imx8: cpu: get temperature when print cpu desc
[oweals/u-boot.git] / arch / arm / mach-imx / imx8 / cpu.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2018 NXP
4  */
5
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu.h>
9 #include <dm.h>
10 #include <dm/device-internal.h>
11 #include <dm/lists.h>
12 #include <dm/uclass.h>
13 #include <errno.h>
14 #include <thermal.h>
15 #include <asm/arch/sci/sci.h>
16 #include <asm/arch/sys_proto.h>
17 #include <asm/arch-imx/cpu.h>
18 #include <asm/armv8/cpu.h>
19 #include <asm/armv8/mmu.h>
20 #include <asm/mach-imx/boot_mode.h>
21
22 DECLARE_GLOBAL_DATA_PTR;
23
24 #define BT_PASSOVER_TAG 0x504F
25 struct pass_over_info_t *get_pass_over_info(void)
26 {
27         struct pass_over_info_t *p =
28                 (struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
29
30         if (p->barker != BT_PASSOVER_TAG ||
31             p->len != sizeof(struct pass_over_info_t))
32                 return NULL;
33
34         return p;
35 }
36
37 int arch_cpu_init(void)
38 {
39 #ifdef CONFIG_SPL_BUILD
40         struct pass_over_info_t *pass_over;
41
42         if (is_soc_rev(CHIP_REV_A)) {
43                 pass_over = get_pass_over_info();
44                 if (pass_over && pass_over->g_ap_mu == 0) {
45                         /*
46                          * When ap_mu is 0, means the U-Boot booted
47                          * from first container
48                          */
49                         sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
50                 }
51         }
52 #endif
53
54         return 0;
55 }
56
57 int arch_cpu_init_dm(void)
58 {
59         struct udevice *devp;
60         int node, ret;
61
62         node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
63         ret = device_bind_driver_to_node(gd->dm_root, "imx8_scu", "imx8_scu",
64                                          offset_to_ofnode(node), &devp);
65
66         if (ret) {
67                 printf("could not find scu %d\n", ret);
68                 return ret;
69         }
70
71         ret = device_probe(devp);
72         if (ret) {
73                 printf("scu probe failed %d\n", ret);
74                 return ret;
75         }
76
77         return 0;
78 }
79
80 int print_bootinfo(void)
81 {
82         enum boot_device bt_dev = get_boot_device();
83
84         puts("Boot:  ");
85         switch (bt_dev) {
86         case SD1_BOOT:
87                 puts("SD0\n");
88                 break;
89         case SD2_BOOT:
90                 puts("SD1\n");
91                 break;
92         case SD3_BOOT:
93                 puts("SD2\n");
94                 break;
95         case MMC1_BOOT:
96                 puts("MMC0\n");
97                 break;
98         case MMC2_BOOT:
99                 puts("MMC1\n");
100                 break;
101         case MMC3_BOOT:
102                 puts("MMC2\n");
103                 break;
104         case FLEXSPI_BOOT:
105                 puts("FLEXSPI\n");
106                 break;
107         case SATA_BOOT:
108                 puts("SATA\n");
109                 break;
110         case NAND_BOOT:
111                 puts("NAND\n");
112                 break;
113         case USB_BOOT:
114                 puts("USB\n");
115                 break;
116         default:
117                 printf("Unknown device %u\n", bt_dev);
118                 break;
119         }
120
121         return 0;
122 }
123
124 enum boot_device get_boot_device(void)
125 {
126         enum boot_device boot_dev = SD1_BOOT;
127
128         sc_rsrc_t dev_rsrc;
129
130         sc_misc_get_boot_dev(-1, &dev_rsrc);
131
132         switch (dev_rsrc) {
133         case SC_R_SDHC_0:
134                 boot_dev = MMC1_BOOT;
135                 break;
136         case SC_R_SDHC_1:
137                 boot_dev = SD2_BOOT;
138                 break;
139         case SC_R_SDHC_2:
140                 boot_dev = SD3_BOOT;
141                 break;
142         case SC_R_NAND:
143                 boot_dev = NAND_BOOT;
144                 break;
145         case SC_R_FSPI_0:
146                 boot_dev = FLEXSPI_BOOT;
147                 break;
148         case SC_R_SATA_0:
149                 boot_dev = SATA_BOOT;
150                 break;
151         case SC_R_USB_0:
152         case SC_R_USB_1:
153         case SC_R_USB_2:
154                 boot_dev = USB_BOOT;
155                 break;
156         default:
157                 break;
158         }
159
160         return boot_dev;
161 }
162
163 #ifdef CONFIG_ENV_IS_IN_MMC
