Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / tools / perf / bench / numa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11
12 #include <subcmd/parse-options.h>
13 #include "../util/cloexec.h"
14
15 #include "bench.h"
16
17 #include <errno.h>
18 #include <sched.h>
19 #include <stdio.h>
20 #include <assert.h>
21 #include <malloc.h>
22 #include <signal.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 #include <sys/mman.h>
27 #include <sys/time.h>
28 #include <sys/resource.h>
29 #include <sys/wait.h>
30 #include <sys/prctl.h>
31 #include <sys/types.h>
32 #include <linux/kernel.h>
33 #include <linux/time64.h>
34 #include <linux/numa.h>
35 #include <linux/zalloc.h>
36
37 #include <numa.h>
38 #include <numaif.h>
39
40 #ifndef RUSAGE_THREAD
41 # define RUSAGE_THREAD 1
42 #endif
43
44 /*
45  * Regular printout to the terminal, supressed if -q is specified:
46  */
47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48
49 /*
50  * Debug printf:
51  */
52 #undef dprintf
53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54
55 struct thread_data {
56         int                     curr_cpu;
57         cpu_set_t               bind_cpumask;
58         int                     bind_node;
59         u8                      *process_data;
60         int                     process_nr;
61         int                     thread_nr;
62         int                     task_nr;
63         unsigned int            loops_done;
64         u64                     val;
65         u64                     runtime_ns;
66         u64                     system_time_ns;
67         u64                     user_time_ns;
68         double                  speed_gbs;
69         pthread_mutex_t         *process_lock;
70 };
71
72 /* Parameters set by options: */
73
74 struct params {
75         /* Startup synchronization: */
76         bool                    serialize_startup;
77
78         /* Task hierarchy: */
79         int                     nr_proc;
80         int                     nr_threads;
81
82         /* Working set sizes: */
83         const char              *mb_global_str;
84         const char              *mb_proc_str;
85         const char              *mb_proc_locked_str;
86         const char              *mb_thread_str;
87
88         double                  mb_global;
89         double                  mb_proc;
90         double                  mb_proc_locked;
91         double                  mb_thread;
92
93         /* Access patterns to the working set: */
94         bool                    data_reads;
95         bool                    data_writes;
96         bool                    data_backwards;
97         bool                    data_zero_memset;
98         bool                    data_rand_walk;
99         u32                     nr_loops;
100         u32                     nr_secs;
101         u32                     sleep_usecs;
102
103         /* Working set initialization: */
104         bool                    init_zero;
105         bool                    init_random;
106         bool                    init_cpu0;
107
108         /* Misc options: */
109         int                     show_details;
110         int                     run_all;
111         int                     thp;
112
113         long                    bytes_global;
114         long                    bytes_process;
115         long                    bytes_process_locked;
116         long                    bytes_thread;
117
118         int                     nr_tasks;
119         bool                    show_quiet;
120
121         bool                    show_convergence;
122         bool                    measure_convergence;
123
124         int                     perturb_secs;
125         int                     nr_cpus;
126         int                     nr_nodes;
127
128         /* Affinity options -C and -N: */
129         char                    *cpu_list_str;
130         char                    *node_list_str;
131 };
132
133
134 /* Global, read-writable area, accessible to all processes and threads: */
135
136 struct global_info {
137         u8                      *data;
138
139         pthread_mutex_t         startup_mutex;
140         int                     nr_tasks_started;
141
142         pthread_mutex_t         startup_done_mutex;
143
144         pthread_mutex_t         start_work_mutex;
145         int                     nr_tasks_working;
146
147         pthread_mutex_t         stop_work_mutex;
148         u64                     bytes_done;
149
150         struct thread_data      *threads;
151
152         /* Convergence latency measurement: */
153         bool                    all_converged;
154         bool                    stop_work;
155
156         int                     print_once;
157
158         struct params           p;
159 };
160
161 static struct global_info       *g = NULL;
162
163 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
164 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
165
166 struct params p0;
167
168 static const struct option options[] = {
169         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
170         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
171
172         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
173         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
174         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
175         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
176
177         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
178         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
179         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
180
181         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via reads (can be mixed with -W)"),
182         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
183         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
184         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
185         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
186
187
188         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
189         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
190         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
191         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
192
193         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
194         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
195         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
196         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
197                     "convergence is reached when each process (all its threads) is running on a single NUMA node."),
198         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
199         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
200         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
201
202         /* Special option string parsing callbacks: */
203         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
204                         "bind the first N tasks to these specific cpus (the rest is unbound)",
205                         parse_cpus_opt),
206         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
207                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
208                         parse_nodes_opt),
209         OPT_END()
210 };
211
212 static const char * const bench_numa_usage[] = {
213         "perf bench numa <options>",
214         NULL
215 };
216
217 static const char * const numa_usage[] = {
218         "perf bench numa mem [<options>]",
219         NULL
220 };
221
222 /*
223  * To get number of numa nodes present.
224  */
225 static int nr_numa_nodes(void)
226 {
227         int i, nr_nodes = 0;
228
229         for (i = 0; i < g->p.nr_nodes; i++) {
230                 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
231                         nr_nodes++;
232         }
233
234         return nr_nodes;
235 }
236
237 /*
238  * To check if given numa node is present.
239  */
240 static int is_node_present(int node)
241 {
242         return numa_bitmask_isbitset(numa_nodes_ptr, node);
243 }
244
245 /*
246  * To check given numa node has cpus.
