imx: imx8qm/qxp: add get_board_serial
[oweals/u-boot.git] / arch / arm / mach-imx / imx8 / cpu.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2018 NXP
4  */
5
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <init.h>
12 #include <dm/device-internal.h>
13 #include <dm/lists.h>
14 #include <dm/uclass.h>
15 #include <errno.h>
16 #include <thermal.h>
17 #include <asm/arch/sci/sci.h>
18 #include <asm/arch/sys_proto.h>
19 #include <asm/arch-imx/cpu.h>
20 #include <asm/armv8/cpu.h>
21 #include <asm/armv8/mmu.h>
22 #include <asm/setup.h>
23 #include <asm/mach-imx/boot_mode.h>
24
25 DECLARE_GLOBAL_DATA_PTR;
26
27 #define BT_PASSOVER_TAG 0x504F
28 struct pass_over_info_t *get_pass_over_info(void)
29 {
30         struct pass_over_info_t *p =
31                 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
32
33         if (p->barker != BT_PASSOVER_TAG ||
34             p->len != sizeof(struct pass_over_info_t))
35                 return NULL;
36
37         return p;
38 }
39
40 int arch_cpu_init(void)
41 {
42 #ifdef CONFIG_SPL_BUILD
43         struct pass_over_info_t *pass_over;
44
45         if (is_soc_rev(CHIP_REV_A)) {
46                 pass_over = get_pass_over_info();
47                 if (pass_over && pass_over->g_ap_mu == 0) {
48                         /*
49                          * When ap_mu is 0, means the U-Boot booted
50                          * from first container
51                          */
52                         sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
53                 }
54         }
55 #endif
56
57         return 0;
58 }
59
60 int arch_cpu_init_dm(void)
61 {
62         struct udevice *devp;
63         int node, ret;
64
65         node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
66
67         ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
68         if (ret) {
69                 printf("could not get scu %d\n", ret);
70                 return ret;
71         }
72
73         if (is_imx8qm()) {
74                 ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU,
75                                                     SC_PM_PW_MODE_ON);
76                 if (ret)
77                         return ret;
78         }
79
80         return 0;
81 }
82
83 int print_bootinfo(void)
84 {
85         enum boot_device bt_dev = get_boot_device();
86
87         puts("Boot:  ");
88         switch (bt_dev) {
89         case SD1_BOOT:
90                 puts("SD0\n");
91                 break;
92         case SD2_BOOT:
93                 puts("SD1\n");
94                 break;
95         case SD3_BOOT:
96                 puts("SD2\n");
97                 break;
98         case MMC1_BOOT:
99                 puts("MMC0\n");
100                 break;
101         case MMC2_BOOT:
102                 puts("MMC1\n");
103                 break;
104         case MMC3_BOOT:
105                 puts("MMC2\n");
106                 break;
107         case FLEXSPI_BOOT:
108                 puts("FLEXSPI\n");
109                 break;
110         case SATA_BOOT:
111                 puts("SATA\n");
112                 break;
113         case NAND_BOOT:
114                 puts("NAND\n");
115                 break;
116         case USB_BOOT:
117                 puts("USB\n");
118                 break;
119         default:
120                 printf("Unknown device %u\n", bt_dev);
121                 break;
122         }
123
124         return 0;
125 }
126
127 enum boot_device get_boot_device(void)
128 {
129         enum boot_device boot_dev = SD1_BOOT;
130
131         sc_rsrc_t dev_rsrc;
132
133         sc_misc_get_boot_dev(-1, &dev_rsrc);
134
135         switch (dev_rsrc) {
136         case SC_R_SDHC_0:
137                 boot_dev = MMC1_BOOT;
138                 break;
139         case SC_R_SDHC_1:
140                 boot_dev = SD2_BOOT;
141                 break;
142         case SC_R_SDHC_2:
143                 boot_dev = SD3_BOOT;
144                 break;
145         case SC_R_NAND:
146                 boot_dev = NAND_BOOT;
147                 break;
148         case SC_R_FSPI_0:
149                 boot_dev = FLEXSPI_BOOT;
150                 break;
151         case SC_R_SATA_0:
152                 boot_dev = SATA_BOOT;
153                 break;
154         case SC_R_USB_0:
155         case SC_R_USB_1:
156         case SC_R_USB_2:
157                 boot_dev = USB_BOOT;
158                 break;
159         default:
160                 break;
161         }
162
163         return boot_dev;
164 }
165
166 #ifdef CONFIG_SERIAL_TAG
167 #define FUSE_UNIQUE_ID_WORD0 16
168 #define FUSE_UNIQUE_ID_WORD1 17
169 void get_board_serial(struct tag_serialnr *serialnr)
170 {
171         sc_err_t err;
172         u32 val1 = 0, val2 = 0;
