imx: imx8qm/qxp: Recover SPL data section for partition reboot
[oweals/u-boot.git] / arch / arm / mach-imx / imx8 / cpu.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2018 NXP
4  */
5
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <init.h>
12 #include <dm/device-internal.h>
13 #include <dm/lists.h>
14 #include <dm/uclass.h>
15 #include <errno.h>
16 #include <spl.h>
17 #include <thermal.h>
18 #include <asm/arch/sci/sci.h>
19 #include <asm/arch/sys_proto.h>
20 #include <asm/arch-imx/cpu.h>
21 #include <asm/armv8/cpu.h>
22 #include <asm/armv8/mmu.h>
23 #include <asm/setup.h>
24 #include <asm/mach-imx/boot_mode.h>
25
26 DECLARE_GLOBAL_DATA_PTR;
27
28 #define BT_PASSOVER_TAG 0x504F
29 struct pass_over_info_t *get_pass_over_info(void)
30 {
31         struct pass_over_info_t *p =
32                 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
33
34         if (p->barker != BT_PASSOVER_TAG ||
35             p->len != sizeof(struct pass_over_info_t))
36                 return NULL;
37
38         return p;
39 }
40
41 int arch_cpu_init(void)
42 {
43 #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_RECOVER_DATA_SECTION)
44         spl_save_restore_data();
45 #endif
46
47 #ifdef CONFIG_SPL_BUILD
48         struct pass_over_info_t *pass_over;
49
50         if (is_soc_rev(CHIP_REV_A)) {
51                 pass_over = get_pass_over_info();
52                 if (pass_over && pass_over->g_ap_mu == 0) {
53                         /*
54                          * When ap_mu is 0, means the U-Boot booted
55                          * from first container
56                          */
57                         sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
58                 }
59         }
60 #endif
61
62         return 0;
63 }
64
65 int arch_cpu_init_dm(void)
66 {
67         struct udevice *devp;
68         int node, ret;
69
70         node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
71
72         ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
73         if (ret) {
74                 printf("could not get scu %d\n", ret);
75                 return ret;
76         }
77
78         if (is_imx8qm()) {
79                 ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU,
80                                                     SC_PM_PW_MODE_ON);
81                 if (ret)
82                         return ret;
83         }
84
85         return 0;
86 }
87
88 int print_bootinfo(void)
89 {
90         enum boot_device bt_dev = get_boot_device();
91
92         puts("Boot:  ");
93         switch (bt_dev) {
94         case SD1_BOOT:
95                 puts("SD0\n");
96                 break;
97         case SD2_BOOT:
98                 puts("SD1\n");
99                 break;
100         case SD3_BOOT:
101                 puts("SD2\n");
102                 break;
103         case MMC1_BOOT:
104                 puts("MMC0\n");
105                 break;
106         case MMC2_BOOT:
107                 puts("MMC1\n");
108                 break;
109         case MMC3_BOOT:
110                 puts("MMC2\n");
111                 break;
112         case FLEXSPI_BOOT:
113                 puts("FLEXSPI\n");
114                 break;
115         case SATA_BOOT:
116                 puts("SATA\n");
117                 break;
118         case NAND_BOOT:
119                 puts("NAND\n");
120                 break;
121         case USB_BOOT:
122                 puts("USB\n");
123                 break;
124         default:
125                 printf("Unknown device %u\n", bt_dev);
126                 break;
127         }
128
129         return 0;
130 }
131
132 enum boot_device get_boot_device(void)
133 {
134         enum boot_device boot_dev = SD1_BOOT;
135
136         sc_rsrc_t dev_rsrc;
137
138         sc_misc_get_boot_dev(-1, &dev_rsrc);
139
140         switch (dev_rsrc) {
141         case SC_R_SDHC_0:
142                 boot_dev = MMC1_BOOT;
143                 break;
144         case SC_R_SDHC_1:
145                 boot_dev = SD2_BOOT;
146                 break;
147         case SC_R_SDHC_2:
148                 boot_dev = SD3_BOOT;
149                 break;
150         case SC_R_NAND:
151                 boot_dev = NAND_BOOT;
152                 break;
153         case SC_R_FSPI_0:
154                 boot_dev = FLEXSPI_BOOT;
155                 break;
156         case SC_R_SATA_0:
157                 boot_dev = SATA_BOOT;
158                 break;
159         case SC_R_USB_0:
160         case SC_R_USB_1:
161         case SC_R_USB_2:
162                 boot_dev = USB_BOOT;
163                 break;
164         default:
165                 break;
166         }
167
168         return boot_dev;
169 }
170
171 #ifdef CONFIG_SERIAL_TAG
172 #define FUSE_UNIQUE_ID_WORD0 16
173 #define FUSE_UNIQUE_ID_WORD1 17