247  */
248 static bool node_has_cpus(int node)
249 {
250         struct bitmask *cpu = numa_allocate_cpumask();
251         unsigned int i;
252
253         if (cpu && !numa_node_to_cpus(node, cpu)) {
254                 for (i = 0; i < cpu->size; i++) {
255                         if (numa_bitmask_isbitset(cpu, i))
256                                 return true;
257                 }
258         }
259
260         return false; /* lets fall back to nocpus safely */
261 }
262
263 static cpu_set_t bind_to_cpu(int target_cpu)
264 {
265         cpu_set_t orig_mask, mask;
266         int ret;
267
268         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
269         BUG_ON(ret);
270
271         CPU_ZERO(&mask);
272
273         if (target_cpu == -1) {
274                 int cpu;
275
276                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
277                         CPU_SET(cpu, &mask);
278         } else {
279                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
280                 CPU_SET(target_cpu, &mask);
281         }
282
283         ret = sched_setaffinity(0, sizeof(mask), &mask);
284         BUG_ON(ret);
285
286         return orig_mask;
287 }
288
289 static cpu_set_t bind_to_node(int target_node)
290 {
291         int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
292         cpu_set_t orig_mask, mask;
293         int cpu;
294         int ret;
295
296         BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
297         BUG_ON(!cpus_per_node);
298
299         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
300         BUG_ON(ret);
301
302         CPU_ZERO(&mask);
303
304         if (target_node == NUMA_NO_NODE) {
305                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
306                         CPU_SET(cpu, &mask);
307         } else {
308                 int cpu_start = (target_node + 0) * cpus_per_node;
309                 int cpu_stop  = (target_node + 1) * cpus_per_node;
310
311                 BUG_ON(cpu_stop > g->p.nr_cpus);
312
313                 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
314                         CPU_SET(cpu, &mask);
315         }
316
317         ret = sched_setaffinity(0, sizeof(mask), &mask);
318         BUG_ON(ret);
319
320         return orig_mask;
321 }
322
323 static void bind_to_cpumask(cpu_set_t mask)
324 {
325         int ret;
326
327         ret = sched_setaffinity(0, sizeof(mask), &mask);
328         BUG_ON(ret);
329 }
330
331 static void mempol_restore(void)
332 {
333         int ret;
334
335         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
336
337         BUG_ON(ret);
338 }
339
340 static void bind_to_memnode(int node)
341 {
342         unsigned long nodemask;
343         int ret;
344
345         if (node == NUMA_NO_NODE)
346                 return;
347
348         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
349         nodemask = 1L << node;
350
351         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
352         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
353
354         BUG_ON(ret);
355 }
356
357 #define HPSIZE (2*1024*1024)
358
359 #define set_taskname(fmt...)                            \
360 do {                                                    \
361         char name[20];                                  \
362                                                         \
363         snprintf(name, 20, fmt);                        \
364         prctl(PR_SET_NAME, name);                       \
365 } while (0)
366
367 static u8 *alloc_data(ssize_t bytes0, int map_flags,
368                       int init_zero, int init_cpu0, int thp, int init_random)
369 {
370         cpu_set_t orig_mask;
371         ssize_t bytes;
372         u8 *buf;
373         int ret;
374
375         if (!bytes0)
376                 return NULL;
377
378         /* Allocate and initialize all memory on CPU#0: */
379         if (init_cpu0) {
380                 int node = numa_node_of_cpu(0);
381
382                 orig_mask = bind_to_node(node);
383                 bind_to_memnode(node);
384         }
385
386         bytes = bytes0 + HPSIZE;
387
388         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
389         BUG_ON(buf == (void *)-1);
390
391         if (map_flags == MAP_PRIVATE) {
392                 if (thp > 0) {
393                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
394                         if (ret && !g->print_once) {
395                                 g->print_once = 1;
396                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
397                         }
398                 }
399                 if (thp < 0) {
400                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
401                         if (ret && !g->print_once) {
402                                 g->print_once = 1;
403                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
404                         }
405                 }
406         }
407
408         if (init_zero) {
409                 bzero(buf, bytes);
410         } else {
411                 /* Initialize random contents, different in each word: */
412                 if (init_random) {
413                         u64 *wbuf = (void *)buf;
414                         long off = rand();
415                         long i;
416
417                         for (i = 0; i < bytes/8; i++)
418                                 wbuf[i] = i + off;
419                 }
420         }
421
422         /* Align to 2MB boundary: */
423         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
424
425         /* Restore affinity: */
426         if (init_cpu0) {
427                 bind_to_cpumask(orig_mask);
428                 mempol_restore();
429         }
430
431         return buf;
432 }
433
434 static void free_data(void *data, ssize_t bytes)
435 {
436         int ret;
437
438         if (!data)
439                 return;
440
441         ret = munmap(data, bytes);
442         BUG_ON(ret);
443 }
444
445 /*
446  * Create a shared memory buffer that can be shared between processes, zeroed:
447  */
448 static void * zalloc_shared_data(ssize_t bytes)
449 {
450         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
451 }
452
453 /*
454  * Create a shared memory buffer that can be shared between processes:
455  */
456 static void * setup_shared_data(ssize_t bytes)
457 {
458         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
459 }
460
461 /*
462  * Allocate process-local memory - this will either be shared between
463  * threads of this process, or only be accessed by this thread:
464  */
465 static void * setup_private_data(ssize_t bytes)
466 {
467         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
468 }
469
470 /*
471  * Return a process-shared (global) mutex:
472  */
473 static void init_global_mutex(pthread_mutex_t *mutex)
474 {
475         pthread_mutexattr_t attr;
476
477         pthread_mutexattr_init(&attr);
478         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
479         pthread_mutex_init(mutex, &attr);
480 }
481
482 static int parse_cpu_list(const char *arg)
483 {
484         p0.cpu_list_str = strdup(arg);
485
486         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
487
488         return 0;
489 }
490
491 static int parse_setup_cpu_list(void)
492 {
493         struct thread_data *td;
494         char *str0, *str;
495         int t;
496
497         if (!g->p.cpu_list_str)
498                 return 0;
499
500         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
501
502         str0 = str = strdup(g->p.cpu_list_str);
503         t = 0;
504
505         BUG_ON(!str);
506
507         tprintf("# binding tasks to CPUs:\n");
508         tprintf("#  ");
509
510         while (true) {
511                 int bind_cpu, bind_cpu_0, bind_cpu_1;
512                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
513                 int bind_len;
514                 int step;
515                 int mul;
516
517                 tok = strsep(&str, ",");
518                 if (!tok)
519                         break;
520
521                 tok_end = strstr(tok, "-");
522
523                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
524                 if (!tok_end) {
525                         /* Single CPU specified: */
526                         bind_cpu_0 = bind_cpu_1 = atol(tok);
527                 } else {
528                         /* CPU range specified (for example: "5-11"): */
529                         bind_cpu_0 = atol(tok);
530                         bind_cpu_1 = atol(tok_end + 1);
531                 }
532
533                 step = 1;
534                 tok_step = strstr(tok, "#");
535                 if (tok_step) {
536                         step = atol(tok_step + 1);
537                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
538                 }
539
540                 /*
541                  * Mask length.
