def7fe0f0a85bae647d502fde2ccad04d93fc0c3
[oweals/u-boot.git] / arch / arm / mach-omap2 / emif-common.c
1 /*
2  * EMIF programming
3  *
4  * (C) Copyright 2010
5  * Texas Instruments, <www.ti.com>
6  *
7  * Aneesh V <aneesh@ti.com>
8  *
9  * SPDX-License-Identifier:     GPL-2.0+
10  */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/omap_sec_common.h>
18 #include <asm/utils.h>
19 #include <linux/compiler.h>
20
21 static int emif1_enabled = -1, emif2_enabled = -1;
22
23 void set_lpmode_selfrefresh(u32 base)
24 {
25         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
26         u32 reg;
27
28         reg = readl(&emif->emif_pwr_mgmt_ctrl);
29         reg &= ~EMIF_REG_LP_MODE_MASK;
30         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
31         reg &= ~EMIF_REG_SR_TIM_MASK;
32         writel(reg, &emif->emif_pwr_mgmt_ctrl);
33
34         /* dummy read for the new SR_TIM to be loaded */
35         readl(&emif->emif_pwr_mgmt_ctrl);
36 }
37
38 void force_emif_self_refresh()
39 {
40         set_lpmode_selfrefresh(EMIF1_BASE);
41         if (!is_dra72x())
42                 set_lpmode_selfrefresh(EMIF2_BASE);
43 }
44
45 inline u32 emif_num(u32 base)
46 {
47         if (base == EMIF1_BASE)
48                 return 1;
49         else if (base == EMIF2_BASE)
50                 return 2;
51         else
52                 return 0;
53 }
54
55 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
56 {
57         u32 mr;
58         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
59
60         mr_addr |= cs << EMIF_REG_CS_SHIFT;
61         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
62         if (omap_revision() == OMAP4430_ES2_0)
63                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
64         else
65                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
66         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
67               cs, mr_addr, mr);
68         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
69             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
70             ((mr & 0xff000000) >> 24) == (mr & 0xff))
71                 return mr & 0xff;
72         else
73                 return mr;
74 }
75
76 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
77 {
78         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
79
80         mr_addr |= cs << EMIF_REG_CS_SHIFT;
81         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
82         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
83 }
84
85 void emif_reset_phy(u32 base)
86 {
87         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
88         u32 iodft;
89
90         iodft = readl(&emif->emif_iodft_tlgc);
91         iodft |= EMIF_REG_RESET_PHY_MASK;
92         writel(iodft, &emif->emif_iodft_tlgc);
93 }
94
95 static void do_lpddr2_init(u32 base, u32 cs)
96 {
97         u32 mr_addr;
98         const struct lpddr2_mr_regs *mr_regs;
99
100         get_lpddr2_mr_regs(&mr_regs);
101         /* Wait till device auto initialization is complete */
102         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
103                 ;
104         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
105         /*
106          * tZQINIT = 1 us
107          * Enough loops assuming a maximum of 2GHz
108          */
109
110         sdelay(2000);
111
112         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
113         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
114
115         /*
116          * Enable refresh along with writing MR2
117          * Encoding of RL in MR2 is (RL - 2)
118          */
119         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
120         set_mr(base, cs, mr_addr, mr_regs->mr2);
121
122         if (mr_regs->mr3 > 0)
123                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
124 }
125
126 static void lpddr2_init(u32 base, const struct emif_regs *regs)
127 {
128         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
129
130         /* Not NVM */
131         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
132
133         /*
134          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
135          * when EMIF_SDRAM_CONFIG register is written
136          */
137         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
138
139         /*
140          * Set the SDRAM_CONFIG and PHY_CTRL for the
141          * un-locked frequency & default RL
142          */
143         writel(regs->sdram_config_init, &emif->emif_sdram_config);
144         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
145
146         do_ext_phy_settings(base, regs);
147
148         do_lpddr2_init(base, CS0);
149         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
150                 do_lpddr2_init(base, CS1);
151
152         writel(regs->sdram_config, &emif->emif_sdram_config);
153         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
154
155         /* Enable refresh now */
156         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
157
158         }
159
160 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
161 {
162 }
163
164 void emif_update_timings(u32 base, const struct emif_regs *regs)
165 {
166         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
167
168         if (!is_dra7xx())
169                 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
170         else
171                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
172
173         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
174         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
175         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
176         if (omap_revision() == OMAP4430_ES1_0) {
177                 /* ES1 bug EMIF should be in force idle during freq_update */
178                 writel(0, &emif->emif_pwr_mgmt_ctrl);
179         } else {
180                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
181                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
182         }
183         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
184         writel(regs->zq_config, &emif->emif_zq_config);
185         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
186         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
187
188         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
189                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
190                         &emif->emif_l3_config);
191         } else if (omap_revision() >= OMAP4460_ES1_0) {
192                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
193                         &emif->emif_l3_config);
194         } else {
195                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
196                         &emif->emif_l3_config);
197         }
198 }
199
200 #ifndef CONFIG_OMAP44XX
201 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
202 {
203         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
204
205         /* keep sdram in self-refresh */
206         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
207                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
208         __udelay(130);
209
210         /*
211          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
212          * Invert clock adds an additional half cycle delay on the
213          * command interface.  The additional half cycle, is usually
214          * meant to enable leveling in the situation that DQS is later
215          * than CK on the board.It also helps provide some additional
216          * margin for leveling.