174 void get_board_serial(struct tag_serialnr *serialnr)
175 {
176         sc_err_t err;
177         u32 val1 = 0, val2 = 0;
178         u32 word1, word2;
179
180         if (!serialnr)
181                 return;
182
183         word1 = FUSE_UNIQUE_ID_WORD0;
184         word2 = FUSE_UNIQUE_ID_WORD1;
185
186         err = sc_misc_otp_fuse_read(-1, word1, &val1);
187         if (err != SC_ERR_NONE) {
188                 printf("%s fuse %d read error: %d\n", __func__, word1, err);
189                 return;
190         }
191
192         err = sc_misc_otp_fuse_read(-1, word2, &val2);
193         if (err != SC_ERR_NONE) {
194                 printf("%s fuse %d read error: %d\n", __func__, word2, err);
195                 return;
196         }
197         serialnr->low = val1;
198         serialnr->high = val2;
199 }
200 #endif /*CONFIG_SERIAL_TAG*/
201
202 #ifdef CONFIG_ENV_IS_IN_MMC
203 __weak int board_mmc_get_env_dev(int devno)
204 {
205         return CONFIG_SYS_MMC_ENV_DEV;
206 }
207
208 int mmc_get_env_dev(void)
209 {
210         sc_rsrc_t dev_rsrc;
211         int devno;
212
213         sc_misc_get_boot_dev(-1, &dev_rsrc);
214
215         switch (dev_rsrc) {
216         case SC_R_SDHC_0:
217                 devno = 0;
218                 break;
219         case SC_R_SDHC_1:
220                 devno = 1;
221                 break;
222         case SC_R_SDHC_2:
223                 devno = 2;
224                 break;
225         default:
226                 /* If not boot from sd/mmc, use default value */
227                 return CONFIG_SYS_MMC_ENV_DEV;
228         }
229
230         return board_mmc_get_env_dev(devno);
231 }
232 #endif
233
234 #define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */
235
236 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
237                             sc_faddr_t *addr_end)
238 {
239         sc_faddr_t start, end;
240         int ret;
241         bool owned;
242
243         owned = sc_rm_is_memreg_owned(-1, mr);
244         if (owned) {
245                 ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
246                 if (ret) {
247                         printf("Memreg get info failed, %d\n", ret);
248                         return -EINVAL;
249                 }
250                 debug("0x%llx -- 0x%llx\n", start, end);
251                 *addr_start = start;
252                 *addr_end = end;
253
254                 return 0;
255         }
256
257         return -EINVAL;
258 }
259
260 phys_size_t get_effective_memsize(void)
261 {
262         sc_rm_mr_t mr;
263         sc_faddr_t start, end, end1, start_aligned;
264         int err;
265
266         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
267
268         for (mr = 0; mr < 64; mr++) {
269                 err = get_owned_memreg(mr, &start, &end);
270                 if (!err) {
271                         start_aligned = roundup(start, MEMSTART_ALIGNMENT);
272                         /* Too small memory region, not use it */
273                         if (start_aligned > end)
274                                 continue;
275
276                         /* Find the memory region runs the U-Boot */
277                         if (start >= PHYS_SDRAM_1 && start <= end1 &&
278                             (start <= CONFIG_SYS_TEXT_BASE &&
279                             end >= CONFIG_SYS_TEXT_BASE)) {
280                                 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
281                                     PHYS_SDRAM_1_SIZE))
282                                         return (end - PHYS_SDRAM_1 + 1);
283                                 else
284                                         return PHYS_SDRAM_1_SIZE;
285                         }
286                 }
287         }
288
289         return PHYS_SDRAM_1_SIZE;
290 }
291
292 int dram_init(void)
293 {
294         sc_rm_mr_t mr;
295         sc_faddr_t start, end, end1, end2;
296         int err;
297
298         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
299         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
300         for (mr = 0; mr < 64; mr++) {
301                 err = get_owned_memreg(mr, &start, &end);
302                 if (!err) {
303                         start = roundup(start, MEMSTART_ALIGNMENT);
304                         /* Too small memory region, not use it */
305                         if (start > end)
306                                 continue;
307
308                         if (start >= PHYS_SDRAM_1 && start <= end1) {
309                                 if ((end + 1) <= end1)
310                                         gd->ram_size += end - start + 1;
311                                 else
312                                         gd->ram_size += end1 - start;
