Merge branch 'master' of git://git.denx.de/u-boot-net
[oweals/u-boot.git] / arch / arm / mach-imx / imx8 / cpu.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2018 NXP
4  */
5
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu.h>
9 #include <dm.h>
10 #include <dm/device-internal.h>
11 #include <dm/lists.h>
12 #include <dm/uclass.h>
13 #include <errno.h>
14 #include <asm/arch/sci/sci.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/arch-imx/cpu.h>
17 #include <asm/armv8/cpu.h>
18 #include <asm/armv8/mmu.h>
19 #include <asm/mach-imx/boot_mode.h>
20
21 DECLARE_GLOBAL_DATA_PTR;
22
23 #define BT_PASSOVER_TAG 0x504F
24 struct pass_over_info_t *get_pass_over_info(void)
25 {
26         struct pass_over_info_t *p =
27                 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
28
29         if (p->barker != BT_PASSOVER_TAG ||
30             p->len != sizeof(struct pass_over_info_t))
31                 return NULL;
32
33         return p;
34 }
35
36 int arch_cpu_init(void)
37 {
38         struct pass_over_info_t *pass_over = get_pass_over_info();
39
40         if (pass_over && pass_over->g_ap_mu == 0) {
41                 /*
42                  * When ap_mu is 0, means the U-Boot booted
43                  * from first container
44                  */
45                 sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
46         }
47
48         return 0;
49 }
50
51 int arch_cpu_init_dm(void)
52 {
53         struct udevice *devp;
54         int node, ret;
55
56         node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
57         ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu",
58                                          offset_to_ofnode(node), &devp);
59
60         if (ret) {
61                 printf("could not find scu %d\n", ret);
62                 return ret;
63         }
64
65         ret = device_probe(devp);
66         if (ret) {
67                 printf("scu probe failed %d\n", ret);
68                 return ret;
69         }
70
71         return 0;
72 }
73
74 int print_bootinfo(void)
75 {
76         enum boot_device bt_dev = get_boot_device();
77
78         puts("Boot:  ");
79         switch (bt_dev) {
80         case SD1_BOOT:
81                 puts("SD0\n");
82                 break;
83         case SD2_BOOT:
84                 puts("SD1\n");
85                 break;
86         case SD3_BOOT:
87                 puts("SD2\n");
88                 break;
89         case MMC1_BOOT:
90                 puts("MMC0\n");
91                 break;
92         case MMC2_BOOT:
93                 puts("MMC1\n");
94                 break;
95         case MMC3_BOOT:
96                 puts("MMC2\n");
97                 break;
98         case FLEXSPI_BOOT:
99                 puts("FLEXSPI\n");
100                 break;
101         case SATA_BOOT:
102                 puts("SATA\n");
103                 break;
104         case NAND_BOOT:
105                 puts("NAND\n");
106                 break;
107         case USB_BOOT:
108                 puts("USB\n");
109                 break;
110         default:
111                 printf("Unknown device %u\n", bt_dev);
112                 break;
113         }
114
115         return 0;
116 }
117
118 enum boot_device get_boot_device(void)
119 {
120         enum boot_device boot_dev = SD1_BOOT;
121
122         sc_rsrc_t dev_rsrc;
123
124         sc_misc_get_boot_dev(-1, &dev_rsrc);
125
126         switch (dev_rsrc) {
127         case SC_R_SDHC_0:
128                 boot_dev = MMC1_BOOT;
129                 break;
130         case SC_R_SDHC_1:
131                 boot_dev = SD2_BOOT;
132                 break;
133         case SC_R_SDHC_2:
134                 boot_dev = SD3_BOOT;
135                 break;
136         case SC_R_NAND:
137                 boot_dev = NAND_BOOT;
138                 break;
139         case SC_R_FSPI_0:
140                 boot_dev = FLEXSPI_BOOT;
141                 break;
142         case SC_R_SATA_0:
143                 boot_dev = SATA_BOOT;
144                 break;
145         case SC_R_USB_0:
146         case SC_R_USB_1:
147         case SC_R_USB_2:
148                 boot_dev = USB_BOOT;
149                 break;
150         default:
151                 break;
152         }
153
154         return boot_dev;
155 }
156
157 #ifdef CONFIG_ENV_IS_IN_MMC
158 __weak int board_mmc_get_env_dev(int devno)
159 {
160         return CONFIG_SYS_MMC_ENV_DEV;
161 }
162
163 int mmc_get_env_dev(void)
164 {
165         sc_rsrc_t dev_rsrc;
166         int devno;
167
168         sc_misc_get_boot_dev(-1, &dev_rsrc);
169
170         switch (dev_rsrc) {
171         case SC_R_SDHC_0:
172                 devno = 0;
173                 break;
174         case SC_R_SDHC_1:
175                 devno = 1;
176                 break;
177         case SC_R_SDHC_2:
178                 devno = 2;
179                 break;
180         default:
181                 /* If not boot from sd/mmc, use default value */
182                 return CONFIG_SYS_MMC_ENV_DEV;
183         }
184
185         return board_mmc_get_env_dev(devno);
186 }
187 #endif
188
189 #define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */
190
191 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
192                             sc_faddr_t *addr_end)
193 {
