337         } while ((pgsr0 & done_flag) != done_flag);
338
339         for (s = seq; s->description; s++) {
340                 if (pgsr0 & s->err_flag) {
341                         pr_err("%s: error: %s failed\n", __func__,
342                                s->description);
343                         return -EIO;
344                 }
345         }
346
347 #ifdef DISPLAY_ELAPSED_TIME
348         printf("%s: info: elapsed time %ld msec\n", get_timer(start));
349 #endif
350
351         return 0;
352 }
353
354 static int ddrphy_impedance_calibration(void __iomem *phy_base)
355 {
356         int ret;
357         u32 tmp;
358
359         ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
360         if (ret)
361                 return ret;
362
363         /*
364          * Because of a hardware bug, IDONE flag is set when the first ZQ block
365          * is calibrated.  The flag does not guarantee the completion for all
366          * the ZQ blocks.  Wait a little more just in case.
367          */
368         udelay(1);
369
370         /* reflect ZQ settings and enable average algorithm*/
371         tmp = readl(phy_base + MPHY_ZQCR);
372         tmp |= MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
373         writel(tmp, phy_base + MPHY_ZQCR);
374         tmp &= ~MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
375         tmp |= MPHY_ZQCR_AVGEN;
376         writel(tmp, phy_base + MPHY_ZQCR);
377
378         return 0;
379 }
380
381 static int ddrphy_dram_init(void __iomem *phy_base)
382 {
383         return __ddrphy_training(phy_base, dram_init_sequence);
384 }
385
386 static int ddrphy_training(void __iomem *phy_base)
387 {
388         return __ddrphy_training(phy_base, training_sequence);
389 }
390
391 /* UMC */
392 static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722};
393 /*
394  * The ch2 is a different generation UMC core.
395  * The register spec is different, unfortunately.
396  */
397 static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44};
398 static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
399 static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
400         {0x004A071D, 0x0078071D},
401         {0x0055081E, 0x0089081E},
402 };
403
404 static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
405 /* The ch2 is different for some reason only hardware guys know... */
406 static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
407 static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
408
409 static void umc_set_system_latency(void __iomem *dc_base, int phy_latency)
410 {
411         u32 val;
412         int latency;
413
414         val = readl(dc_base + UMC_RDATACTL_D0);
415         latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
416         latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
417                                                 UMC_RDATACTL_RAD2LTY_SHIFT;
418         /*
419          * UMC works at the half clock rate of the PHY.
420          * The LSB of latency is ignored
421          */
422         latency += phy_latency & ~1;
423
424         val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
425         if (latency > 0xf) {
426                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
427                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
428         } else {
429                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
430         }
431
432         writel(val, dc_base + UMC_RDATACTL_D0);
433         writel(val, dc_base + UMC_RDATACTL_D1);
434
435         readl(dc_base + UMC_RDATACTL_D1); /* relax */
436 }
437
438 /* enable/disable auto refresh */
439 void umc_refresh_ctrl(void __iomem *dc_base, int enable)
440 {
441         u32 tmp;
442
443         tmp = readl(dc_base + UMC_SPCSETB);
444         tmp &= ~UMC_SPCSETB_AREFMD_MASK;
445
446         if (enable)
447                 tmp |= UMC_SPCSETB_AREFMD_ARB;
448         else
449                 tmp |= UMC_SPCSETB_AREFMD_REG;
450
451         writel(tmp, dc_base + UMC_SPCSETB);
452         udelay(1);
453 }
454
455 static void umc_ud_init(void __iomem *umc_base, int ch)
456 {
457         writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
458
459         if (ch == 2)
460                 writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
461 }
462
463 static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq,
464                        unsigned long size, int width, int ch)
465 {
466         enum dram_size size_e;
467         int latency;
468         u32 val;
469
470         switch (size) {
471         case 0:
472                 return 0;
473         case SZ_256M:
474                 size_e = DRAM_SZ_256M;
475                 break;
476         case SZ_512M:
477                 size_e = DRAM_SZ_512M;
478                 break;
479         default:
480                 pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n",
481                        size, ch);
482                 return -EINVAL;
483         }
484
485         writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA);
486
487         writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
488                dc_base + UMC_CMDCTLB);
489
490         writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA);
