Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / sound / pci / ymfpci / ymfpci_main.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *  Routines for control of YMF724/740/744/754 chips
5  */
6
7 #include <linux/delay.h>
8 #include <linux/firmware.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/mutex.h>
15 #include <linux/module.h>
16 #include <linux/io.h>
17
18 #include <sound/core.h>
19 #include <sound/control.h>
20 #include <sound/info.h>
21 #include <sound/tlv.h>
22 #include "ymfpci.h"
23 #include <sound/asoundef.h>
24 #include <sound/mpu401.h>
25
26 #include <asm/byteorder.h>
27
28 /*
29  *  common I/O routines
30  */
31
32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
33
34 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
35 {
36         return readb(chip->reg_area_virt + offset);
37 }
38
39 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
40 {
41         writeb(val, chip->reg_area_virt + offset);
42 }
43
44 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
45 {
46         return readw(chip->reg_area_virt + offset);
47 }
48
49 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
50 {
51         writew(val, chip->reg_area_virt + offset);
52 }
53
54 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
55 {
56         return readl(chip->reg_area_virt + offset);
57 }
58
59 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
60 {
61         writel(val, chip->reg_area_virt + offset);
62 }
63
64 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
65 {
66         unsigned long end_time;
67         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
68         
69         end_time = jiffies + msecs_to_jiffies(750);
70         do {
71                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
72                         return 0;
73                 schedule_timeout_uninterruptible(1);
74         } while (time_before(jiffies, end_time));
75         dev_err(chip->card->dev,
76                 "codec_ready: codec %i is not ready [0x%x]\n",
77                 secondary, snd_ymfpci_readw(chip, reg));
78         return -EBUSY;
79 }
80
81 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
82 {
83         struct snd_ymfpci *chip = ac97->private_data;
84         u32 cmd;
85         
86         snd_ymfpci_codec_ready(chip, 0);
87         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
88         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
89 }
90
91 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
92 {
93         struct snd_ymfpci *chip = ac97->private_data;
94
95         if (snd_ymfpci_codec_ready(chip, 0))
96                 return ~0;
97         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
98         if (snd_ymfpci_codec_ready(chip, 0))
99                 return ~0;
100         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
101                 int i;
102                 for (i = 0; i < 600; i++)
103                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
104         }
105         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
106 }
107
108 /*
109  *  Misc routines
110  */
111
112 static u32 snd_ymfpci_calc_delta(u32 rate)
113 {
114         switch (rate) {
115         case 8000:      return 0x02aaab00;
116         case 11025:     return 0x03accd00;
117         case 16000:     return 0x05555500;
118         case 22050:     return 0x07599a00;
119         case 32000:     return 0x0aaaab00;
120         case 44100:     return 0x0eb33300;
121         default:        return ((rate << 16) / 375) << 5;
122         }
123 }
124
125 static u32 def_rate[8] = {
126         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
127 };
128
129 static u32 snd_ymfpci_calc_lpfK(u32 rate)
130 {
131         u32 i;
132         static u32 val[8] = {
133                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
134                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
135         };
136         
137         if (rate == 44100)
138                 return 0x40000000;      /* FIXME: What's the right value? */
139         for (i = 0; i < 8; i++)
140                 if (rate <= def_rate[i])
141                         return val[i];
142         return val[0];
143 }
144
145 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
146 {
147         u32 i;
148         static u32 val[8] = {
149                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
150                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
151         };
152         
153         if (rate == 44100)
154                 return 0x370A0000;
155         for (i = 0; i < 8; i++)
156                 if (rate <= def_rate[i])
157                         return val[i];
158         return val[0];
159 }
160
161 /*
162  *  Hardware start management
163  */
164
165 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
166 {
167         unsigned long flags;
168
169         spin_lock_irqsave(&chip->reg_lock, flags);
170         if (chip->start_count++ > 0)
171                 goto __end;
172         snd_ymfpci_writel(chip, YDSXGR_MODE,
173                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
174         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
175       __end:
176         spin_unlock_irqrestore(&chip->reg_lock, flags);
177 }
178
179 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
180 {
181         unsigned long flags;
182         long timeout = 1000;
183
184         spin_lock_irqsave(&chip->reg_lock, flags);
185         if (--chip->start_count > 0)
186                 goto __end;
187         snd_ymfpci_writel(chip, YDSXGR_MODE,
188                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
189         while (timeout-- > 0) {
190                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
191                         break;
192         }
193         if (atomic_read(&chip->interrupt_sleep_count)) {
194                 atomic_set(&chip->interrupt_sleep_count, 0);
195                 wake_up(&chip->interrupt_sleep);
196         }
197       __end:
198         spin_unlock_irqrestore(&chip->reg_lock, flags);
199 }
200
201 /*
202  *  Playback voice management
203  */
204
205 static int voice_alloc(struct snd_ymfpci *chip,
206                        enum snd_ymfpci_voice_type type, int pair,
207                        struct snd_ymfpci_voice **rvoice)
208 {
209         struct snd_ymfpci_voice *voice, *voice2;
210         int idx;
211         
212         *rvoice = NULL;
213         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
214                 voice = &chip->voices[idx];
215                 voice2 = pair ? &chip->voices[idx+1] : NULL;
216                 if (voice->use || (voice2 && voice2->use))
217                         continue;
218                 voice->use = 1;
219                 if (voice2)
220                         voice2->use = 1;
221                 switch (type) {
222                 case YMFPCI_PCM:
223                         voice->pcm = 1;
224                         if (voice2)
225                                 voice2->pcm = 1;
226                         break;
227                 case YMFPCI_SYNTH:
228                         voice->synth = 1;
229                         break;
230                 case YMFPCI_MIDI:
231                         voice->midi = 1;
232                         break;
233                 }
234                 snd_ymfpci_hw_start(chip);
235                 if (voice2)
236                         snd_ymfpci_hw_start(chip);
237                 *rvoice = voice;
238                 return 0;
239         }
240         return -ENOMEM;
241 }
242
243 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
244                                   enum snd_ymfpci_voice_type type, int pair,
245                                   struct snd_ymfpci_voice **rvoice)
246 {
247         unsigned long flags;
248         int result;
249         
250         if (snd_BUG_ON(!rvoice))
251                 return -EINVAL;
252         if (snd_BUG_ON(pair && type != YMFPCI_PCM))
253                 return -EINVAL;
254         
255         spin_lock_irqsave(&chip->voice_lock, flags);
256         for (;;) {
257                 result = voice_alloc(chip, type, pair, rvoice);
258                 if (result == 0 || type != YMFPCI_PCM)
259                         break;
260                 /* TODO: synth/midi voice deallocation */
261                 break;
262         }
263         spin_unlock_irqrestore(&chip->voice_lock, flags);       
264         return result;          
265 }
266
267 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
268 {
269         unsigned long flags;
270         
271         if (snd_BUG_ON(!pvoice))
272                 return -EINVAL;
273         snd_ymfpci_hw_stop(chip);
274         spin_lock_irqsave(&chip->voice_lock, flags);
275         if (pvoice->number == chip->src441_used) {
276                 chip->src441_used = -1;
277                 pvoice->ypcm->use_441_slot = 0;
278         }
279         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
280         pvoice->ypcm = NULL;
281         pvoice->interrupt = NULL;
282         spin_unlock_irqrestore(&chip->voice_lock, flags);
283         return 0;
284 }
285
286 /*
287  *  PCM part
288  */
289
290 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
291 {
292         struct snd_ymfpci_pcm *ypcm;
293         u32 pos, delta;
294         
295         if ((ypcm = voice->ypcm) == NULL)
296                 return;
297         if (ypcm->substream == NULL)
298                 return;
299         spin_lock(&chip->reg_lock);
300         if (ypcm->running) {
301                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
302                 if (pos < ypcm->last_pos)
303                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
304                 else
305                         delta = pos - ypcm->last_pos;
306                 ypcm->period_pos += delta;
307                 ypcm->last_pos = pos;
308                 if (ypcm->period_pos >= ypcm->period_size) {
309                         /*
310                         dev_dbg(chip->card->dev,
311                                "done - active_bank = 0x%x, start = 0x%x\n",
312                                chip->active_bank,
313                                voice->bank[chip->active_bank].start);
314                         */
315                         ypcm->period_pos %= ypcm->period_size;
316                         spin_unlock(&chip->reg_lock);
317                         snd_pcm_period_elapsed(ypcm->substream);
318                         spin_lock(&chip->reg_lock);
319                 }
320
321                 if (unlikely(ypcm->update_pcm_vol)) {
322                         unsigned int subs = ypcm->substream->number;
323                         unsigned int next_bank = 1 - chip->active_bank;
324                         struct snd_ymfpci_playback_bank *bank;
325                         __le32 volume;
326                         
327                         bank = &voice->bank[next_bank];
328                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
