Merge branch 'master' of git://git.denx.de/u-boot-sh
[oweals/u-boot.git] / arch / arm / mach-k3 / am6_init.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * K3: Architecture initialization
4  *
5  * Copyright (C) 2017-2018 Texas Instruments Incorporated - http://www.ti.com/
6  *      Lokesh Vutla <lokeshvutla@ti.com>
7  */
8
9 #include <common.h>
10 #include <asm/io.h>
11 #include <spl.h>
12 #include <asm/arch/hardware.h>
13 #include <asm/arch/sysfw-loader.h>
14 #include <asm/arch/sys_proto.h>
15 #include "common.h"
16 #include <dm.h>
17 #include <dm/uclass-internal.h>
18 #include <dm/pinctrl.h>
19 #include <linux/soc/ti/ti_sci_protocol.h>
20
21 #ifdef CONFIG_SPL_BUILD
22 static void mmr_unlock(u32 base, u32 partition)
23 {
24         /* Translate the base address */
25         phys_addr_t part_base = base + partition * CTRL_MMR0_PARTITION_SIZE;
26
27         /* Unlock the requested partition if locked using two-step sequence */
28         writel(CTRLMMR_LOCK_KICK0_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK0);
29         writel(CTRLMMR_LOCK_KICK1_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK1);
30 }
31
32 static void ctrl_mmr_unlock(void)
33 {
34         /* Unlock all WKUP_CTRL_MMR0 module registers */
35         mmr_unlock(WKUP_CTRL_MMR0_BASE, 0);
36         mmr_unlock(WKUP_CTRL_MMR0_BASE, 1);
37         mmr_unlock(WKUP_CTRL_MMR0_BASE, 2);
38         mmr_unlock(WKUP_CTRL_MMR0_BASE, 3);
39         mmr_unlock(WKUP_CTRL_MMR0_BASE, 6);
40         mmr_unlock(WKUP_CTRL_MMR0_BASE, 7);
41
42         /* Unlock all MCU_CTRL_MMR0 module registers */
43         mmr_unlock(MCU_CTRL_MMR0_BASE, 0);
44         mmr_unlock(MCU_CTRL_MMR0_BASE, 1);
45         mmr_unlock(MCU_CTRL_MMR0_BASE, 2);
46         mmr_unlock(MCU_CTRL_MMR0_BASE, 6);
47
48         /* Unlock all CTRL_MMR0 module registers */
49         mmr_unlock(CTRL_MMR0_BASE, 0);
50         mmr_unlock(CTRL_MMR0_BASE, 1);
51         mmr_unlock(CTRL_MMR0_BASE, 2);
52         mmr_unlock(CTRL_MMR0_BASE, 3);
53         mmr_unlock(CTRL_MMR0_BASE, 6);
54         mmr_unlock(CTRL_MMR0_BASE, 7);
55 }
56
57 /*
58  * This uninitialized global variable would normal end up in the .bss section,
59  * but the .bss is cleared between writing and reading this variable, so move
60  * it to the .data section.
61  */
62 u32 bootindex __attribute__((section(".data")));
63
64 static void store_boot_index_from_rom(void)
65 {
66         bootindex = *(u32 *)(CONFIG_SYS_K3_BOOT_PARAM_TABLE_INDEX);
67 }
68
69 void board_init_f(ulong dummy)
70 {
71 #if defined(CONFIG_K3_LOAD_SYSFW) || defined(CONFIG_K3_AM654_DDRSS)
72         struct udevice *dev;
73         int ret;
74 #endif
75         /*
76          * Cannot delay this further as there is a chance that
77          * K3_BOOT_PARAM_TABLE_INDEX can be over written by SPL MALLOC section.
78          */
79         store_boot_index_from_rom();
80
81         /* Make all control module registers accessible */
82         ctrl_mmr_unlock();
83
84 #ifdef CONFIG_CPU_V7R
85         setup_k3_mpu_regions();
86 #endif
87
88         /* Init DM early in-order to invoke system controller */
89         spl_early_init();
90
91 #ifdef CONFIG_K3_LOAD_SYSFW
92         /*
93          * Process pinctrl for the serial0 a.k.a. WKUP_UART0 module and continue
94          * regardless of the result of pinctrl. Do this without probing the
95          * device, but instead by searching the device that would request the
96          * given sequence number if probed. The UART will be used by the system
97          * firmware (SYSFW) image for various purposes and SYSFW depends on us
98          * to initialize its pin settings.
99          */
100         ret = uclass_find_device_by_seq(UCLASS_SERIAL, 0, true, &dev);
101         if (!ret)
102                 pinctrl_select_state(dev, "default");
103
104         /*
105          * Load, start up, and configure system controller firmware. Provide
106          * the U-Boot console init function to the SYSFW post-PM configuration
107          * callback hook, effectively switching on (or over) the console
108          * output.