491         writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB);
492
493         val = 0x000e000e;
494         latency = 12;
495         /* ES2 inserted one more FF to the logic. */
496         if (uniphier_get_soc_model() >= 2)
497                 latency += 2;
498
499         if (latency > 0xf) {
500                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
501                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
502         } else {
503                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
504         }
505
506         writel(val, dc_base + UMC_RDATACTL_D0);
507         if (width >= 32)
508                 writel(val, dc_base + UMC_RDATACTL_D1);
509
510         writel(0x04060A02, dc_base + UMC_WDATACTL_D0);
511         if (width >= 32)
512                 writel(0x04060A02, dc_base + UMC_WDATACTL_D1);
513         writel(0x04000000, dc_base + UMC_DATASET);
514         writel(0x00400020, dc_base + UMC_DCCGCTL);
515         writel(0x00000084, dc_base + UMC_FLOWCTLG);
516         writel(0x00000000, dc_base + UMC_ACSSETA);
517
518         writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
519                dc_base + UMC_FLOWCTLA);
520
521         writel(0x00004400, dc_base + UMC_FLOWCTLC);
522         writel(0x200A0A00, dc_base + UMC_SPCSETB);
523         writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
524         writel(0x0000000D, dc_base + UMC_RESPCTL);
525
526         if (ch != 2) {
527                 writel(0x00202000, dc_base + UMC_FLOWCTLB);
528                 writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0);
529                 writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1);
530                 writel(0x00080700, dc_base + UMC_BSICMAPSET);
531         } else {
532                 writel(0x00200000, dc_base + UMC_FLOWCTLB);
533                 writel(0x00000000, dc_base + UMC_BSICMAPSET);
534         }
535
536         writel(0x00000000, dc_base + UMC_ERRMASKA);
537         writel(0x00000000, dc_base + UMC_ERRMASKB);
538
539         return 0;
540 }
541
542 static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq,
543                        unsigned long size, unsigned int width, int ch)
544 {
545         void __iomem *dc_base = umc_ch_base + 0x00011000;
546         void __iomem *phy_base = umc_ch_base + 0x00030000;
547         int ret;
548
549         writel(0x00000002, dc_base + UMC_INITSET);
550         while (readl(dc_base + UMC_INITSTAT) & BIT(2))
551                 cpu_relax();
552
553         /* deassert PHY reset signals */
554         writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
555                dc_base + UMC_DIOCTLA);
556
557         ddrphy_init(phy_base, freq, width, ch);
558
559         ret = ddrphy_impedance_calibration(phy_base);
560         if (ret)
561                 return ret;
562
563         ddrphy_dram_init(phy_base);
564         if (ret)
565                 return ret;
566
567         ret = umc_dc_init(dc_base, freq, size, width, ch);
568         if (ret)
569                 return ret;
570
571         umc_ud_init(umc_ch_base, ch);
572
573         ret = ddrphy_training(phy_base);
574         if (ret)
575                 return ret;
576
577         udelay(1);
578
579         /* match the system latency between UMC and PHY */
580         umc_set_system_latency(dc_base,
581                                ddrphy_get_system_latency(phy_base, width));
582
583         udelay(1);
584
585         /* stop auto refresh before clearing FIFO in PHY */
586         umc_refresh_ctrl(dc_base, 0);
587         ddrphy_fifo_reset(phy_base);
588         umc_refresh_ctrl(dc_base, 1);
589
590         udelay(10);
591
592         return 0;
593 }
594
595 static void um_init(void __iomem *um_base)
596 {
597         writel(0x000000ff, um_base + UMC_MBUS0);
598         writel(0x000000ff, um_base + UMC_MBUS1);
599         writel(0x000000ff, um_base + UMC_MBUS2);
600         writel(0x000000ff, um_base + UMC_MBUS3);
601 }
602
603 int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd)
604 {
605         void __iomem *um_base = (void __iomem *)0x5b600000;
606         void __iomem *umc_ch_base = (void __iomem *)0x5b800000;
607         enum dram_freq freq;
608         int ch, ret;
609
610         switch (bd->dram_freq) {
611         case 1866:
612                 freq = DRAM_FREQ_1866M;
613                 break;
614         case 2133:
615                 freq = DRAM_FREQ_2133M;
616                 break;
617         default:
618                 pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
619                 return -EINVAL;
620         }
621
622         for (ch = 0; ch < DRAM_CH_NR; ch++) {
623                 unsigned long size = bd->dram_ch[ch].size;
624                 unsigned int width = bd->dram_ch[ch].width;
625
626                 if (size) {
627                         ret = umc_ch_init(umc_ch_base, freq,
628                                           size / (width / 16), width, ch);
629                         if (ret) {
630                                 pr_err("failed to initialize UMC ch%d\n", ch);
631                                 return ret;
632                         }
633                 }
634
635                 umc_ch_base += 0x00200000;
636         }
637
638         um_init(um_base);
639
640         return 0;
641 }