imx: imx8qm/qxp: Fix issue in get_effective_memsize
[oweals/u-boot.git] / arch / arm / mach-imx / imx8 / cpu.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2018 NXP
4  */
5
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <init.h>
12 #include <dm/device-internal.h>
13 #include <dm/lists.h>
14 #include <dm/uclass.h>
15 #include <errno.h>
16 #include <thermal.h>
17 #include <asm/arch/sci/sci.h>
18 #include <asm/arch/sys_proto.h>
19 #include <asm/arch-imx/cpu.h>
20 #include <asm/armv8/cpu.h>
21 #include <asm/armv8/mmu.h>
22 #include <asm/mach-imx/boot_mode.h>
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define BT_PASSOVER_TAG 0x504F
27 struct pass_over_info_t *get_pass_over_info(void)
28 {
29         struct pass_over_info_t *p =
30                 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
31
32         if (p->barker != BT_PASSOVER_TAG ||
33             p->len != sizeof(struct pass_over_info_t))
34                 return NULL;
35
36         return p;
37 }
38
39 int arch_cpu_init(void)
40 {
41 #ifdef CONFIG_SPL_BUILD
42         struct pass_over_info_t *pass_over;
43
44         if (is_soc_rev(CHIP_REV_A)) {
45                 pass_over = get_pass_over_info();
46                 if (pass_over && pass_over->g_ap_mu == 0) {
47                         /*
48                          * When ap_mu is 0, means the U-Boot booted
49                          * from first container
50                          */
51                         sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
52                 }
53         }
54 #endif
55
56         return 0;
57 }
58
59 int arch_cpu_init_dm(void)
60 {
61         struct udevice *devp;
62         int node, ret;
63
64         node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
65
66         ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
67         if (ret) {
68                 printf("could not get scu %d\n", ret);
69                 return ret;
70         }
71
72         if (is_imx8qm()) {
73                 ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU,
74                                                     SC_PM_PW_MODE_ON);
75                 if (ret)
76                         return ret;
77         }
78
79         return 0;
80 }
81
82 int print_bootinfo(void)
83 {
84         enum boot_device bt_dev = get_boot_device();
85
86         puts("Boot:  ");
87         switch (bt_dev) {
88         case SD1_BOOT:
89                 puts("SD0\n");
90                 break;
91         case SD2_BOOT:
92                 puts("SD1\n");
93                 break;
94         case SD3_BOOT:
95                 puts("SD2\n");
96                 break;
97         case MMC1_BOOT:
98                 puts("MMC0\n");
99                 break;
100         case MMC2_BOOT:
101                 puts("MMC1\n");
102                 break;
103         case MMC3_BOOT:
104                 puts("MMC2\n");
105                 break;
106         case FLEXSPI_BOOT:
107                 puts("FLEXSPI\n");
108                 break;
109         case SATA_BOOT:
110                 puts("SATA\n");
111                 break;
112         case NAND_BOOT:
113                 puts("NAND\n");
114                 break;
115         case USB_BOOT:
116                 puts("USB\n");
117                 break;
118         default:
119                 printf("Unknown device %u\n", bt_dev);
120                 break;
121         }
122
123         return 0;
124 }
125
126 enum boot_device get_boot_device(void)
127 {
128         enum boot_device boot_dev = SD1_BOOT;
129
130         sc_rsrc_t dev_rsrc;
131
132         sc_misc_get_boot_dev(-1, &dev_rsrc);
133
134         switch (dev_rsrc) {
135         case SC_R_SDHC_0:
136                 boot_dev = MMC1_BOOT;
137                 break;
138         case SC_R_SDHC_1:
139                 boot_dev = SD2_BOOT;
140                 break;
141         case SC_R_SDHC_2:
142                 boot_dev = SD3_BOOT;
143                 break;
144         case SC_R_NAND:
145                 boot_dev = NAND_BOOT;
146                 break;
147         case SC_R_FSPI_0:
148                 boot_dev = FLEXSPI_BOOT;
149                 break;
150         case SC_R_SATA_0:
151                 boot_dev = SATA_BOOT;
152                 break;
153         case SC_R_USB_0:
154         case SC_R_USB_1:
155         case SC_R_USB_2:
156                 boot_dev = USB_BOOT;
157                 break;
158         default:
159                 break;
160         }
161
162         return boot_dev;
163 }
164
165 #ifdef CONFIG_ENV_IS_IN_MMC
166 __weak int board_mmc_get_env_dev(int devno)
167 {
168         return CONFIG_SYS_MMC_ENV_DEV;
169 }
170
171 int mmc_get_env_dev(void)
172 {
173         sc_rsrc_t dev_rsrc;
174         int devno;
175
176         sc_misc_get_boot_dev(-1, &dev_rsrc);
177
178         switch (dev_rsrc) {
179         case SC_R_SDHC_0:
180                 devno = 0;
181                 break;
182         case SC_R_SDHC_1:
183                 devno = 1;
184                 break;
185         case SC_R_SDHC_2:
186                 devno = 2;
187                 break;
188         default:
189                 /* If not boot from sd/mmc, use default value */
190                 return CONFIG_SYS_MMC_ENV_DEV;
191         }
192
193         return board_mmc_get_env_dev(devno);
194 }
195 #endif
196
197 #define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */
198
199 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
200                             sc_faddr_t *addr_end)
201 {
202         sc_faddr_t start, end;
203         int ret;
204         bool owned;
205
206         owned = sc_rm_is_memreg_owned(-1, mr);
207         if (owned) {
208                 ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
209                 if (ret) {
210                         printf("Memreg get info failed, %d\n", ret);
211                         return -EINVAL;
212                 }
213                 debug("0x%llx -- 0x%llx\n", start, end);
214                 *addr_start = start;
