Linux-libre 4.14.12-gnu
[librecmc/linux-libre.git] / tools / perf / builtin-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4
5 #include "util/util.h"
6 #include "util/evlist.h"
7 #include "util/cache.h"
8 #include "util/evsel.h"
9 #include "util/symbol.h"
10 #include "util/thread.h"
11 #include "util/header.h"
12 #include "util/session.h"
13 #include "util/tool.h"
14 #include "util/cloexec.h"
15 #include "util/thread_map.h"
16 #include "util/color.h"
17 #include "util/stat.h"
18 #include "util/callchain.h"
19 #include "util/time-utils.h"
20
21 #include <subcmd/parse-options.h>
22 #include "util/trace-event.h"
23
24 #include "util/debug.h"
25
26 #include <linux/kernel.h>
27 #include <linux/log2.h>
28 #include <sys/prctl.h>
29 #include <sys/resource.h>
30 #include <inttypes.h>
31
32 #include <errno.h>
33 #include <semaphore.h>
34 #include <pthread.h>
35 #include <math.h>
36 #include <api/fs/fs.h>
37 #include <linux/time64.h>
38
39 #include "sane_ctype.h"
40
41 #define PR_SET_NAME             15               /* Set process name */
42 #define MAX_CPUS                4096
43 #define COMM_LEN                20
44 #define SYM_LEN                 129
45 #define MAX_PID                 1024000
46
47 struct sched_atom;
48
49 struct task_desc {
50         unsigned long           nr;
51         unsigned long           pid;
52         char                    comm[COMM_LEN];
53
54         unsigned long           nr_events;
55         unsigned long           curr_event;
56         struct sched_atom       **atoms;
57
58         pthread_t               thread;
59         sem_t                   sleep_sem;
60
61         sem_t                   ready_for_work;
62         sem_t                   work_done_sem;
63
64         u64                     cpu_usage;
65 };
66
67 enum sched_event_type {
68         SCHED_EVENT_RUN,
69         SCHED_EVENT_SLEEP,
70         SCHED_EVENT_WAKEUP,
71         SCHED_EVENT_MIGRATION,
72 };
73
74 struct sched_atom {
75         enum sched_event_type   type;
76         int                     specific_wait;
77         u64                     timestamp;
78         u64                     duration;
79         unsigned long           nr;
80         sem_t                   *wait_sem;
81         struct task_desc        *wakee;
82 };
83
84 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
85
86 /* task state bitmask, copied from include/linux/sched.h */
87 #define TASK_RUNNING            0
88 #define TASK_INTERRUPTIBLE      1
89 #define TASK_UNINTERRUPTIBLE    2
90 #define __TASK_STOPPED          4
91 #define __TASK_TRACED           8
92 /* in tsk->exit_state */
93 #define EXIT_DEAD               16
94 #define EXIT_ZOMBIE             32
95 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
96 /* in tsk->state again */
97 #define TASK_DEAD               64
98 #define TASK_WAKEKILL           128
99 #define TASK_WAKING             256
100 #define TASK_PARKED             512
101
102 enum thread_state {
103         THREAD_SLEEPING = 0,
104         THREAD_WAIT_CPU,
105         THREAD_SCHED_IN,
106         THREAD_IGNORE
107 };
108
109 struct work_atom {
110         struct list_head        list;
111         enum thread_state       state;
112         u64                     sched_out_time;
113         u64                     wake_up_time;
114         u64                     sched_in_time;
115         u64                     runtime;
116 };
117
118 struct work_atoms {
119         struct list_head        work_list;
120         struct thread           *thread;
121         struct rb_node          node;
122         u64                     max_lat;
123         u64                     max_lat_at;
124         u64                     total_lat;
125         u64                     nb_atoms;
126         u64                     total_runtime;
127         int                     num_merged;
128 };
129
130 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
131
132 struct perf_sched;
133
134 struct trace_sched_handler {
135         int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
136                             struct perf_sample *sample, struct machine *machine);
137
138         int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
139                              struct perf_sample *sample, struct machine *machine);
140
141         int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
142                             struct perf_sample *sample, struct machine *machine);
143
144         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
145         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
146                           struct machine *machine);
147
148         int (*migrate_task_event)(struct perf_sched *sched,
149                                   struct perf_evsel *evsel,
150                                   struct perf_sample *sample,
151                                   struct machine *machine);
152 };
153
154 #define COLOR_PIDS PERF_COLOR_BLUE
155 #define COLOR_CPUS PERF_COLOR_BG_RED
156
157 struct perf_sched_map {
158         DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
159         int                     *comp_cpus;
160         bool                     comp;
161         struct thread_map       *color_pids;
162         const char              *color_pids_str;
163         struct cpu_map          *color_cpus;
164         const char              *color_cpus_str;
165         struct cpu_map          *cpus;
166         const char              *cpus_str;
167 };
168
169 struct perf_sched {
170         struct perf_tool tool;
171         const char       *sort_order;
172         unsigned long    nr_tasks;
173         struct task_desc **pid_to_task;
174         struct task_desc **tasks;
175         const struct trace_sched_handler *tp_handler;
176         pthread_mutex_t  start_work_mutex;
177         pthread_mutex_t  work_done_wait_mutex;
178         int              profile_cpu;
179 /*
180  * Track the current task - that way we can know whether there's any
181  * weird events, such as a task being switched away that is not current.
182  */
183         int              max_cpu;
184         u32              curr_pid[MAX_CPUS];
185         struct thread    *curr_thread[MAX_CPUS];
186         char             next_shortname1;
187         char             next_shortname2;
188         unsigned int     replay_repeat;
189         unsigned long    nr_run_events;
190         unsigned long    nr_sleep_events;
191         unsigned long    nr_wakeup_events;
192         unsigned long    nr_sleep_corrections;
193         unsigned long    nr_run_events_optimized;
194         unsigned long    targetless_wakeups;
195         unsigned long    multitarget_wakeups;
196         unsigned long    nr_runs;
197         unsigned long    nr_timestamps;
198         unsigned long    nr_unordered_timestamps;
199         unsigned long    nr_context_switch_bugs;
200         unsigned long    nr_events;
201         unsigned long    nr_lost_chunks;
202         unsigned long    nr_lost_events;
203         u64              run_measurement_overhead;
204         u64              sleep_measurement_overhead;
205         u64              start_time;
206         u64              cpu_usage;
207         u64              runavg_cpu_usage;
208         u64              parent_cpu_usage;
209         u64              runavg_parent_cpu_usage;
210         u64              sum_runtime;
211         u64              sum_fluct;
212         u64              run_avg;
213         u64              all_runtime;
214         u64              all_count;
215         u64              cpu_last_switched[MAX_CPUS];
216         struct rb_root   atom_root, sorted_atom_root, merged_atom_root;
217         struct list_head sort_list, cmp_pid;
218         bool force;
219         bool skip_merge;
220         struct perf_sched_map map;
221
222         /* options for timehist command */
223         bool            summary;
224         bool            summary_only;
225         bool            idle_hist;
226         bool            show_callchain;
227         unsigned int    max_stack;
228         bool            show_cpu_visual;
229         bool            show_wakeups;
230         bool            show_next;
231         bool            show_migrations;
232         bool            show_state;
233         u64             skipped_samples;
234         const char      *time_str;
235         struct perf_time_interval ptime;
236         struct perf_time_interval hist_time;
237 };
238
239 /* per thread run time data */
240 struct thread_runtime {
241         u64 last_time;      /* time of previous sched in/out event */
242         u64 dt_run;         /* run time */
243         u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
244         u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
245         u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
246         u64 dt_delay;       /* time between wakeup and sched-in */
247         u64 ready_to_run;   /* time of wakeup */
248
249         struct stats run_stats;
250         u64 total_run_time;
251         u64 total_sleep_time;
252         u64 total_iowait_time;
253         u64 total_preempt_time;
254         u64 total_delay_time;
255
256         int last_state;
257         u64 migrations;
258 };
259
260 /* per event run time data */
261 struct evsel_runtime {
262         u64 *last_time; /* time this event was last seen per cpu */
263         u32 ncpu;       /* highest cpu slot allocated */
264 };
265
266 /* per cpu idle time data */
267 struct idle_thread_runtime {
268         struct thread_runtime   tr;
269         struct thread           *last_thread;
270         struct rb_root          sorted_root;
271         struct callchain_root   callchain;
272         struct callchain_cursor cursor;
273 };
274
275 /* track idle times per cpu */
276 static struct thread **idle_threads;
277 static int idle_max_cpu;
278 static char idle_comm[] = "<idle>";
279
280 static u64 get_nsecs(void)
281 {
282         struct timespec ts;
283
284         clock_gettime(CLOCK_MONOTONIC, &ts);
285
286         return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
287 }
288
289 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
290 {
291         u64 T0 = get_nsecs(), T1;
292
293         do {
294                 T1 = get_nsecs();
295         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
296 }
297
298 static void sleep_nsecs(u64 nsecs)
299 {
300         struct timespec ts;
301
302         ts.tv_nsec = nsecs % 999999999;
303         ts.tv_sec = nsecs / 999999999;
304
305         nanosleep(&ts, NULL);
306 }
307
308 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
309 {
310         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
311         int i;
312
313         for (i = 0; i < 10; i++) {
314                 T0 = get_nsecs();
315                 burn_nsecs(sched, 0);
316                 T1 = get_nsecs();
317                 delta = T1-T0;
318                 min_delta = min(min_delta, delta);
319         }
320         sched->run_measurement_overhead = min_delta;
321
322         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
323 }
324
325 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
326 {
327         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
328         int i;
329
330         for (i = 0; i < 10; i++) {
331                 T0 = get_nsecs();
332                 sleep_nsecs(10000);
333                 T1 = get_nsecs();
334                 delta = T1-T0;
335                 min_delta = min(min_delta, delta);
336         }
337         min_delta -= 10000;
338         sched->sleep_measurement_overhead = min_delta;
339
340         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
341 }
342
343 static struct sched_atom *
344 get_new_event(struct task_desc *task, u64 timestamp)
345 {
346         struct sched_atom *event = zalloc(sizeof(*event));
347         unsigned long idx = task->nr_events;
348         size_t size;
349
350         event->timestamp = timestamp;
351         event->nr = idx;
352
353         task->nr_events++;
354         size = sizeof(struct sched_atom *) * task->nr_events;
355         task->atoms = realloc(task->atoms, size);
356         BUG_ON(!task->atoms);
357
358         task->atoms[idx] = event;
359
360         return event;
361 }
362
363 static struct sched_atom *last_event(struct task_desc *task)
364 {
365         if (!task->nr_events)
366                 return NULL;
367
368         return task->atoms[task->nr_events - 1];
369 }
370
371 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
372                                 u64 timestamp, u64 duration)
373 {
374         struct sched_atom *event, *curr_event = last_event(task);
375
376         /*
377          * optimize an existing RUN event by merging this one
378          * to it:
379          */
380         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
381                 sched->nr_run_events_optimized++;
382                 curr_event->duration += duration;
383                 return;
384         }
385
386         event = get_new_event(task, timestamp);
387
388         event->type = SCHED_EVENT_RUN;
389         event->duration = duration;
390
391         sched->nr_run_events++;
392 }
393
394 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
395                                    u64 timestamp, struct task_desc *wakee)
396 {
397         struct sched_atom *event, *wakee_event;
398
399         event = get_new_event(task, timestamp);
400         event->type = SCHED_EVENT_WAKEUP;
401         event->wakee = wakee;
402
403         wakee_event = last_event(wakee);
404         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
405                 sched->targetless_wakeups++;
406                 return;
407         }
408         if (wakee_event->wait_sem) {
409                 sched->multitarget_wakeups++;
410                 return;
411         }
412
413         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
414         sem_init(wakee_event->wait_sem, 0, 0);
415         wakee_event->specific_wait = 1;
416         event->wait_sem = wakee_event->wait_sem;
417
418         sched->nr_wakeup_events++;
419 }
420
421 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
422                                   u64 timestamp, u64 task_state __maybe_unused)
423 {
424         struct sched_atom *event = get_new_event(task, timestamp);
425
426         event->type = SCHED_EVENT_SLEEP;
427
428         sched->nr_sleep_events++;
429 }
430
431 static struct task_desc *register_pid(struct perf_sched *sched,