329                         bank->left_gain_end = volume;
330                         if (ypcm->output_rear)
331                                 bank->eff2_gain_end = volume;
332                         if (ypcm->voices[1])
333                                 bank = &ypcm->voices[1]->bank[next_bank];
334                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
335                         bank->right_gain_end = volume;
336                         if (ypcm->output_rear)
337                                 bank->eff3_gain_end = volume;
338                         ypcm->update_pcm_vol--;
339                 }
340         }
341         spin_unlock(&chip->reg_lock);
342 }
343
344 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
345 {
346         struct snd_pcm_runtime *runtime = substream->runtime;
347         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
348         struct snd_ymfpci *chip = ypcm->chip;
349         u32 pos, delta;
350         
351         spin_lock(&chip->reg_lock);
352         if (ypcm->running) {
353                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
354                 if (pos < ypcm->last_pos)
355                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
356                 else
357                         delta = pos - ypcm->last_pos;
358                 ypcm->period_pos += delta;
359                 ypcm->last_pos = pos;
360                 if (ypcm->period_pos >= ypcm->period_size) {
361                         ypcm->period_pos %= ypcm->period_size;
362                         /*
363                         dev_dbg(chip->card->dev,
364                                "done - active_bank = 0x%x, start = 0x%x\n",
365                                chip->active_bank,
366                                voice->bank[chip->active_bank].start);
367                         */
368                         spin_unlock(&chip->reg_lock);
369                         snd_pcm_period_elapsed(substream);
370                         spin_lock(&chip->reg_lock);
371                 }
372         }
373         spin_unlock(&chip->reg_lock);
374 }
375
376 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
377                                        int cmd)
378 {
379         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
380         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
381         struct snd_kcontrol *kctl = NULL;
382         int result = 0;
383
384         spin_lock(&chip->reg_lock);
385         if (ypcm->voices[0] == NULL) {
386                 result = -EINVAL;
387                 goto __unlock;
388         }
389         switch (cmd) {
390         case SNDRV_PCM_TRIGGER_START:
391         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
392         case SNDRV_PCM_TRIGGER_RESUME:
393                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
394                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
395                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
396                 ypcm->running = 1;
397                 break;
398         case SNDRV_PCM_TRIGGER_STOP:
399                 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
400                         kctl = chip->pcm_mixer[substream->number].ctl;
401                         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
402                 }
403                 /* fall through */
404         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
405         case SNDRV_PCM_TRIGGER_SUSPEND:
406                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
407                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
408                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
409                 ypcm->running = 0;
410                 break;
411         default:
412                 result = -EINVAL;
413                 break;
414         }
415       __unlock:
416         spin_unlock(&chip->reg_lock);
417         if (kctl)
418                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
419         return result;
420 }
421 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
422                                       int cmd)
423 {
424         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
425         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
426         int result = 0;
427         u32 tmp;
428
429         spin_lock(&chip->reg_lock);
430         switch (cmd) {
431         case SNDRV_PCM_TRIGGER_START:
432         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
433         case SNDRV_PCM_TRIGGER_RESUME:
434                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
435                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
436                 ypcm->running = 1;
437                 break;
438         case SNDRV_PCM_TRIGGER_STOP:
439         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
440         case SNDRV_PCM_TRIGGER_SUSPEND:
441                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
442                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
443                 ypcm->running = 0;
444                 break;
445         default:
446                 result = -EINVAL;
447                 break;
448         }
449         spin_unlock(&chip->reg_lock);
450         return result;
451 }
452
453 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
454 {
455         int err;
456
457         if (ypcm->voices[1] != NULL && voices < 2) {
458                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
459                 ypcm->voices[1] = NULL;
460         }
461         if (voices == 1 && ypcm->voices[0] != NULL)
462                 return 0;               /* already allocated */
463         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
464                 return 0;               /* already allocated */
465         if (voices > 1) {
466                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
467                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
468                         ypcm->voices[0] = NULL;
469                 }               
470         }
471         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
472         if (err < 0)
473                 return err;
474         ypcm->voices[0]->ypcm = ypcm;
475         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
476         if (voices > 1) {
477                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
478                 ypcm->voices[1]->ypcm = ypcm;
479         }
480         return 0;
481 }
482
483 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
484                                       struct snd_pcm_runtime *runtime,
485                                       int has_pcm_volume)
486 {
487         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
488         u32 format;
489         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
490         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
491         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
492         struct snd_ymfpci_playback_bank *bank;
493         unsigned int nbank;
494         __le32 vol_left, vol_right;
495         u8 use_left, use_right;
496         unsigned long flags;
497
498         if (snd_BUG_ON(!voice))
499                 return;
500         if (runtime->channels == 1) {
501                 use_left = 1;
502                 use_right = 1;
503         } else {
504                 use_left = (voiceidx & 1) == 0;
505                 use_right = !use_left;
506         }
507         if (has_pcm_volume) {
508                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
509                                        [ypcm->substream->number].left << 15);
510                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
511                                         [ypcm->substream->number].right << 15);
512         } else {
513                 vol_left = cpu_to_le32(0x40000000);
514                 vol_right = cpu_to_le32(0x40000000);
515         }
516         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
517         format = runtime->channels == 2 ? 0x00010000 : 0;
518         if (snd_pcm_format_width(runtime->format) == 8)
519                 format |= 0x80000000;
520         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
521                  runtime->rate == 44100 && runtime->channels == 2 &&
522                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
523                                    ypcm->chip->src441_used == voice->number)) {
524                 ypcm->chip->src441_used = voice->number;
525                 ypcm->use_441_slot = 1;
526                 format |= 0x10000000;
527         }
528         if (ypcm->chip->src441_used == voice->number &&
529             (format & 0x10000000) == 0) {
530                 ypcm->chip->src441_used = -1;
531                 ypcm->use_441_slot = 0;
532         }
533         if (runtime->channels == 2 && (voiceidx & 1) != 0)
534                 format |= 1;
535         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
536         for (nbank = 0; nbank < 2; nbank++) {
537                 bank = &voice->bank[nbank];
538                 memset(bank, 0, sizeof(*bank));
539                 bank->format = cpu_to_le32(format);
540                 bank->base = cpu_to_le32(runtime->dma_addr);
541                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
542                 bank->lpfQ = cpu_to_le32(lpfQ);
543                 bank->delta =
544                 bank->delta_end = cpu_to_le32(delta);
545                 bank->lpfK =
546                 bank->lpfK_end = cpu_to_le32(lpfK);
547                 bank->eg_gain =
548                 bank->eg_gain_end = cpu_to_le32(0x40000000);
549
550                 if (ypcm->output_front) {
551                         if (use_left) {
552                                 bank->left_gain =
553                                 bank->left_gain_end = vol_left;
554                         }
555                         if (use_right) {
556                                 bank->right_gain =
557                                 bank->right_gain_end = vol_right;
558                         }
559                 }
560                 if (ypcm->output_rear) {
561                         if (!ypcm->swap_rear) {
562                                 if (use_left) {
563                                         bank->eff2_gain =
564                                         bank->eff2_gain_end = vol_left;
565                                 }
566                                 if (use_right) {
567                                         bank->eff3_gain =
568                                         bank->eff3_gain_end = vol_right;
569                                 }
570                         } else {
571                                 /* The SPDIF out channels seem to be swapped, so we have
572                                  * to swap them here, too.  The rear analog out channels
573                                  * will be wrong, but otherwise AC3 would not work.
