Merge tag 'u-boot-atmel-fixes-2020.07-a' of https://gitlab.denx.de/u-boot/custodians...
[oweals/u-boot.git] / arch / arm / mach-uniphier / dram / umc-pxs2.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2015-2017 Socionext Inc.
4  *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
5  *
6  * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
7  * Copyright (C) 2015 Socionext Inc.
8  */
9
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/io.h>
14 #include <linux/printk.h>
15 #include <linux/sizes.h>
16 #include <asm/processor.h>
17 #include <time.h>
18
19 #include "../init.h"
20 #include "../soc-info.h"
21 #include "ddrmphy-regs.h"
22 #include "umc-regs.h"
23
24 #define DRAM_CH_NR      3
25
26 enum dram_freq {
27         DRAM_FREQ_1866M,
28         DRAM_FREQ_2133M,
29         DRAM_FREQ_NR,
30 };
31
32 enum dram_size {
33         DRAM_SZ_256M,
34         DRAM_SZ_512M,
35         DRAM_SZ_NR,
36 };
37
38 /* PHY */
39 static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
40 static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
41 static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
42 static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357};
43 static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
44 static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88};
45 static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0};
46 static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00};
47 static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89};
48 static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125};
49 static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8};
50
51 /* dependent on package and board design */
52 static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};
53
54 /* DDR multiPHY */
55 static inline int ddrphy_get_rank(int dx)
56 {
57         return dx / 2;
58 }
59
60 static void ddrphy_fifo_reset(void __iomem *phy_base)
61 {
62         u32 tmp;
63
64         tmp = readl(phy_base + MPHY_PGCR0);
65         tmp &= ~MPHY_PGCR0_PHYFRST;
66         writel(tmp, phy_base + MPHY_PGCR0);
67
68         udelay(1);
69
70         tmp |= MPHY_PGCR0_PHYFRST;
71         writel(tmp, phy_base + MPHY_PGCR0);
72
73         udelay(1);
74 }
75
76 static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
77 {
78         u32 tmp;
79
80         tmp = readl(phy_base + MPHY_PGCR1);
81
82         if (enable)
83                 tmp &= ~MPHY_PGCR1_INHVT;
84         else
85                 tmp |= MPHY_PGCR1_INHVT;
86
87         writel(tmp, phy_base + MPHY_PGCR1);
88
89         if (!enable) {
90                 while (!(readl(phy_base + MPHY_PGSR1) & MPHY_PGSR1_VTSTOP))
91                         cpu_relax();
92         }
93 }
94
95 static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
96 {
97         int dx;
98         u32 lcdlr1, rdqsd;
99         void __iomem *dx_base = phy_base + MPHY_DX_BASE;
100
101         ddrphy_vt_ctrl(phy_base, 0);
102
103         for (dx = 0; dx < nr_dx; dx++) {
104                 lcdlr1 = readl(dx_base + MPHY_DX_LCDLR1);
105                 rdqsd = (lcdlr1 >> 8) & 0xff;
106                 rdqsd = clamp(rdqsd + step, 0U, 0xffU);
107                 lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
108                 writel(lcdlr1, dx_base + MPHY_DX_LCDLR1);
109                 readl(dx_base + MPHY_DX_LCDLR1); /* relax */
110                 dx_base += MPHY_DX_STRIDE;
111         }
112
113         ddrphy_vt_ctrl(phy_base, 1);
114 }
115
116 static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
117 {
118         void __iomem *dx_base = phy_base + MPHY_DX_BASE;
119         const int nr_dx = width / 8;
120         int dx, rank;
121         u32 gtr;
122         int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
123
124         for (dx = 0; dx < nr_dx; dx++) {
125                 gtr = readl(dx_base + MPHY_DX_GTR);
126                 for (rank = 0; rank < 4; rank++) {
127                         dgsl = gtr & 0x7;
128                         /* if dgsl is zero, this rank was not trained. skip. */
129                         if (dgsl) {
130                                 dgsl_min = min(dgsl_min, dgsl);
131                                 dgsl_max = max(dgsl_max, dgsl);
132                         }
133                         gtr >>= 3;
134                 }
135                 dx_base += MPHY_DX_STRIDE;
136         }
137
138         if (dgsl_min != dgsl_max)
139                 pr_warn("DQS Gateing System Latencies are not all leveled.\n");
140
141         return dgsl_max;
142 }
143
144 static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
145                         int ch)
146 {
147         u32 tmp;
148         void __iomem *zq_base, *dx_base;
149         int zq, dx;
150         int nr_dx;
151
152         nr_dx = width / 8;
153
154         writel(MPHY_PIR_ZCALBYP, phy_base + MPHY_PIR);
155         /*
156          * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
157          * to avoid read error issue.
