Merge tag 'u-boot-imx-20190426' of git://git.denx.de/u-boot-imx
[oweals/u-boot.git] / arch / arm / mach-imx / imx8 / cpu.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2018 NXP
4  */
5
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu.h>
9 #include <dm.h>
10 #include <dm/device-internal.h>
11 #include <dm/lists.h>
12 #include <dm/uclass.h>
13 #include <errno.h>
14 #include <asm/arch/sci/sci.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/arch-imx/cpu.h>
17 #include <asm/armv8/cpu.h>
18 #include <asm/armv8/mmu.h>
19 #include <asm/mach-imx/boot_mode.h>
20
21 DECLARE_GLOBAL_DATA_PTR;
22
23 #define BT_PASSOVER_TAG 0x504F
24 struct pass_over_info_t *get_pass_over_info(void)
25 {
26         struct pass_over_info_t *p =
27                 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
28
29         if (p->barker != BT_PASSOVER_TAG ||
30             p->len != sizeof(struct pass_over_info_t))
31                 return NULL;
32
33         return p;
34 }
35
36 int arch_cpu_init(void)
37 {
38 #ifdef CONFIG_SPL_BUILD
39         struct pass_over_info_t *pass_over;
40
41         if (is_soc_rev(CHIP_REV_A)) {
42                 pass_over = get_pass_over_info();
43                 if (pass_over && pass_over->g_ap_mu == 0) {
44                         /*
45                          * When ap_mu is 0, means the U-Boot booted
46                          * from first container
47                          */
48                         sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
49                 }
50         }
51 #endif
52
53         return 0;
54 }
55
56 int arch_cpu_init_dm(void)
57 {
58         struct udevice *devp;
59         int node, ret;
60
61         node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
62         ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu",
63                                          offset_to_ofnode(node), &devp);
64
65         if (ret) {
66                 printf("could not find scu %d\n", ret);
67                 return ret;
68         }
69
70         ret = device_probe(devp);
71         if (ret) {
72                 printf("scu probe failed %d\n", ret);
73                 return ret;
74         }
75
76         return 0;
77 }
78
79 int print_bootinfo(void)
80 {
81         enum boot_device bt_dev = get_boot_device();
82
83         puts("Boot:  ");
84         switch (bt_dev) {
85         case SD1_BOOT:
86                 puts("SD0\n");
87                 break;
88         case SD2_BOOT:
89                 puts("SD1\n");
90                 break;
91         case SD3_BOOT:
92                 puts("SD2\n");
93                 break;
94         case MMC1_BOOT:
95                 puts("MMC0\n");
96                 break;
97         case MMC2_BOOT:
98                 puts("MMC1\n");
99                 break;
100         case MMC3_BOOT:
101                 puts("MMC2\n");
102                 break;
103         case FLEXSPI_BOOT:
104                 puts("FLEXSPI\n");
105                 break;
106         case SATA_BOOT:
107                 puts("SATA\n");
108                 break;
109         case NAND_BOOT:
110                 puts("NAND\n");
111                 break;
112         case USB_BOOT:
113                 puts("USB\n");
114                 break;
115         default:
116                 printf("Unknown device %u\n", bt_dev);
117                 break;
118         }
119
120         return 0;
121 }
122
123 enum boot_device get_boot_device(void)
124 {
125         enum boot_device boot_dev = SD1_BOOT;
126
127         sc_rsrc_t dev_rsrc;
128
129         sc_misc_get_boot_dev(-1, &dev_rsrc);
130
131         switch (dev_rsrc) {
132         case SC_R_SDHC_0:
133                 boot_dev = MMC1_BOOT;
134                 break;
135         case SC_R_SDHC_1:
136                 boot_dev = SD2_BOOT;
137                 break;
138         case SC_R_SDHC_2:
139                 boot_dev = SD3_BOOT;
140                 break;
141         case SC_R_NAND:
142                 boot_dev = NAND_BOOT;
143                 break;
144         case SC_R_FSPI_0:
145                 boot_dev = FLEXSPI_BOOT;
146                 break;
147         case SC_R_SATA_0:
148                 boot_dev = SATA_BOOT;
149                 break;
150         case SC_R_USB_0:
151         case SC_R_USB_1:
152         case SC_R_USB_2:
153                 boot_dev = USB_BOOT;
154                 break;
155         default:
156                 break;
157         }
158
159         return boot_dev;
160 }
161
162 #ifdef CONFIG_ENV_IS_IN_MMC
163 __weak int board_mmc_get_env_dev(int devno)
164 {
165         return CONFIG_SYS_MMC_ENV_DEV;
166 }
167
168 int mmc_get_env_dev(void)
169 {
170         sc_rsrc_t dev_rsrc;
171         int devno;
172
173         sc_misc_get_boot_dev(-1, &dev_rsrc);
174
175         switch (dev_rsrc) {
176         case SC_R_SDHC_0:
177                 devno = 0;
178                 break;
179         case SC_R_SDHC_1:
180                 devno = 1;
181                 break;
182         case SC_R_SDHC_2:
183                 devno = 2;
184                 break;
185         default:
186                 /* If not boot from sd/mmc, use default value */
187                 return CONFIG_SYS_MMC_ENV_DEV;
188         }
189
190         return board_mmc_get_env_dev(devno);
191 }
192 #endif
193
194 #define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */
195
