Linux-libre 4.14.68-gnu
[librecmc/linux-libre.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  */
8 #include <linux/export.h>
9 #include <linux/bitops.h>
10 #include <linux/etherdevice.h>
11 #include <linux/slab.h>
12 #include <net/cfg80211.h>
13 #include <net/ip.h>
14 #include <net/dsfield.h>
15 #include <linux/if_vlan.h>
16 #include <linux/mpls.h>
17 #include <linux/gcd.h>
18 #include "core.h"
19 #include "rdev-ops.h"
20
21
22 struct ieee80211_rate *
23 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
24                             u32 basic_rates, int bitrate)
25 {
26         struct ieee80211_rate *result = &sband->bitrates[0];
27         int i;
28
29         for (i = 0; i < sband->n_bitrates; i++) {
30                 if (!(basic_rates & BIT(i)))
31                         continue;
32                 if (sband->bitrates[i].bitrate > bitrate)
33                         continue;
34                 result = &sband->bitrates[i];
35         }
36
37         return result;
38 }
39 EXPORT_SYMBOL(ieee80211_get_response_rate);
40
41 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
42                               enum nl80211_bss_scan_width scan_width)
43 {
44         struct ieee80211_rate *bitrates;
45         u32 mandatory_rates = 0;
46         enum ieee80211_rate_flags mandatory_flag;
47         int i;
48
49         if (WARN_ON(!sband))
50                 return 1;
51
52         if (sband->band == NL80211_BAND_2GHZ) {
53                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
54                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
55                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
56                 else
57                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58         } else {
59                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60         }
61
62         bitrates = sband->bitrates;
63         for (i = 0; i < sband->n_bitrates; i++)
64                 if (bitrates[i].flags & mandatory_flag)
65                         mandatory_rates |= BIT(i);
66         return mandatory_rates;
67 }
68 EXPORT_SYMBOL(ieee80211_mandatory_rates);
69
70 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
71 {
72         /* see 802.11 17.3.8.3.2 and Annex J
73          * there are overlapping channel numbers in 5GHz and 2GHz bands */
74         if (chan <= 0)
75                 return 0; /* not supported */
76         switch (band) {
77         case NL80211_BAND_2GHZ:
78                 if (chan == 14)
79                         return 2484;
80                 else if (chan < 14)
81                         return 2407 + chan * 5;
82                 break;
83         case NL80211_BAND_5GHZ:
84                 if (chan >= 182 && chan <= 196)
85                         return 4000 + chan * 5;
86                 else
87                         return 5000 + chan * 5;
88                 break;
89         case NL80211_BAND_60GHZ:
90                 if (chan < 5)
91                         return 56160 + chan * 2160;
92                 break;
93         default:
94                 ;
95         }
96         return 0; /* not supported */
97 }
98 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
99
100 int ieee80211_frequency_to_channel(int freq)
101 {
102         /* see 802.11 17.3.8.3.2 and Annex J */
103         if (freq == 2484)
104                 return 14;
105         else if (freq < 2484)
106                 return (freq - 2407) / 5;
107         else if (freq >= 4910 && freq <= 4980)
108                 return (freq - 4000) / 5;
109         else if (freq <= 45000) /* DMG band lower limit */
110                 return (freq - 5000) / 5;
111         else if (freq >= 58320 && freq <= 64800)
112                 return (freq - 56160) / 2160;
113         else
114                 return 0;
115 }
116 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
117
118 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
119 {
120         enum nl80211_band band;
121         struct ieee80211_supported_band *sband;
122         int i;
123
124         for (band = 0; band < NUM_NL80211_BANDS; band++) {
125                 sband = wiphy->bands[band];
126
127                 if (!sband)
128                         continue;
129
130                 for (i = 0; i < sband->n_channels; i++) {
131                         if (sband->channels[i].center_freq == freq)
132                                 return &sband->channels[i];
133                 }
134         }
135
136         return NULL;
137 }
138 EXPORT_SYMBOL(ieee80211_get_channel);
139
140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
141 {
142         int i, want;
143
144         switch (sband->band) {
145         case NL80211_BAND_5GHZ:
146                 want = 3;
147                 for (i = 0; i < sband->n_bitrates; i++) {
148                         if (sband->bitrates[i].bitrate == 60 ||
149                             sband->bitrates[i].bitrate == 120 ||
150                             sband->bitrates[i].bitrate == 240) {
151                                 sband->bitrates[i].flags |=
152                                         IEEE80211_RATE_MANDATORY_A;
153                                 want--;
154                         }
155                 }
156                 WARN_ON(want);
157                 break;
158         case NL80211_BAND_2GHZ:
159                 want = 7;
160                 for (i = 0; i < sband->n_bitrates; i++) {
161                         if (sband->bitrates[i].bitrate == 10) {
162                                 sband->bitrates[i].flags |=
163                                         IEEE80211_RATE_MANDATORY_B |
164                                         IEEE80211_RATE_MANDATORY_G;
165                                 want--;
166                         }
167
168                         if (sband->bitrates[i].bitrate == 20 ||
169                             sband->bitrates[i].bitrate == 55 ||
170                             sband->bitrates[i].bitrate == 110 ||
171                             sband->bitrates[i].bitrate == 60 ||
172                             sband->bitrates[i].bitrate == 120 ||
173                             sband->bitrates[i].bitrate == 240) {