432                                       unsigned long pid, const char *comm)
433 {
434         struct task_desc *task;
435         static int pid_max;
436
437         if (sched->pid_to_task == NULL) {
438                 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
439                         pid_max = MAX_PID;
440                 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
441         }
442         if (pid >= (unsigned long)pid_max) {
443                 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
444                         sizeof(struct task_desc *))) == NULL);
445                 while (pid >= (unsigned long)pid_max)
446                         sched->pid_to_task[pid_max++] = NULL;
447         }
448
449         task = sched->pid_to_task[pid];
450
451         if (task)
452                 return task;
453
454         task = zalloc(sizeof(*task));
455         task->pid = pid;
456         task->nr = sched->nr_tasks;
457         strcpy(task->comm, comm);
458         /*
459          * every task starts in sleeping state - this gets ignored
460          * if there's no wakeup pointing to this sleep state:
461          */
462         add_sched_event_sleep(sched, task, 0, 0);
463
464         sched->pid_to_task[pid] = task;
465         sched->nr_tasks++;
466         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
467         BUG_ON(!sched->tasks);
468         sched->tasks[task->nr] = task;
469
470         if (verbose > 0)
471                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
472
473         return task;
474 }
475
476
477 static void print_task_traces(struct perf_sched *sched)
478 {
479         struct task_desc *task;
480         unsigned long i;
481
482         for (i = 0; i < sched->nr_tasks; i++) {
483                 task = sched->tasks[i];
484                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
485                         task->nr, task->comm, task->pid, task->nr_events);
486         }
487 }
488
489 static void add_cross_task_wakeups(struct perf_sched *sched)
490 {
491         struct task_desc *task1, *task2;
492         unsigned long i, j;
493
494         for (i = 0; i < sched->nr_tasks; i++) {
495                 task1 = sched->tasks[i];
496                 j = i + 1;
497                 if (j == sched->nr_tasks)
498                         j = 0;
499                 task2 = sched->tasks[j];
500                 add_sched_event_wakeup(sched, task1, 0, task2);
501         }
502 }
503
504 static void perf_sched__process_event(struct perf_sched *sched,
505                                       struct sched_atom *atom)
506 {
507         int ret = 0;
508
509         switch (atom->type) {
510                 case SCHED_EVENT_RUN:
511                         burn_nsecs(sched, atom->duration);
512                         break;
513                 case SCHED_EVENT_SLEEP:
514                         if (atom->wait_sem)
515                                 ret = sem_wait(atom->wait_sem);
516                         BUG_ON(ret);
517                         break;
518                 case SCHED_EVENT_WAKEUP:
519                         if (atom->wait_sem)
520                                 ret = sem_post(atom->wait_sem);
521                         BUG_ON(ret);
522                         break;
523                 case SCHED_EVENT_MIGRATION:
524                         break;
525                 default:
526                         BUG_ON(1);
527         }
528 }
529
530 static u64 get_cpu_usage_nsec_parent(void)
531 {
532         struct rusage ru;
533         u64 sum;
534         int err;
535
536         err = getrusage(RUSAGE_SELF, &ru);
537         BUG_ON(err);
538
539         sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
540         sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
541
542         return sum;
543 }
544
545 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
546 {
547         struct perf_event_attr attr;
548         char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
549         int fd;
550         struct rlimit limit;
551         bool need_privilege = false;
552
553         memset(&attr, 0, sizeof(attr));
554
555         attr.type = PERF_TYPE_SOFTWARE;
556         attr.config = PERF_COUNT_SW_TASK_CLOCK;
557
558 force_again:
559         fd = sys_perf_event_open(&attr, 0, -1, -1,
560                                  perf_event_open_cloexec_flag());
561
562         if (fd < 0) {
563                 if (errno == EMFILE) {
564                         if (sched->force) {
565                                 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
566                                 limit.rlim_cur += sched->nr_tasks - cur_task;
567                                 if (limit.rlim_cur > limit.rlim_max) {
568                                         limit.rlim_max = limit.rlim_cur;
569                                         need_privilege = true;
570                                 }
571                                 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
572                                         if (need_privilege && errno == EPERM)
573                                                 strcpy(info, "Need privilege\n");
574                                 } else
575                                         goto force_again;
576                         } else
577                                 strcpy(info, "Have a try with -f option\n");
578                 }
579                 pr_err("Error: sys_perf_event_open() syscall returned "
580                        "with %d (%s)\n%s", fd,
581                        str_error_r(errno, sbuf, sizeof(sbuf)), info);
582                 exit(EXIT_FAILURE);
583         }
584         return fd;
585 }
586
587 static u64 get_cpu_usage_nsec_self(int fd)
588 {
589         u64 runtime;
590         int ret;
591
592         ret = read(fd, &runtime, sizeof(runtime));
593         BUG_ON(ret != sizeof(runtime));
594
595         return runtime;
596 }
597
598 struct sched_thread_parms {
599         struct task_desc  *task;
600         struct perf_sched *sched;
601         int fd;
602 };
603
604 static void *thread_func(void *ctx)
605 {
606         struct sched_thread_parms *parms = ctx;
607         struct task_desc *this_task = parms->task;
608         struct perf_sched *sched = parms->sched;
609         u64 cpu_usage_0, cpu_usage_1;
610         unsigned long i, ret;
611         char comm2[22];
612         int fd = parms->fd;
613
614         zfree(&parms);
615
616         sprintf(comm2, ":%s", this_task->comm);
617         prctl(PR_SET_NAME, comm2);
618         if (fd < 0)
619                 return NULL;
620 again:
621         ret = sem_post(&this_task->ready_for_work);
622         BUG_ON(ret);
623         ret = pthread_mutex_lock(&sched->start_work_mutex);
624         BUG_ON(ret);
625         ret = pthread_mutex_unlock(&sched->start_work_mutex);
626         BUG_ON(ret);
627
628         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
629
630         for (i = 0; i < this_task->nr_events; i++) {
631                 this_task->curr_event = i;
632                 perf_sched__process_event(sched, this_task->atoms[i]);
633         }
634
635         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
636         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
637         ret = sem_post(&this_task->work_done_sem);
638         BUG_ON(ret);
639
640         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
641         BUG_ON(ret);
642         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
643         BUG_ON(ret);
644
645         goto again;
646 }
647
648 static void create_tasks(struct perf_sched *sched)
649 {
650         struct task_desc *task;
651         pthread_attr_t attr;
652         unsigned long i;
653         int err;
654
655         err = pthread_attr_init(&attr);
656         BUG_ON(err);
657         err = pthread_attr_setstacksize(&attr,
658                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
659         BUG_ON(err);
660         err = pthread_mutex_lock(&sched->start_work_mutex);
661         BUG_ON(err);
662         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
663         BUG_ON(err);
664         for (i = 0; i < sched->nr_tasks; i++) {
665                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
666                 BUG_ON(parms == NULL);
667                 parms->task = task = sched->tasks[i];
668                 parms->sched = sched;
669                 parms->fd = self_open_counters(sched, i);
670                 sem_init(&task->sleep_sem, 0, 0);
671                 sem_init(&task->ready_for_work, 0, 0);
672                 sem_init(&task->work_done_sem, 0, 0);
673                 task->curr_event = 0;
674                 err = pthread_create(&task->thread, &attr, thread_func, parms);
675                 BUG_ON(err);
676         }
677 }
678
679 static void wait_for_tasks(struct perf_sched *sched)
680 {
681         u64 cpu_usage_0, cpu_usage_1;
682         struct task_desc *task;
683         unsigned long i, ret;
684
685         sched->start_time = get_nsecs();
686         sched->cpu_usage = 0;
687         pthread_mutex_unlock(&sched->work_done_wait_mutex);
688
689         for (i = 0; i < sched->nr_tasks; i++) {
690                 task = sched->tasks[i];
691                 ret = sem_wait(&task->ready_for_work);
692                 BUG_ON(ret);
693                 sem_init(&task->ready_for_work, 0, 0);
694         }
695         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
696         BUG_ON(ret);
697
698         cpu_usage_0 = get_cpu_usage_nsec_parent();
699
700         pthread_mutex_unlock(&sched->start_work_mutex);
701
702         for (i = 0; i < sched->nr_tasks; i++) {
703                 task = sched->tasks[i];
704                 ret = sem_wait(&task->work_done_sem);
705                 BUG_ON(ret);
706                 sem_init(&task->work_done_sem, 0, 0);
707                 sched->cpu_usage += task->cpu_usage;
708                 task->cpu_usage = 0;
709         }
710
711         cpu_usage_1 = get_cpu_usage_nsec_parent();
712         if (!sched->runavg_cpu_usage)
713                 sched->runavg_cpu_usage = sched->cpu_usage;
714         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
715
716         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
717         if (!sched->runavg_parent_cpu_usage)
718                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
719         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
720                                          sched->parent_cpu_usage)/sched->replay_repeat;
721
722         ret = pthread_mutex_lock(&sched->start_work_mutex);
723         BUG_ON(ret);
724
725         for (i = 0; i < sched->nr_tasks; i++) {
726                 task = sched->tasks[i];
727                 sem_init(&task->sleep_sem, 0, 0);
728                 task->curr_event = 0;
729         }
730 }
731
732 static void run_one_test(struct perf_sched *sched)
733 {
734         u64 T0, T1, delta, avg_delta, fluct;
735
736         T0 = get_nsecs();
737         wait_for_tasks(sched);
738         T1 = get_nsecs();
739
740         delta = T1 - T0;
741         sched->sum_runtime += delta;
742         sched->nr_runs++;
743
744         avg_delta = sched->sum_runtime / sched->nr_runs;
745         if (delta < avg_delta)
746                 fluct = avg_delta - delta;
747         else
748                 fluct = delta - avg_delta;
749         sched->sum_fluct += fluct;
750         if (!sched->run_avg)
751                 sched->run_avg = delta;
752         sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
753
754         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
755
756         printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
757
758         printf("cpu: %0.2f / %0.2f",
759                 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
760
761 #if 0
762         /*
763          * rusage statistics done by the parent, these are less
764          * accurate than the sched->sum_exec_runtime based statistics:
765          */
766         printf(" [%0.2f / %0.2f]",
767                 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
768                 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
769 #endif
770
771         printf("\n");
772
773         if (sched->nr_sleep_corrections)
774                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
775         sched->nr_sleep_corrections = 0;
776 }
777
778 static void test_calibrations(struct perf_sched *sched)
779 {
780         u64 T0, T1;
781
782         T0 = get_nsecs();
783         burn_nsecs(sched, NSEC_PER_MSEC);
784         T1 = get_nsecs();
785
786         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
787
788         T0 = get_nsecs();
789         sleep_nsecs(NSEC_PER_MSEC);
790         T1 = get_nsecs();
791
792         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
793 }
794
795 static int
796 replay_wakeup_event(struct perf_sched *sched,
797                     struct perf_evsel *evsel, struct perf_sample *sample,
798                     struct machine *machine __maybe_unused)
799 {
800         const char *comm = perf_evsel__strval(evsel, sample, "comm");
801         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
802         struct task_desc *waker, *wakee;
803
804         if (verbose > 0) {
805                 printf("sched_wakeup event %p\n", evsel);
806
807                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
808         }
809
810         waker = register_pid(sched, sample->tid, "<unknown>");
811         wakee = register_pid(sched, pid, comm);
812
813         add_sched_event_wakeup(sched, waker, sample->time, wakee);
814         return 0;
815 }
816
817 static int replay_switch_event(struct perf_sched *sched,
818                                struct perf_evsel *evsel,
819                                struct perf_sample *sample,
820                                struct machine *machine __maybe_unused)
821 {
822         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
823                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
824         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
825                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
826         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
827         struct task_desc *prev, __maybe_unused *next;
828         u64 timestamp0, timestamp = sample->time;
829         int cpu = sample->cpu;
