Merge tag 'dm-pull-3dec19' of https://gitlab.denx.de/u-boot/custodians/u-boot-dm
[oweals/u-boot.git] / arch / arm / mach-imx / imx8 / cpu.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2018 NXP
4  */
5
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <dm/device-internal.h>
12 #include <dm/lists.h>
13 #include <dm/uclass.h>
14 #include <errno.h>
15 #include <thermal.h>
16 #include <asm/arch/sci/sci.h>
17 #include <asm/arch/sys_proto.h>
18 #include <asm/arch-imx/cpu.h>
19 #include <asm/armv8/cpu.h>
20 #include <asm/armv8/mmu.h>
21 #include <asm/mach-imx/boot_mode.h>
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 #define BT_PASSOVER_TAG 0x504F
26 struct pass_over_info_t *get_pass_over_info(void)
27 {
28         struct pass_over_info_t *p =
29                 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
30
31         if (p->barker != BT_PASSOVER_TAG ||
32             p->len != sizeof(struct pass_over_info_t))
33                 return NULL;
34
35         return p;
36 }
37
38 int arch_cpu_init(void)
39 {
40 #ifdef CONFIG_SPL_BUILD
41         struct pass_over_info_t *pass_over;
42
43         if (is_soc_rev(CHIP_REV_A)) {
44                 pass_over = get_pass_over_info();
45                 if (pass_over && pass_over->g_ap_mu == 0) {
46                         /*
47                          * When ap_mu is 0, means the U-Boot booted
48                          * from first container
49                          */
50                         sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
51                 }
52         }
53 #endif
54
55         return 0;
56 }
57
58 int arch_cpu_init_dm(void)
59 {
60         struct udevice *devp;
61         int node, ret;
62
63         node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
64
65         ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
66         if (ret) {
67                 printf("could not get scu %d\n", ret);
68                 return ret;
69         }
70
71         if (is_imx8qm()) {
72                 ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU,
73                                                     SC_PM_PW_MODE_ON);
74                 if (ret)
75                         return ret;
76         }
77
78         return 0;
79 }
80
81 int print_bootinfo(void)
82 {
83         enum boot_device bt_dev = get_boot_device();
84
85         puts("Boot:  ");
86         switch (bt_dev) {
87         case SD1_BOOT:
88                 puts("SD0\n");
89                 break;
90         case SD2_BOOT:
91                 puts("SD1\n");
92                 break;
93         case SD3_BOOT:
94                 puts("SD2\n");
95                 break;
96         case MMC1_BOOT:
97                 puts("MMC0\n");
98                 break;
99         case MMC2_BOOT:
100                 puts("MMC1\n");
101                 break;
102         case MMC3_BOOT:
103                 puts("MMC2\n");
104                 break;
105         case FLEXSPI_BOOT:
106                 puts("FLEXSPI\n");
107                 break;
108         case SATA_BOOT:
109                 puts("SATA\n");
110                 break;
111         case NAND_BOOT:
112                 puts("NAND\n");
113                 break;
114         case USB_BOOT:
115                 puts("USB\n");
116                 break;
117         default:
118                 printf("Unknown device %u\n", bt_dev);
119                 break;
120         }
121
122         return 0;
123 }
124
125 enum boot_device get_boot_device(void)
126 {
127         enum boot_device boot_dev = SD1_BOOT;
128
129         sc_rsrc_t dev_rsrc;
130
131         sc_misc_get_boot_dev(-1, &dev_rsrc);
132
133         switch (dev_rsrc) {
134         case SC_R_SDHC_0:
135                 boot_dev = MMC1_BOOT;
136                 break;
137         case SC_R_SDHC_1:
138                 boot_dev = SD2_BOOT;
139                 break;
140         case SC_R_SDHC_2:
141                 boot_dev = SD3_BOOT;
142                 break;
143         case SC_R_NAND:
144                 boot_dev = NAND_BOOT;
145                 break;
146         case SC_R_FSPI_0:
147                 boot_dev = FLEXSPI_BOOT;
148                 break;
149         case SC_R_SATA_0:
150                 boot_dev = SATA_BOOT;
151                 break;
152         case SC_R_USB_0:
153         case SC_R_USB_1:
154         case SC_R_USB_2:
155                 boot_dev = USB_BOOT;
156                 break;
157         default:
158                 break;
159         }
160
161         return boot_dev;
162 }
163
164 #ifdef CONFIG_ENV_IS_IN_MMC
165 __weak int board_mmc_get_env_dev(int devno)
166 {
167         return CONFIG_SYS_MMC_ENV_DEV;
168 }
169
170 int mmc_get_env_dev(void)
171 {
172         sc_rsrc_t dev_rsrc;
173         int devno;
174
175         sc_misc_get_boot_dev(-1, &dev_rsrc);
176
177         switch (dev_rsrc) {
178         case SC_R_SDHC_0:
179                 devno = 0;
180                 break;
181         case SC_R_SDHC_1:
182                 devno = 1;
183                 break;
184         case SC_R_SDHC_2:
185                 devno = 2;
186                 break;
187         default:
188                 /* If not boot from sd/mmc, use default value */
189                 return CONFIG_SYS_MMC_ENV_DEV;
190         }
191
192         return board_mmc_get_env_dev(devno);
193 }
194 #endif
195
196 #define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */
197
198 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
199                             sc_faddr_t *addr_end)
200 {
201         sc_faddr_t start, end;
202         int ret;
203         bool owned;
204
205         owned = sc_rm_is_memreg_owned(-1, mr);
206         if (owned) {
207                 ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
208                 if (ret) {
209                         printf("Memreg get info failed, %d\n", ret);
210                         return -EINVAL;
211                 }
212                 debug("0x%llx -- 0x%llx\n", start, end);