217          */
218         writel(regs->emif_ddr_phy_ctlr_1,
219                &emif->emif_ddr_phy_ctrl_1);
220
221         writel(regs->emif_ddr_phy_ctlr_1,
222                &emif->emif_ddr_phy_ctrl_1_shdw);
223         __udelay(130);
224
225         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
226                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
227
228         /* Launch Full leveling */
229         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
230
231         /* Wait till full leveling is complete */
232         readl(&emif->emif_rd_wr_lvl_ctl);
233               __udelay(130);
234
235         /* Read data eye leveling no of samples */
236         config_data_eye_leveling_samples(base);
237
238         /*
239          * Launch 8 incremental WR_LVL- to compensate for
240          * PHY limitation.
241          */
242         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
243                &emif->emif_rd_wr_lvl_ctl);
244
245         __udelay(130);
246
247         /* Launch Incremental leveling */
248         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
249                __udelay(130);
250 }
251
252 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
253 {
254         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
255         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
256         u32 reg, i, phy;
257
258         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
259         phy = readl(&emif->emif_ddr_phy_ctrl_1);
260
261         /* Update PHY_REG_RDDQS_RATIO */
262         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
263         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
264                 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
265                         reg = readl(emif_phy_status++);
266                         writel(reg, emif_ext_phy_ctrl_reg++);
267                         writel(reg, emif_ext_phy_ctrl_reg++);
268                 }
269
270         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
271         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
272         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[12];
273         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
274                 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
275                         reg = readl(emif_phy_status++);
276                         writel(reg, emif_ext_phy_ctrl_reg++);
277                         writel(reg, emif_ext_phy_ctrl_reg++);
278                 }
279
280         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
281         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
282         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[17];
283         if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
284                 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
285                         reg = readl(emif_phy_status++);
286                         writel(reg, emif_ext_phy_ctrl_reg++);
287                         writel(reg, emif_ext_phy_ctrl_reg++);
288                 }
289
290         /* Disable Leveling */
291         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
292         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
293         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
294 }
295
296 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
297 {
298         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
299
300         /* Clear Error Status */
301         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
302                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
303                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
304
305         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
306                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
307                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
308
309         /* Disable refreshed before leveling */
310         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
311                         EMIF_REG_INITREF_DIS_MASK);
312
313         /* Start Full leveling */
314         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
315
316         __udelay(300);
317
318         /* Check for leveling timeout */
319         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
320                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
321                 return;
322         }
323
324         /* Enable refreshes after leveling */
325         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
326
327         debug("HW leveling success\n");
328         /*
329          * Update slave ratios in EXT_PHY_CTRLx registers
330          * as per HW leveling output
331          */
332         update_hwleveling_output(base, regs);
333 }
334
335 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
336 {
337         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
338
339         if (warm_reset()) {
340                 emif_reset_phy(base);
341                 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
342         }
343         do_ext_phy_settings(base, regs);
344
345         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
346                &emif->emif_sdram_ref_ctrl);
347         /* Update timing registers */
348         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
349         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
350         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
351
352         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
353         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
354         writel(regs->zq_config, &emif->emif_zq_config);
355         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
356         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
357         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
358
359         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
360         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
361
362         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
363
364         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
365         writel(regs->sdram_config_init, &emif->emif_sdram_config);
366
367         __udelay(1000);
368
369         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
370
371         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
372                 dra7_ddr3_leveling(base, regs);
373 }
374
375 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
376 {
377         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
378
379         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
380         writel(regs->sdram_config_init, &emif->emif_sdram_config);
381         /*
382          * Set SDRAM_CONFIG and PHY control registers to locked frequency
383          * and RL =7. As the default values of the Mode Registers are not
384          * defined, contents of mode Registers must be fully initialized.