830         s64 delta;
831
832         if (verbose > 0)
833                 printf("sched_switch event %p\n", evsel);
834
835         if (cpu >= MAX_CPUS || cpu < 0)
836                 return 0;
837
838         timestamp0 = sched->cpu_last_switched[cpu];
839         if (timestamp0)
840                 delta = timestamp - timestamp0;
841         else
842                 delta = 0;
843
844         if (delta < 0) {
845                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
846                 return -1;
847         }
848
849         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
850                  prev_comm, prev_pid, next_comm, next_pid, delta);
851
852         prev = register_pid(sched, prev_pid, prev_comm);
853         next = register_pid(sched, next_pid, next_comm);
854
855         sched->cpu_last_switched[cpu] = timestamp;
856
857         add_sched_event_run(sched, prev, timestamp, delta);
858         add_sched_event_sleep(sched, prev, timestamp, prev_state);
859
860         return 0;
861 }
862
863 static int replay_fork_event(struct perf_sched *sched,
864                              union perf_event *event,
865                              struct machine *machine)
866 {
867         struct thread *child, *parent;
868
869         child = machine__findnew_thread(machine, event->fork.pid,
870                                         event->fork.tid);
871         parent = machine__findnew_thread(machine, event->fork.ppid,
872                                          event->fork.ptid);
873
874         if (child == NULL || parent == NULL) {
875                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
876                                  child, parent);
877                 goto out_put;
878         }
879
880         if (verbose > 0) {
881                 printf("fork event\n");
882                 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
883                 printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
884         }
885
886         register_pid(sched, parent->tid, thread__comm_str(parent));
887         register_pid(sched, child->tid, thread__comm_str(child));
888 out_put:
889         thread__put(child);
890         thread__put(parent);
891         return 0;
892 }
893
894 struct sort_dimension {
895         const char              *name;
896         sort_fn_t               cmp;
897         struct list_head        list;
898 };
899
900 static int
901 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
902 {
903         struct sort_dimension *sort;
904         int ret = 0;
905
906         BUG_ON(list_empty(list));
907
908         list_for_each_entry(sort, list, list) {
909                 ret = sort->cmp(l, r);
910                 if (ret)
911                         return ret;
912         }
913
914         return ret;
915 }
916
917 static struct work_atoms *
918 thread_atoms_search(struct rb_root *root, struct thread *thread,
919                          struct list_head *sort_list)
920 {
921         struct rb_node *node = root->rb_node;
922         struct work_atoms key = { .thread = thread };
923
924         while (node) {
925                 struct work_atoms *atoms;
926                 int cmp;
927
928                 atoms = container_of(node, struct work_atoms, node);
929
930                 cmp = thread_lat_cmp(sort_list, &key, atoms);
931                 if (cmp > 0)
932                         node = node->rb_left;
933                 else if (cmp < 0)
934                         node = node->rb_right;
935                 else {
936                         BUG_ON(thread != atoms->thread);
937                         return atoms;
938                 }
939         }
940         return NULL;
941 }
942
943 static void
944 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
945                          struct list_head *sort_list)
946 {
947         struct rb_node **new = &(root->rb_node), *parent = NULL;
948
949         while (*new) {
950                 struct work_atoms *this;
951                 int cmp;
952
953                 this = container_of(*new, struct work_atoms, node);
954                 parent = *new;
955
956                 cmp = thread_lat_cmp(sort_list, data, this);
957
958                 if (cmp > 0)
959                         new = &((*new)->rb_left);
960                 else
961                         new = &((*new)->rb_right);
962         }
963
964         rb_link_node(&data->node, parent, new);
965         rb_insert_color(&data->node, root);
966 }
967
968 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
969 {
970         struct work_atoms *atoms = zalloc(sizeof(*atoms));
971         if (!atoms) {
972                 pr_err("No memory at %s\n", __func__);
973                 return -1;
974         }
975
976         atoms->thread = thread__get(thread);
977         INIT_LIST_HEAD(&atoms->work_list);
978         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
979         return 0;
980 }
981
982 static char sched_out_state(u64 prev_state)
983 {
984         const char *str = TASK_STATE_TO_CHAR_STR;
985
986         return str[prev_state];
987 }
988
989 static int
990 add_sched_out_event(struct work_atoms *atoms,
991                     char run_state,
992                     u64 timestamp)
993 {
994         struct work_atom *atom = zalloc(sizeof(*atom));
995         if (!atom) {
996                 pr_err("Non memory at %s", __func__);
997                 return -1;
998         }
999
1000         atom->sched_out_time = timestamp;
1001
1002         if (run_state == 'R') {
1003                 atom->state = THREAD_WAIT_CPU;
1004                 atom->wake_up_time = atom->sched_out_time;
1005         }
1006
1007         list_add_tail(&atom->list, &atoms->work_list);
1008         return 0;
1009 }
1010
1011 static void
1012 add_runtime_event(struct work_atoms *atoms, u64 delta,
1013                   u64 timestamp __maybe_unused)
1014 {
1015         struct work_atom *atom;
1016
1017         BUG_ON(list_empty(&atoms->work_list));
1018
1019         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1020
1021         atom->runtime += delta;
1022         atoms->total_runtime += delta;
1023 }
1024
1025 static void
1026 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1027 {
1028         struct work_atom *atom;
1029         u64 delta;
1030
1031         if (list_empty(&atoms->work_list))
1032                 return;
1033
1034         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1035
1036         if (atom->state != THREAD_WAIT_CPU)
1037                 return;
1038
1039         if (timestamp < atom->wake_up_time) {
1040                 atom->state = THREAD_IGNORE;
1041                 return;
1042         }
1043
1044         atom->state = THREAD_SCHED_IN;
1045         atom->sched_in_time = timestamp;
1046
1047         delta = atom->sched_in_time - atom->wake_up_time;
1048         atoms->total_lat += delta;
1049         if (delta > atoms->max_lat) {
1050                 atoms->max_lat = delta;
1051                 atoms->max_lat_at = timestamp;
1052         }
1053         atoms->nb_atoms++;
1054 }
1055
1056 static int latency_switch_event(struct perf_sched *sched,
1057                                 struct perf_evsel *evsel,
1058                                 struct perf_sample *sample,
1059                                 struct machine *machine)
1060 {
1061         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1062                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1063         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1064         struct work_atoms *out_events, *in_events;
1065         struct thread *sched_out, *sched_in;
1066         u64 timestamp0, timestamp = sample->time;
1067         int cpu = sample->cpu, err = -1;
1068         s64 delta;
1069
1070         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1071
1072         timestamp0 = sched->cpu_last_switched[cpu];
1073         sched->cpu_last_switched[cpu] = timestamp;
1074         if (timestamp0)
1075                 delta = timestamp - timestamp0;
1076         else
1077                 delta = 0;
1078
1079         if (delta < 0) {
1080                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1081                 return -1;
1082         }
1083
1084         sched_out = machine__findnew_thread(machine, -1, prev_pid);
1085         sched_in = machine__findnew_thread(machine, -1, next_pid);
1086         if (sched_out == NULL || sched_in == NULL)
1087                 goto out_put;
1088
1089         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1090         if (!out_events) {
1091                 if (thread_atoms_insert(sched, sched_out))
1092                         goto out_put;
1093                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1094                 if (!out_events) {
1095                         pr_err("out-event: Internal tree error");
1096                         goto out_put;
1097                 }
1098         }
1099         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1100                 return -1;
1101
1102         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1103         if (!in_events) {
1104                 if (thread_atoms_insert(sched, sched_in))
1105                         goto out_put;
1106                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1107                 if (!in_events) {
1108                         pr_err("in-event: Internal tree error");
1109                         goto out_put;
1110                 }
1111                 /*
1112                  * Take came in we have not heard about yet,
1113                  * add in an initial atom in runnable state:
1114                  */
1115                 if (add_sched_out_event(in_events, 'R', timestamp))
1116                         goto out_put;
1117         }
1118         add_sched_in_event(in_events, timestamp);
1119         err = 0;
1120 out_put:
1121         thread__put(sched_out);
1122         thread__put(sched_in);
1123         return err;
1124 }
1125
1126 static int latency_runtime_event(struct perf_sched *sched,
1127                                  struct perf_evsel *evsel,
1128                                  struct perf_sample *sample,
1129                                  struct machine *machine)
1130 {
1131         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1132         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1133         struct thread *thread = machine__findnew_thread(machine, -1, pid);
1134         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1135         u64 timestamp = sample->time;
1136         int cpu = sample->cpu, err = -1;
1137
1138         if (thread == NULL)
1139                 return -1;
1140
1141         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1142         if (!atoms) {
1143                 if (thread_atoms_insert(sched, thread))
1144                         goto out_put;
1145                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1146                 if (!atoms) {
1147                         pr_err("in-event: Internal tree error");
1148                         goto out_put;
1149                 }
1150                 if (add_sched_out_event(atoms, 'R', timestamp))
1151                         goto out_put;
1152         }
1153
1154         add_runtime_event(atoms, runtime, timestamp);
1155         err = 0;
1156 out_put:
1157         thread__put(thread);
1158         return err;
1159 }
1160
1161 static int latency_wakeup_event(struct perf_sched *sched,
1162                                 struct perf_evsel *evsel,
1163                                 struct perf_sample *sample,
1164                                 struct machine *machine)
1165 {
1166         const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1167         struct work_atoms *atoms;
1168         struct work_atom *atom;
1169         struct thread *wakee;
1170         u64 timestamp = sample->time;
1171         int err = -1;
1172
1173         wakee = machine__findnew_thread(machine, -1, pid);
1174         if (wakee == NULL)
1175                 return -1;
1176         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1177         if (!atoms) {
1178                 if (thread_atoms_insert(sched, wakee))
1179                         goto out_put;
1180                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1181                 if (!atoms) {
1182                         pr_err("wakeup-event: Internal tree error");
1183                         goto out_put;
1184                 }
1185                 if (add_sched_out_event(atoms, 'S', timestamp))
1186                         goto out_put;
1187         }
1188
1189         BUG_ON(list_empty(&atoms->work_list));
1190
1191         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1192
1193         /*
1194          * As we do not guarantee the wakeup event happens when
1195          * task is out of run queue, also may happen when task is
1196          * on run queue and wakeup only change ->state to TASK_RUNNING,
1197          * then we should not set the ->wake_up_time when wake up a
1198          * task which is on run queue.
1199          *
1200          * You WILL be missing events if you've recorded only
1201          * one CPU, or are only looking at only one, so don't
1202          * skip in this case.
1203          */
1204         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1205                 goto out_ok;
1206
1207         sched->nr_timestamps++;
1208         if (atom->sched_out_time > timestamp) {
1209                 sched->nr_unordered_timestamps++;
1210                 goto out_ok;
1211         }
1212
1213         atom->state = THREAD_WAIT_CPU;
1214         atom->wake_up_time = timestamp;
1215 out_ok:
1216         err = 0;
1217 out_put:
1218         thread__put(wakee);
1219         return err;
1220 }
1221
1222 static int latency_migrate_task_event(struct perf_sched *sched,
1223                                       struct perf_evsel *evsel,
1224                                       struct perf_sample *sample,
1225                                       struct machine *machine)
1226 {
1227         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1228         u64 timestamp = sample->time;
1229         struct work_atoms *atoms;
1230         struct work_atom *atom;
1231         struct thread *migrant;
1232         int err = -1;
1233
1234         /*
1235          * Only need to worry about migration when profiling one CPU.
