8bc4fbbb6062355c25392eec971f4965e1fcc630
[oweals/u-boot.git] / arch / arm / mach-omap2 / emif-common.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * EMIF programming
4  *
5  * (C) Copyright 2010
6  * Texas Instruments, <www.ti.com>
7  *
8  * Aneesh V <aneesh@ti.com>
9  */
10
11 #include <common.h>
12 #include <hang.h>
13 #include <init.h>
14 #include <log.h>
15 #include <net.h>
16 #include <asm/emif.h>
17 #include <asm/arch/clock.h>
18 #include <asm/arch/sys_proto.h>
19 #include <asm/omap_common.h>
20 #include <asm/omap_sec_common.h>
21 #include <asm/utils.h>
22 #include <linux/compiler.h>
23 #include <asm/ti-common/ti-edma3.h>
24
25 static int emif1_enabled = -1, emif2_enabled = -1;
26
27 void set_lpmode_selfrefresh(u32 base)
28 {
29         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
30         u32 reg;
31
32         reg = readl(&emif->emif_pwr_mgmt_ctrl);
33         reg &= ~EMIF_REG_LP_MODE_MASK;
34         reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
35         reg &= ~EMIF_REG_SR_TIM_MASK;
36         writel(reg, &emif->emif_pwr_mgmt_ctrl);
37
38         /* dummy read for the new SR_TIM to be loaded */
39         readl(&emif->emif_pwr_mgmt_ctrl);
40 }
41
42 void force_emif_self_refresh()
43 {
44         set_lpmode_selfrefresh(EMIF1_BASE);
45         if (!is_dra72x())
46                 set_lpmode_selfrefresh(EMIF2_BASE);
47 }
48
49 inline u32 emif_num(u32 base)
50 {
51         if (base == EMIF1_BASE)
52                 return 1;
53         else if (base == EMIF2_BASE)
54                 return 2;
55         else
56                 return 0;
57 }
58
59 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
60 {
61         u32 mr;
62         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
63
64         mr_addr |= cs << EMIF_REG_CS_SHIFT;
65         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
66         if (omap_revision() == OMAP4430_ES2_0)
67                 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
68         else
69                 mr = readl(&emif->emif_lpddr2_mode_reg_data);
70         debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
71               cs, mr_addr, mr);
72         if (((mr & 0x0000ff00) >>  8) == (mr & 0xff) &&
73             ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
74             ((mr & 0xff000000) >> 24) == (mr & 0xff))
75                 return mr & 0xff;
76         else
77                 return mr;
78 }
79
80 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
81 {
82         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
83
84         mr_addr |= cs << EMIF_REG_CS_SHIFT;
85         writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
86         writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
87 }
88
89 void emif_reset_phy(u32 base)
90 {
91         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
92         u32 iodft;
93
94         iodft = readl(&emif->emif_iodft_tlgc);
95         iodft |= EMIF_REG_RESET_PHY_MASK;
96         writel(iodft, &emif->emif_iodft_tlgc);
97 }
98
99 static void do_lpddr2_init(u32 base, u32 cs)
100 {
101         u32 mr_addr;
102         const struct lpddr2_mr_regs *mr_regs;
103
104         get_lpddr2_mr_regs(&mr_regs);
105         /* Wait till device auto initialization is complete */
106         while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
107                 ;
108         set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
109         /*
110          * tZQINIT = 1 us
111          * Enough loops assuming a maximum of 2GHz
112          */
113
114         sdelay(2000);
115
116         set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
117         set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
118
119         /*
120          * Enable refresh along with writing MR2
121          * Encoding of RL in MR2 is (RL - 2)
122          */
123         mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
124         set_mr(base, cs, mr_addr, mr_regs->mr2);
125
126         if (mr_regs->mr3 > 0)
127                 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
128 }
129
130 static void lpddr2_init(u32 base, const struct emif_regs *regs)
131 {
132         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
133
134         /* Not NVM */
135         clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
136
137         /*
138          * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
139          * when EMIF_SDRAM_CONFIG register is written
140          */
141         setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
142
143         /*
144          * Set the SDRAM_CONFIG and PHY_CTRL for the
145          * un-locked frequency & default RL
146          */
147         writel(regs->sdram_config_init, &emif->emif_sdram_config);
148         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
149
150         do_ext_phy_settings(base, regs);
151
152         do_lpddr2_init(base, CS0);
153         if (regs->sdram_config & EMIF_REG_EBANK_MASK)
154                 do_lpddr2_init(base, CS1);
155
156         writel(regs->sdram_config, &emif->emif_sdram_config);
157         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
158
159         /* Enable refresh now */
160         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
161
162         }
163
164 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
165 {
166 }
167
168 void emif_update_timings(u32 base, const struct emif_regs *regs)
169 {
170         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
171
172         if (!is_dra7xx())
173                 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
174         else
175                 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
176
177         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
178         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
179         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
180         if (omap_revision() == OMAP4430_ES1_0) {
181                 /* ES1 bug EMIF should be in force idle during freq_update */
182                 writel(0, &emif->emif_pwr_mgmt_ctrl);
183         } else {
184                 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
185                 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
186         }
187         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
188         writel(regs->zq_config, &emif->emif_zq_config);
189         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
190         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
191
192         if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
193                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
194                         &emif->emif_l3_config);
195         } else if (omap_revision() >= OMAP4460_ES1_0) {
196                 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
197                         &emif->emif_l3_config);
198         } else {
199                 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
200                         &emif->emif_l3_config);
201         }
202 }
203
204 #ifndef CONFIG_OMAP44XX
205 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
206 {
207         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
208
209         /* keep sdram in self-refresh */
210         writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
211                 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
212         __udelay(130);
213
214         /*
215          * Set invert_clkout (if activated)--DDR_PHYCTRL_1
216          * Invert clock adds an additional half cycle delay on the
217          * command interface.  The additional half cycle, is usually
218          * meant to enable leveling in the situation that DQS is later
219          * than CK on the board.It also helps provide some additional
220          * margin for leveling.
