imx8: Select boot device dynamically
[oweals/u-boot.git] / arch / arm / mach-imx / imx8 / cpu.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2018 NXP
4  */
5
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <init.h>
12 #include <dm/device-internal.h>
13 #include <dm/lists.h>
14 #include <dm/uclass.h>
15 #include <errno.h>
16 #include <spl.h>
17 #include <thermal.h>
18 #include <asm/arch/sci/sci.h>
19 #include <asm/arch/sys_proto.h>
20 #include <asm/arch-imx/cpu.h>
21 #include <asm/armv8/cpu.h>
22 #include <asm/armv8/mmu.h>
23 #include <asm/setup.h>
24 #include <asm/mach-imx/boot_mode.h>
25 #include <spl.h>
26
27 DECLARE_GLOBAL_DATA_PTR;
28
29 #define BT_PASSOVER_TAG 0x504F
30 struct pass_over_info_t *get_pass_over_info(void)
31 {
32         struct pass_over_info_t *p =
33                 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
34
35         if (p->barker != BT_PASSOVER_TAG ||
36             p->len != sizeof(struct pass_over_info_t))
37                 return NULL;
38
39         return p;
40 }
41
42 int arch_cpu_init(void)
43 {
44 #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_RECOVER_DATA_SECTION)
45         spl_save_restore_data();
46 #endif
47
48 #ifdef CONFIG_SPL_BUILD
49         struct pass_over_info_t *pass_over;
50
51         if (is_soc_rev(CHIP_REV_A)) {
52                 pass_over = get_pass_over_info();
53                 if (pass_over && pass_over->g_ap_mu == 0) {
54                         /*
55                          * When ap_mu is 0, means the U-Boot booted
56                          * from first container
57                          */
58                         sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
59                 }
60         }
61 #endif
62
63         return 0;
64 }
65
66 int arch_cpu_init_dm(void)
67 {
68         struct udevice *devp;
69         int node, ret;
70
71         node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
72
73         ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
74         if (ret) {
75                 printf("could not get scu %d\n", ret);
76                 return ret;
77         }
78
79         if (is_imx8qm()) {
80                 ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU,
81                                                     SC_PM_PW_MODE_ON);
82                 if (ret)
83                         return ret;
84         }
85
86         return 0;
87 }
88
89 int print_bootinfo(void)
90 {
91         enum boot_device bt_dev = get_boot_device();
92
93         puts("Boot:  ");
94         switch (bt_dev) {
95         case SD1_BOOT:
96                 puts("SD0\n");
97                 break;
98         case SD2_BOOT:
99                 puts("SD1\n");
100                 break;
101         case SD3_BOOT:
102                 puts("SD2\n");
103                 break;
104         case MMC1_BOOT:
105                 puts("MMC0\n");
106                 break;
107         case MMC2_BOOT:
108                 puts("MMC1\n");
109                 break;
110         case MMC3_BOOT:
111                 puts("MMC2\n");
112                 break;
113         case FLEXSPI_BOOT:
114                 puts("FLEXSPI\n");
115                 break;
116         case SATA_BOOT:
117                 puts("SATA\n");
118                 break;
119         case NAND_BOOT:
120                 puts("NAND\n");
121                 break;
122         case USB_BOOT:
123                 puts("USB\n");
124                 break;
125         default:
126                 printf("Unknown device %u\n", bt_dev);
127                 break;
128         }
129
130         return 0;
131 }
132
133 enum boot_device get_boot_device(void)
134 {
135         enum boot_device boot_dev = SD1_BOOT;
136
137         sc_rsrc_t dev_rsrc;
138
139         sc_misc_get_boot_dev(-1, &dev_rsrc);
140
141         switch (dev_rsrc) {
142         case SC_R_SDHC_0:
143                 boot_dev = MMC1_BOOT;
144                 break;
145         case SC_R_SDHC_1:
146                 boot_dev = SD2_BOOT;
147                 break;
148         case SC_R_SDHC_2:
149                 boot_dev = SD3_BOOT;
150                 break;
151         case SC_R_NAND:
152                 boot_dev = NAND_BOOT;
153                 break;
154         case SC_R_FSPI_0:
155                 boot_dev = FLEXSPI_BOOT;
156                 break;
157         case SC_R_SATA_0:
158                 boot_dev = SATA_BOOT;
159                 break;
160         case SC_R_USB_0:
161         case SC_R_USB_1:
162         case SC_R_USB_2:
163                 boot_dev = USB_BOOT;
164                 break;
165         default:
166                 break;
167         }
168
169         return boot_dev;
170 }
171
172 #ifdef CONFIG_SERIAL_TAG
173 #define FUSE_UNIQUE_ID_WORD0 16
174 #define FUSE_UNIQUE_ID_WORD1 17
175 void get_board_serial(struct tag_serialnr *serialnr)
176 {
177         sc_err_t err;