1236          */
1237         if (sched->profile_cpu == -1)
1238                 return 0;
1239
1240         migrant = machine__findnew_thread(machine, -1, pid);
1241         if (migrant == NULL)
1242                 return -1;
1243         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1244         if (!atoms) {
1245                 if (thread_atoms_insert(sched, migrant))
1246                         goto out_put;
1247                 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1248                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1249                 if (!atoms) {
1250                         pr_err("migration-event: Internal tree error");
1251                         goto out_put;
1252                 }
1253                 if (add_sched_out_event(atoms, 'R', timestamp))
1254                         goto out_put;
1255         }
1256
1257         BUG_ON(list_empty(&atoms->work_list));
1258
1259         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1260         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1261
1262         sched->nr_timestamps++;
1263
1264         if (atom->sched_out_time > timestamp)
1265                 sched->nr_unordered_timestamps++;
1266         err = 0;
1267 out_put:
1268         thread__put(migrant);
1269         return err;
1270 }
1271
1272 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1273 {
1274         int i;
1275         int ret;
1276         u64 avg;
1277         char max_lat_at[32];
1278
1279         if (!work_list->nb_atoms)
1280                 return;
1281         /*
1282          * Ignore idle threads:
1283          */
1284         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1285                 return;
1286
1287         sched->all_runtime += work_list->total_runtime;
1288         sched->all_count   += work_list->nb_atoms;
1289
1290         if (work_list->num_merged > 1)
1291                 ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1292         else
1293                 ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1294
1295         for (i = 0; i < 24 - ret; i++)
1296                 printf(" ");
1297
1298         avg = work_list->total_lat / work_list->nb_atoms;
1299         timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1300
1301         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1302               (double)work_list->total_runtime / NSEC_PER_MSEC,
1303                  work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1304                  (double)work_list->max_lat / NSEC_PER_MSEC,
1305                  max_lat_at);
1306 }
1307
1308 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1309 {
1310         if (l->thread == r->thread)
1311                 return 0;
1312         if (l->thread->tid < r->thread->tid)
1313                 return -1;
1314         if (l->thread->tid > r->thread->tid)
1315                 return 1;
1316         return (int)(l->thread - r->thread);
1317 }
1318
1319 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1320 {
1321         u64 avgl, avgr;
1322
1323         if (!l->nb_atoms)
1324                 return -1;
1325
1326         if (!r->nb_atoms)
1327                 return 1;
1328
1329         avgl = l->total_lat / l->nb_atoms;
1330         avgr = r->total_lat / r->nb_atoms;
1331
1332         if (avgl < avgr)
1333                 return -1;
1334         if (avgl > avgr)
1335                 return 1;
1336
1337         return 0;
1338 }
1339
1340 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1341 {
1342         if (l->max_lat < r->max_lat)
1343                 return -1;
1344         if (l->max_lat > r->max_lat)
1345                 return 1;
1346
1347         return 0;
1348 }
1349
1350 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1351 {
1352         if (l->nb_atoms < r->nb_atoms)
1353                 return -1;
1354         if (l->nb_atoms > r->nb_atoms)
1355                 return 1;
1356
1357         return 0;
1358 }
1359
1360 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1361 {
1362         if (l->total_runtime < r->total_runtime)
1363                 return -1;
1364         if (l->total_runtime > r->total_runtime)
1365                 return 1;
1366
1367         return 0;
1368 }
1369
1370 static int sort_dimension__add(const char *tok, struct list_head *list)
1371 {
1372         size_t i;
1373         static struct sort_dimension avg_sort_dimension = {
1374                 .name = "avg",
1375                 .cmp  = avg_cmp,
1376         };
1377         static struct sort_dimension max_sort_dimension = {
1378                 .name = "max",
1379                 .cmp  = max_cmp,
1380         };
1381         static struct sort_dimension pid_sort_dimension = {
1382                 .name = "pid",
1383                 .cmp  = pid_cmp,
1384         };
1385         static struct sort_dimension runtime_sort_dimension = {
1386                 .name = "runtime",
1387                 .cmp  = runtime_cmp,
1388         };
1389         static struct sort_dimension switch_sort_dimension = {
1390                 .name = "switch",
1391                 .cmp  = switch_cmp,
1392         };
1393         struct sort_dimension *available_sorts[] = {
1394                 &pid_sort_dimension,
1395                 &avg_sort_dimension,
1396                 &max_sort_dimension,
1397                 &switch_sort_dimension,
1398                 &runtime_sort_dimension,
1399         };
1400
1401         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1402                 if (!strcmp(available_sorts[i]->name, tok)) {
1403                         list_add_tail(&available_sorts[i]->list, list);
1404
1405                         return 0;
1406                 }
1407         }
1408
1409         return -1;
1410 }
1411
1412 static void perf_sched__sort_lat(struct perf_sched *sched)
1413 {
1414         struct rb_node *node;
1415         struct rb_root *root = &sched->atom_root;
1416 again:
1417         for (;;) {
1418                 struct work_atoms *data;
1419                 node = rb_first(root);
1420                 if (!node)
1421                         break;
1422
1423                 rb_erase(node, root);
1424                 data = rb_entry(node, struct work_atoms, node);
1425                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1426         }
1427         if (root == &sched->atom_root) {
1428                 root = &sched->merged_atom_root;
1429                 goto again;
1430         }
1431 }
1432
1433 static int process_sched_wakeup_event(struct perf_tool *tool,
1434                                       struct perf_evsel *evsel,
1435                                       struct perf_sample *sample,
1436                                       struct machine *machine)
1437 {
1438         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1439
1440         if (sched->tp_handler->wakeup_event)
1441                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1442
1443         return 0;
1444 }
1445
1446 union map_priv {
1447         void    *ptr;
1448         bool     color;
1449 };
1450
1451 static bool thread__has_color(struct thread *thread)
1452 {
1453         union map_priv priv = {
1454                 .ptr = thread__priv(thread),
1455         };
1456
1457         return priv.color;
1458 }
1459
1460 static struct thread*
1461 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1462 {
1463         struct thread *thread = machine__findnew_thread(machine, pid, tid);
1464         union map_priv priv = {
1465                 .color = false,
1466         };
1467
1468         if (!sched->map.color_pids || !thread || thread__priv(thread))
1469                 return thread;
1470
1471         if (thread_map__has(sched->map.color_pids, tid))
1472                 priv.color = true;
1473
1474         thread__set_priv(thread, priv.ptr);
1475         return thread;
1476 }
1477
1478 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1479                             struct perf_sample *sample, struct machine *machine)
1480 {
1481         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1482         struct thread *sched_in;
1483         int new_shortname;
1484         u64 timestamp0, timestamp = sample->time;
1485         s64 delta;
1486         int i, this_cpu = sample->cpu;
1487         int cpus_nr;
1488         bool new_cpu = false;
1489         const char *color = PERF_COLOR_NORMAL;
1490         char stimestamp[32];
1491
1492         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1493
1494         if (this_cpu > sched->max_cpu)
1495                 sched->max_cpu = this_cpu;
1496
1497         if (sched->map.comp) {
1498                 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1499                 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1500                         sched->map.comp_cpus[cpus_nr++] = this_cpu;
1501                         new_cpu = true;
1502                 }
1503         } else
1504                 cpus_nr = sched->max_cpu;
1505
1506         timestamp0 = sched->cpu_last_switched[this_cpu];
1507         sched->cpu_last_switched[this_cpu] = timestamp;
1508         if (timestamp0)
1509                 delta = timestamp - timestamp0;
1510         else
1511                 delta = 0;
1512
1513         if (delta < 0) {
1514                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1515                 return -1;
1516         }
1517
1518         sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1519         if (sched_in == NULL)
1520                 return -1;
1521
1522         sched->curr_thread[this_cpu] = thread__get(sched_in);
1523
1524         printf("  ");
1525
1526         new_shortname = 0;
1527         if (!sched_in->shortname[0]) {
1528                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1529                         /*
1530                          * Don't allocate a letter-number for swapper:0
1531                          * as a shortname. Instead, we use '.' for it.
1532                          */
1533                         sched_in->shortname[0] = '.';
1534                         sched_in->shortname[1] = ' ';
1535                 } else {
1536                         sched_in->shortname[0] = sched->next_shortname1;
1537                         sched_in->shortname[1] = sched->next_shortname2;
1538
1539                         if (sched->next_shortname1 < 'Z') {
1540                                 sched->next_shortname1++;
1541                         } else {
1542                                 sched->next_shortname1 = 'A';
1543                                 if (sched->next_shortname2 < '9')
1544                                         sched->next_shortname2++;
1545                                 else
1546                                         sched->next_shortname2 = '0';
1547                         }
1548                 }
1549                 new_shortname = 1;
1550         }
1551
1552         for (i = 0; i < cpus_nr; i++) {
1553                 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1554                 struct thread *curr_thread = sched->curr_thread[cpu];
1555                 const char *pid_color = color;
1556                 const char *cpu_color = color;
1557
1558                 if (curr_thread && thread__has_color(curr_thread))
1559                         pid_color = COLOR_PIDS;
1560
1561                 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1562                         continue;
1563
1564                 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1565                         cpu_color = COLOR_CPUS;
1566
1567                 if (cpu != this_cpu)
1568                         color_fprintf(stdout, color, " ");
1569                 else
1570                         color_fprintf(stdout, cpu_color, "*");
1571
1572                 if (sched->curr_thread[cpu])
1573                         color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1574                 else
1575                         color_fprintf(stdout, color, "   ");
1576         }
1577
1578         if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1579                 goto out;
1580
1581         timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1582         color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1583         if (new_shortname || (verbose > 0 && sched_in->tid)) {
1584                 const char *pid_color = color;
1585
1586                 if (thread__has_color(sched_in))
1587                         pid_color = COLOR_PIDS;
1588
1589                 color_fprintf(stdout, pid_color, "%s => %s:%d",
1590                        sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1591         }
1592
1593         if (sched->map.comp && new_cpu)
1594                 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1595
1596 out:
1597         color_fprintf(stdout, color, "\n");
1598
1599         thread__put(sched_in);
1600
1601         return 0;
1602 }
1603
1604 static int process_sched_switch_event(struct perf_tool *tool,
1605                                       struct perf_evsel *evsel,
1606                                       struct perf_sample *sample,
1607                                       struct machine *machine)
1608 {
1609         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1610         int this_cpu = sample->cpu, err = 0;
1611         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1612             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1613
1614         if (sched->curr_pid[this_cpu] != (u32)-1) {
1615                 /*
1616                  * Are we trying to switch away a PID that is
1617                  * not current?
1618                  */
1619                 if (sched->curr_pid[this_cpu] != prev_pid)
1620                         sched->nr_context_switch_bugs++;
1621         }
1622
1623         if (sched->tp_handler->switch_event)
1624                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1625
1626         sched->curr_pid[this_cpu] = next_pid;
1627         return err;
1628 }
1629
1630 static int process_sched_runtime_event(struct perf_tool *tool,
1631                                        struct perf_evsel *evsel,
1632                                        struct perf_sample *sample,
1633                                        struct machine *machine)
1634 {
1635         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1636
1637         if (sched->tp_handler->runtime_event)
1638                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1639
1640         return 0;
1641 }
1642
1643 static int perf_sched__process_fork_event(struct perf_tool *tool,
1644                                           union perf_event *event,
1645                                           struct perf_sample *sample,
1646                                           struct machine *machine)
1647 {
1648         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1649
1650         /* run the fork event through the perf machineruy */
1651         perf_event__process_fork(tool, event, sample, machine);
1652
1653         /* and then run additional processing needed for this command */
1654         if (sched->tp_handler->fork_event)
1655                 return sched->tp_handler->fork_event(sched, event, machine);
1656
1657         return 0;
1658 }
1659
1660 static int process_sched_migrate_task_event(struct perf_tool *tool,
1661                                             struct perf_evsel *evsel,
1662                                             struct perf_sample *sample,
1663                                             struct machine *machine)
1664 {
1665         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1666
1667         if (sched->tp_handler->migrate_task_event)
1668                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1669
1670         return 0;
1671 }
1672
1673 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1674                                   struct perf_evsel *evsel,
1675                                   struct perf_sample *sample,
1676                                   struct machine *machine);
1677
1678 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1679                                                  union perf_event *event __maybe_unused,
1680                                                  struct perf_sample *sample,
1681                                                  struct perf_evsel *evsel,
1682                                                  struct machine *machine)
1683 {
1684         int err = 0;
1685
1686         if (evsel->handler != NULL) {
1687                 tracepoint_handler f = evsel->handler;
1688                 err = f(tool, evsel, sample, machine);
1689         }
1690
1691         return err;
1692 }
1693
1694 static int perf_sched__read_events(struct perf_sched *sched)
1695 {
1696         const struct perf_evsel_str_handler handlers[] = {
1697                 { "sched:sched_switch",       process_sched_switch_event, },
1698                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1699                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1700                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1701                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1702         };
1703         struct perf_session *session;
1704         struct perf_data_file file = {
1705                 .path = input_name,
1706                 .mode = PERF_DATA_MODE_READ,
1707                 .force = sched->force,
1708         };
1709         int rc = -1;
1710
1711         session = perf_session__new(&file, false, &sched->tool);
1712         if (session == NULL) {
1713                 pr_debug("No Memory for session\n");
1714                 return -1;
1715         }
1716
1717         symbol__init(&session->header.env);
1718
1719         if (perf_session__set_tracepoints_handlers(session, handlers))
1720                 goto out_delete;
1721
1722         if (perf_session__has_traces(session, "record -R")) {
1723                 int err = perf_session__process_events(session);
1724                 if (err) {
1725                         pr_err("Failed to process events, error %d", err);
1726                         goto out_delete;
1727                 }
1728
1729                 sched->nr_events      = session->evlist->stats.nr_events[0];
1730                 sched->nr_lost_events = session->evlist->stats.total_lost;
1731                 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1732         }
1733
1734         rc = 0;
1735 out_delete:
1736         perf_session__delete(session);
1737         return rc;
1738 }
1739
1740 /*
1741  * scheduling times are printed as msec.usec
1742  */
1743 static inline void print_sched_time(unsigned long long nsecs, int width)
1744 {
1745         unsigned long msecs;
1746         unsigned long usecs;
1747
1748         msecs  = nsecs / NSEC_PER_MSEC;
1749         nsecs -= msecs * NSEC_PER_MSEC;
1750         usecs  = nsecs / NSEC_PER_USEC;
1751         printf("%*lu.%03lu ", width, msecs, usecs);
1752 }
1753
1754 /*
1755  * returns runtime data for event, allocating memory for it the
1756  * first time it is used.