221          */
222         writel(regs->emif_ddr_phy_ctlr_1,
223                &emif->emif_ddr_phy_ctrl_1);
224
225         writel(regs->emif_ddr_phy_ctlr_1,
226                &emif->emif_ddr_phy_ctrl_1_shdw);
227         __udelay(130);
228
229         writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
230                & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
231
232         /* Launch Full leveling */
233         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
234
235         /* Wait till full leveling is complete */
236         readl(&emif->emif_rd_wr_lvl_ctl);
237               __udelay(130);
238
239         /* Read data eye leveling no of samples */
240         config_data_eye_leveling_samples(base);
241
242         /*
243          * Launch 8 incremental WR_LVL- to compensate for
244          * PHY limitation.
245          */
246         writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
247                &emif->emif_rd_wr_lvl_ctl);
248
249         __udelay(130);
250
251         /* Launch Incremental leveling */
252         writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
253                __udelay(130);
254 }
255
256 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
257 {
258         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
259         u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
260         u32 reg, i, phy;
261
262         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[6];
263         phy = readl(&emif->emif_ddr_phy_ctrl_1);
264
265         /* Update PHY_REG_RDDQS_RATIO */
266         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
267         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
268                 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
269                         reg = readl(emif_phy_status++);
270                         writel(reg, emif_ext_phy_ctrl_reg++);
271                         writel(reg, emif_ext_phy_ctrl_reg++);
272                 }
273
274         /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
275         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
276         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[11];
277         if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
278                 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
279                         reg = readl(emif_phy_status++);
280                         writel(reg, emif_ext_phy_ctrl_reg++);
281                         writel(reg, emif_ext_phy_ctrl_reg++);
282                 }
283
284         /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
285         emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
286         emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[16];
287         if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
288                 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
289                         reg = readl(emif_phy_status++);
290                         writel(reg, emif_ext_phy_ctrl_reg++);
291                         writel(reg, emif_ext_phy_ctrl_reg++);
292                 }
293
294         /* Disable Leveling */
295         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
296         writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
297         writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
298 }
299
300 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
301 {
302         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
303
304         /* Clear Error Status */
305         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
306                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
307                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
308
309         clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
310                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
311                         EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
312
313         /* Disable refreshed before leveling */
314         clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
315                         EMIF_REG_INITREF_DIS_MASK);
316
317         /* Start Full leveling */
318         writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
319
320         __udelay(300);
321
322         /* Check for leveling timeout */
323         if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
324                 printf("Leveling timeout on EMIF%d\n", emif_num(base));
325                 return;
326         }
327
328         /* Enable refreshes after leveling */
329         clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
330
331         debug("HW leveling success\n");
332         /*
333          * Update slave ratios in EXT_PHY_CTRLx registers
334          * as per HW leveling output
335          */
336         update_hwleveling_output(base, regs);
337 }
338
339 static void dra7_reset_ddr_data(u32 base, u32 size)
340 {
341 #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
342         enable_edma3_clocks();
343
344         edma3_fill(EDMA3_BASE, 1, (void *)base, 0, size);
345
346         disable_edma3_clocks();
347 #else
348         memset((void *)base, 0, size);
349 #endif
350 }
351
352 static void dra7_enable_ecc(u32 base, const struct emif_regs *regs)
353 {
354         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
355         u32 rgn, rgn_start, size, ctrl_reg;
356
357         /* ECC available only on dra76x EMIF1 */
358         if ((base != EMIF1_BASE) || !is_dra76x())
359                 return;
360
361         if (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK) {
362                 /* Disable high-order interleaving */
363                 clrbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
364
365 #ifdef CONFIG_DRA7XX
366                 /* Clear the status flags and other history */
367                 writel(readl(&emif->emif_1b_ecc_err_cnt),
368                        &emif->emif_1b_ecc_err_cnt);
369                 writel(0xffffffff, &emif->emif_1b_ecc_err_dist_1);
370                 writel(0x2, &emif->emif_1b_ecc_err_addr_log);
371                 writel(0x1, &emif->emif_2b_ecc_err_addr_log);
372                 writel(EMIF_INT_WR_ECC_ERR_SYS_MASK |
373                        EMIF_INT_TWOBIT_ECC_ERR_SYS_MASK |
374                        EMIF_INT_ONEBIT_ECC_ERR_SYS_MASK,
375                        &emif->emif_irqstatus_sys);
376 #endif
377                 writel(regs->emif_ecc_address_range_1,
378                        &emif->emif_ecc_address_range_1);
379                 writel(regs->emif_ecc_address_range_2,
380                        &emif->emif_ecc_address_range_2);
381
382                 /* Disable RMW and ECC verification for read accesses */
383                 ctrl_reg = (regs->emif_ecc_ctrl_reg &
384                             ~EMIF_ECC_REG_RMW_EN_MASK) |
385                            EMIF_ECC_CTRL_REG_ECC_VERIFY_DIS_MASK;
386                 writel(ctrl_reg, &emif->emif_ecc_ctrl_reg);
387
388                 /* Set region1 memory with 0 */
389                 rgn_start = (regs->emif_ecc_address_range_1 &
390                              EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
391                 rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
392                 size = (regs->emif_ecc_address_range_1 &
393                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
394
395                 if (regs->emif_ecc_ctrl_reg &
396                     EMIF_ECC_REG_ECC_ADDR_RGN_1_EN_MASK)
397                         dra7_reset_ddr_data(rgn, size);
398
399                 /* Set region2 memory with 0 */
400                 rgn_start = (regs->emif_ecc_address_range_2 &
401                              EMIF_ECC_REG_ECC_START_ADDR_MASK) << 16;
402                 rgn = rgn_start + CONFIG_SYS_SDRAM_BASE;
403                 size = (regs->emif_ecc_address_range_2 &
404                         EMIF_ECC_REG_ECC_END_ADDR_MASK) + 0x10000 - rgn_start;
405
406                 if (regs->emif_ecc_ctrl_reg &
407                     EMIF_ECC_REG_ECC_ADDR_RGN_2_EN_MASK)
408                         dra7_reset_ddr_data(rgn, size);
409
410                 /* Default value enables RMW and ECC verification */
411                 writel(regs->emif_ecc_ctrl_reg, &emif->emif_ecc_ctrl_reg);
412         }
413 }
414
415 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
416 {
417         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
418
419         if (warm_reset()) {
420                 emif_reset_phy(base);
421                 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
422         }
423         do_ext_phy_settings(base, regs);
424
425         writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
426                &emif->emif_sdram_ref_ctrl);