194         sc_faddr_t start, end;
195         int ret;
196         bool owned;
197
198         owned = sc_rm_is_memreg_owned(-1, mr);
199         if (owned) {
200                 ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
201                 if (ret) {
202                         printf("Memreg get info failed, %d\n", ret);
203                         return -EINVAL;
204                 }
205                 debug("0x%llx -- 0x%llx\n", start, end);
206                 *addr_start = start;
207                 *addr_end = end;
208
209                 return 0;
210         }
211
212         return -EINVAL;
213 }
214
215 phys_size_t get_effective_memsize(void)
216 {
217         sc_rm_mr_t mr;
218         sc_faddr_t start, end, end1;
219         int err;
220
221         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
222
223         for (mr = 0; mr < 64; mr++) {
224                 err = get_owned_memreg(mr, &start, &end);
225                 if (!err) {
226                         start = roundup(start, MEMSTART_ALIGNMENT);
227                         /* Too small memory region, not use it */
228                         if (start > end)
229                                 continue;
230
231                         /* Find the memory region runs the U-Boot */
232                         if (start >= PHYS_SDRAM_1 && start <= end1 &&
233                             (start <= CONFIG_SYS_TEXT_BASE &&
234                             end >= CONFIG_SYS_TEXT_BASE)) {
235                                 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
236                                     PHYS_SDRAM_1_SIZE))
237                                         return (end - PHYS_SDRAM_1 + 1);
238                                 else
239                                         return PHYS_SDRAM_1_SIZE;
240                         }
241                 }
242         }
243
244         return PHYS_SDRAM_1_SIZE;
245 }
246
247 int dram_init(void)
248 {
249         sc_rm_mr_t mr;
250         sc_faddr_t start, end, end1, end2;
251         int err;
252
253         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
254         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
255         for (mr = 0; mr < 64; mr++) {
256                 err = get_owned_memreg(mr, &start, &end);
257                 if (!err) {
258                         start = roundup(start, MEMSTART_ALIGNMENT);
259                         /* Too small memory region, not use it */
260                         if (start > end)
261                                 continue;
262
263                         if (start >= PHYS_SDRAM_1 && start <= end1) {
264                                 if ((end + 1) <= end1)
265                                         gd->ram_size += end - start + 1;
266                                 else
267                                         gd->ram_size += end1 - start;
268                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
269                                 if ((end + 1) <= end2)
270                                         gd->ram_size += end - start + 1;
271                                 else
272                                         gd->ram_size += end2 - start;
273                         }
274                 }
275         }
276
277         /* If error, set to the default value */
278         if (!gd->ram_size) {
279                 gd->ram_size = PHYS_SDRAM_1_SIZE;
280                 gd->ram_size += PHYS_SDRAM_2_SIZE;
281         }
282         return 0;
283 }
284
285 static void dram_bank_sort(int current_bank)
286 {
287         phys_addr_t start;
288         phys_size_t size;
289
290         while (current_bank > 0) {
291                 if (gd->bd->bi_dram[current_bank - 1].start >
292                     gd->bd->bi_dram[current_bank].start) {
293                         start = gd->bd->bi_dram[current_bank - 1].start;
294                         size = gd->bd->bi_dram[current_bank - 1].size;
295
296                         gd->bd->bi_dram[current_bank - 1].start =
297                                 gd->bd->bi_dram[current_bank].start;
298                         gd->bd->bi_dram[current_bank - 1].size =
299                                 gd->bd->bi_dram[current_bank].size;
300
301                         gd->bd->bi_dram[current_bank].start = start;
302                         gd->bd->bi_dram[current_bank].size = size;
303                 }
304                 current_bank--;
305         }
306 }
307
308 int dram_init_banksize(void)
309 {
310         sc_rm_mr_t mr;
311         sc_faddr_t start, end, end1, end2;
312         int i = 0;
313         int err;
314
315         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
316         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
317
318         for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
319                 err = get_owned_memreg(mr, &start, &end);
320                 if (!err) {
321                         start = roundup(start, MEMSTART_ALIGNMENT);
322                         if (start > end) /* Small memory region, no use it */
323                                 continue;
324
325                         if (start >= PHYS_SDRAM_1 && start <= end1) {
326                                 gd->bd->bi_dram[i].start = start;
327