1757  */
1758 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1759 {
1760         struct evsel_runtime *r = evsel->priv;
1761
1762         if (r == NULL) {
1763                 r = zalloc(sizeof(struct evsel_runtime));
1764                 evsel->priv = r;
1765         }
1766
1767         return r;
1768 }
1769
1770 /*
1771  * save last time event was seen per cpu
1772  */
1773 static void perf_evsel__save_time(struct perf_evsel *evsel,
1774                                   u64 timestamp, u32 cpu)
1775 {
1776         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1777
1778         if (r == NULL)
1779                 return;
1780
1781         if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1782                 int i, n = __roundup_pow_of_two(cpu+1);
1783                 void *p = r->last_time;
1784
1785                 p = realloc(r->last_time, n * sizeof(u64));
1786                 if (!p)
1787                         return;
1788
1789                 r->last_time = p;
1790                 for (i = r->ncpu; i < n; ++i)
1791                         r->last_time[i] = (u64) 0;
1792
1793                 r->ncpu = n;
1794         }
1795
1796         r->last_time[cpu] = timestamp;
1797 }
1798
1799 /* returns last time this event was seen on the given cpu */
1800 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1801 {
1802         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1803
1804         if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1805                 return 0;
1806
1807         return r->last_time[cpu];
1808 }
1809
1810 static int comm_width = 30;
1811
1812 static char *timehist_get_commstr(struct thread *thread)
1813 {
1814         static char str[32];
1815         const char *comm = thread__comm_str(thread);
1816         pid_t tid = thread->tid;
1817         pid_t pid = thread->pid_;
1818         int n;
1819
1820         if (pid == 0)
1821                 n = scnprintf(str, sizeof(str), "%s", comm);
1822
1823         else if (tid != pid)
1824                 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1825
1826         else
1827                 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1828
1829         if (n > comm_width)
1830                 comm_width = n;
1831
1832         return str;
1833 }
1834
1835 static void timehist_header(struct perf_sched *sched)
1836 {
1837         u32 ncpus = sched->max_cpu + 1;
1838         u32 i, j;
1839
1840         printf("%15s %6s ", "time", "cpu");
1841
1842         if (sched->show_cpu_visual) {
1843                 printf(" ");
1844                 for (i = 0, j = 0; i < ncpus; ++i) {
1845                         printf("%x", j++);
1846                         if (j > 15)
1847                                 j = 0;
1848                 }
1849                 printf(" ");
1850         }
1851
1852         printf(" %-*s  %9s  %9s  %9s", comm_width,
1853                 "task name", "wait time", "sch delay", "run time");
1854
1855         if (sched->show_state)
1856                 printf("  %s", "state");
1857
1858         printf("\n");
1859
1860         /*
1861          * units row
1862          */
1863         printf("%15s %-6s ", "", "");
1864
1865         if (sched->show_cpu_visual)
1866                 printf(" %*s ", ncpus, "");
1867
1868         printf(" %-*s  %9s  %9s  %9s", comm_width,
1869                "[tid/pid]", "(msec)", "(msec)", "(msec)");
1870
1871         if (sched->show_state)
1872                 printf("  %5s", "");
1873
1874         printf("\n");
1875
1876         /*
1877          * separator
1878          */
1879         printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1880
1881         if (sched->show_cpu_visual)
1882                 printf(" %.*s ", ncpus, graph_dotted_line);
1883
1884         printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1885                 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1886                 graph_dotted_line);
1887
1888         if (sched->show_state)
1889                 printf("  %.5s", graph_dotted_line);
1890
1891         printf("\n");
1892 }
1893
1894 static char task_state_char(struct thread *thread, int state)
1895 {
1896         static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1897         unsigned bit = state ? ffs(state) : 0;
1898
1899         /* 'I' for idle */
1900         if (thread->tid == 0)
1901                 return 'I';
1902
1903         return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1904 }
1905
1906 static void timehist_print_sample(struct perf_sched *sched,
1907                                   struct perf_evsel *evsel,
1908                                   struct perf_sample *sample,
1909                                   struct addr_location *al,
1910                                   struct thread *thread,
1911                                   u64 t, int state)
1912 {
1913         struct thread_runtime *tr = thread__priv(thread);
1914         const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1915         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1916         u32 max_cpus = sched->max_cpu + 1;
1917         char tstr[64];
1918         char nstr[30];
1919         u64 wait_time;
1920
1921         timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1922         printf("%15s [%04d] ", tstr, sample->cpu);
1923
1924         if (sched->show_cpu_visual) {
1925                 u32 i;
1926                 char c;
1927
1928                 printf(" ");
1929                 for (i = 0; i < max_cpus; ++i) {
1930                         /* flag idle times with 'i'; others are sched events */
1931                         if (i == sample->cpu)
1932                                 c = (thread->tid == 0) ? 'i' : 's';
1933                         else
1934                                 c = ' ';
1935                         printf("%c", c);
1936                 }
1937                 printf(" ");
1938         }
1939
1940         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1941
1942         wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
1943         print_sched_time(wait_time, 6);
1944
1945         print_sched_time(tr->dt_delay, 6);
1946         print_sched_time(tr->dt_run, 6);
1947
1948         if (sched->show_state)
1949                 printf(" %5c ", task_state_char(thread, state));
1950
1951         if (sched->show_next) {
1952                 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
1953                 printf(" %-*s", comm_width, nstr);
1954         }
1955
1956         if (sched->show_wakeups && !sched->show_next)
1957                 printf("  %-*s", comm_width, "");
1958
1959         if (thread->tid == 0)
1960                 goto out;
1961
1962         if (sched->show_callchain)
1963                 printf("  ");
1964
1965         sample__fprintf_sym(sample, al, 0,
1966                             EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1967                             EVSEL__PRINT_CALLCHAIN_ARROW |
1968                             EVSEL__PRINT_SKIP_IGNORED,
1969                             &callchain_cursor, stdout);
1970
1971 out:
1972         printf("\n");
1973 }
1974
1975 /*
1976  * Explanation of delta-time stats:
1977  *
1978  *            t = time of current schedule out event
1979  *        tprev = time of previous sched out event
1980  *                also time of schedule-in event for current task
1981  *    last_time = time of last sched change event for current task
1982  *                (i.e, time process was last scheduled out)
1983  * ready_to_run = time of wakeup for current task
1984  *
1985  * -----|------------|------------|------------|------
1986  *    last         ready        tprev          t
1987  *    time         to run
1988  *
1989  *      |-------- dt_wait --------|
1990  *                   |- dt_delay -|-- dt_run --|
1991  *
1992  *   dt_run = run time of current task
1993  *  dt_wait = time between last schedule out event for task and tprev
1994  *            represents time spent off the cpu
1995  * dt_delay = time between wakeup and schedule-in of task
1996  */
1997
1998 static void timehist_update_runtime_stats(struct thread_runtime *r,
1999                                          u64 t, u64 tprev)
2000 {
2001         r->dt_delay   = 0;
2002         r->dt_sleep   = 0;
2003         r->dt_iowait  = 0;
2004         r->dt_preempt = 0;
2005         r->dt_run     = 0;
2006
2007         if (tprev) {
2008                 r->dt_run = t - tprev;
2009                 if (r->ready_to_run) {
2010                         if (r->ready_to_run > tprev)
2011                                 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2012                         else
2013                                 r->dt_delay = tprev - r->ready_to_run;
2014                 }
2015
2016                 if (r->last_time > tprev)
2017                         pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2018                 else if (r->last_time) {
2019                         u64 dt_wait = tprev - r->last_time;
2020
2021                         if (r->last_state == TASK_RUNNING)
2022                                 r->dt_preempt = dt_wait;
2023                         else if (r->last_state == TASK_UNINTERRUPTIBLE)
2024                                 r->dt_iowait = dt_wait;
2025                         else
2026                                 r->dt_sleep = dt_wait;
2027                 }
2028         }
2029
2030         update_stats(&r->run_stats, r->dt_run);
2031
2032         r->total_run_time     += r->dt_run;
2033         r->total_delay_time   += r->dt_delay;
2034         r->total_sleep_time   += r->dt_sleep;
2035         r->total_iowait_time  += r->dt_iowait;
2036         r->total_preempt_time += r->dt_preempt;
2037 }
2038
2039 static bool is_idle_sample(struct perf_sample *sample,
2040                            struct perf_evsel *evsel)
2041 {
2042         /* pid 0 == swapper == idle task */
2043         if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2044                 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2045
2046         return sample->pid == 0;
2047 }
2048
2049 static void save_task_callchain(struct perf_sched *sched,
2050                                 struct perf_sample *sample,
2051                                 struct perf_evsel *evsel,
2052                                 struct machine *machine)
2053 {
2054         struct callchain_cursor *cursor = &callchain_cursor;
2055         struct thread *thread;
2056
2057         /* want main thread for process - has maps */
2058         thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2059         if (thread == NULL) {
2060                 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2061                 return;
2062         }
2063
2064         if (!symbol_conf.use_callchain || sample->callchain == NULL)
2065                 return;
2066
2067         if (thread__resolve_callchain(thread, cursor, evsel, sample,
2068                                       NULL, NULL, sched->max_stack + 2) != 0) {
2069                 if (verbose > 0)
2070                         pr_err("Failed to resolve callchain. Skipping\n");
2071
2072                 return;
2073         }
2074
2075         callchain_cursor_commit(cursor);
2076
2077         while (true) {
2078                 struct callchain_cursor_node *node;
2079                 struct symbol *sym;
2080
2081                 node = callchain_cursor_current(cursor);
2082                 if (node == NULL)
2083                         break;
2084
2085                 sym = node->sym;
2086                 if (sym) {
2087                         if (!strcmp(sym->name, "schedule") ||
2088                             !strcmp(sym->name, "__schedule") ||
2089                             !strcmp(sym->name, "preempt_schedule"))
2090                                 sym->ignore = 1;
2091                 }
2092
2093                 callchain_cursor_advance(cursor);
2094         }
2095 }
2096
2097 static int init_idle_thread(struct thread *thread)
2098 {
2099         struct idle_thread_runtime *itr;
2100
2101         thread__set_comm(thread, idle_comm, 0);
2102
2103         itr = zalloc(sizeof(*itr));
2104         if (itr == NULL)
2105                 return -ENOMEM;
2106
2107         init_stats(&itr->tr.run_stats);
2108         callchain_init(&itr->callchain);
2109         callchain_cursor_reset(&itr->cursor);
2110         thread__set_priv(thread, itr);
2111
2112         return 0;
2113 }
2114
2115 /*
2116  * Track idle stats per cpu by maintaining a local thread
2117  * struct for the idle task on each cpu.