427         /* Update timing registers */
428         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
429         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
430         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
431
432         writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
433         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
434         writel(regs->zq_config, &emif->emif_zq_config);
435         writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
436         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
437         writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
438
439         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
440         writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
441
442         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
443
444         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
445         writel(regs->sdram_config_init, &emif->emif_sdram_config);
446
447         __udelay(1000);
448
449         writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
450
451         if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK) {
452                 /*
453                  * Perform Dummy ECC setup just to allow hardware
454                  * leveling of ECC memories
455                  */
456                 if (is_dra76x() && (base == EMIF1_BASE) &&
457                     (regs->emif_ecc_ctrl_reg & EMIF_ECC_CTRL_REG_ECC_EN_MASK)) {
458                         writel(0, &emif->emif_ecc_address_range_1);
459                         writel(0, &emif->emif_ecc_address_range_2);
460                         writel(EMIF_ECC_CTRL_REG_ECC_EN_MASK |
461                                EMIF_ECC_CTRL_REG_ECC_ADDR_RGN_PROT_MASK,
462                                &emif->emif_ecc_ctrl_reg);
463                 }
464
465                 dra7_ddr3_leveling(base, regs);
466
467                 /* Disable ECC */
468                 if (is_dra76x())
469                         writel(0, &emif->emif_ecc_ctrl_reg);
470         }
471
472         /* Enable ECC as necessary */
473         dra7_enable_ecc(base, regs);
474 }
475
476 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
477 {
478         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
479
480         writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
481         writel(regs->sdram_config_init, &emif->emif_sdram_config);
482         /*
483          * Set SDRAM_CONFIG and PHY control registers to locked frequency
484          * and RL =7. As the default values of the Mode Registers are not
485          * defined, contents of mode Registers must be fully initialized.
486          * H/W takes care of this initialization
487          */
488         writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
489
490         /* Update timing registers */
491         writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
492         writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
493         writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
494
495         writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
496
497         writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
498         writel(regs->sdram_config_init, &emif->emif_sdram_config);
499         do_ext_phy_settings(base, regs);
500
501         writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
502         omap5_ddr3_leveling(base, regs);
503 }
504
505 static void ddr3_init(u32 base, const struct emif_regs *regs)
506 {
507         if (is_omap54xx())
508                 omap5_ddr3_init(base, regs);
509         else
510                 dra7_ddr3_init(base, regs);
511 }
512 #endif
513
514 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
515 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
516
517 /*
518  * Organization and refresh requirements for LPDDR2 devices of different
519  * types and densities. Derived from JESD209-2 section 2.4
520  */
521 const struct lpddr2_addressing addressing_table[] = {
522         /* Banks tREFIx10     rowx32,rowx16      colx32,colx16  density */
523         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
524         {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
525         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
526         {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
527         {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
528         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
529         {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
530         {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
531         {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
532         {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
533 };
534
535 static const u32 lpddr2_density_2_size_in_mbytes[] = {
536         8,                      /* 64Mb */
537         16,                     /* 128Mb */
538         32,                     /* 256Mb */
539         64,                     /* 512Mb */
540         128,                    /* 1Gb   */
541         256,                    /* 2Gb   */
542         512,                    /* 4Gb   */
543         1024,                   /* 8Gb   */
544         2048,                   /* 16Gb  */
545         4096                    /* 32Gb  */
546 };
547
548 /*
549  * Calculate the period of DDR clock from frequency value and set the
550  * denominator and numerator in global variables for easy access later
551  */
552 static void set_ddr_clk_period(u32 freq)
553 {
554         /*
555          * period = 1/freq
556          * period_in_ns = 10^9/freq
557          */
558         *T_num = 1000000000;
559         *T_den = freq;
560         cancel_out(T_num, T_den, 200);
561
562 }
563
564 /*
565  * Convert time in nano seconds to number of cycles of DDR clock
566  */
567 static inline u32 ns_2_cycles(u32 ns)
568 {
569         return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
570 }
571
572 /*
573  * ns_2_cycles with the difference that the time passed is 2 times the actual
574  * value(to avoid fractions). The cycles returned is for the original value of
575  * the timing parameter
576  */
577 static inline u32 ns_x2_2_cycles(u32 ns)
578 {
579         return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
580 }
581
582 /*
583  * Find addressing table index based on the device's type(S2 or S4) and
584  * density
585  */
586 s8 addressing_table_index(u8 type, u8 density, u8 width)
587 {
588         u8 index;
589         if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
590                 return -1;
591
592         /*
593          * Look at the way ADDR_TABLE_INDEX* values have been defined
594          * in emif.h compared to LPDDR2_DENSITY_* values
595          * The table is layed out in the increasing order of density
596          * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
597          * at the end
598          */
599         if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
600                 index = ADDR_TABLE_INDEX1GS2;
601         else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
602                 index = ADDR_TABLE_INDEX2GS2;
603         else
604                 index = density;
605
606         debug("emif: addressing table index %d\n", index);
607
608         return index;
609 }
610
611 /*
612  * Find the the right timing table from the array of timing
613  * tables of the device using DDR clock frequency
614  */
615 static const struct lpddr2_ac_timings *get_timings_table(const struct
616                         lpddr2_ac_timings *const *device_timings,
617                         u32 freq)
618 {
619         u32 i, temp, freq_nearest;
620         const struct lpddr2_ac_timings *timings = 0;
621
622         emif_assert(freq <= MAX_LPDDR2_FREQ);
623         emif_assert(device_timings);
624
625         /*
626          * Start with the maximum allowed frequency - that is always safe
627          */
628         freq_nearest = MAX_LPDDR2_FREQ;
629         /*
630          * Find the timings table that has the max frequency value:
631          *   i.  Above or equal to the DDR frequency - safe
632          *   ii. The lowest that satisfies condition (i) - optimal
633          */
634         for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
635                 temp = device_timings[i]->max_freq;
636                 if ((temp >= freq) && (temp <= freq_nearest)) {
637                         freq_nearest = temp;
638                         timings = device_timings[i];
639                 }
640         }
641         debug("emif: timings table: %d\n", freq_nearest);
642         return timings;
643 }
644
645 /*
646  * Finds the value of emif_sdram_config_reg
647  * All parameters are programmed based on the device on CS0.