196 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
197                             sc_faddr_t *addr_end)
198 {
199         sc_faddr_t start, end;
200         int ret;
201         bool owned;
202
203         owned = sc_rm_is_memreg_owned(-1, mr);
204         if (owned) {
205                 ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
206                 if (ret) {
207                         printf("Memreg get info failed, %d\n", ret);
208                         return -EINVAL;
209                 }
210                 debug("0x%llx -- 0x%llx\n", start, end);
211                 *addr_start = start;
212                 *addr_end = end;
213
214                 return 0;
215         }
216
217         return -EINVAL;
218 }
219
220 phys_size_t get_effective_memsize(void)
221 {
222         sc_rm_mr_t mr;
223         sc_faddr_t start, end, end1;
224         int err;
225
226         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
227
228         for (mr = 0; mr < 64; mr++) {
229                 err = get_owned_memreg(mr, &start, &end);
230                 if (!err) {
231                         start = roundup(start, MEMSTART_ALIGNMENT);
232                         /* Too small memory region, not use it */
233                         if (start > end)
234                                 continue;
235
236                         /* Find the memory region runs the U-Boot */
237                         if (start >= PHYS_SDRAM_1 && start <= end1 &&
238                             (start <= CONFIG_SYS_TEXT_BASE &&
239                             end >= CONFIG_SYS_TEXT_BASE)) {
240                                 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
241                                     PHYS_SDRAM_1_SIZE))
242                                         return (end - PHYS_SDRAM_1 + 1);
243                                 else
244                                         return PHYS_SDRAM_1_SIZE;
245                         }
246                 }
247         }
248
249         return PHYS_SDRAM_1_SIZE;
250 }
251
252 int dram_init(void)
253 {
254         sc_rm_mr_t mr;
255         sc_faddr_t start, end, end1, end2;
256         int err;
257
258         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
259         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
260         for (mr = 0; mr < 64; mr++) {
261                 err = get_owned_memreg(mr, &start, &end);
262                 if (!err) {
263                         start = roundup(start, MEMSTART_ALIGNMENT);
264                         /* Too small memory region, not use it */
265                         if (start > end)
266                                 continue;
267
268                         if (start >= PHYS_SDRAM_1 && start <= end1) {
269                                 if ((end + 1) <= end1)
270                                         gd->ram_size += end - start + 1;
271                                 else
272                                         gd->ram_size += end1 - start;
273                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
274                                 if ((end + 1) <= end2)
275                                         gd->ram_size += end - start + 1;
276                                 else
277                                         gd->ram_size += end2 - start;
278                         }
279                 }
280         }
281
282         /* If error, set to the default value */
283         if (!gd->ram_size) {
284                 gd->ram_size = PHYS_SDRAM_1_SIZE;
285                 gd->ram_size += PHYS_SDRAM_2_SIZE;
286         }
287         return 0;
288 }
289
290 static void dram_bank_sort(int current_bank)
291 {
292         phys_addr_t start;
293         phys_size_t size;
294
295         while (current_bank > 0) {
296                 if (gd->bd->bi_dram[current_bank - 1].start >
297                     gd->bd->bi_dram[current_bank].start) {
298                         start = gd->bd->bi_dram[current_bank - 1].start;
299                         size = gd->bd->bi_dram[current_bank - 1].size;
300
301                         gd->bd->bi_dram[current_bank - 1].start =
302                                 gd->bd->bi_dram[current_bank].start;
303                         gd->bd->bi_dram[current_bank - 1].size =
304                                 gd->bd->bi_dram[current_bank].size;
305
306                         gd->bd->bi_dram[current_bank].start = start;
307                         gd->bd->bi_dram[current_bank].size = size;
308                 }
309                 current_bank--;
310         }
311 }
312
313 int dram_init_banksize(void)
314 {
315         sc_rm_mr_t mr;
316         sc_faddr_t start, end, end1, end2;
317         int i = 0;
318         int err;
319
320         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
321         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
322
323         for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
324                 err = get_owned_memreg(mr, &start, &end);
325                 if (!err) {
326                         start = roundup(start, MEMSTART_ALIGNMENT);
327                         if (start > end) /* Small memory region, no use it */
328                                 continue;
329
330                         if (start >= PHYS_SDRAM_1 && start <= end1) {
331                                 gd->bd->bi_dram[i].start = start;