542                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
543                  * where the _4 means the next 4 CPUs are allowed.
544                  */
545                 bind_len = 1;
546                 tok_len = strstr(tok, "_");
547                 if (tok_len) {
548                         bind_len = atol(tok_len + 1);
549                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
550                 }
551
552                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
553                 mul = 1;
554                 tok_mul = strstr(tok, "x");
555                 if (tok_mul) {
556                         mul = atol(tok_mul + 1);
557                         BUG_ON(mul <= 0);
558                 }
559
560                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
561
562                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
563                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
564                         return -1;
565                 }
566
567                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
568                 BUG_ON(bind_cpu_0 > bind_cpu_1);
569
570                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
571                         int i;
572
573                         for (i = 0; i < mul; i++) {
574                                 int cpu;
575
576                                 if (t >= g->p.nr_tasks) {
577                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
578                                         goto out;
579                                 }
580                                 td = g->threads + t;
581
582                                 if (t)
583                                         tprintf(",");
584                                 if (bind_len > 1) {
585                                         tprintf("%2d/%d", bind_cpu, bind_len);
586                                 } else {
587                                         tprintf("%2d", bind_cpu);
588                                 }
589
590                                 CPU_ZERO(&td->bind_cpumask);
591                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
592                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
593                                         CPU_SET(cpu, &td->bind_cpumask);
594                                 }
595                                 t++;
596                         }
597                 }
598         }
599 out:
600
601         tprintf("\n");
602
603         if (t < g->p.nr_tasks)
604                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
605
606         free(str0);
607         return 0;
608 }
609
610 static int parse_cpus_opt(const struct option *opt __maybe_unused,
611                           const char *arg, int unset __maybe_unused)
612 {
613         if (!arg)
614                 return -1;
615
616         return parse_cpu_list(arg);
617 }
618
619 static int parse_node_list(const char *arg)
620 {
621         p0.node_list_str = strdup(arg);
622
623         dprintf("got NODE list: {%s}\n", p0.node_list_str);
624
625         return 0;
626 }
627
628 static int parse_setup_node_list(void)
629 {
630         struct thread_data *td;
631         char *str0, *str;
632         int t;
633
634         if (!g->p.node_list_str)
635                 return 0;
636
637         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
638
639         str0 = str = strdup(g->p.node_list_str);
640         t = 0;
641
642         BUG_ON(!str);
643
644         tprintf("# binding tasks to NODEs:\n");
645         tprintf("# ");
646
647         while (true) {
648                 int bind_node, bind_node_0, bind_node_1;
649                 char *tok, *tok_end, *tok_step, *tok_mul;
650                 int step;
651                 int mul;
652
653                 tok = strsep(&str, ",");
654                 if (!tok)
655                         break;
656
657                 tok_end = strstr(tok, "-");
658
659                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
660                 if (!tok_end) {
661                         /* Single NODE specified: */
662                         bind_node_0 = bind_node_1 = atol(tok);
663                 } else {
664                         /* NODE range specified (for example: "5-11"): */
665                         bind_node_0 = atol(tok);
666                         bind_node_1 = atol(tok_end + 1);
667                 }
668
669                 step = 1;
670                 tok_step = strstr(tok, "#");
671                 if (tok_step) {
672                         step = atol(tok_step + 1);
673                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
674                 }
675
676                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
677                 mul = 1;
678                 tok_mul = strstr(tok, "x");
679                 if (tok_mul) {
680                         mul = atol(tok_mul + 1);
681                         BUG_ON(mul <= 0);
682                 }
683
684                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
685
686                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
687                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
688                         return -1;
689                 }
690
691                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
692                 BUG_ON(bind_node_0 > bind_node_1);
693
694                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
695                         int i;
696
697                         for (i = 0; i < mul; i++) {
698                                 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
699                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
700                                         goto out;
701                                 }
702                                 td = g->threads + t;
703
704                                 if (!t)
705                                         tprintf(" %2d", bind_node);
706                                 else
707                                         tprintf(",%2d", bind_node);
708
709                                 td->bind_node = bind_node;
710                                 t++;
711                         }
712                 }
713         }
714 out:
715
716         tprintf("\n");
717
718         if (t < g->p.nr_tasks)
719                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
720
721         free(str0);
722         return 0;
723 }
724
725 static int parse_nodes_opt(const struct option *opt __maybe_unused,
726                           const char *arg, int unset __maybe_unused)
727 {
728         if (!arg)
729                 return -1;
730
731         return parse_node_list(arg);
732
733         return 0;
734 }
735
736 #define BIT(x) (1ul << x)
737
738 static inline uint32_t lfsr_32(uint32_t lfsr)
739 {
740         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
741         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
742 }
743
744 /*
745  * Make sure there's real data dependency to RAM (when read
746  * accesses are enabled), so the compiler, the CPU and the
747  * kernel (KSM, zero page, etc.) cannot optimize away RAM
748  * accesses:
749  */
750 static inline u64 access_data(u64 *data, u64 val)
751 {
752         if (g->p.data_reads)
753                 val += *data;
754         if (g->p.data_writes)
755                 *data = val + 1;
756         return val;
757 }
758
759 /*
760  * The worker process does two types of work, a forwards going
761  * loop and a backwards going loop.