178         u32 val1 = 0, val2 = 0;
179         u32 word1, word2;
180
181         if (!serialnr)
182                 return;
183
184         word1 = FUSE_UNIQUE_ID_WORD0;
185         word2 = FUSE_UNIQUE_ID_WORD1;
186
187         err = sc_misc_otp_fuse_read(-1, word1, &val1);
188         if (err != SC_ERR_NONE) {
189                 printf("%s fuse %d read error: %d\n", __func__, word1, err);
190                 return;
191         }
192
193         err = sc_misc_otp_fuse_read(-1, word2, &val2);
194         if (err != SC_ERR_NONE) {
195                 printf("%s fuse %d read error: %d\n", __func__, word2, err);
196                 return;
197         }
198         serialnr->low = val1;
199         serialnr->high = val2;
200 }
201 #endif /*CONFIG_SERIAL_TAG*/
202
203 #ifdef CONFIG_ENV_IS_IN_MMC
204 __weak int board_mmc_get_env_dev(int devno)
205 {
206         return CONFIG_SYS_MMC_ENV_DEV;
207 }
208
209 int mmc_get_env_dev(void)
210 {
211         sc_rsrc_t dev_rsrc;
212         int devno;
213
214         sc_misc_get_boot_dev(-1, &dev_rsrc);
215
216         switch (dev_rsrc) {
217         case SC_R_SDHC_0:
218                 devno = 0;
219                 break;
220         case SC_R_SDHC_1:
221                 devno = 1;
222                 break;
223         case SC_R_SDHC_2:
224                 devno = 2;
225                 break;
226         default:
227                 /* If not boot from sd/mmc, use default value */
228                 return CONFIG_SYS_MMC_ENV_DEV;
229         }
230
231         return board_mmc_get_env_dev(devno);
232 }
233 #endif
234
235 #define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */
236
237 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
238                             sc_faddr_t *addr_end)
239 {
240         sc_faddr_t start, end;
241         int ret;
242         bool owned;
243
244         owned = sc_rm_is_memreg_owned(-1, mr);
245         if (owned) {
246                 ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
247                 if (ret) {
248                         printf("Memreg get info failed, %d\n", ret);
249                         return -EINVAL;
250                 }
251                 debug("0x%llx -- 0x%llx\n", start, end);
252                 *addr_start = start;
253                 *addr_end = end;
254
255                 return 0;
256         }
257
258         return -EINVAL;
259 }
260
261 phys_size_t get_effective_memsize(void)
262 {
263         sc_rm_mr_t mr;
264         sc_faddr_t start, end, end1, start_aligned;
265         int err;
266
267         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
268
269         for (mr = 0; mr < 64; mr++) {
270                 err = get_owned_memreg(mr, &start, &end);
271                 if (!err) {
272                         start_aligned = roundup(start, MEMSTART_ALIGNMENT);
273                         /* Too small memory region, not use it */
274                         if (start_aligned > end)
275                                 continue;
276
277                         /* Find the memory region runs the U-Boot */
278                         if (start >= PHYS_SDRAM_1 && start <= end1 &&
279                             (start <= CONFIG_SYS_TEXT_BASE &&
280                             end >= CONFIG_SYS_TEXT_BASE)) {
281                                 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
282                                     PHYS_SDRAM_1_SIZE))
283                                         return (end - PHYS_SDRAM_1 + 1);
284                                 else
285                                         return PHYS_SDRAM_1_SIZE;
286                         }
287                 }
288         }
289
290         return PHYS_SDRAM_1_SIZE;
291 }
292
293 int dram_init(void)
294 {
295         sc_rm_mr_t mr;
296         sc_faddr_t start, end, end1, end2;
297         int err;
298
299         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
300         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
301         for (mr = 0; mr < 64; mr++) {
302                 err = get_owned_memreg(mr, &start, &end);
303                 if (!err) {
304                         start = roundup(start, MEMSTART_ALIGNMENT);
305                         /* Too small memory region, not use it */
306                         if (start > end)
307                                 continue;
308
309                         if (start >= PHYS_SDRAM_1 && start <= end1) {
310                                 if ((end + 1) <= end1)
311                                         gd->ram_size += end - start + 1;
312                                 else
313                                         gd->ram_size += end1 - start;
314                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
315                                 if ((end + 1) <= end2)
316                                         gd->ram_size += end - start + 1;