332
333                                 if ((end + 1) <= end1)
334                                         gd->bd->bi_dram[i].size =
335                                                 end - start + 1;
336                                 else
337                                         gd->bd->bi_dram[i].size = end1 - start;
338
339                                 dram_bank_sort(i);
340                                 i++;
341                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
342                                 gd->bd->bi_dram[i].start = start;
343
344                                 if ((end + 1) <= end2)
345                                         gd->bd->bi_dram[i].size =
346                                                 end - start + 1;
347                                 else
348                                         gd->bd->bi_dram[i].size = end2 - start;
349
350                                 dram_bank_sort(i);
351                                 i++;
352                         }
353                 }
354         }
355
356         /* If error, set to the default value */
357         if (!i) {
358                 gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
359                 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
360                 gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
361                 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
362         }
363
364         return 0;
365 }
366
367 static u64 get_block_attrs(sc_faddr_t addr_start)
368 {
369         u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
370                 PTE_BLOCK_PXN | PTE_BLOCK_UXN;
371
372         if ((addr_start >= PHYS_SDRAM_1 &&
373              addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
374             (addr_start >= PHYS_SDRAM_2 &&
375              addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
376                 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
377
378         return attr;
379 }
380
381 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
382 {
383         sc_faddr_t end1, end2;
384
385         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
386         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
387
388         if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
389                 if ((addr_end + 1) > end1)
390                         return end1 - addr_start;
391         } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
392                 if ((addr_end + 1) > end2)
393                         return end2 - addr_start;
394         }
395
396         return (addr_end - addr_start + 1);
397 }
398
399 #define MAX_PTE_ENTRIES 512
400 #define MAX_MEM_MAP_REGIONS 16
401
402 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
403 struct mm_region *mem_map = imx8_mem_map;
404
405 void enable_caches(void)
406 {
407         sc_rm_mr_t mr;
408         sc_faddr_t start, end;
409         int err, i;
410
411         /* Create map for registers access from 0x1c000000 to 0x80000000*/
412         imx8_mem_map[0].virt = 0x1c000000UL;
413         imx8_mem_map[0].phys = 0x1c000000UL;
414         imx8_mem_map[0].size = 0x64000000UL;
415         imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
416                          PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
417
418         i = 1;
419         for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
420                 err = get_owned_memreg(mr, &start, &end);
421                 if (!err) {
422                         imx8_mem_map[i].virt = start;
423                         imx8_mem_map[i].phys = start;
424                         imx8_mem_map[i].size = get_block_size(start, end);
425                         imx8_mem_map[i].attrs = get_block_attrs(start);
426                         i++;
427                 }
428         }
429
430         if (i < MAX_MEM_MAP_REGIONS) {
431                 imx8_mem_map[i].size = 0;
432                 imx8_mem_map[i].attrs = 0;
433         } else {
434                 puts("Error, need more MEM MAP REGIONS reserved\n");
435                 icache_enable();
436                 return;
437         }
438
439         for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
440                 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
441                       i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
442                       imx8_mem_map[i].size, imx8_mem_map[i].attrs);
443         }
444
445         icache_enable();
446         dcache_enable();
447 }
448
449 #ifndef CONFIG_SYS_DCACHE_OFF
450 u64 get_page_table_size(void)
451 {
452         u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
453         u64 size = 0;
454
455         /*
456          * For each memory region, the max table size:
457          * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
458          */
459         size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
460
461         /*
462          * We need to duplicate our page table once to have an emergency pt to
463          * resort to when splitting page tables later on
464          */
465         size *= 2;
466
467         /*
468          * We may need to split page tables later on if dcache settings change,
469          * so reserve up to 4 (random pick) page tables for that.