174                                 sband->bitrates[i].flags |=
175                                         IEEE80211_RATE_MANDATORY_G;
176                                 want--;
177                         }
178
179                         if (sband->bitrates[i].bitrate != 10 &&
180                             sband->bitrates[i].bitrate != 20 &&
181                             sband->bitrates[i].bitrate != 55 &&
182                             sband->bitrates[i].bitrate != 110)
183                                 sband->bitrates[i].flags |=
184                                         IEEE80211_RATE_ERP_G;
185                 }
186                 WARN_ON(want != 0 && want != 3 && want != 6);
187                 break;
188         case NL80211_BAND_60GHZ:
189                 /* check for mandatory HT MCS 1..4 */
190                 WARN_ON(!sband->ht_cap.ht_supported);
191                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192                 break;
193         case NUM_NL80211_BANDS:
194         default:
195                 WARN_ON(1);
196                 break;
197         }
198 }
199
200 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
201 {
202         enum nl80211_band band;
203
204         for (band = 0; band < NUM_NL80211_BANDS; band++)
205                 if (wiphy->bands[band])
206                         set_mandatory_flags_band(wiphy->bands[band]);
207 }
208
209 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
210 {
211         int i;
212         for (i = 0; i < wiphy->n_cipher_suites; i++)
213                 if (cipher == wiphy->cipher_suites[i])
214                         return true;
215         return false;
216 }
217
218 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
219                                    struct key_params *params, int key_idx,
220                                    bool pairwise, const u8 *mac_addr)
221 {
222         if (key_idx < 0 || key_idx > 5)
223                 return -EINVAL;
224
225         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
226                 return -EINVAL;
227
228         if (pairwise && !mac_addr)
229                 return -EINVAL;
230
231         switch (params->cipher) {
232         case WLAN_CIPHER_SUITE_TKIP:
233         case WLAN_CIPHER_SUITE_CCMP:
234         case WLAN_CIPHER_SUITE_CCMP_256:
235         case WLAN_CIPHER_SUITE_GCMP:
236         case WLAN_CIPHER_SUITE_GCMP_256:
237                 /* Disallow pairwise keys with non-zero index unless it's WEP
238                  * or a vendor specific cipher (because current deployments use
239                  * pairwise WEP keys with non-zero indices and for vendor
240                  * specific ciphers this should be validated in the driver or
241                  * hardware level - but 802.11i clearly specifies to use zero)
242                  */
243                 if (pairwise && key_idx)
244                         return -EINVAL;
245                 break;
246         case WLAN_CIPHER_SUITE_AES_CMAC:
247         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
248         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
249         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
250                 /* Disallow BIP (group-only) cipher as pairwise cipher */
251                 if (pairwise)
252                         return -EINVAL;
253                 if (key_idx < 4)
254                         return -EINVAL;
255                 break;
256         case WLAN_CIPHER_SUITE_WEP40:
257         case WLAN_CIPHER_SUITE_WEP104:
258                 if (key_idx > 3)
259                         return -EINVAL;
260         default:
261                 break;
262         }
263
264         switch (params->cipher) {
265         case WLAN_CIPHER_SUITE_WEP40:
266                 if (params->key_len != WLAN_KEY_LEN_WEP40)
267                         return -EINVAL;
268                 break;
269         case WLAN_CIPHER_SUITE_TKIP:
270                 if (params->key_len != WLAN_KEY_LEN_TKIP)
271                         return -EINVAL;
272                 break;
273         case WLAN_CIPHER_SUITE_CCMP:
274                 if (params->key_len != WLAN_KEY_LEN_CCMP)
275                         return -EINVAL;
276                 break;
277         case WLAN_CIPHER_SUITE_CCMP_256:
278                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
279                         return -EINVAL;
280                 break;
281         case WLAN_CIPHER_SUITE_GCMP:
282                 if (params->key_len != WLAN_KEY_LEN_GCMP)
283                         return -EINVAL;
284                 break;
285         case WLAN_CIPHER_SUITE_GCMP_256:
286                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
287                         return -EINVAL;
288                 break;
289         case WLAN_CIPHER_SUITE_WEP104:
290                 if (params->key_len != WLAN_KEY_LEN_WEP104)
291                         return -EINVAL;
292                 break;
293         case WLAN_CIPHER_SUITE_AES_CMAC:
294                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
295                         return -EINVAL;
296                 break;
297         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
298                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
299                         return -EINVAL;
300                 break;
301         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
302                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
303                         return -EINVAL;
304                 break;
305         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
306                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
307                         return -EINVAL;
308                 break;
309         default:
310                 /*
311                  * We don't know anything about this algorithm,
312                  * allow using it -- but the driver must check
313                  * all parameters! We still check below whether
314                  * or not the driver supports this algorithm,
315                  * of course.