2118  */
2119 static int init_idle_threads(int ncpu)
2120 {
2121         int i, ret;
2122
2123         idle_threads = zalloc(ncpu * sizeof(struct thread *));
2124         if (!idle_threads)
2125                 return -ENOMEM;
2126
2127         idle_max_cpu = ncpu;
2128
2129         /* allocate the actual thread struct if needed */
2130         for (i = 0; i < ncpu; ++i) {
2131                 idle_threads[i] = thread__new(0, 0);
2132                 if (idle_threads[i] == NULL)
2133                         return -ENOMEM;
2134
2135                 ret = init_idle_thread(idle_threads[i]);
2136                 if (ret < 0)
2137                         return ret;
2138         }
2139
2140         return 0;
2141 }
2142
2143 static void free_idle_threads(void)
2144 {
2145         int i;
2146
2147         if (idle_threads == NULL)
2148                 return;
2149
2150         for (i = 0; i < idle_max_cpu; ++i) {
2151                 if ((idle_threads[i]))
2152                         thread__delete(idle_threads[i]);
2153         }
2154
2155         free(idle_threads);
2156 }
2157
2158 static struct thread *get_idle_thread(int cpu)
2159 {
2160         /*
2161          * expand/allocate array of pointers to local thread
2162          * structs if needed
2163          */
2164         if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2165                 int i, j = __roundup_pow_of_two(cpu+1);
2166                 void *p;
2167
2168                 p = realloc(idle_threads, j * sizeof(struct thread *));
2169                 if (!p)
2170                         return NULL;
2171
2172                 idle_threads = (struct thread **) p;
2173                 for (i = idle_max_cpu; i < j; ++i)
2174                         idle_threads[i] = NULL;
2175
2176                 idle_max_cpu = j;
2177         }
2178
2179         /* allocate a new thread struct if needed */
2180         if (idle_threads[cpu] == NULL) {
2181                 idle_threads[cpu] = thread__new(0, 0);
2182
2183                 if (idle_threads[cpu]) {
2184                         if (init_idle_thread(idle_threads[cpu]) < 0)
2185                                 return NULL;
2186                 }
2187         }
2188
2189         return idle_threads[cpu];
2190 }
2191
2192 static void save_idle_callchain(struct idle_thread_runtime *itr,
2193                                 struct perf_sample *sample)
2194 {
2195         if (!symbol_conf.use_callchain || sample->callchain == NULL)
2196                 return;
2197
2198         callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2199 }
2200
2201 /*
2202  * handle runtime stats saved per thread
2203  */
2204 static struct thread_runtime *thread__init_runtime(struct thread *thread)
2205 {
2206         struct thread_runtime *r;
2207
2208         r = zalloc(sizeof(struct thread_runtime));
2209         if (!r)
2210                 return NULL;
2211
2212         init_stats(&r->run_stats);
2213         thread__set_priv(thread, r);
2214
2215         return r;
2216 }
2217
2218 static struct thread_runtime *thread__get_runtime(struct thread *thread)
2219 {
2220         struct thread_runtime *tr;
2221
2222         tr = thread__priv(thread);
2223         if (tr == NULL) {
2224                 tr = thread__init_runtime(thread);
2225                 if (tr == NULL)
2226                         pr_debug("Failed to malloc memory for runtime data.\n");
2227         }
2228
2229         return tr;
2230 }
2231
2232 static struct thread *timehist_get_thread(struct perf_sched *sched,
2233                                           struct perf_sample *sample,
2234                                           struct machine *machine,
2235                                           struct perf_evsel *evsel)
2236 {
2237         struct thread *thread;
2238
2239         if (is_idle_sample(sample, evsel)) {
2240                 thread = get_idle_thread(sample->cpu);
2241                 if (thread == NULL)
2242                         pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2243
2244         } else {
2245                 /* there were samples with tid 0 but non-zero pid */
2246                 thread = machine__findnew_thread(machine, sample->pid,
2247                                                  sample->tid ?: sample->pid);
2248                 if (thread == NULL) {
2249                         pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2250                                  sample->tid);
2251                 }
2252
2253                 save_task_callchain(sched, sample, evsel, machine);
2254                 if (sched->idle_hist) {
2255                         struct thread *idle;
2256                         struct idle_thread_runtime *itr;
2257
2258                         idle = get_idle_thread(sample->cpu);
2259                         if (idle == NULL) {
2260                                 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2261                                 return NULL;
2262                         }
2263
2264                         itr = thread__priv(idle);
2265                         if (itr == NULL)
2266                                 return NULL;
2267
2268                         itr->last_thread = thread;
2269
2270                         /* copy task callchain when entering to idle */
2271                         if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2272                                 save_idle_callchain(itr, sample);
2273                 }
2274         }
2275
2276         return thread;
2277 }
2278
2279 static bool timehist_skip_sample(struct perf_sched *sched,
2280                                  struct thread *thread,
2281                                  struct perf_evsel *evsel,
2282                                  struct perf_sample *sample)
2283 {
2284         bool rc = false;
2285
2286         if (thread__is_filtered(thread)) {
2287                 rc = true;
2288                 sched->skipped_samples++;
2289         }
2290
2291         if (sched->idle_hist) {
2292                 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2293                         rc = true;
2294                 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2295                          perf_evsel__intval(evsel, sample, "next_pid") != 0)
2296                         rc = true;
2297         }
2298
2299         return rc;
2300 }
2301
2302 static void timehist_print_wakeup_event(struct perf_sched *sched,
2303                                         struct perf_evsel *evsel,
2304                                         struct perf_sample *sample,
2305                                         struct machine *machine,
2306                                         struct thread *awakened)
2307 {
2308         struct thread *thread;
2309         char tstr[64];
2310
2311         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2312         if (thread == NULL)
2313                 return;
2314
2315         /* show wakeup unless both awakee and awaker are filtered */
2316         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2317             timehist_skip_sample(sched, awakened, evsel, sample)) {
2318                 return;
2319         }
2320
2321         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2322         printf("%15s [%04d] ", tstr, sample->cpu);
2323         if (sched->show_cpu_visual)
2324                 printf(" %*s ", sched->max_cpu + 1, "");
2325
2326         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2327
2328         /* dt spacer */
2329         printf("  %9s  %9s  %9s ", "", "", "");
2330
2331         printf("awakened: %s", timehist_get_commstr(awakened));
2332
2333         printf("\n");
2334 }
2335
2336 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2337                                        union perf_event *event __maybe_unused,
2338                                        struct perf_evsel *evsel,
2339                                        struct perf_sample *sample,
2340                                        struct machine *machine)
2341 {
2342         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2343         struct thread *thread;
2344         struct thread_runtime *tr = NULL;
2345         /* want pid of awakened task not pid in sample */
2346         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2347
2348         thread = machine__findnew_thread(machine, 0, pid);
2349         if (thread == NULL)
2350                 return -1;
2351
2352         tr = thread__get_runtime(thread);
2353         if (tr == NULL)
2354                 return -1;
2355
2356         if (tr->ready_to_run == 0)
2357                 tr->ready_to_run = sample->time;
2358
2359         /* show wakeups if requested */
2360         if (sched->show_wakeups &&
2361             !perf_time__skip_sample(&sched->ptime, sample->time))
2362                 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2363
2364         return 0;
2365 }
2366
2367 static void timehist_print_migration_event(struct perf_sched *sched,
2368                                         struct perf_evsel *evsel,
2369                                         struct perf_sample *sample,
2370                                         struct machine *machine,
2371                                         struct thread *migrated)
2372 {
2373         struct thread *thread;
2374         char tstr[64];
2375         u32 max_cpus = sched->max_cpu + 1;
2376         u32 ocpu, dcpu;
2377
2378         if (sched->summary_only)
2379                 return;
2380
2381         max_cpus = sched->max_cpu + 1;
2382         ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2383         dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2384
2385         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2386         if (thread == NULL)
2387                 return;
2388
2389         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2390             timehist_skip_sample(sched, migrated, evsel, sample)) {
2391                 return;
2392         }
2393
2394         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2395         printf("%15s [%04d] ", tstr, sample->cpu);
2396
2397         if (sched->show_cpu_visual) {
2398                 u32 i;
2399                 char c;
2400
2401                 printf("  ");
2402                 for (i = 0; i < max_cpus; ++i) {
2403                         c = (i == sample->cpu) ? 'm' : ' ';
2404                         printf("%c", c);
2405                 }
2406                 printf("  ");
2407         }
2408
2409         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2410
2411         /* dt spacer */
2412         printf("  %9s  %9s  %9s ", "", "", "");
2413
2414         printf("migrated: %s", timehist_get_commstr(migrated));
2415         printf(" cpu %d => %d", ocpu, dcpu);
2416
2417         printf("\n");
2418 }
2419
2420 static int timehist_migrate_task_event(struct perf_tool *tool,
2421                                        union perf_event *event __maybe_unused,
2422                                        struct perf_evsel *evsel,
2423                                        struct perf_sample *sample,
2424                                        struct machine *machine)
2425 {
2426         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2427         struct thread *thread;
2428         struct thread_runtime *tr = NULL;
2429         /* want pid of migrated task not pid in sample */
2430         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2431
2432         thread = machine__findnew_thread(machine, 0, pid);
2433         if (thread == NULL)
2434                 return -1;
2435
2436         tr = thread__get_runtime(thread);
2437         if (tr == NULL)
2438                 return -1;
2439
2440         tr->migrations++;
2441
2442         /* show migrations if requested */
2443         timehist_print_migration_event(sched, evsel, sample, machine, thread);
2444
2445         return 0;
2446 }
2447
2448 static int timehist_sched_change_event(struct perf_tool *tool,
2449                                        union perf_event *event,
2450                                        struct perf_evsel *evsel,
2451                                        struct perf_sample *sample,
2452                                        struct machine *machine)
2453 {
2454         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2455         struct perf_time_interval *ptime = &sched->ptime;
2456         struct addr_location al;
2457         struct thread *thread;
2458         struct thread_runtime *tr = NULL;
2459         u64 tprev, t = sample->time;
2460         int rc = 0;
2461         int state = perf_evsel__intval(evsel, sample, "prev_state");
2462
2463
2464         if (machine__resolve(machine, &al, sample) < 0) {
2465                 pr_err("problem processing %d event. skipping it\n",
2466                        event->header.type);
2467                 rc = -1;
2468                 goto out;
2469         }
2470
2471         thread = timehist_get_thread(sched, sample, machine, evsel);
2472         if (thread == NULL) {
2473                 rc = -1;
2474                 goto out;
2475         }
2476
2477         if (timehist_skip_sample(sched, thread, evsel, sample))
2478                 goto out;
2479
2480         tr = thread__get_runtime(thread);
2481         if (tr == NULL) {
2482                 rc = -1;
2483                 goto out;
2484         }
2485
2486         tprev = perf_evsel__get_time(evsel, sample->cpu);
2487
2488         /*
2489          * If start time given:
2490          * - sample time is under window user cares about - skip sample
2491          * - tprev is under window user cares about  - reset to start of window
2492          */
2493         if (ptime->start && ptime->start > t)
2494                 goto out;
2495
2496         if (tprev && ptime->start > tprev)
2497                 tprev = ptime->start;
2498
2499         /*
2500          * If end time given:
2501          * - previous sched event is out of window - we are done
2502          * - sample time is beyond window user cares about - reset it
2503          *   to close out stats for time window interest
2504          */
2505         if (ptime->end) {
2506                 if (tprev > ptime->end)
2507                         goto out;
2508
2509                 if (t > ptime->end)
2510                         t = ptime->end;
2511         }
2512
2513         if (!sched->idle_hist || thread->tid == 0) {
2514                 timehist_update_runtime_stats(tr, t, tprev);
2515
2516                 if (sched->idle_hist) {
2517                         struct idle_thread_runtime *itr = (void *)tr;
2518                         struct thread_runtime *last_tr;
2519
2520                         BUG_ON(thread->tid != 0);
2521
2522                         if (itr->last_thread == NULL)
2523                                 goto out;
2524
2525                         /* add current idle time as last thread's runtime */
2526                         last_tr = thread__get_runtime(itr->last_thread);
2527                         if (last_tr == NULL)
2528                                 goto out;
2529
2530                         timehist_update_runtime_stats(last_tr, t, tprev);
2531                         /*
2532                          * remove delta time of last thread as it's not updated
2533                          * and otherwise it will show an invalid value next
2534                          * time.  we only care total run time and run stat.
2535                          */
2536                         last_tr->dt_run = 0;
2537                         last_tr->dt_delay = 0;
2538                         last_tr->dt_sleep = 0;
2539                         last_tr->dt_iowait = 0;
2540                         last_tr->dt_preempt = 0;
2541
2542                         if (itr->cursor.nr)
2543                                 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2544
2545                         itr->last_thread = NULL;
2546                 }
2547         }
2548
2549         if (!sched->summary_only)
2550                 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2551
2552 out:
2553         if (sched->hist_time.start == 0 && t >= ptime->start)
2554                 sched->hist_time.start = t;
2555         if (ptime->end == 0 || t <= ptime->end)
2556                 sched->hist_time.end = t;
2557
2558         if (tr) {
2559                 /* time of this sched_switch event becomes last time task seen */
2560                 tr->last_time = sample->time;
2561
2562                 /* last state is used to determine where to account wait time */
2563                 tr->last_state = state;
2564
2565                 /* sched out event for task so reset ready to run time */
2566                 tr->ready_to_run = 0;
2567         }
2568
2569         perf_evsel__save_time(evsel, sample->time, sample->cpu);
2570
2571         return rc;
2572 }
2573
2574 static int timehist_sched_switch_event(struct perf_tool *tool,
2575                              union perf_event *event,
2576                              struct perf_evsel *evsel,
2577                              struct perf_sample *sample,
2578                              struct machine *machine __maybe_unused)
2579 {
2580         return timehist_sched_change_event(tool, event, evsel, sample, machine);
2581 }
2582
2583 static int process_lost(struct perf_tool *tool __maybe_unused,
2584                         union perf_event *event,
2585                         struct perf_sample *sample,
2586                         struct machine *machine __maybe_unused)
2587 {
2588         char tstr[64];
2589
2590         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2591         printf("%15s ", tstr);