470          */
471         size += one_pt * 4;
472
473         return size;
474 }
475 #endif
476
477 #define FUSE_MAC0_WORD0 708
478 #define FUSE_MAC0_WORD1 709
479 #define FUSE_MAC1_WORD0 710
480 #define FUSE_MAC1_WORD1 711
481
482 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
483 {
484         u32 word[2], val[2] = {};
485         int i, ret;
486
487         if (dev_id == 0) {
488                 word[0] = FUSE_MAC0_WORD0;
489                 word[1] = FUSE_MAC0_WORD1;
490         } else {
491                 word[0] = FUSE_MAC1_WORD0;
492                 word[1] = FUSE_MAC1_WORD1;
493         }
494
495         for (i = 0; i < 2; i++) {
496                 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
497                 if (ret < 0)
498                         goto err;
499         }
500
501         mac[0] = val[0];
502         mac[1] = val[0] >> 8;
503         mac[2] = val[0] >> 16;
504         mac[3] = val[0] >> 24;
505         mac[4] = val[1];
506         mac[5] = val[1] >> 8;
507
508         debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
509               __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
510         return;
511 err:
512         printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
513 }
514
515 u32 get_cpu_rev(void)
516 {
517         u32 id = 0, rev = 0;
518         int ret;
519
520         ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
521         if (ret)
522                 return 0;
523
524         rev = (id >> 5)  & 0xf;
525         id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */
526
527         return (id << 12) | rev;
528 }
529
530 #if CONFIG_IS_ENABLED(CPU)
531 struct cpu_imx_platdata {
532         const char *name;
533         const char *rev;
534         const char *type;
535         u32 cpurev;
536         u32 freq_mhz;
537 };
538
539 const char *get_imx8_type(u32 imxtype)
540 {
541         switch (imxtype) {
542         case MXC_CPU_IMX8QXP:
543         case MXC_CPU_IMX8QXP_A0:
544                 return "QXP";
545         case MXC_CPU_IMX8QM:
546                 return "QM";
547         default:
548                 return "??";
549         }
550 }
551
552 const char *get_imx8_rev(u32 rev)
553 {
554         switch (rev) {
555         case CHIP_REV_A:
556                 return "A";
557         case CHIP_REV_B:
558                 return "B";
559         default:
560                 return "?";
561         }
562 }
563
564 const char *get_core_name(void)
565 {
566         if (is_cortex_a35())
567                 return "A35";
568         else if (is_cortex_a53())
569                 return "A53";
570         else if (is_cortex_a72())
571                 return "A72";
572         else
573                 return "?";
574 }
575
576 int cpu_imx_get_desc(struct udevice *dev, char *buf, int size)
577 {
578         struct cpu_imx_platdata *plat = dev_get_platdata(dev);
579
580         if (size < 100)
581                 return -ENOSPC;
582
583         snprintf(buf, size, "NXP i.MX8%s Rev%s %s at %u MHz\n",
584                  plat->type, plat->rev, plat->name, plat->freq_mhz);
585
586         return 0;
587 }
588
589 static int cpu_imx_get_info(struct udevice *dev, struct cpu_info *info)
590 {
591         struct cpu_imx_platdata *plat = dev_get_platdata(dev);
592
593         info->cpu_freq = plat->freq_mhz * 1000;
594         info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU);
595         return 0;
596 }
597
598 static int cpu_imx_get_count(struct udevice *dev)
599 {
600         return 4;
601 }
602
603 static int cpu_imx_get_vendor(struct udevice *dev,  char *buf, int size)
604 {
605         snprintf(buf, size, "NXP");
606         return 0;
607 }
608
609 static const struct cpu_ops cpu_imx8_ops = {
610         .get_desc       = cpu_imx_get_desc,
611         .get_info       = cpu_imx_get_info,
612         .get_count      = cpu_imx_get_count,
613         .get_vendor     = cpu_imx_get_vendor,
614 };
615
616 static const struct udevice_id cpu_imx8_ids[] = {
617         { .compatible = "arm,cortex-a35" },
618         { .compatible = "arm,cortex-a53" },
619         { }
620 };
621
622 static ulong imx8_get_cpu_rate(void)
623 {
624         ulong rate;
625         int ret;
626
627         ret = sc_pm_get_clock_rate(-1, SC_R_A35, SC_PM_CLK_CPU,
628                                    (sc_pm_clock_rate_t *)&rate);
629         if (ret) {
630                 printf("Could not read CPU frequency: %d\n", ret);
631                 return 0;
632         }
633
634         return rate;
635 }
636
637 static int imx8_cpu_probe(struct udevice *dev)
638 {
639         struct cpu_imx_platdata *plat = dev_get_platdata(dev);
640         u32 cpurev;
641
642         cpurev = get_cpu_rev();
643         plat->cpurev = cpurev;
644         plat->name = get_core_name();
645         plat->rev = get_imx8_rev(cpurev & 0xFFF);
646         plat->type = get_imx8_type((cpurev & 0xFF000) >> 12);
647         plat->freq_mhz = imx8_get_cpu_rate() / 1000000;
648         return 0;
649 }
650
651 U_BOOT_DRIVER(cpu_imx8_drv) = {
652         .name           = "imx8x_cpu",
653         .id             = UCLASS_CPU,
654         .of_match       = cpu_imx8_ids,
655         .ops            = &cpu_imx8_ops,
656         .probe          = imx8_cpu_probe,
657         .platdata_auto_alloc_size = sizeof(struct cpu_imx_platdata),
658         .flags          = DM_FLAG_PRE_RELOC,
659 };
660 #endif