328                                 if ((end + 1) <= end1)
329                                         gd->bd->bi_dram[i].size =
330                                                 end - start + 1;
331                                 else
332                                         gd->bd->bi_dram[i].size = end1 - start;
333
334                                 dram_bank_sort(i);
335                                 i++;
336                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
337                                 gd->bd->bi_dram[i].start = start;
338
339                                 if ((end + 1) <= end2)
340                                         gd->bd->bi_dram[i].size =
341                                                 end - start + 1;
342                                 else
343                                         gd->bd->bi_dram[i].size = end2 - start;
344
345                                 dram_bank_sort(i);
346                                 i++;
347                         }
348                 }
349         }
350
351         /* If error, set to the default value */
352         if (!i) {
353                 gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
354                 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
355                 gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
356                 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
357         }
358
359         return 0;
360 }
361
362 static u64 get_block_attrs(sc_faddr_t addr_start)
363 {
364         u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
365                 PTE_BLOCK_PXN | PTE_BLOCK_UXN;
366
367         if ((addr_start >= PHYS_SDRAM_1 &&
368              addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
369             (addr_start >= PHYS_SDRAM_2 &&
370              addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
371                 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
372
373         return attr;
374 }
375
376 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
377 {
378         sc_faddr_t end1, end2;
379
380         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
381         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
382
383         if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
384                 if ((addr_end + 1) > end1)
385                         return end1 - addr_start;
386         } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
387                 if ((addr_end + 1) > end2)
388                         return end2 - addr_start;
389         }
390
391         return (addr_end - addr_start + 1);
392 }
393
394 #define MAX_PTE_ENTRIES 512
395 #define MAX_MEM_MAP_REGIONS 16
396
397 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
398 struct mm_region *mem_map = imx8_mem_map;
399
400 void enable_caches(void)
401 {
402         sc_rm_mr_t mr;
403         sc_faddr_t start, end;
404         int err, i;
405
406         /* Create map for registers access from 0x1c000000 to 0x80000000*/
407         imx8_mem_map[0].virt = 0x1c000000UL;
408         imx8_mem_map[0].phys = 0x1c000000UL;
409         imx8_mem_map[0].size = 0x64000000UL;
410         imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
411                          PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
412
413         i = 1;
414         for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
415                 err = get_owned_memreg(mr, &start, &end);
416                 if (!err) {
417                         imx8_mem_map[i].virt = start;
418                         imx8_mem_map[i].phys = start;
419                         imx8_mem_map[i].size = get_block_size(start, end);
420                         imx8_mem_map[i].attrs = get_block_attrs(start);
421                         i++;
422                 }
423         }
424
425         if (i < MAX_MEM_MAP_REGIONS) {
426                 imx8_mem_map[i].size = 0;
427                 imx8_mem_map[i].attrs = 0;
428         } else {
429                 puts("Error, need more MEM MAP REGIONS reserved\n");
430                 icache_enable();
431                 return;
432         }
433
434         for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
435                 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
436                       i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
437                       imx8_mem_map[i].size, imx8_mem_map[i].attrs);
438         }
439
440         icache_enable();
441         dcache_enable();
442 }
443
444 #ifndef CONFIG_SYS_DCACHE_OFF
445 u64 get_page_table_size(void)
446 {
447         u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
448         u64 size = 0;
449
450         /*
451          * For each memory region, the max table size:
452          * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
453          */
454         size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
455
456         /*
457          * We need to duplicate our page table once to have an emergency pt to
458          * resort to when splitting page tables later on
459          */
460         size *= 2;
461
462         /*
463          * We may need to split page tables later on if dcache settings change,
464          * so reserve up to 4 (random pick) page tables for that.