215                 *addr_end = end;
216
217                 return 0;
218         }
219
220         return -EINVAL;
221 }
222
223 phys_size_t get_effective_memsize(void)
224 {
225         sc_rm_mr_t mr;
226         sc_faddr_t start, end, end1, start_aligned;
227         int err;
228
229         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
230
231         for (mr = 0; mr < 64; mr++) {
232                 err = get_owned_memreg(mr, &start, &end);
233                 if (!err) {
234                         start_aligned = roundup(start, MEMSTART_ALIGNMENT);
235                         /* Too small memory region, not use it */
236                         if (start_aligned > end)
237                                 continue;
238
239                         /* Find the memory region runs the U-Boot */
240                         if (start >= PHYS_SDRAM_1 && start <= end1 &&
241                             (start <= CONFIG_SYS_TEXT_BASE &&
242                             end >= CONFIG_SYS_TEXT_BASE)) {
243                                 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
244                                     PHYS_SDRAM_1_SIZE))
245                                         return (end - PHYS_SDRAM_1 + 1);
246                                 else
247                                         return PHYS_SDRAM_1_SIZE;
248                         }
249                 }
250         }
251
252         return PHYS_SDRAM_1_SIZE;
253 }
254
255 int dram_init(void)
256 {
257         sc_rm_mr_t mr;
258         sc_faddr_t start, end, end1, end2;
259         int err;
260
261         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
262         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
263         for (mr = 0; mr < 64; mr++) {
264                 err = get_owned_memreg(mr, &start, &end);
265                 if (!err) {
266                         start = roundup(start, MEMSTART_ALIGNMENT);
267                         /* Too small memory region, not use it */
268                         if (start > end)
269                                 continue;
270
271                         if (start >= PHYS_SDRAM_1 && start <= end1) {
272                                 if ((end + 1) <= end1)
273                                         gd->ram_size += end - start + 1;
274                                 else
275                                         gd->ram_size += end1 - start;
276                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
277                                 if ((end + 1) <= end2)
278                                         gd->ram_size += end - start + 1;
279                                 else
280                                         gd->ram_size += end2 - start;
281                         }
282                 }
283         }
284
285         /* If error, set to the default value */
286         if (!gd->ram_size) {
287                 gd->ram_size = PHYS_SDRAM_1_SIZE;
288                 gd->ram_size += PHYS_SDRAM_2_SIZE;
289         }
290         return 0;
291 }
292
293 static void dram_bank_sort(int current_bank)
294 {
295         phys_addr_t start;
296         phys_size_t size;
297
298         while (current_bank > 0) {
299                 if (gd->bd->bi_dram[current_bank - 1].start >
300                     gd->bd->bi_dram[current_bank].start) {
301                         start = gd->bd->bi_dram[current_bank - 1].start;
302                         size = gd->bd->bi_dram[current_bank - 1].size;
303
304                         gd->bd->bi_dram[current_bank - 1].start =
305                                 gd->bd->bi_dram[current_bank].start;
306                         gd->bd->bi_dram[current_bank - 1].size =
307                                 gd->bd->bi_dram[current_bank].size;
308
309                         gd->bd->bi_dram[current_bank].start = start;
310                         gd->bd->bi_dram[current_bank].size = size;
311                 }
312                 current_bank--;
313         }
314 }
315
316 int dram_init_banksize(void)
317 {
318         sc_rm_mr_t mr;
319         sc_faddr_t start, end, end1, end2;
320         int i = 0;
321         int err;
322
323         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
324         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
325
326         for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
327                 err = get_owned_memreg(mr, &start, &end);
328                 if (!err) {
329                         start = roundup(start, MEMSTART_ALIGNMENT);
330                         if (start > end) /* Small memory region, no use it */
331                                 continue;
332
333                         if (start >= PHYS_SDRAM_1 && start <= end1) {
334                                 gd->bd->bi_dram[i].start = start;
335
336                                 if ((end + 1) <= end1)
337                                         gd->bd->bi_dram[i].size =
338                                                 end - start + 1;
339                                 else
340                                         gd->bd->bi_dram[i].size = end1 - start;
341
342                                 dram_bank_sort(i);
343                                 i++;
344                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
345                                 gd->bd->bi_dram[i].start = start;
346
347                                 if ((end + 1) <= end2)
348                                         gd->bd->bi_dram[i].size =
349                                                 end - start + 1;
350                                 else
351                                         gd->bd->bi_dram[i].size = end2 - start;
352
353                                 dram_bank_sort(i);
354                                 i++;
355                         }
356                 }
357         }
358
359         /* If error, set to the default value */
360         if (!i) {
361                 gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