385          * H/W takes care of this initialization
386          */
387         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
388
389         /* Update timing registers */
390         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
391         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
392         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
393
394         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
395
396         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
397         writel(regs->sdram_config_init, &emif->emif_sdram_config);
398         do_ext_phy_settings(base, regs);
399
400         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
401         omap5_ddr3_leveling(base, regs);
402 }
403
404 static void ddr3_init(u32 base, const struct emif_regs *regs)
405 {
406         if (is_omap54xx())
407                 omap5_ddr3_init(base, regs);
408         else
409                 dra7_ddr3_init(base, regs);
410 }
411 #endif
412
413 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
414 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
415
416 /*
417  * Organization and refresh requirements for LPDDR2 devices of different
418  * types and densities. Derived from JESD209-2 section 2.4
419  */
420 const struct lpddr2_addressing addressing_table[] = {
421         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
422         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
423         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
424         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
425         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
426         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
427         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
428         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
429         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
430         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
431         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
432 };
433
434 static const u32 lpddr2_density_2_size_in_mbytes[] = {
435         8,                      /* 64Mb */
436         16,                     /* 128Mb */
437         32,                     /* 256Mb */
438         64,                     /* 512Mb */
439         128,                    /* 1Gb   */
440         256,                    /* 2Gb   */
441         512,                    /* 4Gb   */
442         1024,                   /* 8Gb   */
443         2048,                   /* 16Gb  */
444         4096                    /* 32Gb  */
445 };
446
447 /*
448  * Calculate the period of DDR clock from frequency value and set the
449  * denominator and numerator in global variables for easy access later
450  */
451 static void set_ddr_clk_period(u32 freq)
452 {
453         /*
454          * period = 1/freq
455          * period_in_ns = 10^9/freq
456          */
457         *T_num = 1000000000;
458         *T_den = freq;
459         cancel_out(T_num, T_den, 200);
460
461 }
462
463 /*
464  * Convert time in nano seconds to number of cycles of DDR clock
465  */
466 static inline u32 ns_2_cycles(u32 ns)
467 {
468         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
469 }
470
471 /*
472  * ns_2_cycles with the difference that the time passed is 2 times the actual
473  * value(to avoid fractions). The cycles returned is for the original value of
474  * the timing parameter
475  */
476 static inline u32 ns_x2_2_cycles(u32 ns)
477 {
478         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
479 }
480
481 /*
482  * Find addressing table index based on the device's type(S2 or S4) and
483  * density
484  */
485 s8 addressing_table_index(u8 type, u8 density, u8 width)
486 {
487         u8 index;
488         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
489                 return -1;
490
491         /*
492          * Look at the way ADDR_TABLE_INDEX* values have been defined
493          * in emif.h compared to LPDDR2_DENSITY_* values
494          * The table is layed out in the increasing order of density
495          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
496          * at the end
497          */
498         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
499                 index = ADDR_TABLE_INDEX1GS2;
500         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
501                 index = ADDR_TABLE_INDEX2GS2;
502         else
503                 index = density;
504
505         debug("emif: addressing table index %d\n", index);
506
507         return index;
508 }
509
510 /*
511  * Find the the right timing table from the array of timing
512  * tables of the device using DDR clock frequency
513  */
514 static const struct lpddr2_ac_timings *get_timings_table(const struct
515                         lpddr2_ac_timings const *const *device_timings,
516                         u32 freq)
517 {
518         u32 i, temp, freq_nearest;
519         const struct lpddr2_ac_timings *timings = 0;
520
521         emif_assert(freq <= MAX_LPDDR2_FREQ);
522         emif_assert(device_timings);
523
524         /*
525          * Start with the maximum allowed frequency - that is always safe
526          */
527         freq_nearest = MAX_LPDDR2_FREQ;
528         /*
529          * Find the timings table that has the max frequency value:
530          *   i.  Above or equal to the DDR frequency - safe
531          *   ii. The lowest that satisfies condition (i) - optimal
532          */
533         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
534                 temp = device_timings[i]->max_freq;
535                 if ((temp >= freq) && (temp <= freq_nearest)) {
536                         freq_nearest = temp;
537                         timings = device_timings[i];
538                 }
539         }
540         debug("emif: timings table: %d\n", freq_nearest);
541         return timings;
542 }
543
544 /*
545  * Finds the value of emif_sdram_config_reg
546  * All parameters are programmed based on the device on CS0.
547  * If there is a device on CS1, it will be same as that on CS0 or
548  * it will be NVM. We don't support NVM yet.
549  * If cs1_device pointer is NULL it is assumed that there is no device
550  * on CS1
551  */
552 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
553                                 const struct lpddr2_device_details *cs1_device,
554                                 const struct lpddr2_addressing *addressing,
555                                 u8 RL)
556 {
557         u32 config_reg = 0;
558
559         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
560         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
561                         EMIF_REG_IBANK_POS_SHIFT;
562
563         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
564
565         config_reg |= RL << EMIF_REG_CL_SHIFT;
566
567         config_reg |= addressing->row_sz[cs0_device->io_width] <<
568                         EMIF_REG_ROWSIZE_SHIFT;
569
570         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
571
572         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
573                         EMIF_REG_EBANK_SHIFT;
574
575         config_reg |= addressing->col_sz[cs0_device->io_width] <<
576                         EMIF_REG_PAGESIZE_SHIFT;
577
578         return config_reg;
579 }
580
581 static u32 get_sdram_ref_ctrl(u32 freq,
582                               const struct lpddr2_addressing *addressing)
583 {
584         u32 ref_ctrl = 0, val = 0, freq_khz;