173         u32 word1, word2;
174
175         if (!serialnr)
176                 return;
177
178         word1 = FUSE_UNIQUE_ID_WORD0;
179         word2 = FUSE_UNIQUE_ID_WORD1;
180
181         err = sc_misc_otp_fuse_read(-1, word1, &val1);
182         if (err != SC_ERR_NONE) {
183                 printf("%s fuse %d read error: %d\n", __func__, word1, err);
184                 return;
185         }
186
187         err = sc_misc_otp_fuse_read(-1, word2, &val2);
188         if (err != SC_ERR_NONE) {
189                 printf("%s fuse %d read error: %d\n", __func__, word2, err);
190                 return;
191         }
192         serialnr->low = val1;
193         serialnr->high = val2;
194 }
195 #endif /*CONFIG_SERIAL_TAG*/
196
197 #ifdef CONFIG_ENV_IS_IN_MMC
198 __weak int board_mmc_get_env_dev(int devno)
199 {
200         return CONFIG_SYS_MMC_ENV_DEV;
201 }
202
203 int mmc_get_env_dev(void)
204 {
205         sc_rsrc_t dev_rsrc;
206         int devno;
207
208         sc_misc_get_boot_dev(-1, &dev_rsrc);
209
210         switch (dev_rsrc) {
211         case SC_R_SDHC_0:
212                 devno = 0;
213                 break;
214         case SC_R_SDHC_1:
215                 devno = 1;
216                 break;
217         case SC_R_SDHC_2:
218                 devno = 2;
219                 break;
220         default:
221                 /* If not boot from sd/mmc, use default value */
222                 return CONFIG_SYS_MMC_ENV_DEV;
223         }
224
225         return board_mmc_get_env_dev(devno);
226 }
227 #endif
228
229 #define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */
230
231 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
232                             sc_faddr_t *addr_end)
233 {
234         sc_faddr_t start, end;
235         int ret;
236         bool owned;
237
238         owned = sc_rm_is_memreg_owned(-1, mr);
239         if (owned) {
240                 ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
241                 if (ret) {
242                         printf("Memreg get info failed, %d\n", ret);
243                         return -EINVAL;
244                 }
245                 debug("0x%llx -- 0x%llx\n", start, end);
246                 *addr_start = start;
247                 *addr_end = end;
248
249                 return 0;
250         }
251
252         return -EINVAL;
253 }
254
255 phys_size_t get_effective_memsize(void)
256 {
257         sc_rm_mr_t mr;
258         sc_faddr_t start, end, end1, start_aligned;
259         int err;
260
261         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
262
263         for (mr = 0; mr < 64; mr++) {
264                 err = get_owned_memreg(mr, &start, &end);
265                 if (!err) {
266                         start_aligned = roundup(start, MEMSTART_ALIGNMENT);
267                         /* Too small memory region, not use it */
268                         if (start_aligned > end)
269                                 continue;
270
271                         /* Find the memory region runs the U-Boot */
272                         if (start >= PHYS_SDRAM_1 && start <= end1 &&
273                             (start <= CONFIG_SYS_TEXT_BASE &&
274                             end >= CONFIG_SYS_TEXT_BASE)) {
275                                 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
276                                     PHYS_SDRAM_1_SIZE))
277                                         return (end - PHYS_SDRAM_1 + 1);
278                                 else
279                                         return PHYS_SDRAM_1_SIZE;
280                         }
281                 }
282         }
283
284         return PHYS_SDRAM_1_SIZE;
285 }
286
287 int dram_init(void)
288 {
289         sc_rm_mr_t mr;
290         sc_faddr_t start, end, end1, end2;
291         int err;
292
293         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
294         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
295         for (mr = 0; mr < 64; mr++) {
296                 err = get_owned_memreg(mr, &start, &end);
297                 if (!err) {
298                         start = roundup(start, MEMSTART_ALIGNMENT);
299                         /* Too small memory region, not use it */
300                         if (start > end)
301                                 continue;
302
303                         if (start >= PHYS_SDRAM_1 && start <= end1) {
304                                 if ((end + 1) <= end1)
305                                         gd->ram_size += end - start + 1;
306                                 else
307                                         gd->ram_size += end1 - start;
308                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