158          */
159         writel(0x07d81e37, phy_base + MPHY_PGCR0);
160         writel(0x0200c4e0, phy_base + MPHY_PGCR1);
161
162         tmp = ddrphy_pgcr2[freq];
163         if (width >= 32)
164                 tmp |= MPHY_PGCR2_DUALCHN | MPHY_PGCR2_ACPDDC;
165         writel(tmp, phy_base + MPHY_PGCR2);
166
167         writel(ddrphy_ptr0[freq], phy_base + MPHY_PTR0);
168         writel(ddrphy_ptr1[freq], phy_base + MPHY_PTR1);
169         writel(0x00083def, phy_base + MPHY_PTR2);
170         writel(ddrphy_ptr3[freq], phy_base + MPHY_PTR3);
171         writel(ddrphy_ptr4[freq], phy_base + MPHY_PTR4);
172
173         writel(ddrphy_acbdlr0[ch], phy_base + MPHY_ACBDLR0);
174
175         writel(0x55555555, phy_base + MPHY_ACIOCR1);
176         writel(0x00000000, phy_base + MPHY_ACIOCR2);
177         writel(0x55555555, phy_base + MPHY_ACIOCR3);
178         writel(0x00000000, phy_base + MPHY_ACIOCR4);
179         writel(0x00000055, phy_base + MPHY_ACIOCR5);
180         writel(0x00181aa4, phy_base + MPHY_DXCCR);
181
182         writel(0x0024641e, phy_base + MPHY_DSGCR);
183         writel(0x0000040b, phy_base + MPHY_DCR);
184         writel(ddrphy_dtpr0[freq], phy_base + MPHY_DTPR0);
185         writel(ddrphy_dtpr1[freq], phy_base + MPHY_DTPR1);
186         writel(ddrphy_dtpr2[freq], phy_base + MPHY_DTPR2);
187         writel(ddrphy_dtpr3[freq], phy_base + MPHY_DTPR3);
188         writel(ddrphy_mr0[freq], phy_base + MPHY_MR0);
189         writel(0x00000006, phy_base + MPHY_MR1);
190         writel(ddrphy_mr2[freq], phy_base + MPHY_MR2);
191         writel(0x00000000, phy_base + MPHY_MR3);
192
193         tmp = 0;
194         for (dx = 0; dx < nr_dx; dx++)
195                 tmp |= BIT(MPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
196         writel(0x90003087 | tmp, phy_base + MPHY_DTCR);
197
198         writel(0x00000000, phy_base + MPHY_DTAR0);
199         writel(0x00000008, phy_base + MPHY_DTAR1);
200         writel(0x00000010, phy_base + MPHY_DTAR2);
201         writel(0x00000018, phy_base + MPHY_DTAR3);
202         writel(0xdd22ee11, phy_base + MPHY_DTDR0);
203         writel(0x7788bb44, phy_base + MPHY_DTDR1);
204
205         /* impedance control settings */
206         writel(0x04048900, phy_base + MPHY_ZQCR);
207
208         zq_base = phy_base + MPHY_ZQ_BASE;
209         for (zq = 0; zq < 4; zq++) {
210                 /*
211                  * board-dependent
212                  * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
213                  */
214                 writel(0x0007BB5D, zq_base + MPHY_ZQ_PR);
215                 zq_base += MPHY_ZQ_STRIDE;
216         }
217
218         /* DATX8 settings */
219         dx_base = phy_base + MPHY_DX_BASE;
220         for (dx = 0; dx < 4; dx++) {
221                 tmp = readl(dx_base + MPHY_DX_GCR0);
222                 tmp &= ~MPHY_DX_GCR0_WLRKEN_MASK;
223                 tmp |= BIT(MPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
224                                                 MPHY_DX_GCR0_WLRKEN_MASK;
225                 writel(tmp, dx_base + MPHY_DX_GCR0);
226
227                 writel(0x00000000, dx_base + MPHY_DX_GCR1);
228                 writel(0x00000000, dx_base + MPHY_DX_GCR2);
229                 writel(0x00000000, dx_base + MPHY_DX_GCR3);
230                 dx_base += MPHY_DX_STRIDE;
231         }
232
233         while (!(readl(phy_base + MPHY_PGSR0) & MPHY_PGSR0_IDONE))
234                 cpu_relax();
235
236         ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
237 }
238
239 struct ddrphy_init_sequence {
240         char *description;
241         u32 init_flag;
242         u32 done_flag;
243         u32 err_flag;
244 };
245
246 static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
247         {
248                 "Impedance Calibration",
249                 MPHY_PIR_ZCAL,