585         freq_khz = freq / 1000;
586         /*
587          * refresh rate to be set is 'tREFI * freq in MHz
588          * division by 10000 to account for khz and x10 in t_REFI_us_x10
589          */
590         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
591         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
592
593         return ref_ctrl;
594 }
595
596 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
597                                const struct lpddr2_min_tck *min_tck,
598                                const struct lpddr2_addressing *addressing)
599 {
600         u32 tim1 = 0, val = 0;
601         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
602         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
603
604         if (addressing->num_banks == BANKS8)
605                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
606                                                         (4 * (*T_num)) - 1;
607         else
608                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
609
610         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
611
612         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
613         tim1 |= val << EMIF_REG_T_RC_SHIFT;
614
615         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
616         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
617
618         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
619         tim1 |= val << EMIF_REG_T_WR_SHIFT;
620
621         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
622         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
623
624         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
625         tim1 |= val << EMIF_REG_T_RP_SHIFT;
626
627         return tim1;
628 }
629
630 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
631                                const struct lpddr2_min_tck *min_tck)
632 {
633         u32 tim2 = 0, val = 0;
634         val = max(min_tck->tCKE, timings->tCKE) - 1;
635         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
636
637         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
638         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
639
640         /*
641          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
642          * same value
643          */
644         val = ns_2_cycles(timings->tXSR) - 1;
645         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
646         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
647
648         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
649         tim2 |= val << EMIF_REG_T_XP_SHIFT;
650
651         return tim2;
652 }
653
654 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
655                                const struct lpddr2_min_tck *min_tck,
656                                const struct lpddr2_addressing *addressing)
657 {
658         u32 tim3 = 0, val = 0;
659         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
660         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
661
662         val = ns_2_cycles(timings->tRFCab) - 1;
663         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
664
665         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
666         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
667
668         val = ns_2_cycles(timings->tZQCS) - 1;
669         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
670
671         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
672         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
673
674         return tim3;
675 }
676
677 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
678                              const struct lpddr2_addressing *addressing,
679                              u8 volt_ramp)
680 {
681         u32 zq = 0, val = 0;
682         if (volt_ramp)
683                 val =
684                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
685                     addressing->t_REFI_us_x10;
686         else
687                 val =
688                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
689                     addressing->t_REFI_us_x10;
690         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
691
692         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
693
694         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
695
696         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
697
698         /*
699          * Assuming that two chipselects have a single calibration resistor
700          * If there are indeed two calibration resistors, then this flag should
701          * be enabled to take advantage of dual calibration feature.
702          * This data should ideally come from board files. But considering
703          * that none of the boards today have calibration resistors per CS,
704          * it would be an unnecessary overhead.
705          */
706         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
707
708         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
709
710         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
711
712         return zq;
713 }
714
715 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
716                                  const struct lpddr2_addressing *addressing,
717                                  u8 is_derated)
718 {
719         u32 alert = 0, interval;
720         interval =
721             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
722         if (is_derated)
723                 interval *= 4;
724         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
725
726         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
727
728         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
729
730         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
731
732         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
733
734         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
735
736         return alert;
737 }
738
739 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
740 {
741         u32 idle = 0, val = 0;
742         if (volt_ramp)
743                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
744         else
745                 /*Maximum value in normal conditions - suggested by hw team */
746                 val = 0x1FF;
747         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
748
749         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
750
751         return idle;
752 }
753
754 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
755 {
756         u32 phy = 0, val = 0;
757
758         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
759
760         if (freq <= 100000000)
761                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
762         else if (freq <= 200000000)
763                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
764         else
765                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
766         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
767
768         /* Other fields are constant magic values. Hardcode them together */
769         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
770                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
771
772         return phy;
773 }
774
775 static u32 get_emif_mem_size(u32 base)
776 {
777         u32 size_mbytes = 0, temp;
778         struct emif_device_details dev_details;
779         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
780         u32 emif_nr = emif_num(base);
781