309                                 if ((end + 1) <= end2)
310                                         gd->ram_size += end - start + 1;
311                                 else
312                                         gd->ram_size += end2 - start;
313                         }
314                 }
315         }
316
317         /* If error, set to the default value */
318         if (!gd->ram_size) {
319                 gd->ram_size = PHYS_SDRAM_1_SIZE;
320                 gd->ram_size += PHYS_SDRAM_2_SIZE;
321         }
322         return 0;
323 }
324
325 static void dram_bank_sort(int current_bank)
326 {
327         phys_addr_t start;
328         phys_size_t size;
329
330         while (current_bank > 0) {
331                 if (gd->bd->bi_dram[current_bank - 1].start >
332                     gd->bd->bi_dram[current_bank].start) {
333                         start = gd->bd->bi_dram[current_bank - 1].start;
334                         size = gd->bd->bi_dram[current_bank - 1].size;
335
336                         gd->bd->bi_dram[current_bank - 1].start =
337                                 gd->bd->bi_dram[current_bank].start;
338                         gd->bd->bi_dram[current_bank - 1].size =
339                                 gd->bd->bi_dram[current_bank].size;
340
341                         gd->bd->bi_dram[current_bank].start = start;
342                         gd->bd->bi_dram[current_bank].size = size;
343                 }
344                 current_bank--;
345         }
346 }
347
348 int dram_init_banksize(void)
349 {
350         sc_rm_mr_t mr;
351         sc_faddr_t start, end, end1, end2;
352         int i = 0;
353         int err;
354
355         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
356         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
357
358         for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
359                 err = get_owned_memreg(mr, &start, &end);
360                 if (!err) {
361                         start = roundup(start, MEMSTART_ALIGNMENT);
362                         if (start > end) /* Small memory region, no use it */
363                                 continue;
364
365                         if (start >= PHYS_SDRAM_1 && start <= end1) {
366                                 gd->bd->bi_dram[i].start = start;
367
368                                 if ((end + 1) <= end1)
369                                         gd->bd->bi_dram[i].size =
370                                                 end - start + 1;
371                                 else
372                                         gd->bd->bi_dram[i].size = end1 - start;
373
374                                 dram_bank_sort(i);
375                                 i++;
376                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
377                                 gd->bd->bi_dram[i].start = start;
378
379                                 if ((end + 1) <= end2)
380                                         gd->bd->bi_dram[i].size =
381                                                 end - start + 1;
382                                 else
383                                         gd->bd->bi_dram[i].size = end2 - start;
384
385                                 dram_bank_sort(i);
386                                 i++;
387                         }
388                 }
389         }
390
391         /* If error, set to the default value */
392         if (!i) {
393                 gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
394                 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
395                 gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
396                 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
397         }
398
399         return 0;
400 }
401
402 static u64 get_block_attrs(sc_faddr_t addr_start)
403 {
404         u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
405                 PTE_BLOCK_PXN | PTE_BLOCK_UXN;
406
407         if ((addr_start >= PHYS_SDRAM_1 &&
408              addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
409             (addr_start >= PHYS_SDRAM_2 &&
410              addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
411                 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
412
413         return attr;
414 }
415
416 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
417 {
418         sc_faddr_t end1, end2;
419
420         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
421         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
422
423         if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
424                 if ((addr_end + 1) > end1)
425                         return end1 - addr_start;