762  *
763  * We do this so that on multiprocessor systems we do not create
764  * a 'train' of processing, with highly synchronized processes,
765  * skewing the whole benchmark.
766  */
767 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
768 {
769         long words = bytes/sizeof(u64);
770         u64 *data = (void *)__data;
771         long chunk_0, chunk_1;
772         u64 *d0, *d, *d1;
773         long off;
774         long i;
775
776         BUG_ON(!data && words);
777         BUG_ON(data && !words);
778
779         if (!data)
780                 return val;
781
782         /* Very simple memset() work variant: */
783         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
784                 bzero(data, bytes);
785                 return val;
786         }
787
788         /* Spread out by PID/TID nr and by loop nr: */
789         chunk_0 = words/nr_max;
790         chunk_1 = words/g->p.nr_loops;
791         off = nr*chunk_0 + loop*chunk_1;
792
793         while (off >= words)
794                 off -= words;
795
796         if (g->p.data_rand_walk) {
797                 u32 lfsr = nr + loop + val;
798                 int j;
799
800                 for (i = 0; i < words/1024; i++) {
801                         long start, end;
802
803                         lfsr = lfsr_32(lfsr);
804
805                         start = lfsr % words;
806                         end = min(start + 1024, words-1);
807
808                         if (g->p.data_zero_memset) {
809                                 bzero(data + start, (end-start) * sizeof(u64));
810                         } else {
811                                 for (j = start; j < end; j++)
812                                         val = access_data(data + j, val);
813                         }
814                 }
815         } else if (!g->p.data_backwards || (nr + loop) & 1) {
816
817                 d0 = data + off;
818                 d  = data + off + 1;
819                 d1 = data + words;
820
821                 /* Process data forwards: */
822                 for (;;) {
823                         if (unlikely(d >= d1))
824                                 d = data;
825                         if (unlikely(d == d0))
826                                 break;
827
828                         val = access_data(d, val);
829
830                         d++;
831                 }
832         } else {
833                 /* Process data backwards: */
834
835                 d0 = data + off;
836                 d  = data + off - 1;
837                 d1 = data + words;
838
839                 /* Process data forwards: */
840                 for (;;) {
841                         if (unlikely(d < data))
842                                 d = data + words-1;
843                         if (unlikely(d == d0))
844                                 break;
845
846                         val = access_data(d, val);
847
848                         d--;
849                 }
850         }
851
852         return val;
853 }
854
855 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
856 {
857         unsigned int cpu;
858
859         cpu = sched_getcpu();
860
861         g->threads[task_nr].curr_cpu = cpu;
862         prctl(0, bytes_worked);
863 }
864
865 #define MAX_NR_NODES    64
866
867 /*
868  * Count the number of nodes a process's threads
869  * are spread out on.
870  *
871  * A count of 1 means that the process is compressed
872  * to a single node. A count of g->p.nr_nodes means it's
873  * spread out on the whole system.
874  */
875 static int count_process_nodes(int process_nr)
876 {
877         char node_present[MAX_NR_NODES] = { 0, };
878         int nodes;
879         int n, t;
880
881         for (t = 0; t < g->p.nr_threads; t++) {
882                 struct thread_data *td;
883                 int task_nr;
884                 int node;
885
886                 task_nr = process_nr*g->p.nr_threads + t;
887                 td = g->threads + task_nr;
888
889                 node = numa_node_of_cpu(td->curr_cpu);
890                 if (node < 0) /* curr_cpu was likely still -1 */
891                         return 0;
892
893                 node_present[node] = 1;
894         }
895
896         nodes = 0;
897
898         for (n = 0; n < MAX_NR_NODES; n++)
899                 nodes += node_present[n];
900
901         return nodes;
902 }
903
904 /*
905  * Count the number of distinct process-threads a node contains.
906  *
907  * A count of 1 means that the node contains only a single
908  * process. If all nodes on the system contain at most one
909  * process then we are well-converged.
910  */
911 static int count_node_processes(int node)
912 {
913         int processes = 0;
914         int t, p;
915
916         for (p = 0; p < g->p.nr_proc; p++) {
917                 for (t = 0; t < g->p.nr_threads; t++) {
918                         struct thread_data *td;
919                         int task_nr;
920                         int n;
921
922                         task_nr = p*g->p.nr_threads + t;
923                         td = g->threads + task_nr;
924
925                         n = numa_node_of_cpu(td->curr_cpu);
926                         if (n == node) {
927                                 processes++;
928                                 break;
929                         }
930                 }
931         }
932
933         return processes;
934 }
935
936 static void calc_convergence_compression(int *strong)
937 {
938         unsigned int nodes_min, nodes_max;
939         int p;
940
941         nodes_min = -1;
942         nodes_max =  0;
943
944         for (p = 0; p < g->p.nr_proc; p++) {
945                 unsigned int nodes = count_process_nodes(p);
946
947                 if (!nodes) {
948                         *strong = 0;
949                         return;
950                 }
951
952                 nodes_min = min(nodes, nodes_min);
953                 nodes_max = max(nodes, nodes_max);
954         }
955
956         /* Strong convergence: all threads compress on a single node: */
957         if (nodes_min == 1 && nodes_max == 1) {
958                 *strong = 1;
959         } else {
960                 *strong = 0;
961                 tprintf(" {%d-%d}", nodes_min, nodes_max);
962         }
963 }
964
965 static void calc_convergence(double runtime_ns_max, double *convergence)
966 {
967         unsigned int loops_done_min, loops_done_max;
968         int process_groups;
969         int nodes[MAX_NR_NODES];
970         int distance;
971         int nr_min;
972         int nr_max;
973         int strong;
974         int sum;
975         int nr;
976         int node;
977         int cpu;
978         int t;
979
980         if (!g->p.show_convergence && !g->p.measure_convergence)
981                 return;
982
983         for (node = 0; node < g->p.nr_nodes; node++)
984                 nodes[node] = 0;
985
986         loops_done_min = -1;
987         loops_done_max = 0;
988
989         for (t = 0; t < g->p.nr_tasks; t++) {
990                 struct thread_data *td = g->threads + t;
991                 unsigned int loops_done;
992
993                 cpu = td->curr_cpu;
994
995                 /* Not all threads have written it yet: */
996                 if (cpu < 0)
997                         continue;
998
999                 node = numa_node_of_cpu(cpu);
1000
1001                 nodes[node]++;
1002
1003                 loops_done = td->loops_done;
1004                 loops_done_min = min(loops_done, loops_done_min);
1005                 loops_done_max = max(loops_done, loops_done_max);
1006         }
1007
1008         nr_max = 0;
1009         nr_min = g->p.nr_tasks;
1010         sum = 0;
1011
1012         for (node = 0; node < g->p.nr_nodes; node++) {