782         emif_reset_phy(base);
783         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
784                                                 &cs0_dev_details);
785         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
786                                                 &cs1_dev_details);
787         emif_reset_phy(base);
788
789         if (dev_details.cs0_device_details) {
790                 temp = dev_details.cs0_device_details->density;
791                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
792         }
793
794         if (dev_details.cs1_device_details) {
795                 temp = dev_details.cs1_device_details->density;
796                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
797         }
798         /* convert to bytes */
799         return size_mbytes << 20;
800 }
801
802 /* Gets the encoding corresponding to a given DMM section size */
803 u32 get_dmm_section_size_map(u32 section_size)
804 {
805         /*
806          * Section size mapping:
807          * 0x0: 16-MiB section
808          * 0x1: 32-MiB section
809          * 0x2: 64-MiB section
810          * 0x3: 128-MiB section
811          * 0x4: 256-MiB section
812          * 0x5: 512-MiB section
813          * 0x6: 1-GiB section
814          * 0x7: 2-GiB section
815          */
816         section_size >>= 24; /* divide by 16 MB */
817         return log_2_n_round_down(section_size);
818 }
819
820 static void emif_calculate_regs(
821                 const struct emif_device_details *emif_dev_details,
822                 u32 freq, struct emif_regs *regs)
823 {
824         u32 temp, sys_freq;
825         const struct lpddr2_addressing *addressing;
826         const struct lpddr2_ac_timings *timings;
827         const struct lpddr2_min_tck *min_tck;
828         const struct lpddr2_device_details *cs0_dev_details =
829                                         emif_dev_details->cs0_device_details;
830         const struct lpddr2_device_details *cs1_dev_details =
831                                         emif_dev_details->cs1_device_details;
832         const struct lpddr2_device_timings *cs0_dev_timings =
833                                         emif_dev_details->cs0_device_timings;
834
835         emif_assert(emif_dev_details);
836         emif_assert(regs);
837         /*
838          * You can not have a device on CS1 without one on CS0
839          * So configuring EMIF without a device on CS0 doesn't
840          * make sense
841          */
842         emif_assert(cs0_dev_details);
843         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
844         /*
845          * If there is a device on CS1 it should be same type as CS0
846          * (or NVM. But NVM is not supported in this driver yet)
847          */
848         emif_assert((cs1_dev_details == NULL) ||
849                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
850                     (cs0_dev_details->type == cs1_dev_details->type));
851         emif_assert(freq <= MAX_LPDDR2_FREQ);
852
853         set_ddr_clk_period(freq);
854
855         /*
856          * The device on CS0 is used for all timing calculations
857          * There is only one set of registers for timings per EMIF. So, if the
858          * second CS(CS1) has a device, it should have the same timings as the
859          * device on CS0
860          */
861         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
862         emif_assert(timings);
863         min_tck = cs0_dev_timings->min_tck;
864
865         temp = addressing_table_index(cs0_dev_details->type,
866                                       cs0_dev_details->density,
867                                       cs0_dev_details->io_width);
868
869         emif_assert((temp >= 0));
870         addressing = &(addressing_table[temp]);
871         emif_assert(addressing);
872
873         sys_freq = get_sys_clk_freq();
874
875         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
876                                                         cs1_dev_details,
877                                                         addressing, RL_BOOT);
878
879         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
880                                                 cs1_dev_details,
881                                                 addressing, RL_FINAL);
882
883         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
884
885         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
886
887         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
888
889         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
890
891         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
892
893         regs->temp_alert_config =
894             get_temp_alert_config(cs1_dev_details, addressing, 0);
895
896         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
897                                             LPDDR2_VOLTAGE_STABLE);
898
899         regs->emif_ddr_phy_ctlr_1_init =
900                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
901
902         regs->emif_ddr_phy_ctlr_1 =
903                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
904
905         regs->freq = freq;
906
907         print_timing_reg(regs->sdram_config_init);
908         print_timing_reg(regs->sdram_config);
909         print_timing_reg(regs->ref_ctrl);
910         print_timing_reg(regs->sdram_tim1);
911         print_timing_reg(regs->sdram_tim2);
912         print_timing_reg(regs->sdram_tim3);
913         print_timing_reg(regs->read_idle_ctrl);
914         print_timing_reg(regs->temp_alert_config);
915         print_timing_reg(regs->zq_config);
916         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
917         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
918 }
919 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
920
921 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
922 const char *get_lpddr2_type(u8 type_id)
923 {
924         switch (type_id) {
925         case LPDDR2_TYPE_S4:
926                 return "LPDDR2-S4";
927         case LPDDR2_TYPE_S2:
928                 return "LPDDR2-S2";
929         default:
930                 return NULL;
931         }
932 }
933
934 const char *get_lpddr2_io_width(u8 width_id)
935 {
936         switch (width_id) {
937         case LPDDR2_IO_WIDTH_8:
938                 return "x8";
939         case LPDDR2_IO_WIDTH_16:
940                 return "x16";
941         case LPDDR2_IO_WIDTH_32:
942                 return "x32";
943         default:
944                 return NULL;
945         }
946 }
947
948 const char *get_lpddr2_manufacturer(u32 manufacturer)
949 {
950         switch (manufacturer) {
951         case LPDDR2_MANUFACTURER_SAMSUNG:
952                 return "Samsung";
953         case LPDDR2_MANUFACTURER_QIMONDA:
954                 return "Qimonda";
955         case LPDDR2_MANUFACTURER_ELPIDA:
956                 return "Elpida";
957         case LPDDR2_MANUFACTURER_ETRON:
958                 return "Etron";
959         case LPDDR2_MANUFACTURER_NANYA:
960                 return "Nanya";
961         case LPDDR2_MANUFACTURER_HYNIX:
962                 return "Hynix";
963         case LPDDR2_MANUFACTURER_MOSEL:
964                 return "Mosel";
965         case LPDDR2_MANUFACTURER_WINBOND:
966                 return "Winbond";
967         case LPDDR2_MANUFACTURER_ESMT:
968                 return "ESMT";
969         case LPDDR2_MANUFACTURER_SPANSION:
970                 return "Spansion";
971         case LPDDR2_MANUFACTURER_SST:
972                 return "SST";
973         case LPDDR2_MANUFACTURER_ZMOS:
974                 return "ZMOS";
975         case LPDDR2_MANUFACTURER_INTEL:
976                 return "Intel";
977         case LPDDR2_MANUFACTURER_NUMONYX:
978                 return "Numonyx";
979         case LPDDR2_MANUFACTURER_MICRON:
980                 return "Micron";
981         default:
982                 return NULL;
983         }
984 }
985
986 static void display_sdram_details(u32 emif_nr, u32 cs,
987                                   struct lpddr2_device_details *device)
988 {
989         const char *mfg_str;
990         const char *type_str;
991         char density_str[10];
992         u32 density;
993
994         debug("EMIF%d CS%d\t", emif_nr, cs);
995
996         if (!device) {
997                 debug("None\n");
998                 return;
999         }
1000
1001         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1002         type_str = get_lpddr2_type(device->type);
1003
1004         density = lpddr2_density_2_size_in_mbytes[device->density];
1005         if ((density / 1024 * 1024) == density) {
1006                 density /= 1024;
1007                 sprintf(density_str, "%d GB", density);
1008         } else
1009                 sprintf(density_str, "%d MB", density);
1010         if (mfg_str && type_str)
1011                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1012 }
1013
1014 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1015                                   struct lpddr2_device_details *lpddr2_device)
1016 {
1017         u32 mr = 0, temp;
1018
1019         mr = get_mr(base, cs, LPDDR2_MR0);
1020         if (mr > 0xFF) {
1021                 /* Mode register value bigger than 8 bit */
1022                 return 0;
1023         }
1024
1025         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1026         if (temp) {
1027                 /* Not SDRAM */
1028                 return 0;
1029         }
1030         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1031
1032         if (temp) {
1033                 /* DNV supported - But DNV is only supported for NVM */
1034                 return 0;
1035         }
1036
1037         mr = get_mr(base, cs, LPDDR2_MR4);
1038         if (mr > 0xFF) {
1039                 /* Mode register value bigger than 8 bit */
1040                 return 0;
1041         }
1042
1043         mr = get_mr(base, cs, LPDDR2_MR5);
1044         if (mr > 0xFF) {
1045                 /* Mode register value bigger than 8 bit */
1046                 return 0;
1047         }
1048
1049         if (!get_lpddr2_manufacturer(mr)) {
1050                 /* Manufacturer not identified */
1051                 return 0;
1052         }
1053         lpddr2_device->manufacturer = mr;
1054
1055         mr = get_mr(base, cs, LPDDR2_MR6);
1056         if (mr >= 0xFF) {
1057                 /* Mode register value bigger than 8 bit */
1058                 return 0;
1059         }
1060
1061         mr = get_mr(base, cs, LPDDR2_MR7);
1062         if (mr >= 0xFF) {
1063                 /* Mode register value bigger than 8 bit */
1064                 return 0;
1065         }
1066
1067         mr = get_mr(base, cs, LPDDR2_MR8);
1068         if (mr >= 0xFF) {
1069                 /* Mode register value bigger than 8 bit */
1070                 return 0;
1071         }
1072
1073         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1074         if (!get_lpddr2_type(temp)) {
1075                 /* Not SDRAM */
1076                 return 0;
1077         }
1078         lpddr2_device->type = temp;
1079
1080         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1081         if (temp > LPDDR2_DENSITY_32Gb) {
1082                 /* Density not supported */
1083                 return 0;
1084         }
1085         lpddr2_device->density = temp;
1086
1087         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1088         if (!get_lpddr2_io_width(temp)) {
1089                 /* IO width unsupported value */
1090                 return 0;
1091         }
1092         lpddr2_device->io_width = temp;
1093
1094         /*
1095          * If all the above tests pass we should
1096          * have a device on this chip-select
1097          */
1098         return 1;
1099 }
1100
1101 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1102                         struct lpddr2_device_details *lpddr2_dev_details)
1103 {
1104         u32 phy;
1105         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1106
1107         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1108
1109         if (!lpddr2_dev_details)
1110                 return NULL;
1111
1112         /* Do the minimum init for mode register accesses */
1113         if (!(running_from_sdram() || warm_reset())) {
1114                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1115                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1116         }
1117
1118         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1119                 return NULL;
1120
1121         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1122
1123         return lpddr2_dev_details;
1124 }
1125 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1126
1127 static void do_sdram_init(u32 base)
1128 {
1129         const struct emif_regs *regs;
1130         u32 in_sdram, emif_nr;
1131
1132         debug(">>do_sdram_init() %x\n", base);
1133
1134         in_sdram = running_from_sdram();
1135         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1136
1137 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1138         emif_get_reg_dump(emif_nr, &regs);
1139         if (!regs) {
1140                 debug("EMIF: reg dump not provided\n");
1141                 return;
1142         }
1143 #else
1144         /*
1145          * The user has not provided the register values. We need to
1146          * calculate it based on the timings and the DDR frequency
1147          */
1148         struct emif_device_details dev_details;
1149         struct emif_regs calculated_regs;
1150
1151         /*
1152          * Get device details:
1153          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1154          * - Obtained from user otherwise
1155          */
1156         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1157         emif_reset_phy(base);
1158         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1159                                                 &cs0_dev_details);
1160         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1161                                                 &cs1_dev_details);
1162         emif_reset_phy(base);
1163
1164         /* Return if no devices on this EMIF */
1165         if (!dev_details.cs0_device_details &&
1166             !dev_details.cs1_device_details) {
1167                 return;
1168         }
1169
1170         /*
1171          * Get device timings:
1172          * - Default timings specified by JESD209-2 if
1173          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1174          * - Obtained from user otherwise
1175          */
1176         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1177                                 &dev_details.cs1_device_timings);
1178
1179         /* Calculate the register values */
1180         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1181         regs = &calculated_regs;
1182 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1183
1184         /*
1185          * Initializing the DDR device can not happen from SDRAM.