426         } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
427                 if ((addr_end + 1) > end2)
428                         return end2 - addr_start;
429         }
430
431         return (addr_end - addr_start + 1);
432 }
433
434 #define MAX_PTE_ENTRIES 512
435 #define MAX_MEM_MAP_REGIONS 16
436
437 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
438 struct mm_region *mem_map = imx8_mem_map;
439
440 void enable_caches(void)
441 {
442         sc_rm_mr_t mr;
443         sc_faddr_t start, end;
444         int err, i;
445
446         /* Create map for registers access from 0x1c000000 to 0x80000000*/
447         imx8_mem_map[0].virt = 0x1c000000UL;
448         imx8_mem_map[0].phys = 0x1c000000UL;
449         imx8_mem_map[0].size = 0x64000000UL;
450         imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
451                          PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
452
453         i = 1;
454         for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
455                 err = get_owned_memreg(mr, &start, &end);
456                 if (!err) {
457                         imx8_mem_map[i].virt = start;
458                         imx8_mem_map[i].phys = start;
459                         imx8_mem_map[i].size = get_block_size(start, end);
460                         imx8_mem_map[i].attrs = get_block_attrs(start);
461                         i++;
462                 }
463         }
464
465         if (i < MAX_MEM_MAP_REGIONS) {
466                 imx8_mem_map[i].size = 0;
467                 imx8_mem_map[i].attrs = 0;
468         } else {
469                 puts("Error, need more MEM MAP REGIONS reserved\n");
470                 icache_enable();
471                 return;
472         }
473
474         for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
475                 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
476                       i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
477                       imx8_mem_map[i].size, imx8_mem_map[i].attrs);
478         }
479
480         icache_enable();
481         dcache_enable();
482 }
483
484 #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
485 u64 get_page_table_size(void)
486 {
487         u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
488         u64 size = 0;
489
490         /*
491          * For each memory region, the max table size:
492          * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
493          */
494         size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
495
496         /*
497          * We need to duplicate our page table once to have an emergency pt to
498          * resort to when splitting page tables later on
499          */
500         size *= 2;
501
502         /*
503          * We may need to split page tables later on if dcache settings change,
504          * so reserve up to 4 (random pick) page tables for that.
505          */
506         size += one_pt * 4;
507
508         return size;
509 }
510 #endif
511
512 #if defined(CONFIG_IMX8QM)
513 #define FUSE_MAC0_WORD0 452
514 #define FUSE_MAC0_WORD1 453
515 #define FUSE_MAC1_WORD0 454
516 #define FUSE_MAC1_WORD1 455
517 #elif defined(CONFIG_IMX8QXP)
518 #define FUSE_MAC0_WORD0 708
519 #define FUSE_MAC0_WORD1 709
520 #define FUSE_MAC1_WORD0 710
521 #define FUSE_MAC1_WORD1 711
522 #endif
523
524 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
525 {
526         u32 word[2], val[2] = {};
527         int i, ret;
528
529         if (dev_id == 0) {
530                 word[0] = FUSE_MAC0_WORD0;
531                 word[1] = FUSE_MAC0_WORD1;
532         } else {
533                 word[0] = FUSE_MAC1_WORD0;
534                 word[1] = FUSE_MAC1_WORD1;
535         }
536
537         for (i = 0; i < 2; i++) {
538                 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
539                 if (ret < 0)
540                         goto err;
541         }
542
543         mac[0] = val[0];
544         mac[1] = val[0] >> 8;
545         mac[2] = val[0] >> 16;
546         mac[3] = val[0] >> 24;
547         mac[4] = val[1];
548         mac[5] = val[1] >> 8;
549
550         debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
551               __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
552         return;
553 err:
554         printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
555 }
556
557 u32 get_cpu_rev(void)
558 {
559         u32 id = 0, rev = 0;
560         int ret;
561
562         ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
563         if (ret)
564                 return 0;
565
566         rev = (id >> 5)  & 0xf;
567         id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */
568
569         return (id << 12) | rev;
570 }