1013                 if (!is_node_present(node))
1014                         continue;
1015                 nr = nodes[node];
1016                 nr_min = min(nr, nr_min);
1017                 nr_max = max(nr, nr_max);
1018                 sum += nr;
1019         }
1020         BUG_ON(nr_min > nr_max);
1021
1022         BUG_ON(sum > g->p.nr_tasks);
1023
1024         if (0 && (sum < g->p.nr_tasks))
1025                 return;
1026
1027         /*
1028          * Count the number of distinct process groups present
1029          * on nodes - when we are converged this will decrease
1030          * to g->p.nr_proc:
1031          */
1032         process_groups = 0;
1033
1034         for (node = 0; node < g->p.nr_nodes; node++) {
1035                 int processes;
1036
1037                 if (!is_node_present(node))
1038                         continue;
1039                 processes = count_node_processes(node);
1040                 nr = nodes[node];
1041                 tprintf(" %2d/%-2d", nr, processes);
1042
1043                 process_groups += processes;
1044         }
1045
1046         distance = nr_max - nr_min;
1047
1048         tprintf(" [%2d/%-2d]", distance, process_groups);
1049
1050         tprintf(" l:%3d-%-3d (%3d)",
1051                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1052
1053         if (loops_done_min && loops_done_max) {
1054                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1055
1056                 tprintf(" [%4.1f%%]", skew * 100.0);
1057         }
1058
1059         calc_convergence_compression(&strong);
1060
1061         if (strong && process_groups == g->p.nr_proc) {
1062                 if (!*convergence) {
1063                         *convergence = runtime_ns_max;
1064                         tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1065                         if (g->p.measure_convergence) {
1066                                 g->all_converged = true;
1067                                 g->stop_work = true;
1068                         }
1069                 }
1070         } else {
1071                 if (*convergence) {
1072                         tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1073                         *convergence = 0;
1074                 }
1075                 tprintf("\n");
1076         }
1077 }
1078
1079 static void show_summary(double runtime_ns_max, int l, double *convergence)
1080 {
1081         tprintf("\r #  %5.1f%%  [%.1f mins]",
1082                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1083
1084         calc_convergence(runtime_ns_max, convergence);
1085
1086         if (g->p.show_details >= 0)
1087                 fflush(stdout);
1088 }
1089
1090 static void *worker_thread(void *__tdata)
1091 {
1092         struct thread_data *td = __tdata;
1093         struct timeval start0, start, stop, diff;
1094         int process_nr = td->process_nr;
1095         int thread_nr = td->thread_nr;
1096         unsigned long last_perturbance;
1097         int task_nr = td->task_nr;
1098         int details = g->p.show_details;
1099         int first_task, last_task;
1100         double convergence = 0;
1101         u64 val = td->val;
1102         double runtime_ns_max;
1103         u8 *global_data;
1104         u8 *process_data;
1105         u8 *thread_data;
1106         u64 bytes_done, secs;
1107         long work_done;
1108         u32 l;
1109         struct rusage rusage;
1110
1111         bind_to_cpumask(td->bind_cpumask);
1112         bind_to_memnode(td->bind_node);
1113
1114         set_taskname("thread %d/%d", process_nr, thread_nr);
1115
1116         global_data = g->data;
1117         process_data = td->process_data;
1118         thread_data = setup_private_data(g->p.bytes_thread);
1119
1120         bytes_done = 0;
1121
1122         last_task = 0;
1123         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1124                 last_task = 1;
1125
1126         first_task = 0;
1127         if (process_nr == 0 && thread_nr == 0)
1128                 first_task = 1;
1129
1130         if (details >= 2) {
1131                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1132                         process_nr, thread_nr, global_data, process_data, thread_data);
1133         }
1134
1135         if (g->p.serialize_startup) {
1136                 pthread_mutex_lock(&g->startup_mutex);
1137                 g->nr_tasks_started++;
1138                 pthread_mutex_unlock(&g->startup_mutex);
1139
1140                 /* Here we will wait for the main process to start us all at once: */
1141                 pthread_mutex_lock(&g->start_work_mutex);
1142                 g->nr_tasks_working++;
1143
1144                 /* Last one wake the main process: */
1145                 if (g->nr_tasks_working == g->p.nr_tasks)
1146                         pthread_mutex_unlock(&g->startup_done_mutex);
1147
1148                 pthread_mutex_unlock(&g->start_work_mutex);
1149         }
1150
1151         gettimeofday(&start0, NULL);
1152
1153         start = stop = start0;
1154         last_perturbance = start.tv_sec;
1155
1156         for (l = 0; l < g->p.nr_loops; l++) {
1157                 start = stop;
1158
1159                 if (g->stop_work)
1160                         break;
1161
1162                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1163                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1164                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1165
1166                 if (g->p.sleep_usecs) {
1167                         pthread_mutex_lock(td->process_lock);
1168                         usleep(g->p.sleep_usecs);
1169                         pthread_mutex_unlock(td->process_lock);
1170                 }
1171                 /*
1172                  * Amount of work to be done under a process-global lock:
1173                  */
1174                 if (g->p.bytes_process_locked) {
1175                         pthread_mutex_lock(td->process_lock);
1176                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1177                         pthread_mutex_unlock(td->process_lock);
1178                 }
1179
1180                 work_done = g->p.bytes_global + g->p.bytes_process +
1181                             g->p.bytes_process_locked + g->p.bytes_thread;
1182
1183                 update_curr_cpu(task_nr, work_done);
1184                 bytes_done += work_done;
1185
1186                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1187                         continue;
1188
1189                 td->loops_done = l;
1190
1191                 gettimeofday(&stop, NULL);
1192
1193                 /* Check whether our max runtime timed out: */
1194                 if (g->p.nr_secs) {
1195                         timersub(&stop, &start0, &diff);
1196                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1197                                 g->stop_work = true;
1198                                 break;
1199                         }
1200                 }
1201
1202                 /* Update the summary at most once per second: */
1203                 if (start.tv_sec == stop.tv_sec)
1204                         continue;
1205
1206                 /*
1207                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1208                  * by migrating to CPU#0:
1209                  */
1210                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1211                         cpu_set_t orig_mask;
1212                         int target_cpu;
1213                         int this_cpu;
1214
1215                         last_perturbance = stop.tv_sec;
1216
1217                         /*
1218                          * Depending on where we are running, move into