648  * If there is a device on CS1, it will be same as that on CS0 or
649  * it will be NVM. We don't support NVM yet.
650  * If cs1_device pointer is NULL it is assumed that there is no device
651  * on CS1
652  */
653 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
654                                 const struct lpddr2_device_details *cs1_device,
655                                 const struct lpddr2_addressing *addressing,
656                                 u8 RL)
657 {
658         u32 config_reg = 0;
659
660         config_reg |=  (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
661         config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
662                         EMIF_REG_IBANK_POS_SHIFT;
663
664         config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
665
666         config_reg |= RL << EMIF_REG_CL_SHIFT;
667
668         config_reg |= addressing->row_sz[cs0_device->io_width] <<
669                         EMIF_REG_ROWSIZE_SHIFT;
670
671         config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
672
673         config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
674                         EMIF_REG_EBANK_SHIFT;
675
676         config_reg |= addressing->col_sz[cs0_device->io_width] <<
677                         EMIF_REG_PAGESIZE_SHIFT;
678
679         return config_reg;
680 }
681
682 static u32 get_sdram_ref_ctrl(u32 freq,
683                               const struct lpddr2_addressing *addressing)
684 {
685         u32 ref_ctrl = 0, val = 0, freq_khz;
686         freq_khz = freq / 1000;
687         /*
688          * refresh rate to be set is 'tREFI * freq in MHz
689          * division by 10000 to account for khz and x10 in t_REFI_us_x10
690          */
691         val = addressing->t_REFI_us_x10 * freq_khz / 10000;
692         ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
693
694         return ref_ctrl;
695 }
696
697 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
698                                const struct lpddr2_min_tck *min_tck,
699                                const struct lpddr2_addressing *addressing)
700 {
701         u32 tim1 = 0, val = 0;
702         val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
703         tim1 |= val << EMIF_REG_T_WTR_SHIFT;
704
705         if (addressing->num_banks == BANKS8)
706                 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
707                                                         (4 * (*T_num)) - 1;
708         else
709                 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
710
711         tim1 |= val << EMIF_REG_T_RRD_SHIFT;
712
713         val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
714         tim1 |= val << EMIF_REG_T_RC_SHIFT;
715
716         val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
717         tim1 |= val << EMIF_REG_T_RAS_SHIFT;
718
719         val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
720         tim1 |= val << EMIF_REG_T_WR_SHIFT;
721
722         val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
723         tim1 |= val << EMIF_REG_T_RCD_SHIFT;
724
725         val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
726         tim1 |= val << EMIF_REG_T_RP_SHIFT;
727
728         return tim1;
729 }
730
731 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
732                                const struct lpddr2_min_tck *min_tck)
733 {
734         u32 tim2 = 0, val = 0;
735         val = max(min_tck->tCKE, timings->tCKE) - 1;
736         tim2 |= val << EMIF_REG_T_CKE_SHIFT;
737
738         val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
739         tim2 |= val << EMIF_REG_T_RTP_SHIFT;
740
741         /*
742          * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
743          * same value
744          */
745         val = ns_2_cycles(timings->tXSR) - 1;
746         tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
747         tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
748
749         val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
750         tim2 |= val << EMIF_REG_T_XP_SHIFT;
751
752         return tim2;
753 }
754
755 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
756                                const struct lpddr2_min_tck *min_tck,
757                                const struct lpddr2_addressing *addressing)
758 {
759         u32 tim3 = 0, val = 0;
760         val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
761         tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
762
763         val = ns_2_cycles(timings->tRFCab) - 1;
764         tim3 |= val << EMIF_REG_T_RFC_SHIFT;
765
766         val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
767         tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
768
769         val = ns_2_cycles(timings->tZQCS) - 1;
770         tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
771
772         val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
773         tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
774
775         return tim3;
776 }
777
778 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
779                              const struct lpddr2_addressing *addressing,
780                              u8 volt_ramp)
781 {
782         u32 zq = 0, val = 0;
783         if (volt_ramp)
784                 val =
785                     EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
786                     addressing->t_REFI_us_x10;
787         else
788                 val =
789                     EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
790                     addressing->t_REFI_us_x10;
791         zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
792
793         zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
794
795         zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
796
797         zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
798
799         /*
800          * Assuming that two chipselects have a single calibration resistor
801          * If there are indeed two calibration resistors, then this flag should
802          * be enabled to take advantage of dual calibration feature.
803          * This data should ideally come from board files. But considering
804          * that none of the boards today have calibration resistors per CS,
805          * it would be an unnecessary overhead.