317                                 else
318                                         gd->ram_size += end2 - start;
319                         }
320                 }
321         }
322
323         /* If error, set to the default value */
324         if (!gd->ram_size) {
325                 gd->ram_size = PHYS_SDRAM_1_SIZE;
326                 gd->ram_size += PHYS_SDRAM_2_SIZE;
327         }
328         return 0;
329 }
330
331 static void dram_bank_sort(int current_bank)
332 {
333         phys_addr_t start;
334         phys_size_t size;
335
336         while (current_bank > 0) {
337                 if (gd->bd->bi_dram[current_bank - 1].start >
338                     gd->bd->bi_dram[current_bank].start) {
339                         start = gd->bd->bi_dram[current_bank - 1].start;
340                         size = gd->bd->bi_dram[current_bank - 1].size;
341
342                         gd->bd->bi_dram[current_bank - 1].start =
343                                 gd->bd->bi_dram[current_bank].start;
344                         gd->bd->bi_dram[current_bank - 1].size =
345                                 gd->bd->bi_dram[current_bank].size;
346
347                         gd->bd->bi_dram[current_bank].start = start;
348                         gd->bd->bi_dram[current_bank].size = size;
349                 }
350                 current_bank--;
351         }
352 }
353
354 int dram_init_banksize(void)
355 {
356         sc_rm_mr_t mr;
357         sc_faddr_t start, end, end1, end2;
358         int i = 0;
359         int err;
360
361         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
362         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
363
364         for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
365                 err = get_owned_memreg(mr, &start, &end);
366                 if (!err) {
367                         start = roundup(start, MEMSTART_ALIGNMENT);
368                         if (start > end) /* Small memory region, no use it */
369                                 continue;
370
371                         if (start >= PHYS_SDRAM_1 && start <= end1) {
372                                 gd->bd->bi_dram[i].start = start;
373
374                                 if ((end + 1) <= end1)
375                                         gd->bd->bi_dram[i].size =
376                                                 end - start + 1;
377                                 else
378                                         gd->bd->bi_dram[i].size = end1 - start;
379
380                                 dram_bank_sort(i);
381                                 i++;
382                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
383                                 gd->bd->bi_dram[i].start = start;
384
385                                 if ((end + 1) <= end2)
386                                         gd->bd->bi_dram[i].size =
387                                                 end - start + 1;
388                                 else
389                                         gd->bd->bi_dram[i].size = end2 - start;
390
391                                 dram_bank_sort(i);
392                                 i++;
393                         }
394                 }
395         }
396
397         /* If error, set to the default value */
398         if (!i) {
399                 gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
400                 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
401                 gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
402                 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
403         }
404
405         return 0;
406 }
407
408 static u64 get_block_attrs(sc_faddr_t addr_start)
409 {
410         u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
411                 PTE_BLOCK_PXN | PTE_BLOCK_UXN;
412
413         if ((addr_start >= PHYS_SDRAM_1 &&
414              addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
415             (addr_start >= PHYS_SDRAM_2 &&
416              addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
417                 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
418
419         return attr;
420 }
421
422 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
423 {
424         sc_faddr_t end1, end2;
425
426         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
427         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
428
429         if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
430                 if ((addr_end + 1) > end1)
431                         return end1 - addr_start;
432         } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
433                 if ((addr_end + 1) > end2)
434                         return end2 - addr_start;
435         }
436
437         return (addr_end - addr_start + 1);
438 }
439
440 #define MAX_PTE_ENTRIES 512