1186          * Changing the timing registers in EMIF can happen(going from one
1187          * OPP to another)
1188          */
1189         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1190                 if (emif_sdram_type(regs->sdram_config) ==
1191                     EMIF_SDRAM_TYPE_LPDDR2)
1192                         lpddr2_init(base, regs);
1193 #ifndef CONFIG_OMAP44XX
1194                 else
1195                         ddr3_init(base, regs);
1196 #endif
1197         }
1198 #ifdef CONFIG_OMAP54XX
1199         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1200             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1201                 set_lpmode_selfrefresh(base);
1202                 emif_reset_phy(base);
1203                 omap5_ddr3_leveling(base, regs);
1204         }
1205 #endif
1206
1207         /* Write to the shadow registers */
1208         emif_update_timings(base, regs);
1209
1210         debug("<<do_sdram_init() %x\n", base);
1211 }
1212
1213 void emif_post_init_config(u32 base)
1214 {
1215         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1216         u32 omap_rev = omap_revision();
1217
1218         /* reset phy on ES2.0 */
1219         if (omap_rev == OMAP4430_ES2_0)
1220                 emif_reset_phy(base);
1221
1222         /* Put EMIF back in smart idle on ES1.0 */
1223         if (omap_rev == OMAP4430_ES1_0)
1224                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1225 }
1226
1227 void dmm_init(u32 base)
1228 {
1229         const struct dmm_lisa_map_regs *lisa_map_regs;
1230         u32 i, section, valid;
1231
1232 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1233         emif_get_dmm_regs(&lisa_map_regs);
1234 #else
1235         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1236         u32 section_cnt, sys_addr;
1237         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1238
1239         mapped_size = 0;
1240         section_cnt = 3;
1241         sys_addr = CONFIG_SYS_SDRAM_BASE;
1242         emif1_size = get_emif_mem_size(EMIF1_BASE);
1243         emif2_size = get_emif_mem_size(EMIF2_BASE);
1244         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1245
1246         if (!emif1_size && !emif2_size)
1247                 return;
1248
1249         /* symmetric interleaved section */
1250         if (emif1_size && emif2_size) {
1251                 mapped_size = min(emif1_size, emif2_size);
1252                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1253                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1254                 /* only MSB */
1255                 section_map |= (sys_addr >> 24) <<
1256                                 EMIF_SYS_ADDR_SHIFT;
1257                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1258                                 << EMIF_SYS_SIZE_SHIFT;
1259                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1260                 emif1_size -= mapped_size;
1261                 emif2_size -= mapped_size;
1262                 sys_addr += (mapped_size * 2);
1263                 section_cnt--;
1264         }
1265
1266         /*
1267          * Single EMIF section(we can have a maximum of 1 single EMIF
1268          * section- either EMIF1 or EMIF2 or none, but not both)
1269          */
1270         if (emif1_size) {
1271                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1272                 section_map |= get_dmm_section_size_map(emif1_size)
1273                                 << EMIF_SYS_SIZE_SHIFT;
1274                 /* only MSB */
1275                 section_map |= (mapped_size >> 24) <<
1276                                 EMIF_SDRC_ADDR_SHIFT;
1277                 /* only MSB */
1278                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1279                 section_cnt--;
1280         }
1281         if (emif2_size) {
1282                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1283                 section_map |= get_dmm_section_size_map(emif2_size) <<
1284                                 EMIF_SYS_SIZE_SHIFT;
1285                 /* only MSB */
1286                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1287                 /* only MSB */
1288                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1289                 section_cnt--;
1290         }
1291
1292         if (section_cnt == 2) {
1293                 /* Only 1 section - either symmetric or single EMIF */
1294                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1295                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1296                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1297         } else {
1298                 /* 2 sections - 1 symmetric, 1 single EMIF */
1299                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1300                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1301         }
1302
1303         /* TRAP for invalid TILER mappings in section 0 */
1304         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1305
1306         if (omap_revision() >= OMAP4460_ES1_0)
1307                 lis_map_regs_calculated.is_ma_present = 1;
1308
1309         lisa_map_regs = &lis_map_regs_calculated;
1310 #endif
1311         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1312             (struct dmm_lisa_map_regs *)base;
1313
1314         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1315         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1316         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1317         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1318
1319         writel(lisa_map_regs->dmm_lisa_map_3,
1320                 &hw_lisa_map_regs->dmm_lisa_map_3);
1321         writel(lisa_map_regs->dmm_lisa_map_2,
1322                 &hw_lisa_map_regs->dmm_lisa_map_2);
1323         writel(lisa_map_regs->dmm_lisa_map_1,
1324                 &hw_lisa_map_regs->dmm_lisa_map_1);
1325         writel(lisa_map_regs->dmm_lisa_map_0,
1326                 &hw_lisa_map_regs->dmm_lisa_map_0);
1327
1328         if (lisa_map_regs->is_ma_present) {
1329                 hw_lisa_map_regs =
1330                     (struct dmm_lisa_map_regs *)MA_BASE;
1331
1332                 writel(lisa_map_regs->dmm_lisa_map_3,
1333                         &hw_lisa_map_regs->dmm_lisa_map_3);
1334                 writel(lisa_map_regs->dmm_lisa_map_2,
1335                         &hw_lisa_map_regs->dmm_lisa_map_2);
1336                 writel(lisa_map_regs->dmm_lisa_map_1,
1337                         &hw_lisa_map_regs->dmm_lisa_map_1);
1338                 writel(lisa_map_regs->dmm_lisa_map_0,
1339                         &hw_lisa_map_regs->dmm_lisa_map_0);
1340
1341                 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1342         }
1343
1344         /*
1345          * EMIF should be configured only when
1346          * memory is mapped on it. Using emif1_enabled
1347          * and emif2_enabled variables for this.