806          */
807         zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
808
809         zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
810
811         zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
812
813         return zq;
814 }
815
816 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
817                                  const struct lpddr2_addressing *addressing,
818                                  u8 is_derated)
819 {
820         u32 alert = 0, interval;
821         interval =
822             TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
823         if (is_derated)
824                 interval *= 4;
825         alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
826
827         alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
828
829         alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
830
831         alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
832
833         alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
834
835         alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
836
837         return alert;
838 }
839
840 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
841 {
842         u32 idle = 0, val = 0;
843         if (volt_ramp)
844                 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
845         else
846                 /*Maximum value in normal conditions - suggested by hw team */
847                 val = 0x1FF;
848         idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
849
850         idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
851
852         return idle;
853 }
854
855 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
856 {
857         u32 phy = 0, val = 0;
858
859         phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
860
861         if (freq <= 100000000)
862                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
863         else if (freq <= 200000000)
864                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
865         else
866                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
867         phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
868
869         /* Other fields are constant magic values. Hardcode them together */
870         phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
871                 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
872
873         return phy;
874 }
875
876 static u32 get_emif_mem_size(u32 base)
877 {
878         u32 size_mbytes = 0, temp;
879         struct emif_device_details dev_details;
880         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
881         u32 emif_nr = emif_num(base);
882
883         emif_reset_phy(base);
884         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
885                                                 &cs0_dev_details);
886         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
887                                                 &cs1_dev_details);
888         emif_reset_phy(base);
889
890         if (dev_details.cs0_device_details) {
891                 temp = dev_details.cs0_device_details->density;
892                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
893         }
894
895         if (dev_details.cs1_device_details) {
896                 temp = dev_details.cs1_device_details->density;
897                 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
898         }
899         /* convert to bytes */
900         return size_mbytes << 20;
901 }
902
903 /* Gets the encoding corresponding to a given DMM section size */
904 u32 get_dmm_section_size_map(u32 section_size)
905 {
906         /*
907          * Section size mapping:
908          * 0x0: 16-MiB section
909          * 0x1: 32-MiB section
910          * 0x2: 64-MiB section
911          * 0x3: 128-MiB section
912          * 0x4: 256-MiB section
913          * 0x5: 512-MiB section
914          * 0x6: 1-GiB section
915          * 0x7: 2-GiB section
916          */
917         section_size >>= 24; /* divide by 16 MB */
918         return log_2_n_round_down(section_size);
919 }
920
921 static void emif_calculate_regs(
922                 const struct emif_device_details *emif_dev_details,
923                 u32 freq, struct emif_regs *regs)
924 {
925         u32 temp, sys_freq;
926         const struct lpddr2_addressing *addressing;
927         const struct lpddr2_ac_timings *timings;
928         const struct lpddr2_min_tck *min_tck;
929         const struct lpddr2_device_details *cs0_dev_details =
930                                         emif_dev_details->cs0_device_details;
931         const struct lpddr2_device_details *cs1_dev_details =
932                                         emif_dev_details->cs1_device_details;
933         const struct lpddr2_device_timings *cs0_dev_timings =
934                                         emif_dev_details->cs0_device_timings;
935
936         emif_assert(emif_dev_details);
937         emif_assert(regs);
938         /*
939          * You can not have a device on CS1 without one on CS0
940          * So configuring EMIF without a device on CS0 doesn't
941          * make sense
942          */
943         emif_assert(cs0_dev_details);
944         emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
945         /*
946          * If there is a device on CS1 it should be same type as CS0
947          * (or NVM. But NVM is not supported in this driver yet)
948          */
949         emif_assert((cs1_dev_details == NULL) ||
950                     (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
951                     (cs0_dev_details->type == cs1_dev_details->type));
952         emif_assert(freq <= MAX_LPDDR2_FREQ);
953
954         set_ddr_clk_period(freq);
955
956         /*
957          * The device on CS0 is used for all timing calculations
958          * There is only one set of registers for timings per EMIF. So, if the
959          * second CS(CS1) has a device, it should have the same timings as the
960          * device on CS0
961          */
962         timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
963         emif_assert(timings);
964         min_tck = cs0_dev_timings->min_tck;
965
966         temp = addressing_table_index(cs0_dev_details->type,
967                                       cs0_dev_details->density,
968                                       cs0_dev_details->io_width);
969
970         emif_assert((temp >= 0));
971         addressing = &(addressing_table[temp]);
972         emif_assert(addressing);
973
974         sys_freq = get_sys_clk_freq();
975
976         regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
977                                                         cs1_dev_details,
978                                                         addressing, RL_BOOT);
979
980         regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
981                                                 cs1_dev_details,
982                                                 addressing, RL_FINAL);
983
984         regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
985
986         regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
987
988         regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
989
990         regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
991
992         regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
993
994         regs->temp_alert_config =
995             get_temp_alert_config(cs1_dev_details, addressing, 0);
996
997         regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
998                                             LPDDR2_VOLTAGE_STABLE);
999
1000         regs->emif_ddr_phy_ctlr_1_init =
1001                         get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
1002
1003         regs->emif_ddr_phy_ctlr_1 =
1004                         get_ddr_phy_ctrl_1(freq, RL_FINAL);
1005
1006         regs->freq = freq;
1007
1008         print_timing_reg(regs->sdram_config_init);
1009         print_timing_reg(regs->sdram_config);
1010         print_timing_reg(regs->ref_ctrl);
1011         print_timing_reg(regs->sdram_tim1);
1012         print_timing_reg(regs->sdram_tim2);
1013         print_timing_reg(regs->sdram_tim3);
1014         print_timing_reg(regs->read_idle_ctrl);
1015         print_timing_reg(regs->temp_alert_config);
1016         print_timing_reg(regs->zq_config);
1017         print_timing_reg(regs->emif_ddr_phy_ctlr_1);
1018         print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
1019 }
1020 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1021
1022 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
1023 const char *get_lpddr2_type(u8 type_id)
1024 {
1025         switch (type_id) {
1026         case LPDDR2_TYPE_S4:
1027                 return "LPDDR2-S4";
1028         case LPDDR2_TYPE_S2:
1029                 return "LPDDR2-S2";
1030         default:
1031                 return NULL;
1032         }
1033 }
1034