574                                  */
575                                 if (use_left) {
576                                         bank->eff3_gain =
577                                         bank->eff3_gain_end = vol_left;
578                                 }
579                                 if (use_right) {
580                                         bank->eff2_gain =
581                                         bank->eff2_gain_end = vol_right;
582                                 }
583                         }
584                 }
585         }
586 }
587
588 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
589 {
590         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
591                                 4096, &chip->ac3_tmp_base) < 0)
592                 return -ENOMEM;
593
594         chip->bank_effect[3][0]->base =
595         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
596         chip->bank_effect[3][0]->loop_end =
597         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
598         chip->bank_effect[4][0]->base =
599         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
600         chip->bank_effect[4][0]->loop_end =
601         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
602
603         spin_lock_irq(&chip->reg_lock);
604         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
605                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
606         spin_unlock_irq(&chip->reg_lock);
607         return 0;
608 }
609
610 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
611 {
612         spin_lock_irq(&chip->reg_lock);
613         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
614                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
615         spin_unlock_irq(&chip->reg_lock);
616         // snd_ymfpci_irq_wait(chip);
617         if (chip->ac3_tmp_base.area) {
618                 snd_dma_free_pages(&chip->ac3_tmp_base);
619                 chip->ac3_tmp_base.area = NULL;
620         }
621         return 0;
622 }
623
624 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
625                                          struct snd_pcm_hw_params *hw_params)
626 {
627         struct snd_pcm_runtime *runtime = substream->runtime;
628         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
629         int err;
630
631         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
632                 return err;
633         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
634                 return err;
635         return 0;
636 }
637
638 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
639 {
640         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
641         struct snd_pcm_runtime *runtime = substream->runtime;
642         struct snd_ymfpci_pcm *ypcm;
643         
644         if (runtime->private_data == NULL)
645                 return 0;
646         ypcm = runtime->private_data;
647
648         /* wait, until the PCI operations are not finished */
649         snd_ymfpci_irq_wait(chip);
650         snd_pcm_lib_free_pages(substream);
651         if (ypcm->voices[1]) {
652                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
653                 ypcm->voices[1] = NULL;
654         }
655         if (ypcm->voices[0]) {
656                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
657                 ypcm->voices[0] = NULL;
658         }
659         return 0;
660 }
661
662 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
663 {
664         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
665         struct snd_pcm_runtime *runtime = substream->runtime;
666         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
667         struct snd_kcontrol *kctl;
668         unsigned int nvoice;
669
670         ypcm->period_size = runtime->period_size;
671         ypcm->buffer_size = runtime->buffer_size;
672         ypcm->period_pos = 0;
673         ypcm->last_pos = 0;
674         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
675                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
676                                           substream->pcm == chip->pcm);
677
678         if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
679                 kctl = chip->pcm_mixer[substream->number].ctl;
680                 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
681                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
682         }
683         return 0;
684 }
685
686 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
687                                         struct snd_pcm_hw_params *hw_params)
688 {
689         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
690 }
691
692 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
693 {
694         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
695
696         /* wait, until the PCI operations are not finished */
697         snd_ymfpci_irq_wait(chip);
698         return snd_pcm_lib_free_pages(substream);
699 }
700
701 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
702 {
703         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
704         struct snd_pcm_runtime *runtime = substream->runtime;
705         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
706         struct snd_ymfpci_capture_bank * bank;
707         int nbank;
708         u32 rate, format;
709
710         ypcm->period_size = runtime->period_size;
711         ypcm->buffer_size = runtime->buffer_size;
712         ypcm->period_pos = 0;
713         ypcm->last_pos = 0;
714         ypcm->shift = 0;
715         rate = ((48000 * 4096) / runtime->rate) - 1;
716         format = 0;
717         if (runtime->channels == 2) {
718                 format |= 2;
719                 ypcm->shift++;
720         }
721         if (snd_pcm_format_width(runtime->format) == 8)
722                 format |= 1;
723         else
724                 ypcm->shift++;
725         switch (ypcm->capture_bank_number) {
726         case 0:
727                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
728                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
729                 break;
730         case 1:
731                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
732                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
733                 break;
734         }
735         for (nbank = 0; nbank < 2; nbank++) {
736                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
737                 bank->base = cpu_to_le32(runtime->dma_addr);
738                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
739                 bank->start = 0;
740                 bank->num_of_loops = 0;
741         }
742         return 0;
743 }
744
745 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
746 {
747         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
748         struct snd_pcm_runtime *runtime = substream->runtime;
749         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
750         struct snd_ymfpci_voice *voice = ypcm->voices[0];
751
752         if (!(ypcm->running && voice))
753                 return 0;
754         return le32_to_cpu(voice->bank[chip->active_bank].start);
755 }
756
757 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
758 {
759         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
760         struct snd_pcm_runtime *runtime = substream->runtime;
761         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
762
763         if (!ypcm->running)
764                 return 0;
765         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
766 }
767
768 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
769 {
770         wait_queue_entry_t wait;
771         int loops = 4;
772
773         while (loops-- > 0) {
774                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
775                         continue;
776                 init_waitqueue_entry(&wait, current);
777                 add_wait_queue(&chip->interrupt_sleep, &wait);
778                 atomic_inc(&chip->interrupt_sleep_count);
779                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
780                 remove_wait_queue(&chip->interrupt_sleep, &wait);
781         }
782 }
783
784 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
785 {
786         struct snd_ymfpci *chip = dev_id;
787         u32 status, nvoice, mode;
788         struct snd_ymfpci_voice *voice;
789
790         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
791         if (status & 0x80000000) {
792                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
793                 spin_lock(&chip->voice_lock);
794                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
795                         voice = &chip->voices[nvoice];
796                         if (voice->interrupt)
797                                 voice->interrupt(chip, voice);
798                 }
799                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
800                         if (chip->capture_substream[nvoice])
801                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
802                 }
803 #if 0
804                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
805                         if (chip->effect_substream[nvoice])
806                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
807                 }
808 #endif
809                 spin_unlock(&chip->voice_lock);
810                 spin_lock(&chip->reg_lock);
811                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
812                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
813                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
814                 spin_unlock(&chip->reg_lock);
815
816                 if (atomic_read(&chip->interrupt_sleep_count)) {
817                         atomic_set(&chip->interrupt_sleep_count, 0);
818                         wake_up(&chip->interrupt_sleep);
819                 }
820         }
821
822         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
823         if (status & 1) {
824                 if (chip->timer)
825                         snd_timer_interrupt(chip->timer, chip->timer_ticks);
826         }
827         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
828
829         if (chip->rawmidi)
830                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
831         return IRQ_HANDLED;
832 }
833
834 static const struct snd_pcm_hardware snd_ymfpci_playback =
835 {
836         .info =                 (SNDRV_PCM_INFO_MMAP |
837                                  SNDRV_PCM_INFO_MMAP_VALID | 
838                                  SNDRV_PCM_INFO_INTERLEAVED |
839                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
840                                  SNDRV_PCM_INFO_PAUSE |
841                                  SNDRV_PCM_INFO_RESUME),
842         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
843         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
844         .rate_min =             8000,
845         .rate_max =             48000,
846         .channels_min =         1,
847         .channels_max =         2,
848         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
849         .period_bytes_min =     64,
850         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
851         .periods_min =          3,
852         .periods_max =          1024,
853         .fifo_size =            0,
854 };
855
856 static const struct snd_pcm_hardware snd_ymfpci_capture =
857 {
858         .info =                 (SNDRV_PCM_INFO_MMAP |
859                                  SNDRV_PCM_INFO_MMAP_VALID |
860                                  SNDRV_PCM_INFO_INTERLEAVED |
861                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
862                                  SNDRV_PCM_INFO_PAUSE |
863                                  SNDRV_PCM_INFO_RESUME),
864         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
865         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
866         .rate_min =             8000,
867         .rate_max =             48000,
868         .channels_min =         1,
869         .channels_max =         2,
870         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
871         .period_bytes_min =     64,
872         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
873         .periods_min =          3,
874         .periods_max =          1024,
875         .fifo_size =            0,
876 };
877
878 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
879 {
880         kfree(runtime->private_data);
881 }
882
883 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
884 {
885         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
886         struct snd_pcm_runtime *runtime = substream->runtime;
887         struct snd_ymfpci_pcm *ypcm;
888         int err;
889
890         runtime->hw = snd_ymfpci_playback;
891         /* FIXME? True value is 256/48 = 5.33333 ms */