1348          */
1349         emif1_enabled = 0;
1350         emif2_enabled = 0;
1351         for (i = 0; i < 4; i++) {
1352                 section = __raw_readl(DMM_BASE + i*4);
1353                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1354                         (EMIF_SDRC_MAP_SHIFT);
1355                 if (valid == 3) {
1356                         emif1_enabled = 1;
1357                         emif2_enabled = 1;
1358                         break;
1359                 }
1360
1361                 if (valid == 1)
1362                         emif1_enabled = 1;
1363
1364                 if (valid == 2)
1365                         emif2_enabled = 1;
1366         }
1367 }
1368
1369 static void do_bug0039_workaround(u32 base)
1370 {
1371         u32 val, i, clkctrl;
1372         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1373         const struct read_write_regs *bug_00339_regs;
1374         u32 iterations;
1375         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1376         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1377
1378         if (is_dra7xx())
1379                 phy_status_base++;
1380
1381         bug_00339_regs = get_bug_regs(&iterations);
1382
1383         /* Put EMIF in to idle */
1384         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1385         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1386
1387         /* Copy the phy status registers in to phy ctrl shadow registers */
1388         for (i = 0; i < iterations; i++) {
1389                 val = __raw_readl(phy_status_base +
1390                                   bug_00339_regs[i].read_reg - 1);
1391
1392                 __raw_writel(val, phy_ctrl_base +
1393                              ((bug_00339_regs[i].write_reg - 1) << 1));
1394
1395                 __raw_writel(val, phy_ctrl_base +
1396                              (bug_00339_regs[i].write_reg << 1) - 1);
1397         }
1398
1399         /* Disable leveling */
1400         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1401
1402         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1403 }
1404
1405 /*
1406  * SDRAM initialization:
1407  * SDRAM initialization has two parts:
1408  * 1. Configuring the SDRAM device
1409  * 2. Update the AC timings related parameters in the EMIF module
1410  * (1) should be done only once and should not be done while we are
1411  * running from SDRAM.
1412  * (2) can and should be done more than once if OPP changes.
1413  * Particularly, this may be needed when we boot without SPL and
1414  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1415  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1416  * the frequency. So,
1417  * Doing (1) and (2) makes sense - first time initialization
1418  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1419  * Doing (1) and not (2) doen't make sense
1420  * See do_sdram_init() for the details
1421  */
1422 void sdram_init(void)
1423 {
1424         u32 in_sdram, size_prog, size_detect;
1425         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1426         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1427
1428         debug(">>sdram_init()\n");
1429
1430         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1431                 return;
1432
1433         in_sdram = running_from_sdram();
1434         debug("in_sdram = %d\n", in_sdram);
1435
1436         if (!in_sdram) {
1437                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1438                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1439                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1440                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1441         }
1442
1443         if (!in_sdram)
1444                 dmm_init(DMM_BASE);
1445
1446         if (emif1_enabled)
1447                 do_sdram_init(EMIF1_BASE);
1448
1449         if (emif2_enabled)
1450                 do_sdram_init(EMIF2_BASE);
1451
1452         if (!(in_sdram || warm_reset())) {
1453                 if (emif1_enabled)
1454                         emif_post_init_config(EMIF1_BASE);
1455                 if (emif2_enabled)
1456                         emif_post_init_config(EMIF2_BASE);
1457         }
1458
1459         /* for the shadow registers to take effect */
1460         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1461                 freq_update_core();
1462
1463         /* Do some testing after the init */
1464         if (!in_sdram) {
1465                 size_prog = omap_sdram_size();
1466                 size_prog = log_2_n_round_down(size_prog);
1467                 size_prog = (1 << size_prog);
1468
1469                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1470                                                 size_prog);
1471                 /* Compare with the size programmed */
1472                 if (size_detect != size_prog) {
1473                         printf("SDRAM: identified size not same as expected"
1474                                 " size identified: %x expected: %x\n",
1475                                 size_detect,
1476                                 size_prog);
1477                 } else
1478                         debug("get_ram_size() successful");
1479         }
1480
1481 #if defined(CONFIG_TI_SECURE_DEVICE)
1482         /*
1483          * On HS devices, do static EMIF firewall configuration
1484          * but only do it if not already running in SDRAM
1485          */
1486         if (!in_sdram)
1487                 if (0 != secure_emif_reserve())
1488                         hang();
1489
1490         /* On HS devices, ensure static EMIF firewall APIs are locked */
1491         if (0 != secure_emif_firewall_lock())
1492                 hang();
1493 #endif
1494
1495         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1496             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1497                 if (emif1_enabled)
1498                         do_bug0039_workaround(EMIF1_BASE);
1499                 if (emif2_enabled)
1500                         do_bug0039_workaround(EMIF2_BASE);
1501         }
1502
1503         debug("<<sdram_init()\n");
1504 }