362                 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
363                 gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
364                 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
365         }
366
367         return 0;
368 }
369
370 static u64 get_block_attrs(sc_faddr_t addr_start)
371 {
372         u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
373                 PTE_BLOCK_PXN | PTE_BLOCK_UXN;
374
375         if ((addr_start >= PHYS_SDRAM_1 &&
376              addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
377             (addr_start >= PHYS_SDRAM_2 &&
378              addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
379                 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
380
381         return attr;
382 }
383
384 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
385 {
386         sc_faddr_t end1, end2;
387
388         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
389         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
390
391         if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
392                 if ((addr_end + 1) > end1)
393                         return end1 - addr_start;
394         } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
395                 if ((addr_end + 1) > end2)
396                         return end2 - addr_start;
397         }
398
399         return (addr_end - addr_start + 1);
400 }
401
402 #define MAX_PTE_ENTRIES 512
403 #define MAX_MEM_MAP_REGIONS 16
404
405 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
406 struct mm_region *mem_map = imx8_mem_map;
407
408 void enable_caches(void)
409 {
410         sc_rm_mr_t mr;
411         sc_faddr_t start, end;
412         int err, i;
413
414         /* Create map for registers access from 0x1c000000 to 0x80000000*/
415         imx8_mem_map[0].virt = 0x1c000000UL;
416         imx8_mem_map[0].phys = 0x1c000000UL;
417         imx8_mem_map[0].size = 0x64000000UL;
418         imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
419                          PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
420
421         i = 1;
422         for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
423                 err = get_owned_memreg(mr, &start, &end);
424                 if (!err) {
425                         imx8_mem_map[i].virt = start;
426                         imx8_mem_map[i].phys = start;
427                         imx8_mem_map[i].size = get_block_size(start, end);
428                         imx8_mem_map[i].attrs = get_block_attrs(start);
429                         i++;
430                 }
431         }
432
433         if (i < MAX_MEM_MAP_REGIONS) {
434                 imx8_mem_map[i].size = 0;
435                 imx8_mem_map[i].attrs = 0;
436         } else {
437                 puts("Error, need more MEM MAP REGIONS reserved\n");
438                 icache_enable();
439                 return;
440         }
441
442         for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
443                 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
444                       i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
445                       imx8_mem_map[i].size, imx8_mem_map[i].attrs);
446         }
447
448         icache_enable();
449         dcache_enable();
450 }
451
452 #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
453 u64 get_page_table_size(void)
454 {
455         u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
456         u64 size = 0;
457
458         /*
459          * For each memory region, the max table size:
460          * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
461          */
462         size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
463
464         /*
465          * We need to duplicate our page table once to have an emergency pt to
466          * resort to when splitting page tables later on
467          */
468         size *= 2;
469
470         /*
471          * We may need to split page tables later on if dcache settings change,
472          * so reserve up to 4 (random pick) page tables for that.
473          */
474         size += one_pt * 4;
475
476         return size;
477 }
478 #endif
479
480 #if defined(CONFIG_IMX8QM)
481 #define FUSE_MAC0_WORD0 452
482 #define FUSE_MAC0_WORD1 453
483 #define FUSE_MAC1_WORD0 454
484 #define FUSE_MAC1_WORD1 455
485 #elif defined(CONFIG_IMX8QXP)
486 #define FUSE_MAC0_WORD0 708
487 #define FUSE_MAC0_WORD1 709
488 #define FUSE_MAC1_WORD0 710
489 #define FUSE_MAC1_WORD1 711
490 #endif
491
492 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
493 {
494         u32 word[2], val[2] = {};
495         int i, ret;
496
497         if (dev_id == 0) {
498                 word[0] = FUSE_MAC0_WORD0;
499                 word[1] = FUSE_MAC0_WORD1;
500         } else {
501                 word[0] = FUSE_MAC1_WORD0;
502                 word[1] = FUSE_MAC1_WORD1;
503         }
504
505         for (i = 0; i < 2; i++) {
506                 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
507                 if (ret < 0)
508                         goto err;
509         }
510
511         mac[0] = val[0];
512         mac[1] = val[0] >> 8;
513         mac[2] = val[0] >> 16;
514         mac[3] = val[0] >> 24;
515         mac[4] = val[1];
516         mac[5] = val[1] >> 8;
517
518         debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
519               __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
520         return;
521 err:
522         printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
523 }
524
525 u32 get_cpu_rev(void)
526 {
527         u32 id = 0, rev = 0;
528         int ret;
529
530         ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
531         if (ret)
532                 return 0;
533
534         rev = (id >> 5)  & 0xf;
535         id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */
536
537         return (id << 12) | rev;
538 }