892         err = snd_pcm_hw_constraint_minmax(runtime,
893                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
894                                            5334, UINT_MAX);
895         if (err < 0)
896                 return err;
897         err = snd_pcm_hw_rule_noresample(runtime, 48000);
898         if (err < 0)
899                 return err;
900
901         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
902         if (ypcm == NULL)
903                 return -ENOMEM;
904         ypcm->chip = chip;
905         ypcm->type = PLAYBACK_VOICE;
906         ypcm->substream = substream;
907         runtime->private_data = ypcm;
908         runtime->private_free = snd_ymfpci_pcm_free_substream;
909         return 0;
910 }
911
912 /* call with spinlock held */
913 static void ymfpci_open_extension(struct snd_ymfpci *chip)
914 {
915         if (! chip->rear_opened) {
916                 if (! chip->spdif_opened) /* set AC3 */
917                         snd_ymfpci_writel(chip, YDSXGR_MODE,
918                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
919                 /* enable second codec (4CHEN) */
920                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
921                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
922         }
923 }
924
925 /* call with spinlock held */
926 static void ymfpci_close_extension(struct snd_ymfpci *chip)
927 {
928         if (! chip->rear_opened) {
929                 if (! chip->spdif_opened)
930                         snd_ymfpci_writel(chip, YDSXGR_MODE,
931                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
932                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
933                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
934         }
935 }
936
937 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
938 {
939         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
940         struct snd_pcm_runtime *runtime = substream->runtime;
941         struct snd_ymfpci_pcm *ypcm;
942         int err;
943         
944         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
945                 return err;
946         ypcm = runtime->private_data;
947         ypcm->output_front = 1;
948         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
949         ypcm->swap_rear = 0;
950         spin_lock_irq(&chip->reg_lock);
951         if (ypcm->output_rear) {
952                 ymfpci_open_extension(chip);
953                 chip->rear_opened++;
954         }
955         spin_unlock_irq(&chip->reg_lock);
956         return 0;
957 }
958
959 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
960 {
961         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
962         struct snd_pcm_runtime *runtime = substream->runtime;
963         struct snd_ymfpci_pcm *ypcm;
964         int err;
965         
966         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
967                 return err;
968         ypcm = runtime->private_data;
969         ypcm->output_front = 0;
970         ypcm->output_rear = 1;
971         ypcm->swap_rear = 1;
972         spin_lock_irq(&chip->reg_lock);
973         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
974                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
975         ymfpci_open_extension(chip);
976         chip->spdif_pcm_bits = chip->spdif_bits;
977         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
978         chip->spdif_opened++;
979         spin_unlock_irq(&chip->reg_lock);
980
981         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
982         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
983                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
984         return 0;
985 }
986
987 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
988 {
989         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
990         struct snd_pcm_runtime *runtime = substream->runtime;
991         struct snd_ymfpci_pcm *ypcm;
992         int err;
993         
994         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
995                 return err;
996         ypcm = runtime->private_data;
997         ypcm->output_front = 0;
998         ypcm->output_rear = 1;
999         ypcm->swap_rear = 0;
1000         spin_lock_irq(&chip->reg_lock);
1001         ymfpci_open_extension(chip);
1002         chip->rear_opened++;
1003         spin_unlock_irq(&chip->reg_lock);
1004         return 0;
1005 }
1006
1007 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1008                                    u32 capture_bank_number)
1009 {
1010         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1011         struct snd_pcm_runtime *runtime = substream->runtime;
1012         struct snd_ymfpci_pcm *ypcm;
1013         int err;
1014
1015         runtime->hw = snd_ymfpci_capture;
1016         /* FIXME? True value is 256/48 = 5.33333 ms */
1017         err = snd_pcm_hw_constraint_minmax(runtime,
1018                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1019                                            5334, UINT_MAX);
1020         if (err < 0)
1021                 return err;
1022         err = snd_pcm_hw_rule_noresample(runtime, 48000);
1023         if (err < 0)
1024                 return err;
1025
1026         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1027         if (ypcm == NULL)
1028                 return -ENOMEM;
1029         ypcm->chip = chip;
1030         ypcm->type = capture_bank_number + CAPTURE_REC;
1031         ypcm->substream = substream;    
1032         ypcm->capture_bank_number = capture_bank_number;
1033         chip->capture_substream[capture_bank_number] = substream;
1034         runtime->private_data = ypcm;
1035         runtime->private_free = snd_ymfpci_pcm_free_substream;
1036         snd_ymfpci_hw_start(chip);
1037         return 0;
1038 }
1039
1040 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1041 {
1042         return snd_ymfpci_capture_open(substream, 0);
1043 }
1044
1045 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1046 {
1047         return snd_ymfpci_capture_open(substream, 1);
1048 }
1049
1050 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1051 {
1052         return 0;
1053 }
1054
1055 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1056 {
1057         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1058         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1059
1060         spin_lock_irq(&chip->reg_lock);
1061         if (ypcm->output_rear && chip->rear_opened > 0) {
1062                 chip->rear_opened--;
1063                 ymfpci_close_extension(chip);
1064         }
1065         spin_unlock_irq(&chip->reg_lock);
1066         return snd_ymfpci_playback_close_1(substream);
1067 }
1068
1069 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1070 {
1071         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1072
1073         spin_lock_irq(&chip->reg_lock);
1074         chip->spdif_opened = 0;
1075         ymfpci_close_extension(chip);
1076         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1077                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1078         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1079         spin_unlock_irq(&chip->reg_lock);
1080         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1081         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1082                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1083         return snd_ymfpci_playback_close_1(substream);
1084 }
1085
1086 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1087 {
1088         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1089
1090         spin_lock_irq(&chip->reg_lock);
1091         if (chip->rear_opened > 0) {
1092                 chip->rear_opened--;
1093                 ymfpci_close_extension(chip);
1094         }
1095         spin_unlock_irq(&chip->reg_lock);
1096         return snd_ymfpci_playback_close_1(substream);
1097 }
1098
1099 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1100 {
1101         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1102         struct snd_pcm_runtime *runtime = substream->runtime;
1103         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1104
1105         if (ypcm != NULL) {
1106                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1107                 snd_ymfpci_hw_stop(chip);
1108         }
1109         return 0;
1110 }
1111
1112 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1113         .open =                 snd_ymfpci_playback_open,
1114         .close =                snd_ymfpci_playback_close,
1115         .ioctl =                snd_pcm_lib_ioctl,
1116         .hw_params =            snd_ymfpci_playback_hw_params,
1117         .hw_free =              snd_ymfpci_playback_hw_free,
1118         .prepare =              snd_ymfpci_playback_prepare,
1119         .trigger =              snd_ymfpci_playback_trigger,
1120         .pointer =              snd_ymfpci_playback_pointer,
1121 };
1122
1123 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1124         .open =                 snd_ymfpci_capture_rec_open,
1125         .close =                snd_ymfpci_capture_close,
1126         .ioctl =                snd_pcm_lib_ioctl,
1127         .hw_params =            snd_ymfpci_capture_hw_params,
1128         .hw_free =              snd_ymfpci_capture_hw_free,
1129         .prepare =              snd_ymfpci_capture_prepare,
1130         .trigger =              snd_ymfpci_capture_trigger,
1131         .pointer =              snd_ymfpci_capture_pointer,
1132 };
1133
1134 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1135 {
1136         struct snd_pcm *pcm;
1137         int err;
1138
1139         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1140                 return err;
1141         pcm->private_data = chip;
1142
1143         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1144         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1145
1146         /* global setup */
1147         pcm->info_flags = 0;
1148         strcpy(pcm->name, "YMFPCI");
1149         chip->pcm = pcm;
1150
1151         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1152                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1153
1154         return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1155                                      snd_pcm_std_chmaps, 2, 0, NULL);
1156 }
1157
1158 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1159         .open =                 snd_ymfpci_capture_ac97_open,
1160         .close =                snd_ymfpci_capture_close,
1161         .ioctl =                snd_pcm_lib_ioctl,
1162         .hw_params =            snd_ymfpci_capture_hw_params,
1163         .hw_free =              snd_ymfpci_capture_hw_free,
1164         .prepare =              snd_ymfpci_capture_prepare,
1165         .trigger =              snd_ymfpci_capture_trigger,
1166         .pointer =              snd_ymfpci_capture_pointer,
1167 };
1168
1169 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1170 {
1171         struct snd_pcm *pcm;
1172         int err;
1173
1174         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1175                 return err;
1176         pcm->private_data = chip;
1177
1178         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1179
1180         /* global setup */
1181         pcm->info_flags = 0;
1182         sprintf(pcm->name, "YMFPCI - %s",
1183                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1184         chip->pcm2 = pcm;
1185
1186         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1187                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1188
1189         return 0;
1190 }
1191
1192 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1193         .open =                 snd_ymfpci_playback_spdif_open,
1194         .close =                snd_ymfpci_playback_spdif_close,
1195         .ioctl =                snd_pcm_lib_ioctl,
1196         .hw_params =            snd_ymfpci_playback_hw_params,
1197         .hw_free =              snd_ymfpci_playback_hw_free,
1198         .prepare =              snd_ymfpci_playback_prepare,
1199         .trigger =              snd_ymfpci_playback_trigger,
1200         .pointer =              snd_ymfpci_playback_pointer,
1201 };
1202
1203 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1204 {
1205         struct snd_pcm *pcm;
1206         int err;
1207
1208         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1209                 return err;
1210         pcm->private_data = chip;
1211
1212         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1213
1214         /* global setup */
1215         pcm->info_flags = 0;
1216         strcpy(pcm->name, "YMFPCI - IEC958");
1217         chip->pcm_spdif = pcm;
1218
1219         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1220                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1221
1222         return 0;
1223 }
1224