250                 MPHY_PGSR0_ZCDONE,
251                 MPHY_PGSR0_ZCERR,
252         },
253         { /* sentinel */ }
254 };
255
256 static const struct ddrphy_init_sequence dram_init_sequence[] = {
257         {
258                 "DRAM Initialization",
259                 MPHY_PIR_DRAMRST | MPHY_PIR_DRAMINIT,
260                 MPHY_PGSR0_DIDONE,
261                 0,
262         },
263         { /* sentinel */ }
264 };
265
266 static const struct ddrphy_init_sequence training_sequence[] = {
267         {
268                 "Write Leveling",
269                 MPHY_PIR_WL,
270                 MPHY_PGSR0_WLDONE,
271                 MPHY_PGSR0_WLERR,
272         },
273         {
274                 "Read DQS Gate Training",
275                 MPHY_PIR_QSGATE,
276                 MPHY_PGSR0_QSGDONE,
277                 MPHY_PGSR0_QSGERR,
278         },
279         {
280                 "Write Leveling Adjustment",
281                 MPHY_PIR_WLADJ,
282                 MPHY_PGSR0_WLADONE,
283                 MPHY_PGSR0_WLAERR,
284         },
285         {
286                 "Read Bit Deskew",
287                 MPHY_PIR_RDDSKW,
288                 MPHY_PGSR0_RDDONE,
289                 MPHY_PGSR0_RDERR,
290         },
291         {
292                 "Write Bit Deskew",
293                 MPHY_PIR_WRDSKW,
294                 MPHY_PGSR0_WDDONE,
295                 MPHY_PGSR0_WDERR,
296         },
297         {
298                 "Read Eye Training",
299                 MPHY_PIR_RDEYE,
300                 MPHY_PGSR0_REDONE,
301                 MPHY_PGSR0_REERR,
302         },
303         {
304                 "Write Eye Training",
305                 MPHY_PIR_WREYE,
306                 MPHY_PGSR0_WEDONE,
307                 MPHY_PGSR0_WEERR,
308         },
309         { /* sentinel */ }
310 };
311
312 static int __ddrphy_training(void __iomem *phy_base,
313                              const struct ddrphy_init_sequence *seq)
314 {
315         const struct ddrphy_init_sequence *s;
316         u32 pgsr0;
317         u32 init_flag = MPHY_PIR_INIT;
318         u32 done_flag = MPHY_PGSR0_IDONE;
319         int timeout = 50000; /* 50 msec is long enough */
320         unsigned long start = 0;
321
322 #ifdef DEBUG
323         start = get_timer(0);
324 #endif
325
326         for (s = seq; s->description; s++) {
327                 init_flag |= s->init_flag;
328                 done_flag |= s->done_flag;
329         }
330
331         writel(init_flag, phy_base + MPHY_PIR);
332
333         do {
334                 if (--timeout < 0) {
335                         pr_err("%s: error: timeout during DDR training\n",
336                                __func__);
337                         return -ETIMEDOUT;
338                 }
339                 udelay(1);
340                 pgsr0 = readl(phy_base + MPHY_PGSR0);
341         } while ((pgsr0 & done_flag) != done_flag);
342
343         for (s = seq; s->description; s++) {
344                 if (pgsr0 & s->err_flag) {
345                         pr_err("%s: error: %s failed\n", __func__,
346                                s->description);
347                         return -EIO;
348                 }
349         }
350
351         pr_debug("DDRPHY training: elapsed time %ld msec\n", get_timer(start));
352
353         return 0;
354 }
355
356 static int ddrphy_impedance_calibration(void __iomem *phy_base)
357 {
358         int ret;
359         u32 tmp;
360
361         ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
362         if (ret)
363                 return ret;
364
365         /*
366          * Because of a hardware bug, IDONE flag is set when the first ZQ block
367          * is calibrated.  The flag does not guarantee the completion for all
368          * the ZQ blocks.  Wait a little more just in case.