316                  */
317                 break;
318         }
319
320         if (params->seq) {
321                 switch (params->cipher) {
322                 case WLAN_CIPHER_SUITE_WEP40:
323                 case WLAN_CIPHER_SUITE_WEP104:
324                         /* These ciphers do not use key sequence */
325                         return -EINVAL;
326                 case WLAN_CIPHER_SUITE_TKIP:
327                 case WLAN_CIPHER_SUITE_CCMP:
328                 case WLAN_CIPHER_SUITE_CCMP_256:
329                 case WLAN_CIPHER_SUITE_GCMP:
330                 case WLAN_CIPHER_SUITE_GCMP_256:
331                 case WLAN_CIPHER_SUITE_AES_CMAC:
332                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
333                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
334                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
335                         if (params->seq_len != 6)
336                                 return -EINVAL;
337                         break;
338                 }
339         }
340
341         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
342                 return -EINVAL;
343
344         return 0;
345 }
346
347 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
348 {
349         unsigned int hdrlen = 24;
350
351         if (ieee80211_is_data(fc)) {
352                 if (ieee80211_has_a4(fc))
353                         hdrlen = 30;
354                 if (ieee80211_is_data_qos(fc)) {
355                         hdrlen += IEEE80211_QOS_CTL_LEN;
356                         if (ieee80211_has_order(fc))
357                                 hdrlen += IEEE80211_HT_CTL_LEN;
358                 }
359                 goto out;
360         }
361
362         if (ieee80211_is_mgmt(fc)) {
363                 if (ieee80211_has_order(fc))
364                         hdrlen += IEEE80211_HT_CTL_LEN;
365                 goto out;
366         }
367
368         if (ieee80211_is_ctl(fc)) {
369                 /*
370                  * ACK and CTS are 10 bytes, all others 16. To see how
371                  * to get this condition consider
372                  *   subtype mask:   0b0000000011110000 (0x00F0)
373                  *   ACK subtype:    0b0000000011010000 (0x00D0)
374                  *   CTS subtype:    0b0000000011000000 (0x00C0)
375                  *   bits that matter:         ^^^      (0x00E0)
376                  *   value of those: 0b0000000011000000 (0x00C0)
377                  */
378                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
379                         hdrlen = 10;
380                 else
381                         hdrlen = 16;
382         }
383 out:
384         return hdrlen;
385 }
386 EXPORT_SYMBOL(ieee80211_hdrlen);
387
388 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
389 {
390         const struct ieee80211_hdr *hdr =
391                         (const struct ieee80211_hdr *)skb->data;
392         unsigned int hdrlen;
393
394         if (unlikely(skb->len < 10))
395                 return 0;
396         hdrlen = ieee80211_hdrlen(hdr->frame_control);
397         if (unlikely(hdrlen > skb->len))
398                 return 0;
399         return hdrlen;
400 }
401 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
402
403 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
404 {
405         int ae = flags & MESH_FLAGS_AE;
406         /* 802.11-2012, 8.2.4.7.3 */
407         switch (ae) {
408         default:
409         case 0:
410                 return 6;
411         case MESH_FLAGS_AE_A4:
412                 return 12;
413         case MESH_FLAGS_AE_A5_A6:
414                 return 18;
415         }
416 }
417
418 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
419 {
420         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
421 }
422 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
423
424 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
425                                   const u8 *addr, enum nl80211_iftype iftype)
426 {
427         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428         struct {
429                 u8 hdr[ETH_ALEN] __aligned(2);
430                 __be16 proto;
431         } payload;
432         struct ethhdr tmp;
433         u16 hdrlen;
434         u8 mesh_flags = 0;
435
436         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437                 return -1;
438
439         hdrlen = ieee80211_hdrlen(hdr->frame_control);
440         if (skb->len < hdrlen + 8)
441                 return -1;
442
443         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
444          * header
445          * IEEE 802.11 address fields:
446          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447          *   0     0   DA    SA    BSSID n/a
448          *   0     1   DA    BSSID SA    n/a
449          *   1     0   BSSID SA    DA    n/a
450          *   1     1   RA    TA    DA    SA
451          */
452         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454
455         if (iftype == NL80211_IFTYPE_MESH_POINT)
456                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457
458         mesh_flags &= MESH_FLAGS_AE;
459
460         switch (hdr->frame_control &
461                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
462         case cpu_to_le16(IEEE80211_FCTL_TODS):
463                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
464                              iftype != NL80211_IFTYPE_AP_VLAN &&
465                              iftype != NL80211_IFTYPE_P2P_GO))
466                         return -1;
467                 break;
468         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
469                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
470                              iftype != NL80211_IFTYPE_MESH_POINT &&
471                              iftype != NL80211_IFTYPE_AP_VLAN &&
472                              iftype != NL80211_IFTYPE_STATION))
473                         return -1;
474                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
475                         if (mesh_flags == MESH_FLAGS_AE_A4)
476                                 return -1;
477                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
478                                 skb_copy_bits(skb, hdrlen +
479                                         offsetof(struct ieee80211s_hdr, eaddr1),
480                                         tmp.h_dest, 2 * ETH_ALEN);
481                         }
482                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
483                 }
484                 break;
485         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
486                 if ((iftype != NL80211_IFTYPE_STATION &&
487                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
488                      iftype != NL80211_IFTYPE_MESH_POINT) ||
489                     (is_multicast_ether_addr(tmp.h_dest) &&
490                      ether_addr_equal(tmp.h_source, addr)))
491                         return -1;
492                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
493                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
494                                 return -1;
495                         if (mesh_flags == MESH_FLAGS_AE_A4)
496                                 skb_copy_bits(skb, hdrlen +
497                                         offsetof(struct ieee80211s_hdr, eaddr1),
498                                         tmp.h_source, ETH_ALEN);
499                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
500                 }
501                 break;
502         case cpu_to_le16(0):
503                 if (iftype != NL80211_IFTYPE_ADHOC &&
504                     iftype != NL80211_IFTYPE_STATION &&