1219                          * the other half of the system, to create some
1220                          * real disturbance:
1221                          */
1222                         this_cpu = g->threads[task_nr].curr_cpu;
1223                         if (this_cpu < g->p.nr_cpus/2)
1224                                 target_cpu = g->p.nr_cpus-1;
1225                         else
1226                                 target_cpu = 0;
1227
1228                         orig_mask = bind_to_cpu(target_cpu);
1229
1230                         /* Here we are running on the target CPU already */
1231                         if (details >= 1)
1232                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1233
1234                         bind_to_cpumask(orig_mask);
1235                 }
1236
1237                 if (details >= 3) {
1238                         timersub(&stop, &start, &diff);
1239                         runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1240                         runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1241
1242                         if (details >= 0) {
1243                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1244                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1245                         }
1246                         fflush(stdout);
1247                 }
1248                 if (!last_task)
1249                         continue;
1250
1251                 timersub(&stop, &start0, &diff);
1252                 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1253                 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1254
1255                 show_summary(runtime_ns_max, l, &convergence);
1256         }
1257
1258         gettimeofday(&stop, NULL);
1259         timersub(&stop, &start0, &diff);
1260         td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1261         td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1262         secs = td->runtime_ns / NSEC_PER_SEC;
1263         td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1264
1265         getrusage(RUSAGE_THREAD, &rusage);
1266         td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1267         td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1268         td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1269         td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1270
1271         free_data(thread_data, g->p.bytes_thread);
1272
1273         pthread_mutex_lock(&g->stop_work_mutex);
1274         g->bytes_done += bytes_done;
1275         pthread_mutex_unlock(&g->stop_work_mutex);
1276
1277         return NULL;
1278 }
1279
1280 /*
1281  * A worker process starts a couple of threads:
1282  */
1283 static void worker_process(int process_nr)
1284 {
1285         pthread_mutex_t process_lock;
1286         struct thread_data *td;
1287         pthread_t *pthreads;
1288         u8 *process_data;
1289         int task_nr;
1290         int ret;
1291         int t;
1292
1293         pthread_mutex_init(&process_lock, NULL);
1294         set_taskname("process %d", process_nr);
1295
1296         /*
1297          * Pick up the memory policy and the CPU binding of our first thread,
1298          * so that we initialize memory accordingly:
1299          */
1300         task_nr = process_nr*g->p.nr_threads;
1301         td = g->threads + task_nr;
1302
1303         bind_to_memnode(td->bind_node);
1304         bind_to_cpumask(td->bind_cpumask);
1305
1306         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1307         process_data = setup_private_data(g->p.bytes_process);
1308
1309         if (g->p.show_details >= 3) {
1310                 printf(" # process %2d global mem: %p, process mem: %p\n",
1311                         process_nr, g->data, process_data);
1312         }
1313
1314         for (t = 0; t < g->p.nr_threads; t++) {
1315                 task_nr = process_nr*g->p.nr_threads + t;
1316                 td = g->threads + task_nr;
1317
1318                 td->process_data = process_data;
1319                 td->process_nr   = process_nr;
1320                 td->thread_nr    = t;
1321                 td->task_nr      = task_nr;
1322                 td->val          = rand();
1323                 td->curr_cpu     = -1;
1324                 td->process_lock = &process_lock;
1325
1326                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1327                 BUG_ON(ret);
1328         }
1329
1330         for (t = 0; t < g->p.nr_threads; t++) {
1331                 ret = pthread_join(pthreads[t], NULL);
1332                 BUG_ON(ret);
1333         }
1334
1335         free_data(process_data, g->p.bytes_process);
1336         free(pthreads);
1337 }
1338
1339 static void print_summary(void)
1340 {
1341         if (g->p.show_details < 0)
1342                 return;
1343
1344         printf("\n ###\n");
1345         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1346                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1347         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1348                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1349         printf(" #      %5dx %5ldMB process shared mem operations\n",
1350                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1351         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1352                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1353
1354         printf(" ###\n");
1355
1356         printf("\n ###\n"); fflush(stdout);
1357 }
1358
1359 static void init_thread_data(void)
1360 {
1361         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1362         int t;
1363
1364         g->threads = zalloc_shared_data(size);
1365
1366         for (t = 0; t < g->p.nr_tasks; t++) {
1367                 struct thread_data *td = g->threads + t;
1368                 int cpu;
1369
1370                 /* Allow all nodes by default: */
1371                 td->bind_node = NUMA_NO_NODE;
1372
1373                 /* Allow all CPUs by default: */
1374                 CPU_ZERO(&td->bind_cpumask);
1375                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1376                         CPU_SET(cpu, &td->bind_cpumask);
1377         }
1378 }
1379
1380 static void deinit_thread_data(void)
1381 {
1382         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1383
1384         free_data(g->threads, size);
1385 }
1386
1387 static int init(void)
1388 {
1389         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1390
1391         /* Copy over options: */
1392         g->p = p0;
1393
1394         g->p.nr_cpus = numa_num_configured_cpus();
1395
1396         g->p.nr_nodes = numa_max_node() + 1;
1397
1398         /* char array in count_process_nodes(): */
1399         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1400
1401         if (g->p.show_quiet && !g->p.show_details)
1402                 g->p.show_details = -1;
1403
1404         /* Some memory should be specified: */
1405         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1406                 return -1;
1407
1408         if (g->p.mb_global_str) {
1409                 g->p.mb_global = atof(g->p.mb_global_str);
1410                 BUG_ON(g->p.mb_global < 0);
1411         }
1412
1413         if (g->p.mb_proc_str) {
1414                 g->p.mb_proc = atof(g->p.mb_proc_str);
1415                 BUG_ON(g->p.mb_proc < 0);
1416         }
1417
1418         if (g->p.mb_proc_locked_str) {
1419                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1420                 BUG_ON(g->p.mb_proc_locked < 0);
1421                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1422         }
1423
1424         if (g->p.mb_thread_str) {