1225 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1226         .open =                 snd_ymfpci_playback_4ch_open,
1227         .close =                snd_ymfpci_playback_4ch_close,
1228         .ioctl =                snd_pcm_lib_ioctl,
1229         .hw_params =            snd_ymfpci_playback_hw_params,
1230         .hw_free =              snd_ymfpci_playback_hw_free,
1231         .prepare =              snd_ymfpci_playback_prepare,
1232         .trigger =              snd_ymfpci_playback_trigger,
1233         .pointer =              snd_ymfpci_playback_pointer,
1234 };
1235
1236 static const struct snd_pcm_chmap_elem surround_map[] = {
1237         { .channels = 1,
1238           .map = { SNDRV_CHMAP_MONO } },
1239         { .channels = 2,
1240           .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1241         { }
1242 };
1243
1244 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1245 {
1246         struct snd_pcm *pcm;
1247         int err;
1248
1249         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1250                 return err;
1251         pcm->private_data = chip;
1252
1253         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1254
1255         /* global setup */
1256         pcm->info_flags = 0;
1257         strcpy(pcm->name, "YMFPCI - Rear PCM");
1258         chip->pcm_4ch = pcm;
1259
1260         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1261                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1262
1263         return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1264                                      surround_map, 2, 0, NULL);
1265 }
1266
1267 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1268 {
1269         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1270         uinfo->count = 1;
1271         return 0;
1272 }
1273
1274 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1275                                         struct snd_ctl_elem_value *ucontrol)
1276 {
1277         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1278
1279         spin_lock_irq(&chip->reg_lock);
1280         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1281         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1282         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1283         spin_unlock_irq(&chip->reg_lock);
1284         return 0;
1285 }
1286
1287 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1288                                          struct snd_ctl_elem_value *ucontrol)
1289 {
1290         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1291         unsigned int val;
1292         int change;
1293
1294         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1295               (ucontrol->value.iec958.status[1] << 8);
1296         spin_lock_irq(&chip->reg_lock);
1297         change = chip->spdif_bits != val;
1298         chip->spdif_bits = val;
1299         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1300                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1301         spin_unlock_irq(&chip->reg_lock);
1302         return change;
1303 }
1304
1305 static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
1306 {
1307         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1308         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1309         .info =         snd_ymfpci_spdif_default_info,
1310         .get =          snd_ymfpci_spdif_default_get,
1311         .put =          snd_ymfpci_spdif_default_put
1312 };
1313
1314 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1315 {
1316         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1317         uinfo->count = 1;
1318         return 0;
1319 }
1320
1321 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1322                                       struct snd_ctl_elem_value *ucontrol)
1323 {
1324         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1325
1326         spin_lock_irq(&chip->reg_lock);
1327         ucontrol->value.iec958.status[0] = 0x3e;
1328         ucontrol->value.iec958.status[1] = 0xff;
1329         spin_unlock_irq(&chip->reg_lock);
1330         return 0;
1331 }
1332
1333 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1334 {
1335         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1336         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1337         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1338         .info =         snd_ymfpci_spdif_mask_info,
1339         .get =          snd_ymfpci_spdif_mask_get,
1340 };
1341
1342 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1343 {
1344         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1345         uinfo->count = 1;
1346         return 0;
1347 }
1348
1349 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1350                                         struct snd_ctl_elem_value *ucontrol)
1351 {
1352         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1353
1354         spin_lock_irq(&chip->reg_lock);
1355         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1356         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1357         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1358         spin_unlock_irq(&chip->reg_lock);
1359         return 0;
1360 }
1361
1362 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1363                                         struct snd_ctl_elem_value *ucontrol)
1364 {
1365         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1366         unsigned int val;
1367         int change;
1368
1369         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1370               (ucontrol->value.iec958.status[1] << 8);
1371         spin_lock_irq(&chip->reg_lock);
1372         change = chip->spdif_pcm_bits != val;
1373         chip->spdif_pcm_bits = val;
1374         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1375                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1376         spin_unlock_irq(&chip->reg_lock);
1377         return change;
1378 }
1379
1380 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1381 {
1382         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1383         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1384         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1385         .info =         snd_ymfpci_spdif_stream_info,
1386         .get =          snd_ymfpci_spdif_stream_get,
1387         .put =          snd_ymfpci_spdif_stream_put
1388 };
1389
1390 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1391 {
1392         static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1393
1394         return snd_ctl_enum_info(info, 1, 3, texts);
1395 }
1396
1397 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1398 {
1399         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1400         u16 reg;
1401
1402         spin_lock_irq(&chip->reg_lock);
1403         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1404         spin_unlock_irq(&chip->reg_lock);
1405         if (!(reg & 0x100))
1406                 value->value.enumerated.item[0] = 0;
1407         else
1408                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1409         return 0;
1410 }
1411
1412 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1413 {
1414         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1415         u16 reg, old_reg;
1416
1417         spin_lock_irq(&chip->reg_lock);
1418         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1419         if (value->value.enumerated.item[0] == 0)
1420                 reg = old_reg & ~0x100;
1421         else
1422                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1423         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1424         spin_unlock_irq(&chip->reg_lock);
1425         return reg != old_reg;
1426 }
1427
1428 static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
1429         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1430         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1431         .name =         "Direct Recording Source",
1432         .info =         snd_ymfpci_drec_source_info,
1433         .get =          snd_ymfpci_drec_source_get,
1434         .put =          snd_ymfpci_drec_source_put
1435 };
1436
1437 /*
1438  *  Mixer controls
1439  */
1440
1441 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1442 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1443   .info = snd_ymfpci_info_single, \
1444   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1445   .private_value = ((reg) | ((shift) << 16)) }
1446
1447 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1448
1449 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1450                                  struct snd_ctl_elem_value *ucontrol)
1451 {
1452         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1453         int reg = kcontrol->private_value & 0xffff;
1454         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1455         unsigned int mask = 1;
1456         
1457         switch (reg) {
1458         case YDSXGR_SPDIFOUTCTRL: break;
1459         case YDSXGR_SPDIFINCTRL: break;
1460         default: return -EINVAL;
1461         }
1462         ucontrol->value.integer.value[0] =
1463                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1464         return 0;
1465 }
1466
1467 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1468                                  struct snd_ctl_elem_value *ucontrol)
1469 {
1470         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1471         int reg = kcontrol->private_value & 0xffff;
1472         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1473         unsigned int mask = 1;
1474         int change;
1475         unsigned int val, oval;
1476         
1477         switch (reg) {
1478         case YDSXGR_SPDIFOUTCTRL: break;
1479         case YDSXGR_SPDIFINCTRL: break;
1480         default: return -EINVAL;
1481         }
1482         val = (ucontrol->value.integer.value[0] & mask);
1483         val <<= shift;
1484         spin_lock_irq(&chip->reg_lock);
1485         oval = snd_ymfpci_readl(chip, reg);
1486         val = (oval & ~(mask << shift)) | val;
1487         change = val != oval;
1488         snd_ymfpci_writel(chip, reg, val);
1489         spin_unlock_irq(&chip->reg_lock);
1490         return change;
1491 }
1492
1493 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1494
1495 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1496 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1497   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1498   .info = snd_ymfpci_info_double, \
1499   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1500   .private_value = reg, \
1501   .tlv = { .p = db_scale_native } }
1502
1503 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1504 {
1505         unsigned int reg = kcontrol->private_value;
1506
1507         if (reg < 0x80 || reg >= 0xc0)
1508                 return -EINVAL;
1509         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1510         uinfo->count = 2;
1511         uinfo->value.integer.min = 0;
1512         uinfo->value.integer.max = 16383;
1513         return 0;
1514 }
1515
1516 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1517 {
1518         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1519         unsigned int reg = kcontrol->private_value;
1520         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1521         unsigned int val;
1522         
1523         if (reg < 0x80 || reg >= 0xc0)
1524                 return -EINVAL;
1525         spin_lock_irq(&chip->reg_lock);
1526         val = snd_ymfpci_readl(chip, reg);
1527         spin_unlock_irq(&chip->reg_lock);
1528         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1529         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1530         return 0;
1531 }
1532
1533 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1534 {
1535         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1536         unsigned int reg = kcontrol->private_value;
1537         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1538         int change;
1539         unsigned int val1, val2, oval;
1540         
1541         if (reg < 0x80 || reg >= 0xc0)
1542                 return -EINVAL;
1543         val1 = ucontrol->value.integer.value[0] & mask;
1544         val2 = ucontrol->value.integer.value[1] & mask;
1545         val1 <<= shift_left;
1546         val2 <<= shift_right;
1547         spin_lock_irq(&chip->reg_lock);
1548         oval = snd_ymfpci_readl(chip, reg);
1549         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1550         change = val1 != oval;
1551         snd_ymfpci_writel(chip, reg, val1);
1552         spin_unlock_irq(&chip->reg_lock);
1553         return change;
1554 }
1555
1556 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1557                                        struct snd_ctl_elem_value *ucontrol)
1558 {