109          */
110         k3_sysfw_loader(preloader_console_init);
111 #else
112         /* Prepare console output */
113         preloader_console_init();
114 #endif
115
116         /* Perform EEPROM-based board detection */
117         do_board_detect();
118
119 #ifdef CONFIG_K3_AM654_DDRSS
120         ret = uclass_get_device(UCLASS_RAM, 0, &dev);
121         if (ret)
122                 panic("DRAM init failed: %d\n", ret);
123 #endif
124 }
125
126 u32 spl_boot_mode(const u32 boot_device)
127 {
128 #if defined(CONFIG_SUPPORT_EMMC_BOOT)
129         u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
130
131         u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >>
132                         CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT;
133
134         /* eMMC boot0 mode is only supported for primary boot */
135         if (bootindex == K3_PRIMARY_BOOTMODE &&
136             bootmode == BOOT_DEVICE_MMC1)
137                 return MMCSD_MODE_EMMCBOOT;
138 #endif
139
140         /* Everything else use filesystem if available */
141 #if defined(CONFIG_SPL_FS_FAT) || defined(CONFIG_SPL_FS_EXT4)
142         return MMCSD_MODE_FS;
143 #else
144         return MMCSD_MODE_RAW;
145 #endif
146 }
147
148 static u32 __get_backup_bootmedia(u32 devstat)
149 {
150         u32 bkup_boot = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_MASK) >>
151                         CTRLMMR_MAIN_DEVSTAT_BKUP_BOOTMODE_SHIFT;
152
153         switch (bkup_boot) {
154         case BACKUP_BOOT_DEVICE_USB:
155                 return BOOT_DEVICE_USB;
156         case BACKUP_BOOT_DEVICE_UART:
157                 return BOOT_DEVICE_UART;
158         case BACKUP_BOOT_DEVICE_ETHERNET:
159                 return BOOT_DEVICE_ETHERNET;
160         case BACKUP_BOOT_DEVICE_MMC2:
161         {
162                 u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_MASK) >>
163                             CTRLMMR_MAIN_DEVSTAT_BKUP_MMC_PORT_SHIFT;
164                 if (port == 0x0)
165                         return BOOT_DEVICE_MMC1;
166                 return BOOT_DEVICE_MMC2;
167         }
168         case BACKUP_BOOT_DEVICE_SPI:
169                 return BOOT_DEVICE_SPI;
170         case BACKUP_BOOT_DEVICE_HYPERFLASH:
171                 return BOOT_DEVICE_HYPERFLASH;
172         case BACKUP_BOOT_DEVICE_I2C:
173                 return BOOT_DEVICE_I2C;
174         };
175
176         return BOOT_DEVICE_RAM;
177 }
178
179 static u32 __get_primary_bootmedia(u32 devstat)
180 {
181         u32 bootmode = (devstat & CTRLMMR_MAIN_DEVSTAT_BOOTMODE_MASK) >>
182                         CTRLMMR_MAIN_DEVSTAT_BOOTMODE_SHIFT;
183
184         if (bootmode == BOOT_DEVICE_OSPI || bootmode == BOOT_DEVICE_QSPI)
185                 bootmode = BOOT_DEVICE_SPI;
186
187         if (bootmode == BOOT_DEVICE_MMC2) {
188                 u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_MMC_PORT_MASK) >>
189                             CTRLMMR_MAIN_DEVSTAT_MMC_PORT_SHIFT;
190                 if (port == 0x0)
191                         bootmode = BOOT_DEVICE_MMC1;
192         } else if (bootmode == BOOT_DEVICE_MMC1) {
193                 u32 port = (devstat & CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_MASK) >>
194                             CTRLMMR_MAIN_DEVSTAT_EMMC_PORT_SHIFT;
195                 if (port == 0x1)
196                         bootmode = BOOT_DEVICE_MMC2;
197         }
198
199         return bootmode;
200 }
201
202 u32 spl_boot_device(void)
203 {
204         u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
205
206         if (bootindex == K3_PRIMARY_BOOTMODE)
207                 return __get_primary_bootmedia(devstat);
208         else
209                 return __get_backup_bootmedia(devstat);
210 }
211 #endif
212
213 #ifdef CONFIG_SYS_K3_SPL_ATF
214
215 #define AM6_DEV_MCU_RTI0                        134
216 #define AM6_DEV_MCU_RTI1                        135
217 #define AM6_DEV_MCU_ARMSS0_CPU0                 159
218 #define AM6_DEV_MCU_ARMSS0_CPU1                 245
219
220 void release_resources_for_core_shutdown(void)
221 {
222         struct ti_sci_handle *ti_sci = get_ti_sci_handle();
223         struct ti_sci_dev_ops *dev_ops = &ti_sci->ops.dev_ops;
224         struct ti_sci_proc_ops *proc_ops = &ti_sci->ops.proc_ops;
225         int ret;
226         u32 i;
227
228         const u32 put_device_ids[] = {
229                 AM6_DEV_MCU_RTI0,
230                 AM6_DEV_MCU_RTI1,
231         };
232
233         /* Iterate through list of devices to put (shutdown) */
234         for (i = 0; i < ARRAY_SIZE(put_device_ids); i++) {
235                 u32 id = put_device_ids[i];
236
237                 ret = dev_ops->put_device(ti_sci, id);
238                 if (ret)
239                         panic("Failed to put device %u (%d)\n", id, ret);
240         }
241
242         const u32 put_core_ids[] = {
243                 AM6_DEV_MCU_ARMSS0_CPU1,
244                 AM6_DEV_MCU_ARMSS0_CPU0,        /* Handle CPU0 after CPU1 */
245         };
246
247         /* Iterate through list of cores to put (shutdown) */
248         for (i = 0; i < ARRAY_SIZE(put_core_ids); i++) {
249                 u32 id = put_core_ids[i];
250
251                 /*
252                  * Queue up the core shutdown request. Note that this call
253                  * needs to be followed up by an actual invocation of an WFE
254                  * or WFI CPU instruction.
255                  */
256                 ret = proc_ops->proc_shutdown_no_wait(ti_sci, id);
257                 if (ret)
258                         panic("Failed sending core %u shutdown message (%d)\n",
259                               id, ret);
260         }
261 }
262 #endif