1035 const char *get_lpddr2_io_width(u8 width_id)
1036 {
1037         switch (width_id) {
1038         case LPDDR2_IO_WIDTH_8:
1039                 return "x8";
1040         case LPDDR2_IO_WIDTH_16:
1041                 return "x16";
1042         case LPDDR2_IO_WIDTH_32:
1043                 return "x32";
1044         default:
1045                 return NULL;
1046         }
1047 }
1048
1049 const char *get_lpddr2_manufacturer(u32 manufacturer)
1050 {
1051         switch (manufacturer) {
1052         case LPDDR2_MANUFACTURER_SAMSUNG:
1053                 return "Samsung";
1054         case LPDDR2_MANUFACTURER_QIMONDA:
1055                 return "Qimonda";
1056         case LPDDR2_MANUFACTURER_ELPIDA:
1057                 return "Elpida";
1058         case LPDDR2_MANUFACTURER_ETRON:
1059                 return "Etron";
1060         case LPDDR2_MANUFACTURER_NANYA:
1061                 return "Nanya";
1062         case LPDDR2_MANUFACTURER_HYNIX:
1063                 return "Hynix";
1064         case LPDDR2_MANUFACTURER_MOSEL:
1065                 return "Mosel";
1066         case LPDDR2_MANUFACTURER_WINBOND:
1067                 return "Winbond";
1068         case LPDDR2_MANUFACTURER_ESMT:
1069                 return "ESMT";
1070         case LPDDR2_MANUFACTURER_SPANSION:
1071                 return "Spansion";
1072         case LPDDR2_MANUFACTURER_SST:
1073                 return "SST";
1074         case LPDDR2_MANUFACTURER_ZMOS:
1075                 return "ZMOS";
1076         case LPDDR2_MANUFACTURER_INTEL:
1077                 return "Intel";
1078         case LPDDR2_MANUFACTURER_NUMONYX:
1079                 return "Numonyx";
1080         case LPDDR2_MANUFACTURER_MICRON:
1081                 return "Micron";
1082         default:
1083                 return NULL;
1084         }
1085 }
1086
1087 static void display_sdram_details(u32 emif_nr, u32 cs,
1088                                   struct lpddr2_device_details *device)
1089 {
1090         const char *mfg_str;
1091         const char *type_str;
1092         char density_str[10];
1093         u32 density;
1094
1095         debug("EMIF%d CS%d\t", emif_nr, cs);
1096
1097         if (!device) {
1098                 debug("None\n");
1099                 return;
1100         }
1101
1102         mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1103         type_str = get_lpddr2_type(device->type);
1104
1105         density = lpddr2_density_2_size_in_mbytes[device->density];
1106         if ((density / 1024 * 1024) == density) {
1107                 density /= 1024;
1108                 sprintf(density_str, "%d GB", density);
1109         } else
1110                 sprintf(density_str, "%d MB", density);
1111         if (mfg_str && type_str)
1112                 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1113 }
1114
1115 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1116                                   struct lpddr2_device_details *lpddr2_device)
1117 {
1118         u32 mr = 0, temp;
1119
1120         mr = get_mr(base, cs, LPDDR2_MR0);
1121         if (mr > 0xFF) {
1122                 /* Mode register value bigger than 8 bit */
1123                 return 0;
1124         }
1125
1126         temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1127         if (temp) {
1128                 /* Not SDRAM */
1129                 return 0;
1130         }
1131         temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1132
1133         if (temp) {
1134                 /* DNV supported - But DNV is only supported for NVM */
1135                 return 0;
1136         }
1137
1138         mr = get_mr(base, cs, LPDDR2_MR4);
1139         if (mr > 0xFF) {
1140                 /* Mode register value bigger than 8 bit */
1141                 return 0;
1142         }
1143
1144         mr = get_mr(base, cs, LPDDR2_MR5);
1145         if (mr > 0xFF) {
1146                 /* Mode register value bigger than 8 bit */
1147                 return 0;
1148         }
1149
1150         if (!get_lpddr2_manufacturer(mr)) {
1151                 /* Manufacturer not identified */
1152                 return 0;
1153         }
1154         lpddr2_device->manufacturer = mr;
1155
1156         mr = get_mr(base, cs, LPDDR2_MR6);
1157         if (mr >= 0xFF) {
1158                 /* Mode register value bigger than 8 bit */
1159                 return 0;
1160         }
1161
1162         mr = get_mr(base, cs, LPDDR2_MR7);
1163         if (mr >= 0xFF) {
1164                 /* Mode register value bigger than 8 bit */
1165                 return 0;
1166         }
1167
1168         mr = get_mr(base, cs, LPDDR2_MR8);
1169         if (mr >= 0xFF) {
1170                 /* Mode register value bigger than 8 bit */
1171                 return 0;
1172         }
1173
1174         temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1175         if (!get_lpddr2_type(temp)) {
1176                 /* Not SDRAM */
1177                 return 0;
1178         }
1179         lpddr2_device->type = temp;
1180
1181         temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1182         if (temp > LPDDR2_DENSITY_32Gb) {
1183                 /* Density not supported */
1184                 return 0;
1185         }
1186         lpddr2_device->density = temp;
1187
1188         temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1189         if (!get_lpddr2_io_width(temp)) {
1190                 /* IO width unsupported value */
1191                 return 0;
1192         }
1193         lpddr2_device->io_width = temp;
1194
1195         /*
1196          * If all the above tests pass we should
1197          * have a device on this chip-select
1198          */
1199         return 1;
1200 }
1201
1202 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1203                         struct lpddr2_device_details *lpddr2_dev_details)
1204 {
1205         u32 phy;
1206         u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1207
1208         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1209
1210         if (!lpddr2_dev_details)
1211                 return NULL;
1212
1213         /* Do the minimum init for mode register accesses */
1214         if (!(running_from_sdram() || warm_reset())) {
1215                 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1216                 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1217         }
1218
1219         if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1220                 return NULL;
1221
1222         display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1223
1224         return lpddr2_dev_details;
1225 }
1226 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1227
1228 static void do_sdram_init(u32 base)
1229 {
1230         const struct emif_regs *regs;
1231         u32 in_sdram, emif_nr;
1232
1233         debug(">>do_sdram_init() %x\n", base);
1234
1235         in_sdram = running_from_sdram();
1236         emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1237
1238 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1239         emif_get_reg_dump(emif_nr, &regs);
1240         if (!regs) {
1241                 debug("EMIF: reg dump not provided\n");
1242                 return;
1243         }
1244 #else
1245         /*
1246          * The user has not provided the register values. We need to
1247          * calculate it based on the timings and the DDR frequency
1248          */
1249         struct emif_device_details dev_details;
1250         struct emif_regs calculated_regs;
1251
1252         /*
1253          * Get device details:
1254          * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1255          * - Obtained from user otherwise
1256          */
1257         struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1258         emif_reset_phy(base);
1259         dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1260                                                 &cs0_dev_details);
1261         dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1262                                                 &cs1_dev_details);
1263         emif_reset_phy(base);
1264
1265         /* Return if no devices on this EMIF */
1266         if (!dev_details.cs0_device_details &&
1267             !dev_details.cs1_device_details) {
1268                 return;
1269         }
1270
1271         /*
1272          * Get device timings:
1273          * - Default timings specified by JESD209-2 if
1274          *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1275          * - Obtained from user otherwise
1276          */
1277         emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1278                                 &dev_details.cs1_device_timings);
1279
1280         /* Calculate the register values */
1281         emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1282         regs = &calculated_regs;
1283 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1284
1285         /*
1286          * Initializing the DDR device can not happen from SDRAM.