1559         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1560         unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1561         unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1562         int change;
1563         unsigned int value, oval;
1564         
1565         value = ucontrol->value.integer.value[0] & 0x3fff;
1566         value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1567         spin_lock_irq(&chip->reg_lock);
1568         oval = snd_ymfpci_readl(chip, reg);
1569         change = value != oval;
1570         snd_ymfpci_writel(chip, reg, value);
1571         snd_ymfpci_writel(chip, reg2, value);
1572         spin_unlock_irq(&chip->reg_lock);
1573         return change;
1574 }
1575
1576 /*
1577  * 4ch duplication
1578  */
1579 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1580
1581 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1582 {
1583         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1584         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1585         return 0;
1586 }
1587
1588 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1589 {
1590         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1591         int change;
1592         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1593         if (change)
1594                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1595         return change;
1596 }
1597
1598 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1599         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1600         .name = "4ch Duplication",
1601         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1602         .info = snd_ymfpci_info_dup4ch,
1603         .get = snd_ymfpci_get_dup4ch,
1604         .put = snd_ymfpci_put_dup4ch,
1605 };
1606
1607 static struct snd_kcontrol_new snd_ymfpci_controls[] = {
1608 {
1609         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1610         .name = "Wave Playback Volume",
1611         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1612                   SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1613         .info = snd_ymfpci_info_double,
1614         .get = snd_ymfpci_get_double,
1615         .put = snd_ymfpci_put_nativedacvol,
1616         .private_value = YDSXGR_NATIVEDACOUTVOL,
1617         .tlv = { .p = db_scale_native },
1618 },
1619 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1620 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1621 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1622 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1623 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1624 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1625 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1626 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1627 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1628 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1629 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1630 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1631 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1632 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1633 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1634 };
1635
1636
1637 /*
1638  * GPIO
1639  */
1640
1641 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1642 {
1643         u16 reg, mode;
1644         unsigned long flags;
1645
1646         spin_lock_irqsave(&chip->reg_lock, flags);
1647         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1648         reg &= ~(1 << (pin + 8));
1649         reg |= (1 << pin);
1650         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1651         /* set the level mode for input line */
1652         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1653         mode &= ~(3 << (pin * 2));
1654         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1655         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1656         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1657         spin_unlock_irqrestore(&chip->reg_lock, flags);
1658         return (mode >> pin) & 1;
1659 }
1660
1661 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1662 {
1663         u16 reg;
1664         unsigned long flags;
1665
1666         spin_lock_irqsave(&chip->reg_lock, flags);
1667         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1668         reg &= ~(1 << pin);
1669         reg &= ~(1 << (pin + 8));
1670         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1671         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1672         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1673         spin_unlock_irqrestore(&chip->reg_lock, flags);
1674
1675         return 0;
1676 }
1677
1678 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1679
1680 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1681 {
1682         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1683         int pin = (int)kcontrol->private_value;
1684         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1685         return 0;
1686 }
1687
1688 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1689 {
1690         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1691         int pin = (int)kcontrol->private_value;
1692
1693         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1694                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1695                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1696                 return 1;
1697         }
1698         return 0;
1699 }
1700
1701 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1702         .name = "Shared Rear/Line-In Switch",
1703         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1704         .info = snd_ymfpci_gpio_sw_info,
1705         .get = snd_ymfpci_gpio_sw_get,
1706         .put = snd_ymfpci_gpio_sw_put,
1707         .private_value = 2,
1708 };
1709
1710 /*
1711  * PCM voice volume
1712  */
1713
1714 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1715                                    struct snd_ctl_elem_info *uinfo)
1716 {
1717         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1718         uinfo->count = 2;
1719         uinfo->value.integer.min = 0;
1720         uinfo->value.integer.max = 0x8000;
1721         return 0;
1722 }
1723
1724 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1725                                   struct snd_ctl_elem_value *ucontrol)
1726 {
1727         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1728         unsigned int subs = kcontrol->id.subdevice;
1729
1730         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1731         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1732         return 0;
1733 }
1734
1735 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1736                                   struct snd_ctl_elem_value *ucontrol)
1737 {
1738         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1739         unsigned int subs = kcontrol->id.subdevice;
1740         struct snd_pcm_substream *substream;
1741         unsigned long flags;
1742
1743         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1744             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1745                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1746                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1747                 if (chip->pcm_mixer[subs].left > 0x8000)
1748                         chip->pcm_mixer[subs].left = 0x8000;
1749                 if (chip->pcm_mixer[subs].right > 0x8000)
1750                         chip->pcm_mixer[subs].right = 0x8000;
1751
1752                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1753                 spin_lock_irqsave(&chip->voice_lock, flags);
1754                 if (substream->runtime && substream->runtime->private_data) {
1755                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1756                         if (!ypcm->use_441_slot)
1757                                 ypcm->update_pcm_vol = 2;
1758                 }
1759                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1760                 return 1;
1761         }
1762         return 0;
1763 }
1764
1765 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1766         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1767         .name = "PCM Playback Volume",
1768         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1769                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1770         .info = snd_ymfpci_pcm_vol_info,
1771         .get = snd_ymfpci_pcm_vol_get,
1772         .put = snd_ymfpci_pcm_vol_put,
1773 };
1774
1775
1776 /*
1777  *  Mixer routines
1778  */
1779
1780 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1781 {
1782         struct snd_ymfpci *chip = bus->private_data;
1783         chip->ac97_bus = NULL;
1784 }
1785
1786 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1787 {
1788         struct snd_ymfpci *chip = ac97->private_data;
1789         chip->ac97 = NULL;
1790 }
1791
1792 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1793 {
1794         struct snd_ac97_template ac97;
1795         struct snd_kcontrol *kctl;
1796         struct snd_pcm_substream *substream;
1797         unsigned int idx;
1798         int err;
1799         static struct snd_ac97_bus_ops ops = {
1800                 .write = snd_ymfpci_codec_write,
1801                 .read = snd_ymfpci_codec_read,
1802         };
1803
1804         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1805                 return err;
1806         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1807         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1808
1809         memset(&ac97, 0, sizeof(ac97));
1810         ac97.private_data = chip;
1811         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1812         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1813                 return err;
1814
1815         /* to be sure */
1816         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1817                              AC97_EA_VRA|AC97_EA_VRM, 0);
1818
1819         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1820                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1821                         return err;
1822         }
1823         if (chip->ac97->ext_id & AC97_EI_SDAC) {
1824                 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1825                 err = snd_ctl_add(chip->card, kctl);
1826                 if (err < 0)
1827                         return err;
1828         }
1829
1830         /* add S/PDIF control */
1831         if (snd_BUG_ON(!chip->pcm_spdif))
1832                 return -ENXIO;
1833         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1834                 return err;
1835         kctl->id.device = chip->pcm_spdif->device;
1836         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1837                 return err;
1838         kctl->id.device = chip->pcm_spdif->device;
1839         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1840                 return err;
1841         kctl->id.device = chip->pcm_spdif->device;
1842         chip->spdif_pcm_ctl = kctl;
1843
1844         /* direct recording source */
1845         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1846             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1847                 return err;
1848
1849         /*
1850          * shared rear/line-in
1851          */
1852         if (rear_switch) {
1853                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1854                         return err;
1855         }
1856
1857         /* per-voice volume */
1858         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1859         for (idx = 0; idx < 32; ++idx) {
1860                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1861                 if (!kctl)
1862                         return -ENOMEM;
1863                 kctl->id.device = chip->pcm->device;
1864                 kctl->id.subdevice = idx;
1865                 kctl->private_value = (unsigned long)substream;
1866                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1867                         return err;
1868                 chip->pcm_mixer[idx].left = 0x8000;
1869                 chip->pcm_mixer[idx].right = 0x8000;
1870                 chip->pcm_mixer[idx].ctl = kctl;
1871                 substream = substream->next;
1872         }
1873
1874         return 0;
1875 }
1876
1877
1878 /*
1879  * timer
1880  */
1881
1882 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1883 {
1884         struct snd_ymfpci *chip;
1885         unsigned long flags;
1886         unsigned int count;
1887
1888         chip = snd_timer_chip(timer);
1889         spin_lock_irqsave(&chip->reg_lock, flags);
1890         if (timer->sticks > 1) {
1891                 chip->timer_ticks = timer->sticks;
1892                 count = timer->sticks - 1;
1893         } else {
1894                 /*
1895                  * Divisor 1 is not allowed; fake it by using divisor 2 and
1896                  * counting two ticks for each interrupt.