505                     iftype != NL80211_IFTYPE_OCB)
506                                 return -1;
507                 break;
508         }
509
510         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
511         tmp.h_proto = payload.proto;
512
513         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
514                     tmp.h_proto != htons(ETH_P_AARP) &&
515                     tmp.h_proto != htons(ETH_P_IPX)) ||
516                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
517                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
518                  * replace EtherType */
519                 hdrlen += ETH_ALEN + 2;
520         else
521                 tmp.h_proto = htons(skb->len - hdrlen);
522
523         pskb_pull(skb, hdrlen);
524
525         if (!ehdr)
526                 ehdr = skb_push(skb, sizeof(struct ethhdr));
527         memcpy(ehdr, &tmp, sizeof(tmp));
528
529         return 0;
530 }
531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
532
533 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
534                              enum nl80211_iftype iftype,
535                              const u8 *bssid, bool qos)
536 {
537         struct ieee80211_hdr hdr;
538         u16 hdrlen, ethertype;
539         __le16 fc;
540         const u8 *encaps_data;
541         int encaps_len, skip_header_bytes;
542         int nh_pos, h_pos;
543         int head_need;
544
545         if (unlikely(skb->len < ETH_HLEN))
546                 return -EINVAL;
547
548         nh_pos = skb_network_header(skb) - skb->data;
549         h_pos = skb_transport_header(skb) - skb->data;
550
551         /* convert Ethernet header to proper 802.11 header (based on
552          * operation mode) */
553         ethertype = (skb->data[12] << 8) | skb->data[13];
554         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
555
556         switch (iftype) {
557         case NL80211_IFTYPE_AP:
558         case NL80211_IFTYPE_AP_VLAN:
559         case NL80211_IFTYPE_P2P_GO:
560                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
561                 /* DA BSSID SA */
562                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
563                 memcpy(hdr.addr2, addr, ETH_ALEN);
564                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
565                 hdrlen = 24;
566                 break;
567         case NL80211_IFTYPE_STATION:
568         case NL80211_IFTYPE_P2P_CLIENT:
569                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
570                 /* BSSID SA DA */
571                 memcpy(hdr.addr1, bssid, ETH_ALEN);
572                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
573                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
574                 hdrlen = 24;
575                 break;
576         case NL80211_IFTYPE_OCB:
577         case NL80211_IFTYPE_ADHOC:
578                 /* DA SA BSSID */
579                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
580                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
581                 memcpy(hdr.addr3, bssid, ETH_ALEN);
582                 hdrlen = 24;
583                 break;
584         default:
585                 return -EOPNOTSUPP;
586         }
587
588         if (qos) {
589                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
590                 hdrlen += 2;
591         }
592
593         hdr.frame_control = fc;
594         hdr.duration_id = 0;
595         hdr.seq_ctrl = 0;
596
597         skip_header_bytes = ETH_HLEN;
598         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
599                 encaps_data = bridge_tunnel_header;
600                 encaps_len = sizeof(bridge_tunnel_header);
601                 skip_header_bytes -= 2;
602         } else if (ethertype >= ETH_P_802_3_MIN) {
603                 encaps_data = rfc1042_header;
604                 encaps_len = sizeof(rfc1042_header);
605                 skip_header_bytes -= 2;
606         } else {
607                 encaps_data = NULL;
608                 encaps_len = 0;
609         }
610
611         skb_pull(skb, skip_header_bytes);
612         nh_pos -= skip_header_bytes;
613         h_pos -= skip_header_bytes;
614
615         head_need = hdrlen + encaps_len - skb_headroom(skb);
616
617         if (head_need > 0 || skb_cloned(skb)) {
618                 head_need = max(head_need, 0);
619                 if (head_need)
620                         skb_orphan(skb);
621
622                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
623                         return -ENOMEM;
624         }
625
626         if (encaps_data) {
627                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
628                 nh_pos += encaps_len;
629                 h_pos += encaps_len;
630         }
631
632         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
633
634         nh_pos += hdrlen;
635         h_pos += hdrlen;
636
637         /* Update skb pointers to various headers since this modified frame
638          * is going to go through Linux networking code that may potentially
639          * need things like pointer to IP header. */
640         skb_reset_mac_header(skb);
641         skb_set_network_header(skb, nh_pos);
642         skb_set_transport_header(skb, h_pos);
643
644         return 0;
645 }
646 EXPORT_SYMBOL(ieee80211_data_from_8023);
647
648 static void
649 __frame_add_frag(struct sk_buff *skb, struct page *page,
650                  void *ptr, int len, int size)
651 {
652         struct skb_shared_info *sh = skb_shinfo(skb);
653         int page_offset;
654
655         page_ref_inc(page);
656         page_offset = ptr - page_address(page);
657         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
658 }
659
660 static void
661 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
662                             int offset, int len)
663 {
664         struct skb_shared_info *sh = skb_shinfo(skb);
665         const skb_frag_t *frag = &sh->frags[0];
666         struct page *frag_page;
667         void *frag_ptr;
668         int frag_len, frag_size;
669         int head_size = skb->len - skb->data_len;
670         int cur_len;
671
672         frag_page = virt_to_head_page(skb->head);
673         frag_ptr = skb->data;
674         frag_size = head_size;
675
676         while (offset >= frag_size) {
677                 offset -= frag_size;
678                 frag_page = skb_frag_page(frag);
679                 frag_ptr = skb_frag_address(frag);
680                 frag_size = skb_frag_size(frag);
681                 frag++;
682         }
683
684         frag_ptr += offset;
685         frag_len = frag_size - offset;
686
687         cur_len = min(len, frag_len);
688
689         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
690         len -= cur_len;
691
692         while (len > 0) {
693                 frag_len = skb_frag_size(frag);
694                 cur_len = min(len, frag_len);
695                 __frame_add_frag(frame, skb_frag_page(frag),
696                                  skb_frag_address(frag), cur_len, frag_len);
697                 len -= cur_len;
698                 frag++;
699         }
700 }
701
702 static struct sk_buff *
703 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
704                        int offset, int len, bool reuse_frag)
705 {
706         struct sk_buff *frame;
707         int cur_len = len;
708
709         if (skb->len - offset < len)
710                 return NULL;
711
712         /*
713          * When reusing framents, copy some data to the head to simplify
714          * ethernet header handling and speed up protocol header processing
715          * in the stack later.