164 __weak int board_mmc_get_env_dev(int devno)
165 {
166         return CONFIG_SYS_MMC_ENV_DEV;
167 }
168
169 int mmc_get_env_dev(void)
170 {
171         sc_rsrc_t dev_rsrc;
172         int devno;
173
174         sc_misc_get_boot_dev(-1, &dev_rsrc);
175
176         switch (dev_rsrc) {
177         case SC_R_SDHC_0:
178                 devno = 0;
179                 break;
180         case SC_R_SDHC_1:
181                 devno = 1;
182                 break;
183         case SC_R_SDHC_2:
184                 devno = 2;
185                 break;
186         default:
187                 /* If not boot from sd/mmc, use default value */
188                 return CONFIG_SYS_MMC_ENV_DEV;
189         }
190
191         return board_mmc_get_env_dev(devno);
192 }
193 #endif
194
195 #define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */
196
197 static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
198                             sc_faddr_t *addr_end)
199 {
200         sc_faddr_t start, end;
201         int ret;
202         bool owned;
203
204         owned = sc_rm_is_memreg_owned(-1, mr);
205         if (owned) {
206                 ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
207                 if (ret) {
208                         printf("Memreg get info failed, %d\n", ret);
209                         return -EINVAL;
210                 }
211                 debug("0x%llx -- 0x%llx\n", start, end);
212                 *addr_start = start;
213                 *addr_end = end;
214
215                 return 0;
216         }
217
218         return -EINVAL;
219 }
220
221 phys_size_t get_effective_memsize(void)
222 {
223         sc_rm_mr_t mr;
224         sc_faddr_t start, end, end1;
225         int err;
226
227         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
228
229         for (mr = 0; mr < 64; mr++) {
230                 err = get_owned_memreg(mr, &start, &end);
231                 if (!err) {
232                         start = roundup(start, MEMSTART_ALIGNMENT);
233                         /* Too small memory region, not use it */
234                         if (start > end)
235                                 continue;
236
237                         /* Find the memory region runs the U-Boot */
238                         if (start >= PHYS_SDRAM_1 && start <= end1 &&
239                             (start <= CONFIG_SYS_TEXT_BASE &&
240                             end >= CONFIG_SYS_TEXT_BASE)) {
241                                 if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
242                                     PHYS_SDRAM_1_SIZE))
243                                         return (end - PHYS_SDRAM_1 + 1);
244                                 else
245                                         return PHYS_SDRAM_1_SIZE;
246                         }
247                 }
248         }
249
250         return PHYS_SDRAM_1_SIZE;
251 }
252
253 int dram_init(void)
254 {
255         sc_rm_mr_t mr;
256         sc_faddr_t start, end, end1, end2;
257         int err;
258
259         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
260         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
261         for (mr = 0; mr < 64; mr++) {
262                 err = get_owned_memreg(mr, &start, &end);
263                 if (!err) {
264                         start = roundup(start, MEMSTART_ALIGNMENT);
265                         /* Too small memory region, not use it */
266                         if (start > end)
267                                 continue;
268
269                         if (start >= PHYS_SDRAM_1 && start <= end1) {
270                                 if ((end + 1) <= end1)
271                                         gd->ram_size += end - start + 1;
272                                 else
273                                         gd->ram_size += end1 - start;
274                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
275                                 if ((end + 1) <= end2)
276                                         gd->ram_size += end - start + 1;
277                                 else
278                                         gd->ram_size += end2 - start;
279                         }
280                 }
281         }
282
283         /* If error, set to the default value */
284         if (!gd->ram_size) {
285                 gd->ram_size = PHYS_SDRAM_1_SIZE;
286                 gd->ram_size += PHYS_SDRAM_2_SIZE;
287         }
288         return 0;
289 }
290
291 static void dram_bank_sort(int current_bank)