2592         printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2593
2594         return 0;
2595 }
2596
2597
2598 static void print_thread_runtime(struct thread *t,
2599                                  struct thread_runtime *r)
2600 {
2601         double mean = avg_stats(&r->run_stats);
2602         float stddev;
2603
2604         printf("%*s   %5d  %9" PRIu64 " ",
2605                comm_width, timehist_get_commstr(t), t->ppid,
2606                (u64) r->run_stats.n);
2607
2608         print_sched_time(r->total_run_time, 8);
2609         stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2610         print_sched_time(r->run_stats.min, 6);
2611         printf(" ");
2612         print_sched_time((u64) mean, 6);
2613         printf(" ");
2614         print_sched_time(r->run_stats.max, 6);
2615         printf("  ");
2616         printf("%5.2f", stddev);
2617         printf("   %5" PRIu64, r->migrations);
2618         printf("\n");
2619 }
2620
2621 static void print_thread_waittime(struct thread *t,
2622                                   struct thread_runtime *r)
2623 {
2624         printf("%*s   %5d  %9" PRIu64 " ",
2625                comm_width, timehist_get_commstr(t), t->ppid,
2626                (u64) r->run_stats.n);
2627
2628         print_sched_time(r->total_run_time, 8);
2629         print_sched_time(r->total_sleep_time, 6);
2630         printf(" ");
2631         print_sched_time(r->total_iowait_time, 6);
2632         printf(" ");
2633         print_sched_time(r->total_preempt_time, 6);
2634         printf(" ");
2635         print_sched_time(r->total_delay_time, 6);
2636         printf("\n");
2637 }
2638
2639 struct total_run_stats {
2640         struct perf_sched *sched;
2641         u64  sched_count;
2642         u64  task_count;
2643         u64  total_run_time;
2644 };
2645
2646 static int __show_thread_runtime(struct thread *t, void *priv)
2647 {
2648         struct total_run_stats *stats = priv;
2649         struct thread_runtime *r;
2650
2651         if (thread__is_filtered(t))
2652                 return 0;
2653
2654         r = thread__priv(t);
2655         if (r && r->run_stats.n) {
2656                 stats->task_count++;
2657                 stats->sched_count += r->run_stats.n;
2658                 stats->total_run_time += r->total_run_time;
2659
2660                 if (stats->sched->show_state)
2661                         print_thread_waittime(t, r);
2662                 else
2663                         print_thread_runtime(t, r);
2664         }
2665
2666         return 0;
2667 }
2668
2669 static int show_thread_runtime(struct thread *t, void *priv)
2670 {
2671         if (t->dead)
2672                 return 0;
2673
2674         return __show_thread_runtime(t, priv);
2675 }
2676
2677 static int show_deadthread_runtime(struct thread *t, void *priv)
2678 {
2679         if (!t->dead)
2680                 return 0;
2681
2682         return __show_thread_runtime(t, priv);
2683 }
2684
2685 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2686 {
2687         const char *sep = " <- ";
2688         struct callchain_list *chain;
2689         size_t ret = 0;
2690         char bf[1024];
2691         bool first;
2692
2693         if (node == NULL)
2694                 return 0;
2695
2696         ret = callchain__fprintf_folded(fp, node->parent);
2697         first = (ret == 0);
2698
2699         list_for_each_entry(chain, &node->val, list) {
2700                 if (chain->ip >= PERF_CONTEXT_MAX)
2701                         continue;
2702                 if (chain->ms.sym && chain->ms.sym->ignore)
2703                         continue;
2704                 ret += fprintf(fp, "%s%s", first ? "" : sep,
2705                                callchain_list__sym_name(chain, bf, sizeof(bf),
2706                                                         false));
2707                 first = false;
2708         }
2709
2710         return ret;
2711 }
2712
2713 static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2714 {
2715         size_t ret = 0;
2716         FILE *fp = stdout;
2717         struct callchain_node *chain;
2718         struct rb_node *rb_node = rb_first(root);
2719
2720         printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2721         printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2722                graph_dotted_line);
2723
2724         while (rb_node) {
2725                 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2726                 rb_node = rb_next(rb_node);
2727
2728                 ret += fprintf(fp, "  ");
2729                 print_sched_time(chain->hit, 12);
2730                 ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2731                 ret += fprintf(fp, " %8d  ", chain->count);
2732                 ret += callchain__fprintf_folded(fp, chain);
2733                 ret += fprintf(fp, "\n");
2734         }
2735
2736         return ret;
2737 }
2738
2739 static void timehist_print_summary(struct perf_sched *sched,
2740                                    struct perf_session *session)
2741 {
2742         struct machine *m = &session->machines.host;
2743         struct total_run_stats totals;
2744         u64 task_count;
2745         struct thread *t;
2746         struct thread_runtime *r;
2747         int i;
2748         u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2749
2750         memset(&totals, 0, sizeof(totals));
2751         totals.sched = sched;
2752
2753         if (sched->idle_hist) {
2754                 printf("\nIdle-time summary\n");
2755                 printf("%*s  parent  sched-out  ", comm_width, "comm");
2756                 printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2757         } else if (sched->show_state) {
2758                 printf("\nWait-time summary\n");
2759                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2760                 printf("   run-time      sleep      iowait     preempt       delay\n");
2761         } else {
2762                 printf("\nRuntime summary\n");
2763                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2764                 printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2765         }
2766         printf("%*s            (count)  ", comm_width, "");
2767         printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2768                sched->show_state ? "(msec)" : "%");
2769         printf("%.117s\n", graph_dotted_line);
2770
2771         machine__for_each_thread(m, show_thread_runtime, &totals);
2772         task_count = totals.task_count;
2773         if (!task_count)
2774                 printf("<no still running tasks>\n");
2775
2776         printf("\nTerminated tasks:\n");
2777         machine__for_each_thread(m, show_deadthread_runtime, &totals);
2778         if (task_count == totals.task_count)
2779                 printf("<no terminated tasks>\n");
2780
2781         /* CPU idle stats not tracked when samples were skipped */
2782         if (sched->skipped_samples && !sched->idle_hist)
2783                 return;
2784
2785         printf("\nIdle stats:\n");
2786         for (i = 0; i < idle_max_cpu; ++i) {
2787                 t = idle_threads[i];
2788                 if (!t)
2789                         continue;
2790
2791                 r = thread__priv(t);
2792                 if (r && r->run_stats.n) {
2793                         totals.sched_count += r->run_stats.n;
2794                         printf("    CPU %2d idle for ", i);
2795                         print_sched_time(r->total_run_time, 6);
2796                         printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2797                 } else
2798                         printf("    CPU %2d idle entire time window\n", i);
2799         }
2800
2801         if (sched->idle_hist && symbol_conf.use_callchain) {
2802                 callchain_param.mode  = CHAIN_FOLDED;
2803                 callchain_param.value = CCVAL_PERIOD;
2804
2805                 callchain_register_param(&callchain_param);
2806
2807                 printf("\nIdle stats by callchain:\n");
2808                 for (i = 0; i < idle_max_cpu; ++i) {
2809                         struct idle_thread_runtime *itr;
2810
2811                         t = idle_threads[i];
2812                         if (!t)
2813                                 continue;
2814
2815                         itr = thread__priv(t);
2816                         if (itr == NULL)
2817                                 continue;
2818
2819                         callchain_param.sort(&itr->sorted_root, &itr->callchain,
2820                                              0, &callchain_param);
2821
2822                         printf("  CPU %2d:", i);
2823                         print_sched_time(itr->tr.total_run_time, 6);
2824                         printf(" msec\n");
2825                         timehist_print_idlehist_callchain(&itr->sorted_root);
2826                         printf("\n");
2827                 }
2828         }
2829
2830         printf("\n"
2831                "    Total number of unique tasks: %" PRIu64 "\n"
2832                "Total number of context switches: %" PRIu64 "\n",
2833                totals.task_count, totals.sched_count);
2834
2835         printf("           Total run time (msec): ");
2836         print_sched_time(totals.total_run_time, 2);
2837         printf("\n");
2838
2839         printf("    Total scheduling time (msec): ");
2840         print_sched_time(hist_time, 2);
2841         printf(" (x %d)\n", sched->max_cpu);
2842 }
2843
2844 typedef int (*sched_handler)(struct perf_tool *tool,
2845                           union perf_event *event,
2846                           struct perf_evsel *evsel,
2847                           struct perf_sample *sample,
2848                           struct machine *machine);
2849
2850 static int perf_timehist__process_sample(struct perf_tool *tool,
2851                                          union perf_event *event,
2852                                          struct perf_sample *sample,
2853                                          struct perf_evsel *evsel,
2854                                          struct machine *machine)
2855 {
2856         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2857         int err = 0;
2858         int this_cpu = sample->cpu;
2859
2860         if (this_cpu > sched->max_cpu)
2861                 sched->max_cpu = this_cpu;
2862
2863         if (evsel->handler != NULL) {
2864                 sched_handler f = evsel->handler;
2865
2866                 err = f(tool, event, evsel, sample, machine);
2867         }
2868
2869         return err;
2870 }
2871
2872 static int timehist_check_attr(struct perf_sched *sched,
2873                                struct perf_evlist *evlist)
2874 {
2875         struct perf_evsel *evsel;
2876         struct evsel_runtime *er;
2877
2878         list_for_each_entry(evsel, &evlist->entries, node) {
2879                 er = perf_evsel__get_runtime(evsel);
2880                 if (er == NULL) {
2881                         pr_err("Failed to allocate memory for evsel runtime data\n");
2882                         return -1;
2883                 }
2884
2885                 if (sched->show_callchain &&
2886                     !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2887                         pr_info("Samples do not have callchains.\n");
2888                         sched->show_callchain = 0;
2889                         symbol_conf.use_callchain = 0;
2890                 }
2891         }
2892
2893         return 0;
2894 }
2895
2896 static int perf_sched__timehist(struct perf_sched *sched)
2897 {
2898         const struct perf_evsel_str_handler handlers[] = {
2899                 { "sched:sched_switch",       timehist_sched_switch_event, },
2900                 { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2901                 { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2902         };
2903         const struct perf_evsel_str_handler migrate_handlers[] = {
2904                 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2905         };
2906         struct perf_data_file file = {
2907                 .path = input_name,
2908                 .mode = PERF_DATA_MODE_READ,
2909                 .force = sched->force,
2910         };
2911
2912         struct perf_session *session;
2913         struct perf_evlist *evlist;
2914         int err = -1;
2915
2916         /*
2917          * event handlers for timehist option
2918          */
2919         sched->tool.sample       = perf_timehist__process_sample;
2920         sched->tool.mmap         = perf_event__process_mmap;
2921         sched->tool.comm         = perf_event__process_comm;
2922         sched->tool.exit         = perf_event__process_exit;
2923         sched->tool.fork         = perf_event__process_fork;
2924         sched->tool.lost         = process_lost;
2925         sched->tool.attr         = perf_event__process_attr;
2926         sched->tool.tracing_data = perf_event__process_tracing_data;
2927         sched->tool.build_id     = perf_event__process_build_id;
2928
2929         sched->tool.ordered_events = true;
2930         sched->tool.ordering_requires_timestamps = true;
2931
2932         symbol_conf.use_callchain = sched->show_callchain;
2933
2934         session = perf_session__new(&file, false, &sched->tool);
2935         if (session == NULL)
2936                 return -ENOMEM;
2937
2938         evlist = session->evlist;
2939
2940         symbol__init(&session->header.env);
2941
2942         if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2943                 pr_err("Invalid time string\n");
2944                 return -EINVAL;
2945         }
2946
2947         if (timehist_check_attr(sched, evlist) != 0)
2948                 goto out;
2949
2950         setup_pager();
2951
2952         /* setup per-evsel handlers */
2953         if (perf_session__set_tracepoints_handlers(session, handlers))
2954                 goto out;
2955
2956         /* sched_switch event at a minimum needs to exist */
2957         if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2958                                                   "sched:sched_switch")) {
2959                 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2960                 goto out;
2961         }
2962
2963         if (sched->show_migrations &&
2964             perf_session__set_tracepoints_handlers(session, migrate_handlers))
2965                 goto out;
2966
2967         /* pre-allocate struct for per-CPU idle stats */
2968         sched->max_cpu = session->header.env.nr_cpus_online;
2969         if (sched->max_cpu == 0)
2970                 sched->max_cpu = 4;
2971         if (init_idle_threads(sched->max_cpu))
2972                 goto out;
2973
2974         /* summary_only implies summary option, but don't overwrite summary if set */
2975         if (sched->summary_only)
2976                 sched->summary = sched->summary_only;
2977
2978         if (!sched->summary_only)
2979                 timehist_header(sched);
2980
2981         err = perf_session__process_events(session);
2982         if (err) {
2983                 pr_err("Failed to process events, error %d", err);
2984                 goto out;
2985         }
2986
2987         sched->nr_events      = evlist->stats.nr_events[0];
2988         sched->nr_lost_events = evlist->stats.total_lost;
2989         sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2990
2991         if (sched->summary)
2992                 timehist_print_summary(sched, session);
2993
2994 out:
2995         free_idle_threads();
2996         perf_session__delete(session);
2997
2998         return err;
2999 }
3000
3001
3002 static void print_bad_events(struct perf_sched *sched)
3003 {
3004         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3005                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3006                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3007                         sched->nr_unordered_timestamps, sched->nr_timestamps);
3008         }
3009         if (sched->nr_lost_events && sched->nr_events) {
3010                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3011                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3012                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3013         }
3014         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3015                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3016                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3017                         sched->nr_context_switch_bugs, sched->nr_timestamps);
3018                 if (sched->nr_lost_events)
3019                         printf(" (due to lost events?)");
3020                 printf("\n");
3021         }
3022 }
3023
3024 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
3025 {
3026         struct rb_node **new = &(root->rb_node), *parent = NULL;
3027         struct work_atoms *this;
3028         const char *comm = thread__comm_str(data->thread), *this_comm;
3029
3030         while (*new) {
3031                 int cmp;
3032
3033                 this = container_of(*new, struct work_atoms, node);
3034                 parent = *new;
3035
3036                 this_comm = thread__comm_str(this->thread);
3037                 cmp = strcmp(comm, this_comm);
3038                 if (cmp > 0) {
3039                         new = &((*new)->rb_left);
3040                 } else if (cmp < 0) {
3041                         new = &((*new)->rb_right);
3042                 } else {
3043                         this->num_merged++;
3044                         this->total_runtime += data->total_runtime;
3045                         this->nb_atoms += data->nb_atoms;