369          */
370         udelay(1);
371
372         /* reflect ZQ settings and enable average algorithm*/
373         tmp = readl(phy_base + MPHY_ZQCR);
374         tmp |= MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
375         writel(tmp, phy_base + MPHY_ZQCR);
376         tmp &= ~MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
377         tmp |= MPHY_ZQCR_AVGEN;
378         writel(tmp, phy_base + MPHY_ZQCR);
379
380         return 0;
381 }
382
383 static int ddrphy_dram_init(void __iomem *phy_base)
384 {
385         return __ddrphy_training(phy_base, dram_init_sequence);
386 }
387
388 static int ddrphy_training(void __iomem *phy_base)
389 {
390         return __ddrphy_training(phy_base, training_sequence);
391 }
392
393 /* UMC */
394 static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722};
395 /*
396  * The ch2 is a different generation UMC core.
397  * The register spec is different, unfortunately.
398  */
399 static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44};
400 static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
401 static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
402         {0x004A071D, 0x0078071D},
403         {0x0055081E, 0x0089081E},
404 };
405
406 static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
407 /* The ch2 is different for some reason only hardware guys know... */
408 static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
409 static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
410
411 static void umc_set_system_latency(void __iomem *dc_base, int phy_latency)
412 {
413         u32 val;
414         int latency;
415
416         val = readl(dc_base + UMC_RDATACTL_D0);
417         latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
418         latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
419                                                 UMC_RDATACTL_RAD2LTY_SHIFT;
420         /*
421          * UMC works at the half clock rate of the PHY.
422          * The LSB of latency is ignored
423          */
424         latency += phy_latency & ~1;
425
426         val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
427         if (latency > 0xf) {
428                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
429                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
430         } else {
431                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
432         }
433
434         writel(val, dc_base + UMC_RDATACTL_D0);
435         writel(val, dc_base + UMC_RDATACTL_D1);
436
437         readl(dc_base + UMC_RDATACTL_D1); /* relax */
438 }
439
440 /* enable/disable auto refresh */
441 static void umc_refresh_ctrl(void __iomem *dc_base, int enable)
442 {
443         u32 tmp;
444
445         tmp = readl(dc_base + UMC_SPCSETB);
446         tmp &= ~UMC_SPCSETB_AREFMD_MASK;
447
448         if (enable)
449                 tmp |= UMC_SPCSETB_AREFMD_ARB;
450         else
451                 tmp |= UMC_SPCSETB_AREFMD_REG;
452
453         writel(tmp, dc_base + UMC_SPCSETB);
454         udelay(1);
455 }
456
457 static void umc_ud_init(void __iomem *umc_base, int ch)
458 {
459         writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
460
461         if (ch == 2)
462                 writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
463 }
464
465 static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq,
466                        unsigned long size, int width, int ch)
467 {
468         enum dram_size size_e;
469         int latency;
470         u32 val;
471
472         switch (size) {
473         case 0:
474                 return 0;
475         case SZ_256M:
476                 size_e = DRAM_SZ_256M;
477                 break;
478         case SZ_512M:
479                 size_e = DRAM_SZ_512M;
480                 break;
481         default:
482                 pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n",
483                        size, ch);
484                 return -EINVAL;
485         }
486
487         writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA);
488
489         writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
490                dc_base + UMC_CMDCTLB);
491
492         writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA);
493         writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB);
494
495         val = 0x000e000e;
496         latency = 12;
497         /* ES2 inserted one more FF to the logic. */
498         if (uniphier_get_soc_model() >= 2)
499                 latency += 2;
500
501         if (latency > 0xf) {
502                 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
503                 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
504         } else {
505                 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