292 {
293         phys_addr_t start;
294         phys_size_t size;
295
296         while (current_bank > 0) {
297                 if (gd->bd->bi_dram[current_bank - 1].start >
298                     gd->bd->bi_dram[current_bank].start) {
299                         start = gd->bd->bi_dram[current_bank - 1].start;
300                         size = gd->bd->bi_dram[current_bank - 1].size;
301
302                         gd->bd->bi_dram[current_bank - 1].start =
303                                 gd->bd->bi_dram[current_bank].start;
304                         gd->bd->bi_dram[current_bank - 1].size =
305                                 gd->bd->bi_dram[current_bank].size;
306
307                         gd->bd->bi_dram[current_bank].start = start;
308                         gd->bd->bi_dram[current_bank].size = size;
309                 }
310                 current_bank--;
311         }
312 }
313
314 int dram_init_banksize(void)
315 {
316         sc_rm_mr_t mr;
317         sc_faddr_t start, end, end1, end2;
318         int i = 0;
319         int err;
320
321         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
322         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
323
324         for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
325                 err = get_owned_memreg(mr, &start, &end);
326                 if (!err) {
327                         start = roundup(start, MEMSTART_ALIGNMENT);
328                         if (start > end) /* Small memory region, no use it */
329                                 continue;
330
331                         if (start >= PHYS_SDRAM_1 && start <= end1) {
332                                 gd->bd->bi_dram[i].start = start;
333
334                                 if ((end + 1) <= end1)
335                                         gd->bd->bi_dram[i].size =
336                                                 end - start + 1;
337                                 else
338                                         gd->bd->bi_dram[i].size = end1 - start;
339
340                                 dram_bank_sort(i);
341                                 i++;
342                         } else if (start >= PHYS_SDRAM_2 && start <= end2) {
343                                 gd->bd->bi_dram[i].start = start;
344
345                                 if ((end + 1) <= end2)
346                                         gd->bd->bi_dram[i].size =
347                                                 end - start + 1;
348                                 else
349                                         gd->bd->bi_dram[i].size = end2 - start;
350
351                                 dram_bank_sort(i);
352                                 i++;
353                         }
354                 }
355         }
356
357         /* If error, set to the default value */
358         if (!i) {
359                 gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
360                 gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
361                 gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
362                 gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
363         }
364
365         return 0;
366 }
367
368 static u64 get_block_attrs(sc_faddr_t addr_start)
369 {
370         u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
371                 PTE_BLOCK_PXN | PTE_BLOCK_UXN;
372
373         if ((addr_start >= PHYS_SDRAM_1 &&
374              addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
375             (addr_start >= PHYS_SDRAM_2 &&
376              addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
377                 return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
378
379         return attr;
380 }
381
382 static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
383 {
384         sc_faddr_t end1, end2;
385
386         end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
387         end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
388
389         if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
390                 if ((addr_end + 1) > end1)
391                         return end1 - addr_start;
392         } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
393                 if ((addr_end + 1) > end2)
394                         return end2 - addr_start;
395         }
396
397         return (addr_end - addr_start + 1);
398 }
399
400 #define MAX_PTE_ENTRIES 512
401 #define MAX_MEM_MAP_REGIONS 16
402
403 static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