213                 *addr_start = start;
214                 *addr_end = end;
215
216                 return 0;
217         }
218
219         return -EINVAL;
220 }
221
222 phys_size_t get_effective_memsize(void)
223 {
224         sc_rm_mr_t mr;
225         sc_faddr_t start, end, end1;
226         int err;
227
228         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
229
230         for (mr = 0; mr < 64; mr++) {
231                 err = get_owned_memreg(mr, &start, &end);
232                 if (!err) {
233                         start = roundup(start, MEMSTART_ALIGNMENT);
234                         /* Too small memory region, not use it */
235                         if (start > end)
236                                 continue;
237
238                         /* Find the memory region runs the U-Boot */
239                         if (start >= PHYS_SDRAM_1 && start <= end1 &&
240                             (start <= CONFIG_SYS_TEXT_BASE &&
241                             end >= CONFIG_SYS_TEXT_BASE)) {
242                                 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
243                                     PHYS_SDRAM_1_SIZE))
244                                         return (end - PHYS_SDRAM_1 + 1);
245                                 else
246                                         return PHYS_SDRAM_1_SIZE;
247                         }
248                 }
249         }
250
251         return PHYS_SDRAM_1_SIZE;
252 }
253
254 int dram_init(void)
255 {
256         sc_rm_mr_t mr;
257         sc_faddr_t start, end, end1, end2;
258         int err;
259
260         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
261         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
262         for (mr = 0; mr < 64; mr++) {
263                 err = get_owned_memreg(mr, &start, &end);
264                 if (!err) {
265                         start = roundup(start, MEMSTART_ALIGNMENT);
266                         /* Too small memory region, not use it */
267                         if (start > end)
268                                 continue;
269
270                         if (start >= PHYS_SDRAM_1 && start <= end1) {
271                                 if ((end + 1) <= end1)
272                                         gd->ram_size += end - start + 1;
273                                 else
274                                         gd->ram_size += end1 - start;
275                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
276                                 if ((end + 1) <= end2)
277                                         gd->ram_size += end - start + 1;
278                                 else
279                                         gd->ram_size += end2 - start;
280                         }
281                 }
282         }
283
284         /* If error, set to the default value */
285         if (!gd->ram_size) {
286                 gd->ram_size = PHYS_SDRAM_1_SIZE;
287                 gd->ram_size += PHYS_SDRAM_2_SIZE;
288         }
289         return 0;
290 }
291
292 static void dram_bank_sort(int current_bank)
293 {
294         phys_addr_t start;
295         phys_size_t size;
296
297         while (current_bank > 0) {
298                 if (gd->bd->bi_dram[current_bank - 1].start >
299                     gd->bd->bi_dram[current_bank].start) {
300                         start = gd->bd->bi_dram[current_bank - 1].start;
301                         size = gd->bd->bi_dram[current_bank - 1].size;
302
303                         gd->bd->bi_dram[current_bank - 1].start =
304                                 gd->bd->bi_dram[current_bank].start;
305                         gd->bd->bi_dram[current_bank - 1].size =
306                                 gd->bd->bi_dram[current_bank].size;
307
308                         gd->bd->bi_dram[current_bank].start = start;
309                         gd->bd->bi_dram[current_bank].size = size;
310                 }
311                 current_bank--;
312         }
313 }
314
315 int dram_init_banksize(void)
316 {
317         sc_rm_mr_t mr;
318         sc_faddr_t start, end, end1, end2;
319         int i = 0;
320         int err;
321
322         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
323         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
324
325         for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
326                 err = get_owned_memreg(mr, &start, &end);
327                 if (!err) {
328                         start = roundup(start, MEMSTART_ALIGNMENT);
329                         if (start > end) /* Small memory region, no use it */
330                                 continue;
331
332                         if (start >= PHYS_SDRAM_1 && start <= end1) {
333                                 gd->bd->bi_dram[i].start = start;
334
335                                 if ((end + 1) <= end1)
336                                         gd->bd->bi_dram[i].size =
337                                                 end - start + 1;
338                                 else
339                                         gd->bd->bi_dram[i].size = end1 - start;
340
341                                 dram_bank_sort(i);
342                                 i++;
343                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
344                                 gd->bd->bi_dram[i].start = start;
345
346                                 if ((end + 1) <= end2)
347                                         gd->bd->bi_dram[i].size =
348                                                 end - start + 1;
349                                 else
350                                         gd->bd->bi_dram[i].size = end2 - start;
351
352                                 dram_bank_sort(i);
353                                 i++;
354                         }
355                 }
356         }
357
358         /* If error, set to the default value */
359         if (!i) {
360                 gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