1287          * Changing the timing registers in EMIF can happen(going from one
1288          * OPP to another)
1289          */
1290         if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1291                 if (emif_sdram_type(regs->sdram_config) ==
1292                     EMIF_SDRAM_TYPE_LPDDR2)
1293                         lpddr2_init(base, regs);
1294 #ifndef CONFIG_OMAP44XX
1295                 else
1296                         ddr3_init(base, regs);
1297 #endif
1298         }
1299 #ifdef CONFIG_OMAP54XX
1300         if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1301             EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1302                 set_lpmode_selfrefresh(base);
1303                 emif_reset_phy(base);
1304                 omap5_ddr3_leveling(base, regs);
1305         }
1306 #endif
1307
1308         /* Write to the shadow registers */
1309         emif_update_timings(base, regs);
1310
1311         debug("<<do_sdram_init() %x\n", base);
1312 }
1313
1314 void emif_post_init_config(u32 base)
1315 {
1316         struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1317         u32 omap_rev = omap_revision();
1318
1319         /* reset phy on ES2.0 */
1320         if (omap_rev == OMAP4430_ES2_0)
1321                 emif_reset_phy(base);
1322
1323         /* Put EMIF back in smart idle on ES1.0 */
1324         if (omap_rev == OMAP4430_ES1_0)
1325                 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1326 }
1327
1328 void dmm_init(u32 base)
1329 {
1330         const struct dmm_lisa_map_regs *lisa_map_regs;
1331         u32 i, section, valid;
1332
1333 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1334         emif_get_dmm_regs(&lisa_map_regs);
1335 #else
1336         u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1337         u32 section_cnt, sys_addr;
1338         struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1339
1340         mapped_size = 0;
1341         section_cnt = 3;
1342         sys_addr = CONFIG_SYS_SDRAM_BASE;
1343         emif1_size = get_emif_mem_size(EMIF1_BASE);
1344         emif2_size = get_emif_mem_size(EMIF2_BASE);
1345         debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1346
1347         if (!emif1_size && !emif2_size)
1348                 return;
1349
1350         /* symmetric interleaved section */
1351         if (emif1_size && emif2_size) {
1352                 mapped_size = min(emif1_size, emif2_size);
1353                 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1354                 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1355                 /* only MSB */
1356                 section_map |= (sys_addr >> 24) <<
1357                                 EMIF_SYS_ADDR_SHIFT;
1358                 section_map |= get_dmm_section_size_map(mapped_size * 2)
1359                                 << EMIF_SYS_SIZE_SHIFT;
1360                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1361                 emif1_size -= mapped_size;
1362                 emif2_size -= mapped_size;
1363                 sys_addr += (mapped_size * 2);
1364                 section_cnt--;
1365         }
1366
1367         /*
1368          * Single EMIF section(we can have a maximum of 1 single EMIF
1369          * section- either EMIF1 or EMIF2 or none, but not both)
1370          */
1371         if (emif1_size) {
1372                 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1373                 section_map |= get_dmm_section_size_map(emif1_size)
1374                                 << EMIF_SYS_SIZE_SHIFT;
1375                 /* only MSB */
1376                 section_map |= (mapped_size >> 24) <<
1377                                 EMIF_SDRC_ADDR_SHIFT;
1378                 /* only MSB */
1379                 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1380                 section_cnt--;
1381         }
1382         if (emif2_size) {
1383                 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1384                 section_map |= get_dmm_section_size_map(emif2_size) <<
1385                                 EMIF_SYS_SIZE_SHIFT;
1386                 /* only MSB */
1387                 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1388                 /* only MSB */
1389                 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1390                 section_cnt--;
1391         }
1392
1393         if (section_cnt == 2) {
1394                 /* Only 1 section - either symmetric or single EMIF */
1395                 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1396                 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1397                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1398         } else {
1399                 /* 2 sections - 1 symmetric, 1 single EMIF */
1400                 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1401                 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1402         }
1403
1404         /* TRAP for invalid TILER mappings in section 0 */
1405         lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1406
1407         if (omap_revision() >= OMAP4460_ES1_0)
1408                 lis_map_regs_calculated.is_ma_present = 1;
1409
1410         lisa_map_regs = &lis_map_regs_calculated;
1411 #endif
1412         struct dmm_lisa_map_regs *hw_lisa_map_regs =
1413             (struct dmm_lisa_map_regs *)base;
1414
1415         writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1416         writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1417         writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1418         writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1419
1420         writel(lisa_map_regs->dmm_lisa_map_3,
1421                 &hw_lisa_map_regs->dmm_lisa_map_3);
1422         writel(lisa_map_regs->dmm_lisa_map_2,
1423                 &hw_lisa_map_regs->dmm_lisa_map_2);
1424         writel(lisa_map_regs->dmm_lisa_map_1,
1425                 &hw_lisa_map_regs->dmm_lisa_map_1);
1426         writel(lisa_map_regs->dmm_lisa_map_0,
1427                 &hw_lisa_map_regs->dmm_lisa_map_0);
1428
1429         if (lisa_map_regs->is_ma_present) {
1430                 hw_lisa_map_regs =
1431                     (struct dmm_lisa_map_regs *)MA_BASE;
1432
1433                 writel(lisa_map_regs->dmm_lisa_map_3,
1434                         &hw_lisa_map_regs->dmm_lisa_map_3);
1435                 writel(lisa_map_regs->dmm_lisa_map_2,
1436                         &hw_lisa_map_regs->dmm_lisa_map_2);
1437                 writel(lisa_map_regs->dmm_lisa_map_1,
1438                         &hw_lisa_map_regs->dmm_lisa_map_1);
1439                 writel(lisa_map_regs->dmm_lisa_map_0,
1440                         &hw_lisa_map_regs->dmm_lisa_map_0);
1441
1442                 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1443         }
1444
1445         /*
1446          * EMIF should be configured only when
1447          * memory is mapped on it. Using emif1_enabled
1448          * and emif2_enabled variables for this.