716          */
717         if (reuse_frag)
718                 cur_len = min_t(int, len, 32);
719
720         /*
721          * Allocate and reserve two bytes more for payload
722          * alignment since sizeof(struct ethhdr) is 14.
723          */
724         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
725         if (!frame)
726                 return NULL;
727
728         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
729         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
730
731         len -= cur_len;
732         if (!len)
733                 return frame;
734
735         offset += cur_len;
736         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
737
738         return frame;
739 }
740
741 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
742                               const u8 *addr, enum nl80211_iftype iftype,
743                               const unsigned int extra_headroom,
744                               const u8 *check_da, const u8 *check_sa)
745 {
746         unsigned int hlen = ALIGN(extra_headroom, 4);
747         struct sk_buff *frame = NULL;
748         u16 ethertype;
749         u8 *payload;
750         int offset = 0, remaining;
751         struct ethhdr eth;
752         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
753         bool reuse_skb = false;
754         bool last = false;
755
756         while (!last) {
757                 unsigned int subframe_len;
758                 int len;
759                 u8 padding;
760
761                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
762                 len = ntohs(eth.h_proto);
763                 subframe_len = sizeof(struct ethhdr) + len;
764                 padding = (4 - subframe_len) & 0x3;
765
766                 /* the last MSDU has no padding */
767                 remaining = skb->len - offset;
768                 if (subframe_len > remaining)
769                         goto purge;
770
771                 offset += sizeof(struct ethhdr);
772                 last = remaining <= subframe_len + padding;
773
774                 /* FIXME: should we really accept multicast DA? */
775                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
776                      !ether_addr_equal(check_da, eth.h_dest)) ||
777                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
778                         offset += len + padding;
779                         continue;
780                 }
781
782                 /* reuse skb for the last subframe */
783                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
784                         skb_pull(skb, offset);
785                         frame = skb;
786                         reuse_skb = true;
787                 } else {
788                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
789                                                        reuse_frag);
790                         if (!frame)
791                                 goto purge;
792
793                         offset += len + padding;
794                 }
795
796                 skb_reset_network_header(frame);
797                 frame->dev = skb->dev;
798                 frame->priority = skb->priority;
799
800                 payload = frame->data;
801                 ethertype = (payload[6] << 8) | payload[7];
802                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
803                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
804                            ether_addr_equal(payload, bridge_tunnel_header))) {
805                         eth.h_proto = htons(ethertype);
806                         skb_pull(frame, ETH_ALEN + 2);
807                 }
808
809                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
810                 __skb_queue_tail(list, frame);
811         }
812
813         if (!reuse_skb)
814                 dev_kfree_skb(skb);
815
816         return;
817
818  purge:
819         __skb_queue_purge(list);
820         dev_kfree_skb(skb);
821 }
822 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
823
824 /* Given a data frame determine the 802.1p/1d tag to use. */
825 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
826                                     struct cfg80211_qos_map *qos_map)
827 {
828         unsigned int dscp;
829         unsigned char vlan_priority;
830
831         /* skb->priority values from 256->263 are magic values to
832          * directly indicate a specific 802.1d priority.  This is used
833          * to allow 802.1d priority to be passed directly in from VLAN
834          * tags, etc.
835          */
836         if (skb->priority >= 256 && skb->priority <= 263)
837                 return skb->priority - 256;
838
839         if (skb_vlan_tag_present(skb)) {
840                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
841                         >> VLAN_PRIO_SHIFT;
842                 if (vlan_priority > 0)
843                         return vlan_priority;
844         }
845
846         switch (skb->protocol) {
847         case htons(ETH_P_IP):
848                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
849                 break;
850         case htons(ETH_P_IPV6):
851                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
852                 break;
853         case htons(ETH_P_MPLS_UC):
854         case htons(ETH_P_MPLS_MC): {
855                 struct mpls_label mpls_tmp, *mpls;
856
857                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
858                                           sizeof(*mpls), &mpls_tmp);
859                 if (!mpls)
860                         return 0;
861
862                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
863                         >> MPLS_LS_TC_SHIFT;
864         }
865         case htons(ETH_P_80221):
866                 /* 802.21 is always network control traffic */
867                 return 7;
868         default:
869                 return 0;
870         }
871
872         if (qos_map) {
873                 unsigned int i, tmp_dscp = dscp >> 2;
874
875                 for (i = 0; i < qos_map->num_des; i++) {
876                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
877                                 return qos_map->dscp_exception[i].up;
878                 }
879
880                 for (i = 0; i < 8; i++) {
881                         if (tmp_dscp >= qos_map->up[i].low &&
882                             tmp_dscp <= qos_map->up[i].high)
883                                 return i;
884                 }
885         }
886
887         return dscp >> 5;
888 }
889 EXPORT_SYMBOL(cfg80211_classify8021d);
890
891 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
892 {
893         const struct cfg80211_bss_ies *ies;
894
895         ies = rcu_dereference(bss->ies);
896         if (!ies)
897                 return NULL;
898
899         return cfg80211_find_ie(ie, ies->data, ies->len);
900 }
901 EXPORT_SYMBOL(ieee80211_bss_get_ie);
902
903 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
904 {