361                 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
362                 gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
363                 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
364         }
365
366         return 0;
367 }
368
369 static u64 get_block_attrs(sc_faddr_t addr_start)
370 {
371         u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
372                 PTE_BLOCK_PXN | PTE_BLOCK_UXN;
373
374         if ((addr_start >= PHYS_SDRAM_1 &&
375              addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
376             (addr_start >= PHYS_SDRAM_2 &&
377              addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
378                 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
379
380         return attr;
381 }
382
383 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
384 {
385         sc_faddr_t end1, end2;
386
387         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
388         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
389
390         if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
391                 if ((addr_end + 1) > end1)
392                         return end1 - addr_start;
393         } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
394                 if ((addr_end + 1) > end2)
395                         return end2 - addr_start;
396         }
397
398         return (addr_end - addr_start + 1);
399 }
400
401 #define MAX_PTE_ENTRIES 512
402 #define MAX_MEM_MAP_REGIONS 16
403
404 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
405 struct mm_region *mem_map = imx8_mem_map;
406
407 void enable_caches(void)
408 {
409         sc_rm_mr_t mr;
410         sc_faddr_t start, end;
411         int err, i;
412
413         /* Create map for registers access from 0x1c000000 to 0x80000000*/
414         imx8_mem_map[0].virt = 0x1c000000UL;
415         imx8_mem_map[0].phys = 0x1c000000UL;
416         imx8_mem_map[0].size = 0x64000000UL;
417         imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
418                          PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
419
420         i = 1;
421         for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
422                 err = get_owned_memreg(mr, &start, &end);
423                 if (!err) {
424                         imx8_mem_map[i].virt = start;
425                         imx8_mem_map[i].phys = start;
426                         imx8_mem_map[i].size = get_block_size(start, end);
427                         imx8_mem_map[i].attrs = get_block_attrs(start);
428                         i++;
429                 }
430         }
431
432         if (i < MAX_MEM_MAP_REGIONS) {
433                 imx8_mem_map[i].size = 0;
434                 imx8_mem_map[i].attrs = 0;
435         } else {
436                 puts("Error, need more MEM MAP REGIONS reserved\n");
437                 icache_enable();
438                 return;
439         }
440
441         for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
442                 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
443                       i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
444                       imx8_mem_map[i].size, imx8_mem_map[i].attrs);
445         }
446
447         icache_enable();
448         dcache_enable();
449 }
450
451 #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
452 u64 get_page_table_size(void)
453 {
454         u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
455         u64 size = 0;
456
457         /*
458          * For each memory region, the max table size:
459          * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
460          */
461         size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
462
463         /*
464          * We need to duplicate our page table once to have an emergency pt to
465          * resort to when splitting page tables later on
466          */
467         size *= 2;
468
469         /*
470          * We may need to split page tables later on if dcache settings change,
471          * so reserve up to 4 (random pick) page tables for that.
472          */
473         size += one_pt * 4;
474
475         return size;
476 }
477 #endif
478
479 #if defined(CONFIG_IMX8QM)
480 #define FUSE_MAC0_WORD0 452
481 #define FUSE_MAC0_WORD1 453
482 #define FUSE_MAC1_WORD0 454
483 #define FUSE_MAC1_WORD1 455
484 #elif defined(CONFIG_IMX8QXP)
485 #define FUSE_MAC0_WORD0 708
486 #define FUSE_MAC0_WORD1 709
487 #define FUSE_MAC1_WORD0 710
488 #define FUSE_MAC1_WORD1 711
489 #endif
490
491 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
492 {
493         u32 word[2], val[2] = {};
494         int i, ret;
495
496         if (dev_id == 0) {
497                 word[0] = FUSE_MAC0_WORD0;
498                 word[1] = FUSE_MAC0_WORD1;
499         } else {
500                 word[0] = FUSE_MAC1_WORD0;
501                 word[1] = FUSE_MAC1_WORD1;
502         }
503
504         for (i = 0; i < 2; i++) {
505                 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
506                 if (ret < 0)
507                         goto err;
508         }
509
510         mac[0] = val[0];
511         mac[1] = val[0] >> 8;
512         mac[2] = val[0] >> 16;
513         mac[3] = val[0] >> 24;
514         mac[4] = val[1];
515         mac[5] = val[1] >> 8;
516
517         debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
518               __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
519         return;
520 err:
521         printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
522 }
523
524 u32 get_cpu_rev(void)
525 {
526         u32 id = 0, rev = 0;
527         int ret;
528
529         ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
530         if (ret)
531                 return 0;
532
533         rev = (id >> 5)  & 0xf;
534         id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */
535
536         return (id << 12) | rev;
537 }
538