1897                  */
1898                 chip->timer_ticks = 2;
1899                 count = 2 - 1;
1900         }
1901         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1902         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1903         spin_unlock_irqrestore(&chip->reg_lock, flags);
1904         return 0;
1905 }
1906
1907 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1908 {
1909         struct snd_ymfpci *chip;
1910         unsigned long flags;
1911
1912         chip = snd_timer_chip(timer);
1913         spin_lock_irqsave(&chip->reg_lock, flags);
1914         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1915         spin_unlock_irqrestore(&chip->reg_lock, flags);
1916         return 0;
1917 }
1918
1919 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1920                                                unsigned long *num, unsigned long *den)
1921 {
1922         *num = 1;
1923         *den = 96000;
1924         return 0;
1925 }
1926
1927 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1928         .flags = SNDRV_TIMER_HW_AUTO,
1929         .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1930         .ticks = 0x10000,
1931         .start = snd_ymfpci_timer_start,
1932         .stop = snd_ymfpci_timer_stop,
1933         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1934 };
1935
1936 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1937 {
1938         struct snd_timer *timer = NULL;
1939         struct snd_timer_id tid;
1940         int err;
1941
1942         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1943         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1944         tid.card = chip->card->number;
1945         tid.device = device;
1946         tid.subdevice = 0;
1947         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1948                 strcpy(timer->name, "YMFPCI timer");
1949                 timer->private_data = chip;
1950                 timer->hw = snd_ymfpci_timer_hw;
1951         }
1952         chip->timer = timer;
1953         return err;
1954 }
1955
1956
1957 /*
1958  *  proc interface
1959  */
1960
1961 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1962                                  struct snd_info_buffer *buffer)
1963 {
1964         struct snd_ymfpci *chip = entry->private_data;
1965         int i;
1966         
1967         snd_iprintf(buffer, "YMFPCI\n\n");
1968         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1969                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1970 }
1971
1972 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1973 {
1974         return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read);
1975 }
1976
1977 /*
1978  *  initialization routines
1979  */
1980
1981 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1982 {
1983         u8 cmd;
1984
1985         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1986 #if 0 // force to reset
1987         if (cmd & 0x03) {
1988 #endif
1989                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1990                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1991                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1992                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1993                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1994 #if 0
1995         }
1996 #endif
1997 }
1998
1999 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2000 {
2001         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2002 }
2003
2004 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2005 {
2006         u32 val;
2007         int timeout = 1000;
2008
2009         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2010         if (val)
2011                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2012         while (timeout-- > 0) {
2013                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2014                 if ((val & 0x00000002) == 0)
2015                         break;
2016         }
2017 }
2018
2019 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2020 {
2021         int err, is_1e;
2022         const char *name;
2023
2024         err = reject_firmware(&chip->dsp_microcode, "/*(DEBLOBBED)*/",
2025                                &chip->pci->dev);
2026         if (err >= 0) {
2027                 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2028                         dev_err(chip->card->dev,
2029                                 "DSP microcode has wrong size\n");
2030                         err = -EINVAL;
2031                 }
2032         }
2033         if (err < 0)
2034                 return err;
2035         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2036                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2037                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2038                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2039         name = is_1e ? "/*(DEBLOBBED)*/" : "/*(DEBLOBBED)*/";
2040         err = reject_firmware(&chip->controller_microcode, name,
2041                                &chip->pci->dev);
2042         if (err >= 0) {
2043                 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2044                         dev_err(chip->card->dev,
2045                                 "controller microcode has wrong size\n");
2046                         err = -EINVAL;
2047                 }
2048         }
2049         if (err < 0)
2050                 return err;
2051         return 0;
2052 }
2053
2054 /*(DEBLOBBED)*/
2055
2056 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2057 {
2058         int i;
2059         u16 ctrl;
2060         const __le32 *inst;
2061
2062         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2063         snd_ymfpci_disable_dsp(chip);
2064         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2065         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2066         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2067         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2068         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2069         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2070         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2071         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2072         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2073
2074         /* setup DSP instruction code */
2075         inst = (const __le32 *)chip->dsp_microcode->data;
2076         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2077                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2078                                   le32_to_cpu(inst[i]));
2079
2080         /* setup control instruction code */
2081         inst = (const __le32 *)chip->controller_microcode->data;
2082         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2083                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2084                                   le32_to_cpu(inst[i]));
2085
2086         snd_ymfpci_enable_dsp(chip);
2087 }
2088
2089 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2090 {
2091         long size, playback_ctrl_size;
2092         int voice, bank, reg;
2093         u8 *ptr;
2094         dma_addr_t ptr_addr;
2095
2096         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2097         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2098         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2099         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2100         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2101         
2102         size = ALIGN(playback_ctrl_size, 0x100) +
2103                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2104                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2105                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2106                chip->work_size;
2107         /* work_ptr must be aligned to 256 bytes, but it's already
2108            covered with the kernel page allocation mechanism */
2109         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2110                                 size, &chip->work_ptr) < 0) 
2111                 return -ENOMEM;
2112         ptr = chip->work_ptr.area;
2113         ptr_addr = chip->work_ptr.addr;
2114         memset(ptr, 0, size);   /* for sure */
2115
2116         chip->bank_base_playback = ptr;
2117         chip->bank_base_playback_addr = ptr_addr;
2118         chip->ctrl_playback = (__le32 *)ptr;
2119         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2120         ptr += ALIGN(playback_ctrl_size, 0x100);
2121         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2122         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2123                 chip->voices[voice].number = voice;
2124                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2125                 chip->voices[voice].bank_addr = ptr_addr;
2126                 for (bank = 0; bank < 2; bank++) {
2127                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2128                         ptr += chip->bank_size_playback;
2129                         ptr_addr += chip->bank_size_playback;
2130                 }
2131         }
2132         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2133         ptr_addr = ALIGN(ptr_addr, 0x100);
2134         chip->bank_base_capture = ptr;
2135         chip->bank_base_capture_addr = ptr_addr;
2136         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2137                 for (bank = 0; bank < 2; bank++) {
2138                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2139                         ptr += chip->bank_size_capture;
2140                         ptr_addr += chip->bank_size_capture;
2141                 }
2142         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2143         ptr_addr = ALIGN(ptr_addr, 0x100);
2144         chip->bank_base_effect = ptr;
2145         chip->bank_base_effect_addr = ptr_addr;
2146         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2147                 for (bank = 0; bank < 2; bank++) {
2148                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2149                         ptr += chip->bank_size_effect;
2150                         ptr_addr += chip->bank_size_effect;
2151                 }
2152         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2153         ptr_addr = ALIGN(ptr_addr, 0x100);
2154         chip->work_base = ptr;
2155         chip->work_base_addr = ptr_addr;
2156         
2157         snd_BUG_ON(ptr + chip->work_size !=
2158                    chip->work_ptr.area + chip->work_ptr.bytes);
2159
2160         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2161         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2162         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2163         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2164         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2165
2166         /* S/PDIF output initialization */
2167         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2168         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2169         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2170
2171         /* S/PDIF input initialization */
2172         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2173
2174         /* digital mixer setup */
2175         for (reg = 0x80; reg < 0xc0; reg += 4)
2176                 snd_ymfpci_writel(chip, reg, 0);
2177         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2178         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2179         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2180         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2181         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2182         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2183         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2184         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2185         
2186         return 0;
2187 }
2188
2189 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2190 {
2191         u16 ctrl;
2192
2193         if (snd_BUG_ON(!chip))
2194                 return -EINVAL;
2195
2196         if (chip->res_reg_area) {       /* don't touch busy hardware */
2197                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2198                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2199                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2200                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2201                 snd_ymfpci_disable_dsp(chip);
2202                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2203                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2204                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2205                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2206                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2207                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2208                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2209         }
2210
2211         snd_ymfpci_ac3_done(chip);
2212
2213         /* Set PCI device to D3 state */
2214 #if 0
2215         /* FIXME: temporarily disabled, otherwise we cannot fire up
2216          * the chip again unless reboot.  ACPI bug?