905         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
906         struct net_device *dev = wdev->netdev;
907         int i;
908
909         if (!wdev->connect_keys)
910                 return;
911
912         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
913                 if (!wdev->connect_keys->params[i].cipher)
914                         continue;
915                 if (rdev_add_key(rdev, dev, i, false, NULL,
916                                  &wdev->connect_keys->params[i])) {
917                         netdev_err(dev, "failed to set key %d\n", i);
918                         continue;
919                 }
920                 if (wdev->connect_keys->def == i &&
921                     rdev_set_default_key(rdev, dev, i, true, true)) {
922                         netdev_err(dev, "failed to set defkey %d\n", i);
923                         continue;
924                 }
925         }
926
927         kzfree(wdev->connect_keys);
928         wdev->connect_keys = NULL;
929 }
930
931 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
932 {
933         struct cfg80211_event *ev;
934         unsigned long flags;
935
936         spin_lock_irqsave(&wdev->event_lock, flags);
937         while (!list_empty(&wdev->event_list)) {
938                 ev = list_first_entry(&wdev->event_list,
939                                       struct cfg80211_event, list);
940                 list_del(&ev->list);
941                 spin_unlock_irqrestore(&wdev->event_lock, flags);
942
943                 wdev_lock(wdev);
944                 switch (ev->type) {
945                 case EVENT_CONNECT_RESULT:
946                         __cfg80211_connect_result(
947                                 wdev->netdev,
948                                 &ev->cr,
949                                 ev->cr.status == WLAN_STATUS_SUCCESS);
950                         break;
951                 case EVENT_ROAMED:
952                         __cfg80211_roamed(wdev, &ev->rm);
953                         break;
954                 case EVENT_DISCONNECTED:
955                         __cfg80211_disconnected(wdev->netdev,
956                                                 ev->dc.ie, ev->dc.ie_len,
957                                                 ev->dc.reason,
958                                                 !ev->dc.locally_generated);
959                         break;
960                 case EVENT_IBSS_JOINED:
961                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
962                                                ev->ij.channel);
963                         break;
964                 case EVENT_STOPPED:
965                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
966                         break;
967                 }
968                 wdev_unlock(wdev);
969
970                 kfree(ev);
971
972                 spin_lock_irqsave(&wdev->event_lock, flags);
973         }
974         spin_unlock_irqrestore(&wdev->event_lock, flags);
975 }
976
977 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
978 {
979         struct wireless_dev *wdev;
980
981         ASSERT_RTNL();
982
983         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
984                 cfg80211_process_wdev_events(wdev);
985 }
986
987 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
988                           struct net_device *dev, enum nl80211_iftype ntype,
989                           struct vif_params *params)
990 {
991         int err;
992         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
993
994         ASSERT_RTNL();
995
996         /* don't support changing VLANs, you just re-create them */
997         if (otype == NL80211_IFTYPE_AP_VLAN)
998                 return -EOPNOTSUPP;
999
1000         /* cannot change into P2P device or NAN */
1001         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1002             ntype == NL80211_IFTYPE_NAN)
1003                 return -EOPNOTSUPP;
1004
1005         if (!rdev->ops->change_virtual_intf ||
1006             !(rdev->wiphy.interface_modes & (1 << ntype)))
1007                 return -EOPNOTSUPP;
1008
1009         /* if it's part of a bridge, reject changing type to station/ibss */
1010         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1011             (ntype == NL80211_IFTYPE_ADHOC ||
1012              ntype == NL80211_IFTYPE_STATION ||
1013              ntype == NL80211_IFTYPE_P2P_CLIENT))
1014                 return -EBUSY;
1015
1016         if (ntype != otype) {
1017                 dev->ieee80211_ptr->use_4addr = false;
1018                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1019                 wdev_lock(dev->ieee80211_ptr);
1020                 rdev_set_qos_map(rdev, dev, NULL);
1021                 wdev_unlock(dev->ieee80211_ptr);
1022
1023                 switch (otype) {
1024                 case NL80211_IFTYPE_AP:
1025                         cfg80211_stop_ap(rdev, dev, true);
1026                         break;
1027                 case NL80211_IFTYPE_ADHOC:
1028                         cfg80211_leave_ibss(rdev, dev, false);
1029                         break;
1030                 case NL80211_IFTYPE_STATION:
1031                 case NL80211_IFTYPE_P2P_CLIENT:
1032                         wdev_lock(dev->ieee80211_ptr);
1033                         cfg80211_disconnect(rdev, dev,
1034                                             WLAN_REASON_DEAUTH_LEAVING, true);
1035                         wdev_unlock(dev->ieee80211_ptr);
1036                         break;
1037                 case NL80211_IFTYPE_MESH_POINT:
1038                         /* mesh should be handled? */
1039                         break;
1040                 default:
1041                         break;
1042                 }
1043
1044                 cfg80211_process_rdev_events(rdev);
1045         }
1046
1047         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1048
1049         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1050
1051         if (!err && params && params->use_4addr != -1)
1052                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1053
1054         if (!err) {
1055                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1056                 switch (ntype) {
1057                 case NL80211_IFTYPE_STATION:
1058                         if (dev->ieee80211_ptr->use_4addr)
1059                                 break;
1060                         /* fall through */
1061                 case NL80211_IFTYPE_OCB:
1062                 case NL80211_IFTYPE_P2P_CLIENT:
1063                 case NL80211_IFTYPE_ADHOC:
1064                         dev->priv_flags |= IFF_DONT_BRIDGE;
1065                         break;
1066                 case NL80211_IFTYPE_P2P_GO:
1067                 case NL80211_IFTYPE_AP:
1068                 case NL80211_IFTYPE_AP_VLAN:
1069                 case NL80211_IFTYPE_WDS:
1070                 case NL80211_IFTYPE_MESH_POINT:
1071                         /* bridging OK */
1072                         break;
1073                 case NL80211_IFTYPE_MONITOR:
1074                         /* monitor can't bridge anyway */
1075                         break;
1076                 case NL80211_IFTYPE_UNSPECIFIED:
1077                 case NUM_NL80211_IFTYPES:
1078                         /* not happening */
1079                         break;
1080                 case NL80211_IFTYPE_P2P_DEVICE:
1081                 case NL80211_IFTYPE_NAN:
1082                         WARN_ON(1);
1083                         break;
1084                 }
1085         }
1086
1087         if (!err && ntype != otype && netif_running(dev)) {
1088                 cfg80211_update_iface_num(rdev, ntype, 1);
1089                 cfg80211_update_iface_num(rdev, otype, -1);
1090         }
1091
1092         return err;
1093 }
1094
1095 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1096 {
1097         int modulation, streams, bitrate;
1098
1099         /* the formula below does only work for MCS values smaller than 32 */
1100         if (WARN_ON_ONCE(rate->mcs >= 32))
1101                 return 0;
1102
1103         modulation = rate->mcs & 7;
1104         streams = (rate->mcs >> 3) + 1;
1105
1106         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1107
1108         if (modulation < 4)
1109                 bitrate *= (modulation + 1);
1110         else if (modulation == 4)
1111                 bitrate *= (modulation + 2);
1112         else
1113                 bitrate *= (modulation + 3);
1114
1115         bitrate *= streams;
1116
1117         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1118                 bitrate = (bitrate / 9) * 10;
1119
1120         /* do NOT round down here */
1121         return (bitrate + 50000) / 100000;
1122 }
1123
1124 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1125 {
1126         static const u32 __mcs2bitrate[] = {
1127                 /* control PHY */
1128                 [0] =   275,
1129                 /* SC PHY */
1130                 [1] =  3850,
1131                 [2] =  7700,
1132                 [3] =  9625,
1133                 [4] = 11550,
1134                 [5] = 12512, /* 1251.25 mbps */
1135                 [6] = 15400,
1136                 [7] = 19250,
1137                 [8] = 23100,
1138                 [9] = 25025,
1139                 [10] = 30800,
1140                 [11] = 38500,
1141                 [12] = 46200,
1142                 /* OFDM PHY */
1143                 [13] =  6930,
1144                 [14] =  8662, /* 866.25 mbps */
1145                 [15] = 13860,
1146                 [16] = 17325,
1147                 [17] = 20790,
1148                 [18] = 27720,
1149                 [19] = 34650,
1150                 [20] = 41580,
1151                 [21] = 45045,
1152                 [22] = 51975,
1153                 [23] = 62370,
1154                 [24] = 67568, /* 6756.75 mbps */
1155                 /* LP-SC PHY */
1156                 [25] =  6260,
1157                 [26] =  8340,
1158                 [27] = 11120,
1159                 [28] = 12510,
1160                 [29] = 16680,
1161                 [30] = 22240,
1162                 [31] = 25030,
1163         };
1164
1165         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1166                 return 0;
1167
1168         return __mcs2bitrate[rate->mcs];
1169 }
1170
1171 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1172 {
1173         static const u32 base[4][10] = {
1174                 {   6500000,
1175                    13000000,
1176                    19500000,
1177                    26000000,
1178                    39000000,
1179                    52000000,
1180                    58500000,
1181                    65000000,
1182                    78000000,
1183                 /* not in the spec, but some devices use this: */
1184                    86500000,
1185                 },
1186                 {  13500000,
1187                    27000000,
1188                    40500000,
1189                    54000000,
1190                    81000000,
1191                   108000000,
1192                   121500000,
1193                   135000000,
1194                   162000000,
1195                   180000000,
1196                 },
1197                 {  29300000,
1198                    58500000,
1199                    87800000,
1200                   117000000,
1201                   175500000,
1202                   234000000,
1203                   263300000,
1204                   292500000,
1205                   351000000,
1206                   390000000,
1207                 },
1208                 {  58500000,
1209                   117000000,
1210                   175500000,
1211                   234000000,
1212                   351000000,
1213                   468000000,
1214                   526500000,
1215                   585000000,
1216                   702000000,
1217                   780000000,
1218                 },
1219         };
1220         u32 bitrate;
1221         int idx;
1222
1223         if (rate->mcs > 9)
1224                 goto warn;
1225
1226         switch (rate->bw) {
1227         case RATE_INFO_BW_160:
1228                 idx = 3;
1229                 break;
1230         case RATE_INFO_BW_80:
1231                 idx = 2;
1232                 break;
1233         case RATE_INFO_BW_40:
1234                 idx = 1;
1235                 break;
1236         case RATE_INFO_BW_5:
1237         case RATE_INFO_BW_10:
1238         default:
1239                 goto warn;
1240         case RATE_INFO_BW_20:
1241                 idx = 0;
1242         }
1243
1244         bitrate = base[idx][rate->mcs];
1245         bitrate *= rate->nss;
1246
1247         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1248                 bitrate = (bitrate / 9) * 10;
1249
1250         /* do NOT round down here */
1251         return (bitrate + 50000) / 100000;
1252  warn:
1253         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1254                   rate->bw, rate->mcs, rate->nss);
1255         return 0;
1256 }
1257
1258 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1259 {
1260         if (rate->flags & RATE_INFO_FLAGS_MCS)
1261                 return cfg80211_calculate_bitrate_ht(rate);
1262         if (rate->flags & RATE_INFO_FLAGS_60G)
1263                 return cfg80211_calculate_bitrate_60g(rate);
1264         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1265                 return cfg80211_calculate_bitrate_vht(rate);
1266
1267         return rate->legacy;
1268 }
1269 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1270
1271 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1272                           enum ieee80211_p2p_attr_id attr,
1273                           u8 *buf, unsigned int bufsize)
1274 {
1275         u8 *out = buf;
1276         u16 attr_remaining = 0;
1277         bool desired_attr = false;
1278         u16 desired_len = 0;
1279
1280         while (len > 0) {
1281                 unsigned int iedatalen;
1282                 unsigned int copy;
1283                 const u8 *iedata;
1284
1285                 if (len < 2)