313                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
314                                 if ((end + 1) <= end2)
315                                         gd->ram_size += end - start + 1;
316                                 else
317                                         gd->ram_size += end2 - start;
318                         }
319                 }
320         }
321
322         /* If error, set to the default value */
323         if (!gd->ram_size) {
324                 gd->ram_size = PHYS_SDRAM_1_SIZE;
325                 gd->ram_size += PHYS_SDRAM_2_SIZE;
326         }
327         return 0;
328 }
329
330 static void dram_bank_sort(int current_bank)
331 {
332         phys_addr_t start;
333         phys_size_t size;
334
335         while (current_bank > 0) {
336                 if (gd->bd->bi_dram[current_bank - 1].start >
337                     gd->bd->bi_dram[current_bank].start) {
338                         start = gd->bd->bi_dram[current_bank - 1].start;
339                         size = gd->bd->bi_dram[current_bank - 1].size;
340
341                         gd->bd->bi_dram[current_bank - 1].start =
342                                 gd->bd->bi_dram[current_bank].start;
343                         gd->bd->bi_dram[current_bank - 1].size =
344                                 gd->bd->bi_dram[current_bank].size;
345
346                         gd->bd->bi_dram[current_bank].start = start;
347                         gd->bd->bi_dram[current_bank].size = size;
348                 }
349                 current_bank--;
350         }
351 }
352
353 int dram_init_banksize(void)
354 {
355         sc_rm_mr_t mr;
356         sc_faddr_t start, end, end1, end2;
357         int i = 0;
358         int err;
359
360         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
361         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
362
363         for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
364                 err = get_owned_memreg(mr, &start, &end);
365                 if (!err) {
366                         start = roundup(start, MEMSTART_ALIGNMENT);
367                         if (start > end) /* Small memory region, no use it */
368                                 continue;
369
370                         if (start >= PHYS_SDRAM_1 && start <= end1) {
371                                 gd->bd->bi_dram[i].start = start;
372
373                                 if ((end + 1) <= end1)
374                                         gd->bd->bi_dram[i].size =
375                                                 end - start + 1;
376                                 else
377                                         gd->bd->bi_dram[i].size = end1 - start;
378
379                                 dram_bank_sort(i);
380                                 i++;
381                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
382                                 gd->bd->bi_dram[i].start = start;
383
384                                 if ((end + 1) <= end2)
385                                         gd->bd->bi_dram[i].size =
386                                                 end - start + 1;
387                                 else
388                                         gd->bd->bi_dram[i].size = end2 - start;
389
390                                 dram_bank_sort(i);
391                                 i++;
392                         }
393                 }
394         }
395
396         /* If error, set to the default value */
397         if (!i) {
398                 gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
399                 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
400                 gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
401                 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
402         }
403
404         return 0;
405 }
406
407 static u64 get_block_attrs(sc_faddr_t addr_start)
408 {
409         u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
410                 PTE_BLOCK_PXN | PTE_BLOCK_UXN;
411
412         if ((addr_start >= PHYS_SDRAM_1 &&
413              addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
414             (addr_start >= PHYS_SDRAM_2 &&
415              addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
416                 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
417
418         return attr;
419 }
420
421 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
422 {
423         sc_faddr_t end1, end2;
424
425         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
426         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
427
428         if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
429                 if ((addr_end + 1) > end1)
430                         return end1 - addr_start;