441 #define MAX_MEM_MAP_REGIONS 16
442
443 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
444 struct mm_region *mem_map = imx8_mem_map;
445
446 void enable_caches(void)
447 {
448         sc_rm_mr_t mr;
449         sc_faddr_t start, end;
450         int err, i;
451
452         /* Create map for registers access from 0x1c000000 to 0x80000000*/
453         imx8_mem_map[0].virt = 0x1c000000UL;
454         imx8_mem_map[0].phys = 0x1c000000UL;
455         imx8_mem_map[0].size = 0x64000000UL;
456         imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
457                          PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
458
459         i = 1;
460         for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
461                 err = get_owned_memreg(mr, &start, &end);
462                 if (!err) {
463                         imx8_mem_map[i].virt = start;
464                         imx8_mem_map[i].phys = start;
465                         imx8_mem_map[i].size = get_block_size(start, end);
466                         imx8_mem_map[i].attrs = get_block_attrs(start);
467                         i++;
468                 }
469         }
470
471         if (i < MAX_MEM_MAP_REGIONS) {
472                 imx8_mem_map[i].size = 0;
473                 imx8_mem_map[i].attrs = 0;
474         } else {
475                 puts("Error, need more MEM MAP REGIONS reserved\n");
476                 icache_enable();
477                 return;
478         }
479
480         for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
481                 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
482                       i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
483                       imx8_mem_map[i].size, imx8_mem_map[i].attrs);
484         }
485
486         icache_enable();
487         dcache_enable();
488 }
489
490 #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
491 u64 get_page_table_size(void)
492 {
493         u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
494         u64 size = 0;
495
496         /*
497          * For each memory region, the max table size:
498          * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
499          */
500         size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
501
502         /*
503          * We need to duplicate our page table once to have an emergency pt to
504          * resort to when splitting page tables later on
505          */
506         size *= 2;
507
508         /*
509          * We may need to split page tables later on if dcache settings change,
510          * so reserve up to 4 (random pick) page tables for that.
511          */
512         size += one_pt * 4;
513
514         return size;
515 }
516 #endif
517
518 #if defined(CONFIG_IMX8QM)
519 #define FUSE_MAC0_WORD0 452
520 #define FUSE_MAC0_WORD1 453
521 #define FUSE_MAC1_WORD0 454
522 #define FUSE_MAC1_WORD1 455
523 #elif defined(CONFIG_IMX8QXP)
524 #define FUSE_MAC0_WORD0 708
525 #define FUSE_MAC0_WORD1 709
526 #define FUSE_MAC1_WORD0 710
527 #define FUSE_MAC1_WORD1 711
528 #endif
529
530 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
531 {
532         u32 word[2], val[2] = {};
533         int i, ret;
534
535         if (dev_id == 0) {
536                 word[0] = FUSE_MAC0_WORD0;
537                 word[1] = FUSE_MAC0_WORD1;
538         } else {
539                 word[0] = FUSE_MAC1_WORD0;
540                 word[1] = FUSE_MAC1_WORD1;
541         }
542
543         for (i = 0; i < 2; i++) {
544                 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
545                 if (ret < 0)
546                         goto err;
547         }
548
549         mac[0] = val[0];
550         mac[1] = val[0] >> 8;
551         mac[2] = val[0] >> 16;
552         mac[3] = val[0] >> 24;
553         mac[4] = val[1];
554         mac[5] = val[1] >> 8;
555
556         debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
557               __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
558         return;
559 err:
560         printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
561 }
562
563 u32 get_cpu_rev(void)
564 {
565         u32 id = 0, rev = 0;
566         int ret;
567
568         ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
569         if (ret)
570                 return 0;
571
572         rev = (id >> 5)  & 0xf;
573         id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */
574
575         return (id << 12) | rev;
576 }
577
578 void board_boot_order(u32 *spl_boot_list)
579 {
580         spl_boot_list[0] = spl_boot_device();
581
582         if (spl_boot_list[0] == BOOT_DEVICE_SPI) {
583                 /* Check whether we own the flexspi0, if not, use NOR boot */
584                 if (!sc_rm_is_resource_owned(-1, SC_R_FSPI_0))
585                         spl_boot_list[0] = BOOT_DEVICE_NOR;
586         }
587 }