404 struct mm_region *mem_map = imx8_mem_map;
405
406 void enable_caches(void)
407 {
408         sc_rm_mr_t mr;
409         sc_faddr_t start, end;
410         int err, i;
411
412         /* Create map for registers access from 0x1c000000 to 0x80000000*/
413         imx8_mem_map[0].virt = 0x1c000000UL;
414         imx8_mem_map[0].phys = 0x1c000000UL;
415         imx8_mem_map[0].size = 0x64000000UL;
416         imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
417                          PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
418
419         i = 1;
420         for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
421                 err = get_owned_memreg(mr, &start, &end);
422                 if (!err) {
423                         imx8_mem_map[i].virt = start;
424                         imx8_mem_map[i].phys = start;
425                         imx8_mem_map[i].size = get_block_size(start, end);
426                         imx8_mem_map[i].attrs = get_block_attrs(start);
427                         i++;
428                 }
429         }
430
431         if (i < MAX_MEM_MAP_REGIONS) {
432                 imx8_mem_map[i].size = 0;
433                 imx8_mem_map[i].attrs = 0;
434         } else {
435                 puts("Error, need more MEM MAP REGIONS reserved\n");
436                 icache_enable();
437                 return;
438         }
439
440         for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
441                 debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
442                       i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
443                       imx8_mem_map[i].size, imx8_mem_map[i].attrs);
444         }
445
446         icache_enable();
447         dcache_enable();
448 }
449
450 #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
451 u64 get_page_table_size(void)
452 {
453         u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
454         u64 size = 0;
455
456         /*
457          * For each memory region, the max table size:
458          * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
459          */
460         size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
461
462         /*
463          * We need to duplicate our page table once to have an emergency pt to
464          * resort to when splitting page tables later on
465          */
466         size *= 2;
467
468         /*
469          * We may need to split page tables later on if dcache settings change,
470          * so reserve up to 4 (random pick) page tables for that.
471          */
472         size += one_pt * 4;
473
474         return size;
475 }
476 #endif
477
478 #define FUSE_MAC0_WORD0 708
479 #define FUSE_MAC0_WORD1 709
480 #define FUSE_MAC1_WORD0 710
481 #define FUSE_MAC1_WORD1 711
482
483 void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
484 {
485         u32 word[2], val[2] = {};
486         int i, ret;
487
488         if (dev_id == 0) {
489                 word[0] = FUSE_MAC0_WORD0;
490                 word[1] = FUSE_MAC0_WORD1;
491         } else {
492                 word[0] = FUSE_MAC1_WORD0;
493                 word[1] = FUSE_MAC1_WORD1;
494         }
495
496         for (i = 0; i < 2; i++) {
497                 ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
498                 if (ret < 0)
499                         goto err;
500         }
501
502         mac[0] = val[0];
503         mac[1] = val[0] >> 8;
504         mac[2] = val[0] >> 16;
505         mac[3] = val[0] >> 24;
506         mac[4] = val[1];
507         mac[5] = val[1] >> 8;
508
509         debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
510               __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
511         return;
512 err:
513         printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
514 }
515
516 u32 get_cpu_rev(void)
517 {
518         u32 id = 0, rev = 0;
519         int ret;
520
521         ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
522         if (ret)
523                 return 0;
524
525         rev = (id >> 5)  & 0xf;
526         id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */
527
528         return (id << 12) | rev;
529 }
530
531 #if CONFIG_IS_ENABLED(CPU)
532 struct cpu_imx_platdata {
533         const char *name;
534         const char *rev;
535         const char *type;
536         u32 cpurev;
537         u32 freq_mhz;
538 };
539
540 const char *get_imx8_type(u32 imxtype)
541 {
542         switch (imxtype) {
543         case MXC_CPU_IMX8QXP:
544         case MXC_CPU_IMX8QXP_A0:
545                 return "QXP";
546         case MXC_CPU_IMX8QM:
547                 return "QM";
548         default:
549                 return "??";
550         }
551 }
552
553 const char *get_imx8_rev(u32 rev)
554 {
555         switch (rev) {
556         case CHIP_REV_A:
557                 return "A";
558         case CHIP_REV_B:
559                 return "B";
560         default:
561                 return "?";
562         }
563 }
564
565 const char *get_core_name(void)
566 {
567         if (is_cortex_a35())
568                 return "A35";
569         else if (is_cortex_a53())
570                 return "A53";
571         else if (is_cortex_a72())
572                 return "A72";
573         else
574                 return "?";
575 }
576
577 #if IS_ENABLED(CONFIG_IMX_SCU_THERMAL)
578 static int cpu_imx_get_temp(void)
579 {
580         struct udevice *thermal_dev;
581         int cpu_tmp, ret;
582
583         ret = uclass_get_device_by_name(UCLASS_THERMAL, "cpu-thermal0",
584                                         &thermal_dev);
585
586         if (!ret) {
587                 ret = thermal_get_temp(thermal_dev, &cpu_tmp);
588                 if (ret)
589                         return 0xdeadbeef;
590         } else {
591                 return 0xdeadbeef;
592         }
593
594         return cpu_tmp;
595 }
596 #else
597 static int cpu_imx_get_temp(void)
598 {
599         return 0;
600 }
601 #endif
602
603 int cpu_imx_get_desc(struct udevice *dev, char *buf, int size)
604 {
605         struct cpu_imx_platdata *plat = dev_get_platdata(dev);
606         int ret;
607
608         if (size < 100)
609                 return -ENOSPC;
610
611         ret = snprintf(buf, size, "NXP i.MX8%s Rev%s %s at %u MHz",
612                        plat->type, plat->rev, plat->name, plat->freq_mhz);
613
614         if (IS_ENABLED(CONFIG_IMX_SCU_THERMAL)) {
615                 buf = buf + ret;
616                 size = size - ret;
617                 ret = snprintf(buf, size, " at %dC", cpu_imx_get_temp());
618         }
619
620         snprintf(buf + ret, size - ret, "\n");
621
622         return 0;
623 }
624
625 static int cpu_imx_get_info(struct udevice *dev, struct cpu_info *info)
626 {
627         struct cpu_imx_platdata *plat = dev_get_platdata(dev);
628
629         info->cpu_freq = plat->freq_mhz * 1000;
630         info->features = BIT(CPU_FEAT_L1_CACHE) | BIT(CPU_FEAT_MMU);
631         return 0;
632 }
633
634 static int cpu_imx_get_count(struct udevice *dev)
635 {
636         return 4;
637 }
638
639 static int cpu_imx_get_vendor(struct udevice *dev,  char *buf, int size)
640 {
641         snprintf(buf, size, "NXP");
642         return 0;
643 }
644
645 static const struct cpu_ops cpu_imx8_ops = {
646         .get_desc       = cpu_imx_get_desc,
647         .get_info       = cpu_imx_get_info,
648         .get_count      = cpu_imx_get_count,
649         .get_vendor     = cpu_imx_get_vendor,
650 };
651
652 static const struct udevice_id cpu_imx8_ids[] = {
653         { .compatible = "arm,cortex-a35" },
654         { .compatible = "arm,cortex-a53" },
655         { }
656 };
657
658 static ulong imx8_get_cpu_rate(void)
659 {
660         ulong rate;
661         int ret;
662         int type = is_cortex_a35() ? SC_R_A35 : is_cortex_a53() ?
663                    SC_R_A53 : SC_R_A72;
664
665         ret = sc_pm_get_clock_rate(-1, type, SC_PM_CLK_CPU,
666                                    (sc_pm_clock_rate_t *)&rate);
667         if (ret) {
668                 printf("Could not read CPU frequency: %d\n", ret);
669                 return 0;
670         }
671
672         return rate;
673 }
674
675 static int imx8_cpu_probe(struct udevice *dev)
676 {
677         struct cpu_imx_platdata *plat = dev_get_platdata(dev);
678         u32 cpurev;
679
680         cpurev = get_cpu_rev();
681         plat->cpurev = cpurev;
682         plat->name = get_core_name();
683         plat->rev = get_imx8_rev(cpurev & 0xFFF);
684         plat->type = get_imx8_type((cpurev & 0xFF000) >> 12);
685         plat->freq_mhz = imx8_get_cpu_rate() / 1000000;
686         return 0;
687 }
688
689 U_BOOT_DRIVER(cpu_imx8_drv) = {
690         .name           = "imx8x_cpu",
691         .id             = UCLASS_CPU,
692         .of_match       = cpu_imx8_ids,
693         .ops            = &cpu_imx8_ops,
694         .probe          = imx8_cpu_probe,
695         .platdata_auto_alloc_size = sizeof(struct cpu_imx_platdata),
696         .flags          = DM_FLAG_PRE_RELOC,
697 };
698 #endif