1449          */
1450         emif1_enabled = 0;
1451         emif2_enabled = 0;
1452         for (i = 0; i < 4; i++) {
1453                 section = __raw_readl(DMM_BASE + i*4);
1454                 valid = (section & EMIF_SDRC_MAP_MASK) >>
1455                         (EMIF_SDRC_MAP_SHIFT);
1456                 if (valid == 3) {
1457                         emif1_enabled = 1;
1458                         emif2_enabled = 1;
1459                         break;
1460                 }
1461
1462                 if (valid == 1)
1463                         emif1_enabled = 1;
1464
1465                 if (valid == 2)
1466                         emif2_enabled = 1;
1467         }
1468 }
1469
1470 static void do_bug0039_workaround(u32 base)
1471 {
1472         u32 val, i, clkctrl;
1473         struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1474         const struct read_write_regs *bug_00339_regs;
1475         u32 iterations;
1476         u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1477         u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1478
1479         if (is_dra7xx())
1480                 phy_status_base++;
1481
1482         bug_00339_regs = get_bug_regs(&iterations);
1483
1484         /* Put EMIF in to idle */
1485         clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1486         __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1487
1488         /* Copy the phy status registers in to phy ctrl shadow registers */
1489         for (i = 0; i < iterations; i++) {
1490                 val = __raw_readl(phy_status_base +
1491                                   bug_00339_regs[i].read_reg - 1);
1492
1493                 __raw_writel(val, phy_ctrl_base +
1494                              ((bug_00339_regs[i].write_reg - 1) << 1));
1495
1496                 __raw_writel(val, phy_ctrl_base +
1497                              (bug_00339_regs[i].write_reg << 1) - 1);
1498         }
1499
1500         /* Disable leveling */
1501         writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1502
1503         __raw_writel(clkctrl,  (*prcm)->cm_memif_clkstctrl);
1504 }
1505
1506 /*
1507  * SDRAM initialization:
1508  * SDRAM initialization has two parts:
1509  * 1. Configuring the SDRAM device
1510  * 2. Update the AC timings related parameters in the EMIF module
1511  * (1) should be done only once and should not be done while we are
1512  * running from SDRAM.
1513  * (2) can and should be done more than once if OPP changes.
1514  * Particularly, this may be needed when we boot without SPL and
1515  * and using Configuration Header(CH). ROM code supports only at 50% OPP
1516  * at boot (low power boot). So u-boot has to switch to OPP100 and update
1517  * the frequency. So,
1518  * Doing (1) and (2) makes sense - first time initialization
1519  * Doing (2) and not (1) makes sense - OPP change (when using CH)
1520  * Doing (1) and not (2) doen't make sense
1521  * See do_sdram_init() for the details
1522  */
1523 void sdram_init(void)
1524 {
1525         u32 in_sdram, size_prog, size_detect;
1526         struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1527         u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1528
1529         debug(">>sdram_init()\n");
1530
1531         if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1532                 return;
1533
1534         in_sdram = running_from_sdram();
1535         debug("in_sdram = %d\n", in_sdram);
1536
1537         if (!in_sdram) {
1538                 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1539                         bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1540                 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1541                         writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1542         }
1543
1544         if (!in_sdram)
1545                 dmm_init(DMM_BASE);
1546
1547         if (emif1_enabled)
1548                 do_sdram_init(EMIF1_BASE);
1549
1550         if (emif2_enabled)
1551                 do_sdram_init(EMIF2_BASE);
1552
1553         if (!(in_sdram || warm_reset())) {
1554                 if (emif1_enabled)
1555                         emif_post_init_config(EMIF1_BASE);
1556                 if (emif2_enabled)
1557                         emif_post_init_config(EMIF2_BASE);
1558         }
1559
1560         /* for the shadow registers to take effect */
1561         if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1562                 freq_update_core();
1563
1564         /* Do some testing after the init */
1565         if (!in_sdram) {
1566                 size_prog = omap_sdram_size();
1567                 size_prog = log_2_n_round_down(size_prog);
1568                 size_prog = (1 << size_prog);
1569
1570                 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1571                                                 size_prog);
1572                 /* Compare with the size programmed */
1573                 if (size_detect != size_prog) {
1574                         printf("SDRAM: identified size not same as expected"
1575                                 " size identified: %x expected: %x\n",
1576                                 size_detect,
1577                                 size_prog);
1578                 } else
1579                         debug("get_ram_size() successful");
1580         }
1581
1582 #if defined(CONFIG_TI_SECURE_DEVICE)
1583         /*
1584          * On HS devices, do static EMIF firewall configuration
1585          * but only do it if not already running in SDRAM
1586          */
1587         if (!in_sdram)
1588                 if (0 != secure_emif_reserve())
1589                         hang();
1590
1591         /* On HS devices, ensure static EMIF firewall APIs are locked */
1592         if (0 != secure_emif_firewall_lock())
1593                 hang();
1594 #endif
1595
1596         if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1597             (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1598                 if (emif1_enabled)
1599                         do_bug0039_workaround(EMIF1_BASE);
1600                 if (emif2_enabled)
1601                         do_bug0039_workaround(EMIF2_BASE);
1602         }
1603
1604         debug("<<sdram_init()\n");
1605 }