1425                 g->p.mb_thread = atof(g->p.mb_thread_str);
1426                 BUG_ON(g->p.mb_thread < 0);
1427         }
1428
1429         BUG_ON(g->p.nr_threads <= 0);
1430         BUG_ON(g->p.nr_proc <= 0);
1431
1432         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1433
1434         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1435         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1436         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1437         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1438
1439         g->data = setup_shared_data(g->p.bytes_global);
1440
1441         /* Startup serialization: */
1442         init_global_mutex(&g->start_work_mutex);
1443         init_global_mutex(&g->startup_mutex);
1444         init_global_mutex(&g->startup_done_mutex);
1445         init_global_mutex(&g->stop_work_mutex);
1446
1447         init_thread_data();
1448
1449         tprintf("#\n");
1450         if (parse_setup_cpu_list() || parse_setup_node_list())
1451                 return -1;
1452         tprintf("#\n");
1453
1454         print_summary();
1455
1456         return 0;
1457 }
1458
1459 static void deinit(void)
1460 {
1461         free_data(g->data, g->p.bytes_global);
1462         g->data = NULL;
1463
1464         deinit_thread_data();
1465
1466         free_data(g, sizeof(*g));
1467         g = NULL;
1468 }
1469
1470 /*
1471  * Print a short or long result, depending on the verbosity setting:
1472  */
1473 static void print_res(const char *name, double val,
1474                       const char *txt_unit, const char *txt_short, const char *txt_long)
1475 {
1476         if (!name)
1477                 name = "main,";
1478
1479         if (!g->p.show_quiet)
1480                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1481         else
1482                 printf(" %14.3f %s\n", val, txt_long);
1483 }
1484
1485 static int __bench_numa(const char *name)
1486 {
1487         struct timeval start, stop, diff;
1488         u64 runtime_ns_min, runtime_ns_sum;
1489         pid_t *pids, pid, wpid;
1490         double delta_runtime;
1491         double runtime_avg;
1492         double runtime_sec_max;
1493         double runtime_sec_min;
1494         int wait_stat;
1495         double bytes;
1496         int i, t, p;
1497
1498         if (init())
1499                 return -1;
1500
1501         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1502         pid = -1;
1503
1504         /* All threads try to acquire it, this way we can wait for them to start up: */
1505         pthread_mutex_lock(&g->start_work_mutex);
1506
1507         if (g->p.serialize_startup) {
1508                 tprintf(" #\n");
1509                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1510         }
1511
1512         gettimeofday(&start, NULL);
1513
1514         for (i = 0; i < g->p.nr_proc; i++) {
1515                 pid = fork();
1516                 dprintf(" # process %2d: PID %d\n", i, pid);
1517
1518                 BUG_ON(pid < 0);
1519                 if (!pid) {
1520                         /* Child process: */
1521                         worker_process(i);
1522
1523                         exit(0);
1524                 }
1525                 pids[i] = pid;
1526
1527         }
1528         /* Wait for all the threads to start up: */
1529         while (g->nr_tasks_started != g->p.nr_tasks)
1530                 usleep(USEC_PER_MSEC);
1531
1532         BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1533
1534         if (g->p.serialize_startup) {
1535                 double startup_sec;
1536
1537                 pthread_mutex_lock(&g->startup_done_mutex);
1538
1539                 /* This will start all threads: */
1540                 pthread_mutex_unlock(&g->start_work_mutex);
1541
1542                 /* This mutex is locked - the last started thread will wake us: */
1543                 pthread_mutex_lock(&g->startup_done_mutex);
1544
1545                 gettimeofday(&stop, NULL);
1546
1547                 timersub(&stop, &start, &diff);
1548
1549                 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1550                 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1551                 startup_sec /= NSEC_PER_SEC;
1552
1553                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1554                 tprintf(" #\n");
1555
1556                 start = stop;
1557                 pthread_mutex_unlock(&g->startup_done_mutex);
1558         } else {
1559                 gettimeofday(&start, NULL);
1560         }
1561
1562         /* Parent process: */
1563
1564
1565         for (i = 0; i < g->p.nr_proc; i++) {
1566                 wpid = waitpid(pids[i], &wait_stat, 0);
1567                 BUG_ON(wpid < 0);
1568                 BUG_ON(!WIFEXITED(wait_stat));
1569
1570         }
1571
1572         runtime_ns_sum = 0;
1573         runtime_ns_min = -1LL;
1574
1575         for (t = 0; t < g->p.nr_tasks; t++) {
1576                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1577
1578                 runtime_ns_sum += thread_runtime_ns;
1579                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1580         }
1581
1582         gettimeofday(&stop, NULL);
1583         timersub(&stop, &start, &diff);
1584
1585         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1586
1587         tprintf("\n ###\n");
1588         tprintf("\n");
1589
1590         runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1591         runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1592         runtime_sec_max /= NSEC_PER_SEC;
1593
1594         runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1595
1596         bytes = g->bytes_done;
1597         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1598
1599         if (g->p.measure_convergence) {
1600                 print_res(name, runtime_sec_max,
1601                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1602         }
1603
1604         print_res(name, runtime_sec_max,
1605                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1606
1607         print_res(name, runtime_sec_min,
1608                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1609
1610         print_res(name, runtime_avg,
1611                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1612
1613         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1614         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1615                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1616
1617         print_res(name, bytes / g->p.nr_tasks / 1e9,
1618                 "GB,", "data/thread",           "GB data processed, per thread");
1619
1620         print_res(name, bytes / 1e9,
1621                 "GB,", "data-total",            "GB data processed, total");
1622
1623         print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1624                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1625
1626         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1627                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1628
1629         print_res(name, bytes / runtime_sec_max / 1e9,
1630                 "GB/sec,", "total-speed",       "GB/sec total speed");
1631
1632         if (g->p.show_details >= 2) {
1633                 char tname[14 + 2 * 10 + 1];
1634                 struct thread_data *td;
1635                 for (p = 0; p < g->p.nr_proc; p++) {
1636                         for (t = 0; t < g->p.nr_threads; t++) {
1637                                 memset(tname, 0, sizeof(tname));
1638                                 td = g->threads + p*g->p.nr_threads + t;