431         } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
432                 if ((addr_end + 1) > end2)
433                         return end2 - addr_start;
434         }
435
436         return (addr_end - addr_start + 1);
437 }
438
439 #define MAX_PTE_ENTRIES 512
440 #define MAX_MEM_MAP_REGIONS 16
441
442 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
443 struct mm_region *mem_map = imx8_mem_map;
444
445 void enable_caches(void)
446 {
447         sc_rm_mr_t mr;
448         sc_faddr_t start, end;
449         int err, i;
450
451         /* Create map for registers access from 0x1c000000 to 0x80000000*/
452         imx8_mem_map[0].virt = 0x1c000000UL;
453         imx8_mem_map[0].phys = 0x1c000000UL;
454         imx8_mem_map[0].size = 0x64000000UL;
455         imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
456                          PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
457
458         i = 1;
459         for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
460                 err = get_owned_memreg(mr, &start, &end);
461                 if (!err) {
462                         imx8_mem_map[i].virt = start;
463                         imx8_mem_map[i].phys = start;
464                         imx8_mem_map[i].size = get_block_size(start, end);
465                         imx8_mem_map[i].attrs = get_block_attrs(start);
466                         i++;
467                 }
468         }
469
470         if (i < MAX_MEM_MAP_REGIONS) {
471                 imx8_mem_map[i].size = 0;
472                 imx8_mem_map[i].attrs = 0;
473         } else {
474                 puts("Error, need more MEM MAP REGIONS reserved\n");
475                 icache_enable();
476                 return;
477         }
478
479         for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
480                 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
481                       i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
482                       imx8_mem_map[i].size, imx8_mem_map[i].attrs);
483         }
484
485         icache_enable();
486         dcache_enable();
487 }
488
489 #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
490 u64 get_page_table_size(void)
491 {
492         u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
493         u64 size = 0;
494
495         /*
496          * For each memory region, the max table size:
497          * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
498          */
499         size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
500
501         /*
502          * We need to duplicate our page table once to have an emergency pt to
503          * resort to when splitting page tables later on
504          */
505         size *= 2;
506
507         /*
508          * We may need to split page tables later on if dcache settings change,
509          * so reserve up to 4 (random pick) page tables for that.
510          */
511         size += one_pt * 4;
512
513         return size;
514 }
515 #endif
516
517 #if defined(CONFIG_IMX8QM)
518 #define FUSE_MAC0_WORD0 452
519 #define FUSE_MAC0_WORD1 453
520 #define FUSE_MAC1_WORD0 454
521 #define FUSE_MAC1_WORD1 455
522 #elif defined(CONFIG_IMX8QXP)
523 #define FUSE_MAC0_WORD0 708
524 #define FUSE_MAC0_WORD1 709
525 #define FUSE_MAC1_WORD0 710
526 #define FUSE_MAC1_WORD1 711
527 #endif
528
529 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
530 {
531         u32 word[2], val[2] = {};
532         int i, ret;
533
534         if (dev_id == 0) {
535                 word[0] = FUSE_MAC0_WORD0;
536                 word[1] = FUSE_MAC0_WORD1;
537         } else {
538                 word[0] = FUSE_MAC1_WORD0;
539                 word[1] = FUSE_MAC1_WORD1;
540         }
541
542         for (i = 0; i < 2; i++) {
543                 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
544                 if (ret < 0)
545                         goto err;
546         }
547
548         mac[0] = val[0];
549         mac[1] = val[0] >> 8;
550         mac[2] = val[0] >> 16;
551         mac[3] = val[0] >> 24;
552         mac[4] = val[1];
553         mac[5] = val[1] >> 8;
554
555         debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
556               __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
557         return;
558 err:
559         printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
560 }
561
562 u32 get_cpu_rev(void)
563 {
564         u32 id = 0, rev = 0;
565         int ret;
566
567         ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
568         if (ret)
569                 return 0;
570
571         rev = (id >> 5)  & 0xf;
572         id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */
573
574         return (id << 12) | rev;
575 }