465          */
466         size += one_pt * 4;
467
468         return size;
469 }
470 #endif
471
472 #define FUSE_MAC0_WORD0 708
473 #define FUSE_MAC0_WORD1 709
474 #define FUSE_MAC1_WORD0 710
475 #define FUSE_MAC1_WORD1 711
476
477 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
478 {
479         u32 word[2], val[2] = {};
480         int i, ret;
481
482         if (dev_id == 0) {
483                 word[0] = FUSE_MAC0_WORD0;
484                 word[1] = FUSE_MAC0_WORD1;
485         } else {
486                 word[0] = FUSE_MAC1_WORD0;
487                 word[1] = FUSE_MAC1_WORD1;
488         }
489
490         for (i = 0; i < 2; i++) {
491                 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
492                 if (ret < 0)
493                         goto err;
494         }
495
496         mac[0] = val[0];
497         mac[1] = val[0] >> 8;
498         mac[2] = val[0] >> 16;
499         mac[3] = val[0] >> 24;
500         mac[4] = val[1];
501         mac[5] = val[1] >> 8;
502
503         debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
504               __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
505         return;
506 err:
507         printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
508 }
509
510 #if CONFIG_IS_ENABLED(CPU)
511 struct cpu_imx_platdata {
512         const char *name;
513         const char *rev;
514         const char *type;
515         u32 cpurev;
516         u32 freq_mhz;
517 };
518
519 u32 get_cpu_rev(void)
520 {
521         u32 id = 0, rev = 0;
522         int ret;
523
524         ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
525         if (ret)
526                 return 0;
527
528         rev = (id >> 5)  & 0xf;
529         id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */
530
531         return (id << 12) | rev;
532 }
533
534 const char *get_imx8_type(u32 imxtype)
535 {
536         switch (imxtype) {
537         case MXC_CPU_IMX8QXP:
538         case MXC_CPU_IMX8QXP_A0:
539                 return "QXP";
540         default:
541                 return "??";
542         }
543 }
544
545 const char *get_imx8_rev(u32 rev)
546 {
547         switch (rev) {
548         case CHIP_REV_A:
549                 return "A";
550         case CHIP_REV_B:
551                 return "B";
552         default:
553                 return "?";
554         }
555 }
556
557 const char *get_core_name(void)
558 {
559         if (is_cortex_a35())
560                 return "A35";
561         else if (is_cortex_a53())
562                 return "A53";
563         else if (is_cortex_a72())
564                 return "A72";
565         else
566                 return "?";
567 }
568
569 int cpu_imx_get_desc(struct udevice *dev, char *buf, int size)
570 {
571         struct cpu_imx_platdata *plat = dev_get_platdata(dev);
572
573         if (size < 100)
574                 return -ENOSPC;
575
576         snprintf(buf, size, "CPU:   Freescale i.MX8%s Rev%s %s at %u MHz\n",
577                  plat->type, plat->rev, plat->name, plat->freq_mhz);
578
579         return 0;
580 }
581
582 static int cpu_imx_get_info(struct udevice *dev, struct cpu_info *info)
583 {
584         struct cpu_imx_platdata *plat = dev_get_platdata(dev);
585
586         info->cpu_freq = plat->freq_mhz * 1000;
587         info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU);
588         return 0;
589 }
590
591 static int cpu_imx_get_count(struct udevice *dev)
592 {
593         return 4;
594 }
595
596 static int cpu_imx_get_vendor(struct udevice *dev,  char *buf, int size)
597 {
598         snprintf(buf, size, "NXP");
599         return 0;
600 }
601
602 static const struct cpu_ops cpu_imx8_ops = {
603         .get_desc       = cpu_imx_get_desc,
604         .get_info       = cpu_imx_get_info,
605         .get_count      = cpu_imx_get_count,
606         .get_vendor     = cpu_imx_get_vendor,
607 };
608
609 static const struct udevice_id cpu_imx8_ids[] = {
610         { .compatible = "arm,cortex-a35" },
611         { }
612 };
613
614 static int imx8_cpu_probe(struct udevice *dev)
615 {
616         struct cpu_imx_platdata *plat = dev_get_platdata(dev);
617         struct clk cpu_clk;
618         u32 cpurev;
619         int ret;
620
621         cpurev = get_cpu_rev();
622         plat->cpurev = cpurev;
623         plat->name = get_core_name();
624         plat->rev = get_imx8_rev(cpurev & 0xFFF);
625         plat->type = get_imx8_type((cpurev & 0xFF000) >> 12);
626
627         ret = clk_get_by_index(dev, 0, &cpu_clk);
628         if (ret) {
629                 debug("%s: Failed to get CPU clk: %d\n", __func__, ret);
630                 return 0;
631         }
632
633         plat->freq_mhz = clk_get_rate(&cpu_clk) / 1000000;
634         return 0;
635 }
636
637 U_BOOT_DRIVER(cpu_imx8_drv) = {
638         .name           = "imx8x_cpu",
639         .id             = UCLASS_CPU,
640         .of_match       = cpu_imx8_ids,
641         .ops            = &cpu_imx8_ops,
642         .probe          = imx8_cpu_probe,
643         .platdata_auto_alloc_size = sizeof(struct cpu_imx_platdata),
644         .flags          = DM_FLAG_PRE_RELOC,
645 };
646 #endif