506         }
507
508         writel(val, dc_base + UMC_RDATACTL_D0);
509         if (width >= 32)
510                 writel(val, dc_base + UMC_RDATACTL_D1);
511
512         writel(0x04060A02, dc_base + UMC_WDATACTL_D0);
513         if (width >= 32)
514                 writel(0x04060A02, dc_base + UMC_WDATACTL_D1);
515         writel(0x04000000, dc_base + UMC_DATASET);
516         writel(0x00400020, dc_base + UMC_DCCGCTL);
517         writel(0x00000084, dc_base + UMC_FLOWCTLG);
518         writel(0x00000000, dc_base + UMC_ACSSETA);
519
520         writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
521                dc_base + UMC_FLOWCTLA);
522
523         writel(0x00004400, dc_base + UMC_FLOWCTLC);
524         writel(0x200A0A00, dc_base + UMC_SPCSETB);
525         writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
526         writel(0x0000000D, dc_base + UMC_RESPCTL);
527
528         if (ch != 2) {
529                 writel(0x00202000, dc_base + UMC_FLOWCTLB);
530                 writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0);
531                 writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1);
532                 writel(0x00080700, dc_base + UMC_BSICMAPSET);
533         } else {
534                 writel(0x00200000, dc_base + UMC_FLOWCTLB);
535                 writel(0x00000000, dc_base + UMC_BSICMAPSET);
536         }
537
538         writel(0x00000000, dc_base + UMC_ERRMASKA);
539         writel(0x00000000, dc_base + UMC_ERRMASKB);
540
541         return 0;
542 }
543
544 static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq,
545                        unsigned long size, unsigned int width, int ch)
546 {
547         void __iomem *dc_base = umc_ch_base + 0x00011000;
548         void __iomem *phy_base = umc_ch_base + 0x00030000;
549         int ret;
550
551         writel(0x00000002, dc_base + UMC_INITSET);
552         while (readl(dc_base + UMC_INITSTAT) & BIT(2))
553                 cpu_relax();
554
555         /* deassert PHY reset signals */
556         writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
557                dc_base + UMC_DIOCTLA);
558
559         ddrphy_init(phy_base, freq, width, ch);
560
561         ret = ddrphy_impedance_calibration(phy_base);
562         if (ret)
563                 return ret;
564
565         ddrphy_dram_init(phy_base);
566         if (ret)
567                 return ret;
568
569         ret = umc_dc_init(dc_base, freq, size, width, ch);
570         if (ret)
571                 return ret;
572
573         umc_ud_init(umc_ch_base, ch);
574
575         ret = ddrphy_training(phy_base);
576         if (ret)
577                 return ret;
578
579         udelay(1);
580
581         /* match the system latency between UMC and PHY */
582         umc_set_system_latency(dc_base,
583                                ddrphy_get_system_latency(phy_base, width));
584
585         udelay(1);
586
587         /* stop auto refresh before clearing FIFO in PHY */
588         umc_refresh_ctrl(dc_base, 0);
589         ddrphy_fifo_reset(phy_base);
590         umc_refresh_ctrl(dc_base, 1);
591
592         udelay(10);
593
594         return 0;
595 }
596
597 static void um_init(void __iomem *um_base)
598 {
599         writel(0x000000ff, um_base + UMC_MBUS0);
600         writel(0x000000ff, um_base + UMC_MBUS1);
601         writel(0x000000ff, um_base + UMC_MBUS2);
602         writel(0x000000ff, um_base + UMC_MBUS3);
603 }
604
605 int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd)
606 {
607         void __iomem *um_base = (void __iomem *)0x5b600000;
608         void __iomem *umc_ch_base = (void __iomem *)0x5b800000;
609         enum dram_freq freq;
610         int ch, ret;
611
612         switch (bd->dram_freq) {
613         case 1866:
614                 freq = DRAM_FREQ_1866M;
615                 break;
616         case 2133:
617                 freq = DRAM_FREQ_2133M;
618                 break;
619         default:
620                 pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
621                 return -EINVAL;
622         }
623
624         for (ch = 0; ch < DRAM_CH_NR; ch++) {
625                 unsigned long size = bd->dram_ch[ch].size;
626                 unsigned int width = bd->dram_ch[ch].width;
627
628                 if (size) {
629                         ret = umc_ch_init(umc_ch_base, freq,
630                                           size / (width / 16), width, ch);
631                         if (ret) {
632                                 pr_err("failed to initialize UMC ch%d\n", ch);
633                                 return ret;
634                         }
635                 }
636
637                 umc_ch_base += 0x00200000;
638         }
639
640         um_init(um_base);
641
642         return 0;
643 }