3046                         this->total_lat += data->total_lat;
3047                         list_splice(&data->work_list, &this->work_list);
3048                         if (this->max_lat < data->max_lat) {
3049                                 this->max_lat = data->max_lat;
3050                                 this->max_lat_at = data->max_lat_at;
3051                         }
3052                         zfree(&data);
3053                         return;
3054                 }
3055         }
3056
3057         data->num_merged++;
3058         rb_link_node(&data->node, parent, new);
3059         rb_insert_color(&data->node, root);
3060 }
3061
3062 static void perf_sched__merge_lat(struct perf_sched *sched)
3063 {
3064         struct work_atoms *data;
3065         struct rb_node *node;
3066
3067         if (sched->skip_merge)
3068                 return;
3069
3070         while ((node = rb_first(&sched->atom_root))) {
3071                 rb_erase(node, &sched->atom_root);
3072                 data = rb_entry(node, struct work_atoms, node);
3073                 __merge_work_atoms(&sched->merged_atom_root, data);
3074         }
3075 }
3076
3077 static int perf_sched__lat(struct perf_sched *sched)
3078 {
3079         struct rb_node *next;
3080
3081         setup_pager();
3082
3083         if (perf_sched__read_events(sched))
3084                 return -1;
3085
3086         perf_sched__merge_lat(sched);
3087         perf_sched__sort_lat(sched);
3088
3089         printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3090         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3091         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3092
3093         next = rb_first(&sched->sorted_atom_root);
3094
3095         while (next) {
3096                 struct work_atoms *work_list;
3097
3098                 work_list = rb_entry(next, struct work_atoms, node);
3099                 output_lat_thread(sched, work_list);
3100                 next = rb_next(next);
3101                 thread__zput(work_list->thread);
3102         }
3103
3104         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3105         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3106                 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3107
3108         printf(" ---------------------------------------------------\n");
3109
3110         print_bad_events(sched);
3111         printf("\n");
3112
3113         return 0;
3114 }
3115
3116 static int setup_map_cpus(struct perf_sched *sched)
3117 {
3118         struct cpu_map *map;
3119
3120         sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3121
3122         if (sched->map.comp) {
3123                 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3124                 if (!sched->map.comp_cpus)
3125                         return -1;
3126         }
3127
3128         if (!sched->map.cpus_str)
3129                 return 0;
3130
3131         map = cpu_map__new(sched->map.cpus_str);
3132         if (!map) {
3133                 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3134                 return -1;
3135         }
3136
3137         sched->map.cpus = map;
3138         return 0;
3139 }
3140
3141 static int setup_color_pids(struct perf_sched *sched)
3142 {
3143         struct thread_map *map;
3144
3145         if (!sched->map.color_pids_str)
3146                 return 0;
3147
3148         map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3149         if (!map) {
3150                 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3151                 return -1;
3152         }
3153
3154         sched->map.color_pids = map;
3155         return 0;
3156 }
3157
3158 static int setup_color_cpus(struct perf_sched *sched)
3159 {
3160         struct cpu_map *map;
3161
3162         if (!sched->map.color_cpus_str)
3163                 return 0;
3164
3165         map = cpu_map__new(sched->map.color_cpus_str);
3166         if (!map) {
3167                 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3168                 return -1;
3169         }
3170
3171         sched->map.color_cpus = map;
3172         return 0;
3173 }
3174
3175 static int perf_sched__map(struct perf_sched *sched)
3176 {
3177         if (setup_map_cpus(sched))
3178                 return -1;
3179
3180         if (setup_color_pids(sched))
3181                 return -1;
3182
3183         if (setup_color_cpus(sched))
3184                 return -1;
3185
3186         setup_pager();
3187         if (perf_sched__read_events(sched))
3188                 return -1;
3189         print_bad_events(sched);
3190         return 0;
3191 }
3192
3193 static int perf_sched__replay(struct perf_sched *sched)
3194 {
3195         unsigned long i;
3196
3197         calibrate_run_measurement_overhead(sched);
3198         calibrate_sleep_measurement_overhead(sched);
3199
3200         test_calibrations(sched);
3201
3202         if (perf_sched__read_events(sched))
3203                 return -1;
3204
3205         printf("nr_run_events:        %ld\n", sched->nr_run_events);
3206         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3207         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3208
3209         if (sched->targetless_wakeups)
3210                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3211         if (sched->multitarget_wakeups)
3212                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3213         if (sched->nr_run_events_optimized)
3214                 printf("run atoms optimized: %ld\n",
3215                         sched->nr_run_events_optimized);
3216
3217         print_task_traces(sched);
3218         add_cross_task_wakeups(sched);
3219
3220         create_tasks(sched);
3221         printf("------------------------------------------------------------\n");
3222         for (i = 0; i < sched->replay_repeat; i++)
3223                 run_one_test(sched);
3224
3225         return 0;
3226 }
3227
3228 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3229                           const char * const usage_msg[])
3230 {
3231         char *tmp, *tok, *str = strdup(sched->sort_order);
3232
3233         for (tok = strtok_r(str, ", ", &tmp);
3234                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
3235                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3236                         usage_with_options_msg(usage_msg, options,
3237                                         "Unknown --sort key: `%s'", tok);
3238                 }
3239         }
3240
3241         free(str);
3242
3243         sort_dimension__add("pid", &sched->cmp_pid);
3244 }
3245
3246 static int __cmd_record(int argc, const char **argv)
3247 {
3248         unsigned int rec_argc, i, j;
3249         const char **rec_argv;
3250         const char * const record_args[] = {
3251                 "record",
3252                 "-a",
3253                 "-R",
3254                 "-m", "1024",
3255                 "-c", "1",
3256                 "-e", "sched:sched_switch",
3257                 "-e", "sched:sched_stat_wait",
3258                 "-e", "sched:sched_stat_sleep",
3259                 "-e", "sched:sched_stat_iowait",
3260                 "-e", "sched:sched_stat_runtime",
3261                 "-e", "sched:sched_process_fork",
3262                 "-e", "sched:sched_wakeup",
3263                 "-e", "sched:sched_wakeup_new",
3264                 "-e", "sched:sched_migrate_task",
3265         };
3266
3267         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3268         rec_argv = calloc(rec_argc + 1, sizeof(char *));
3269
3270         if (rec_argv == NULL)
3271                 return -ENOMEM;
3272
3273         for (i = 0; i < ARRAY_SIZE(record_args); i++)
3274                 rec_argv[i] = strdup(record_args[i]);
3275
3276         for (j = 1; j < (unsigned int)argc; j++, i++)
3277                 rec_argv[i] = argv[j];
3278
3279         BUG_ON(i != rec_argc);
3280
3281         return cmd_record(i, rec_argv);
3282 }
3283
3284 int cmd_sched(int argc, const char **argv)
3285 {
3286         const char default_sort_order[] = "avg, max, switch, runtime";
3287         struct perf_sched sched = {
3288                 .tool = {
3289                         .sample          = perf_sched__process_tracepoint_sample,
3290                         .comm            = perf_event__process_comm,
3291                         .namespaces      = perf_event__process_namespaces,
3292                         .lost            = perf_event__process_lost,
3293                         .fork            = perf_sched__process_fork_event,
3294                         .ordered_events = true,
3295                 },
3296                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3297                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3298                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3299                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3300                 .sort_order           = default_sort_order,
3301                 .replay_repeat        = 10,
3302                 .profile_cpu          = -1,
3303                 .next_shortname1      = 'A',
3304                 .next_shortname2      = '0',
3305                 .skip_merge           = 0,
3306                 .show_callchain       = 1,
3307                 .max_stack            = 5,
3308         };
3309         const struct option sched_options[] = {
3310         OPT_STRING('i', "input", &input_name, "file",
3311                     "input file name"),
3312         OPT_INCR('v', "verbose", &verbose,
3313                     "be more verbose (show symbol address, etc)"),
3314         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3315                     "dump raw trace in ASCII"),
3316         OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3317         OPT_END()
3318         };
3319         const struct option latency_options[] = {
3320         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3321                    "sort by key(s): runtime, switch, avg, max"),
3322         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3323                     "CPU to profile on"),
3324         OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3325                     "latency stats per pid instead of per comm"),
3326         OPT_PARENT(sched_options)
3327         };
3328         const struct option replay_options[] = {
3329         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3330                      "repeat the workload replay N times (-1: infinite)"),
3331         OPT_PARENT(sched_options)
3332         };
3333         const struct option map_options[] = {
3334         OPT_BOOLEAN(0, "compact", &sched.map.comp,
3335                     "map output in compact mode"),
3336         OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3337                    "highlight given pids in map"),
3338         OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3339                     "highlight given CPUs in map"),
3340         OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3341                     "display given CPUs in map"),
3342         OPT_PARENT(sched_options)
3343         };
3344         const struct option timehist_options[] = {
3345         OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3346                    "file", "vmlinux pathname"),
3347         OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3348                    "file", "kallsyms pathname"),
3349         OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3350                     "Display call chains if present (default on)"),
3351         OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3352                    "Maximum number of functions to display backtrace."),
3353         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3354                     "Look for files with symbols relative to this directory"),
3355         OPT_BOOLEAN('s', "summary", &sched.summary_only,
3356                     "Show only syscall summary with statistics"),
3357         OPT_BOOLEAN('S', "with-summary", &sched.summary,
3358                     "Show all syscalls and summary with statistics"),
3359         OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3360         OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3361         OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3362         OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3363         OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3364         OPT_STRING(0, "time", &sched.time_str, "str",
3365                    "Time span for analysis (start,stop)"),
3366         OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3367         OPT_PARENT(sched_options)
3368         };
3369
3370         const char * const latency_usage[] = {
3371                 "perf sched latency [<options>]",
3372                 NULL
3373         };
3374         const char * const replay_usage[] = {
3375                 "perf sched replay [<options>]",
3376                 NULL
3377         };
3378         const char * const map_usage[] = {
3379                 "perf sched map [<options>]",
3380                 NULL
3381         };
3382         const char * const timehist_usage[] = {
3383                 "perf sched timehist [<options>]",
3384                 NULL
3385         };
3386         const char *const sched_subcommands[] = { "record", "latency", "map",
3387                                                   "replay", "script",
3388                                                   "timehist", NULL };
3389         const char *sched_usage[] = {
3390                 NULL,
3391                 NULL
3392         };
3393         struct trace_sched_handler lat_ops  = {
3394                 .wakeup_event       = latency_wakeup_event,
3395                 .switch_event       = latency_switch_event,
3396                 .runtime_event      = latency_runtime_event,
3397                 .migrate_task_event = latency_migrate_task_event,
3398         };
3399         struct trace_sched_handler map_ops  = {
3400                 .switch_event       = map_switch_event,
3401         };
3402         struct trace_sched_handler replay_ops  = {
3403                 .wakeup_event       = replay_wakeup_event,
3404                 .switch_event       = replay_switch_event,
3405                 .fork_event         = replay_fork_event,
3406         };
3407         unsigned int i;
3408
3409         for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3410                 sched.curr_pid[i] = -1;
3411
3412         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3413                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3414         if (!argc)
3415                 usage_with_options(sched_usage, sched_options);
3416
3417         /*
3418          * Aliased to 'perf script' for now:
3419          */
3420         if (!strcmp(argv[0], "script"))
3421                 return cmd_script(argc, argv);
3422
3423         if (!strncmp(argv[0], "rec", 3)) {
3424                 return __cmd_record(argc, argv);
3425         } else if (!strncmp(argv[0], "lat", 3)) {
3426                 sched.tp_handler = &lat_ops;
3427                 if (argc > 1) {
3428                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3429                         if (argc)
3430                                 usage_with_options(latency_usage, latency_options);
3431                 }
3432                 setup_sorting(&sched, latency_options, latency_usage);
3433                 return perf_sched__lat(&sched);
3434         } else if (!strcmp(argv[0], "map")) {
3435                 if (argc) {
3436                         argc = parse_options(argc, argv, map_options, map_usage, 0);
3437                         if (argc)
3438                                 usage_with_options(map_usage, map_options);
3439                 }
3440                 sched.tp_handler = &map_ops;
3441                 setup_sorting(&sched, latency_options, latency_usage);
3442                 return perf_sched__map(&sched);
3443         } else if (!strncmp(argv[0], "rep", 3)) {
3444                 sched.tp_handler = &replay_ops;
3445                 if (argc) {
3446                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3447                         if (argc)
3448                                 usage_with_options(replay_usage, replay_options);
3449                 }
3450                 return perf_sched__replay(&sched);
3451         } else if (!strcmp(argv[0], "timehist")) {
3452                 if (argc) {
3453                         argc = parse_options(argc, argv, timehist_options,
3454                                              timehist_usage, 0);
3455                         if (argc)
3456                                 usage_with_options(timehist_usage, timehist_options);
3457                 }
3458                 if ((sched.show_wakeups || sched.show_next) &&
3459                     sched.summary_only) {
3460                         pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3461                         parse_options_usage(timehist_usage, timehist_options, "s", true);
3462                         if (sched.show_wakeups)
3463                                 parse_options_usage(NULL, timehist_options, "w", true);
3464                         if (sched.show_next)
3465                                 parse_options_usage(NULL, timehist_options, "n", true);
3466                         return -EINVAL;
3467                 }
3468
3469                 return perf_sched__timehist(&sched);
3470         } else {
3471                 usage_with_options(sched_usage, sched_options);
3472         }
3473
3474         return 0;
3475 }