2217          */
2218         pci_set_power_state(chip->pci, PCI_D3hot);
2219 #endif
2220
2221 #ifdef CONFIG_PM_SLEEP
2222         kfree(chip->saved_regs);
2223 #endif
2224         if (chip->irq >= 0)
2225                 free_irq(chip->irq, chip);
2226         release_and_free_resource(chip->mpu_res);
2227         release_and_free_resource(chip->fm_res);
2228         snd_ymfpci_free_gameport(chip);
2229         iounmap(chip->reg_area_virt);
2230         if (chip->work_ptr.area)
2231                 snd_dma_free_pages(&chip->work_ptr);
2232         
2233         release_and_free_resource(chip->res_reg_area);
2234
2235         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2236         
2237         pci_disable_device(chip->pci);
2238         release_firmware(chip->dsp_microcode);
2239         release_firmware(chip->controller_microcode);
2240         kfree(chip);
2241         return 0;
2242 }
2243
2244 static int snd_ymfpci_dev_free(struct snd_device *device)
2245 {
2246         struct snd_ymfpci *chip = device->device_data;
2247         return snd_ymfpci_free(chip);
2248 }
2249
2250 #ifdef CONFIG_PM_SLEEP
2251 static int saved_regs_index[] = {
2252         /* spdif */
2253         YDSXGR_SPDIFOUTCTRL,
2254         YDSXGR_SPDIFOUTSTATUS,
2255         YDSXGR_SPDIFINCTRL,
2256         /* volumes */
2257         YDSXGR_PRIADCLOOPVOL,
2258         YDSXGR_NATIVEDACINVOL,
2259         YDSXGR_NATIVEDACOUTVOL,
2260         YDSXGR_BUF441OUTVOL,
2261         YDSXGR_NATIVEADCINVOL,
2262         YDSXGR_SPDIFLOOPVOL,
2263         YDSXGR_SPDIFOUTVOL,
2264         YDSXGR_ZVOUTVOL,
2265         YDSXGR_LEGACYOUTVOL,
2266         /* address bases */
2267         YDSXGR_PLAYCTRLBASE,
2268         YDSXGR_RECCTRLBASE,
2269         YDSXGR_EFFCTRLBASE,
2270         YDSXGR_WORKBASE,
2271         /* capture set up */
2272         YDSXGR_MAPOFREC,
2273         YDSXGR_RECFORMAT,
2274         YDSXGR_RECSLOTSR,
2275         YDSXGR_ADCFORMAT,
2276         YDSXGR_ADCSLOTSR,
2277 };
2278 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2279
2280 static int snd_ymfpci_suspend(struct device *dev)
2281 {
2282         struct snd_card *card = dev_get_drvdata(dev);
2283         struct snd_ymfpci *chip = card->private_data;
2284         unsigned int i;
2285         
2286         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2287         snd_ac97_suspend(chip->ac97);
2288         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2289                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2290         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2291         pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2292                              &chip->saved_dsxg_legacy);
2293         pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2294                              &chip->saved_dsxg_elegacy);
2295         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2296         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2297         snd_ymfpci_disable_dsp(chip);
2298         return 0;
2299 }
2300
2301 static int snd_ymfpci_resume(struct device *dev)
2302 {
2303         struct pci_dev *pci = to_pci_dev(dev);
2304         struct snd_card *card = dev_get_drvdata(dev);
2305         struct snd_ymfpci *chip = card->private_data;
2306         unsigned int i;
2307
2308         snd_ymfpci_aclink_reset(pci);
2309         snd_ymfpci_codec_ready(chip, 0);
2310         snd_ymfpci_download_image(chip);
2311         udelay(100);
2312
2313         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2314                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2315
2316         snd_ac97_resume(chip->ac97);
2317
2318         pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2319                               chip->saved_dsxg_legacy);
2320         pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2321                               chip->saved_dsxg_elegacy);
2322
2323         /* start hw again */
2324         if (chip->start_count > 0) {
2325                 spin_lock_irq(&chip->reg_lock);
2326                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2327                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2328                 spin_unlock_irq(&chip->reg_lock);
2329         }
2330         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2331         return 0;
2332 }
2333
2334 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2335 #endif /* CONFIG_PM_SLEEP */
2336
2337 int snd_ymfpci_create(struct snd_card *card,
2338                       struct pci_dev *pci,
2339                       unsigned short old_legacy_ctrl,
2340                       struct snd_ymfpci **rchip)
2341 {
2342         struct snd_ymfpci *chip;
2343         int err;
2344         static struct snd_device_ops ops = {
2345                 .dev_free =     snd_ymfpci_dev_free,
2346         };
2347         
2348         *rchip = NULL;
2349
2350         /* enable PCI device */
2351         if ((err = pci_enable_device(pci)) < 0)
2352                 return err;
2353
2354         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2355         if (chip == NULL) {
2356                 pci_disable_device(pci);
2357                 return -ENOMEM;
2358         }
2359         chip->old_legacy_ctrl = old_legacy_ctrl;
2360         spin_lock_init(&chip->reg_lock);
2361         spin_lock_init(&chip->voice_lock);
2362         init_waitqueue_head(&chip->interrupt_sleep);
2363         atomic_set(&chip->interrupt_sleep_count, 0);
2364         chip->card = card;
2365         chip->pci = pci;
2366         chip->irq = -1;
2367         chip->device_id = pci->device;
2368         chip->rev = pci->revision;
2369         chip->reg_area_phys = pci_resource_start(pci, 0);
2370         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2371         pci_set_master(pci);
2372         chip->src441_used = -1;
2373
2374         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2375                 dev_err(chip->card->dev,
2376                         "unable to grab memory region 0x%lx-0x%lx\n",
2377                         chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2378                 err = -EBUSY;
2379                 goto free_chip;
2380         }
2381         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2382                         KBUILD_MODNAME, chip)) {
2383                 dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2384                 err = -EBUSY;
2385                 goto free_chip;
2386         }
2387         chip->irq = pci->irq;
2388
2389         snd_ymfpci_aclink_reset(pci);
2390         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2391                 err = -EIO;
2392                 goto free_chip;
2393         }
2394
2395         err = snd_ymfpci_request_firmware(chip);
2396         if (err < 0) {
2397                 dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2398                 goto free_chip;
2399         }
2400         snd_ymfpci_download_image(chip);
2401
2402         udelay(100); /* seems we need a delay after downloading image.. */
2403
2404         if (snd_ymfpci_memalloc(chip) < 0) {
2405                 err = -EIO;
2406                 goto free_chip;
2407         }
2408
2409         err = snd_ymfpci_ac3_init(chip);
2410         if (err < 0)
2411                 goto free_chip;
2412
2413 #ifdef CONFIG_PM_SLEEP
2414         chip->saved_regs = kmalloc_array(YDSXGR_NUM_SAVED_REGS, sizeof(u32),
2415                                          GFP_KERNEL);
2416         if (chip->saved_regs == NULL) {
2417                 err = -ENOMEM;
2418                 goto free_chip;
2419         }
2420 #endif
2421
2422         err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
2423         if (err < 0)
2424                 goto free_chip;
2425
2426         snd_ymfpci_proc_init(card, chip);
2427
2428         *rchip = chip;
2429         return 0;
2430
2431 free_chip:
2432         snd_ymfpci_free(chip);
2433         return err;
2434 }