1639                                 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1640                                 print_res(tname, td->speed_gbs,
1641                                         "GB/sec",       "thread-speed", "GB/sec/thread speed");
1642                                 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1643                                         "secs", "thread-system-time", "system CPU time/thread");
1644                                 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1645                                         "secs", "thread-user-time", "user CPU time/thread");
1646                         }
1647                 }
1648         }
1649
1650         free(pids);
1651
1652         deinit();
1653
1654         return 0;
1655 }
1656
1657 #define MAX_ARGS 50
1658
1659 static int command_size(const char **argv)
1660 {
1661         int size = 0;
1662
1663         while (*argv) {
1664                 size++;
1665                 argv++;
1666         }
1667
1668         BUG_ON(size >= MAX_ARGS);
1669
1670         return size;
1671 }
1672
1673 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1674 {
1675         int i;
1676
1677         printf("\n # Running %s \"perf bench numa", name);
1678
1679         for (i = 0; i < argc; i++)
1680                 printf(" %s", argv[i]);
1681
1682         printf("\"\n");
1683
1684         memset(p, 0, sizeof(*p));
1685
1686         /* Initialize nonzero defaults: */
1687
1688         p->serialize_startup            = 1;
1689         p->data_reads                   = true;
1690         p->data_writes                  = true;
1691         p->data_backwards               = true;
1692         p->data_rand_walk               = true;
1693         p->nr_loops                     = -1;
1694         p->init_random                  = true;
1695         p->mb_global_str                = "1";
1696         p->nr_proc                      = 1;
1697         p->nr_threads                   = 1;
1698         p->nr_secs                      = 5;
1699         p->run_all                      = argc == 1;
1700 }
1701
1702 static int run_bench_numa(const char *name, const char **argv)
1703 {
1704         int argc = command_size(argv);
1705
1706         init_params(&p0, name, argc, argv);
1707         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1708         if (argc)
1709                 goto err;
1710
1711         if (__bench_numa(name))
1712                 goto err;
1713
1714         return 0;
1715
1716 err:
1717         return -1;
1718 }
1719
1720 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1721 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1722
1723 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1724 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1725
1726 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1727 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1728
1729 /*
1730  * The built-in test-suite executed by "perf bench numa -a".
1731  *
1732  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1733  */
1734 static const char *tests[][MAX_ARGS] = {
1735    /* Basic single-stream NUMA bandwidth measurements: */
1736    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1737                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1738    { "RAM-bw-local-NOTHP,",
1739                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1740                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1741    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1742                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1743
1744    /* 2-stream NUMA bandwidth measurements: */
1745    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1746                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1747    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1748                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1749
1750    /* Cross-stream NUMA bandwidth measurement: */
1751    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1752                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1753
1754    /* Convergence latency measurements: */
1755    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1756    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1757    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1758    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1759    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1760    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1761    { " 4x4-convergence-NOTHP,",
1762                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1763    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1764    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1765    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1766    { " 8x4-convergence-NOTHP,",
1767                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1768    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1769    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1770    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1771    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1772    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1773
1774    /* Various NUMA process/thread layout bandwidth measurements: */
1775    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1776    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1777    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1778    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1779    { " 8x1-bw-process-NOTHP,",
1780                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1781    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1782
1783    { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1784    { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1785    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1786    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1787
1788    { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1789    { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1790    { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1791    { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1792    { " 4x8-bw-thread-NOTHP,",
1793                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1794    { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1795    { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1796
1797    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1798    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1799
1800    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1801    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1802    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1803    { "numa01-bw-thread-NOTHP,",
1804                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1805 };
1806
1807 static int bench_all(void)
1808 {
1809         int nr = ARRAY_SIZE(tests);
1810         int ret;
1811         int i;
1812
1813         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1814         BUG_ON(ret < 0);
1815
1816         for (i = 0; i < nr; i++) {
1817                 run_bench_numa(tests[i][0], tests[i] + 1);
1818         }
1819
1820         printf("\n");
1821
1822         return 0;
1823 }
1824
1825 int bench_numa(int argc, const char **argv)
1826 {
1827         init_params(&p0, "main,", argc, argv);
1828         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1829         if (argc)
1830                 goto err;
1831
1832         if (p0.run_all)
1833                 return bench_all();
1834
1835         if (__bench_numa(NULL))
1836                 goto err;
1837
1838         return 0;
1839
1840 err:
1841         usage_with_options(numa_usage, options);
1842         return -1;
1843 }