1286                         return -EILSEQ;
1287                 iedatalen = ies[1];
1288                 if (iedatalen + 2 > len)
1289                         return -EILSEQ;
1290
1291                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1292                         goto cont;
1293
1294                 if (iedatalen < 4)
1295                         goto cont;
1296
1297                 iedata = ies + 2;
1298
1299                 /* check WFA OUI, P2P subtype */
1300                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1301                     iedata[2] != 0x9a || iedata[3] != 0x09)
1302                         goto cont;
1303
1304                 iedatalen -= 4;
1305                 iedata += 4;
1306
1307                 /* check attribute continuation into this IE */
1308                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1309                 if (copy && desired_attr) {
1310                         desired_len += copy;
1311                         if (out) {
1312                                 memcpy(out, iedata, min(bufsize, copy));
1313                                 out += min(bufsize, copy);
1314                                 bufsize -= min(bufsize, copy);
1315                         }
1316
1317
1318                         if (copy == attr_remaining)
1319                                 return desired_len;
1320                 }
1321
1322                 attr_remaining -= copy;
1323                 if (attr_remaining)
1324                         goto cont;
1325
1326                 iedatalen -= copy;
1327                 iedata += copy;
1328
1329                 while (iedatalen > 0) {
1330                         u16 attr_len;
1331
1332                         /* P2P attribute ID & size must fit */
1333                         if (iedatalen < 3)
1334                                 return -EILSEQ;
1335                         desired_attr = iedata[0] == attr;
1336                         attr_len = get_unaligned_le16(iedata + 1);
1337                         iedatalen -= 3;
1338                         iedata += 3;
1339
1340                         copy = min_t(unsigned int, attr_len, iedatalen);
1341
1342                         if (desired_attr) {
1343                                 desired_len += copy;
1344                                 if (out) {
1345                                         memcpy(out, iedata, min(bufsize, copy));
1346                                         out += min(bufsize, copy);
1347                                         bufsize -= min(bufsize, copy);
1348                                 }
1349
1350                                 if (copy == attr_len)
1351                                         return desired_len;
1352                         }
1353
1354                         iedata += copy;
1355                         iedatalen -= copy;
1356                         attr_remaining = attr_len - copy;
1357                 }
1358
1359  cont:
1360                 len -= ies[1] + 2;
1361                 ies += ies[1] + 2;
1362         }
1363
1364         if (attr_remaining && desired_attr)
1365                 return -EILSEQ;
1366
1367         return -ENOENT;
1368 }
1369 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1370
1371 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1372 {
1373         int i;
1374
1375         for (i = 0; i < n_ids; i++)
1376                 if (ids[i] == id)
1377                         return true;
1378         return false;
1379 }
1380
1381 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1382 {
1383         /* we assume a validly formed IEs buffer */
1384         u8 len = ies[pos + 1];
1385
1386         pos += 2 + len;
1387
1388         /* the IE itself must have 255 bytes for fragments to follow */
1389         if (len < 255)
1390                 return pos;
1391
1392         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1393                 len = ies[pos + 1];
1394                 pos += 2 + len;
1395         }
1396
1397         return pos;
1398 }
1399
1400 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1401                               const u8 *ids, int n_ids,
1402                               const u8 *after_ric, int n_after_ric,
1403                               size_t offset)
1404 {
1405         size_t pos = offset;
1406
1407         while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1408                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1409                         pos = skip_ie(ies, ielen, pos);
1410
1411                         while (pos < ielen &&
1412                                !ieee80211_id_in_list(after_ric, n_after_ric,
1413                                                      ies[pos]))
1414                                 pos = skip_ie(ies, ielen, pos);
1415                 } else {
1416                         pos = skip_ie(ies, ielen, pos);
1417                 }
1418         }
1419
1420         return pos;
1421 }
1422 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1423
1424 bool ieee80211_operating_class_to_band(u8 operating_class,
1425                                        enum nl80211_band *band)
1426 {
1427         switch (operating_class) {
1428         case 112:
1429         case 115 ... 127:
1430         case 128 ... 130:
1431                 *band = NL80211_BAND_5GHZ;
1432                 return true;
1433         case 81:
1434         case 82:
1435         case 83:
1436         case 84:
1437                 *band = NL80211_BAND_2GHZ;
1438                 return true;
1439         case 180:
1440                 *band = NL80211_BAND_60GHZ;
1441                 return true;
1442         }
1443
1444         return false;
1445 }
1446 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1447
1448 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1449                                           u8 *op_class)
1450 {
1451         u8 vht_opclass;
1452         u16 freq = chandef->center_freq1;
1453
1454         if (freq >= 2412 && freq <= 2472) {
1455                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1456                         return false;
1457
1458                 /* 2.407 GHz, channels 1..13 */
1459                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1460                         if (freq > chandef->chan->center_freq)
1461                                 *op_class = 83; /* HT40+ */
1462                         else
1463                                 *op_class = 84; /* HT40- */
1464                 } else {
1465                         *op_class = 81;
1466                 }
1467
1468                 return true;
1469         }
1470
1471         if (freq == 2484) {
1472                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1473                         return false;
1474
1475                 *op_class = 82; /* channel 14 */
1476                 return true;
1477         }
1478
1479         switch (chandef->width) {
1480         case NL80211_CHAN_WIDTH_80:
1481                 vht_opclass = 128;
1482                 break;
1483         case NL80211_CHAN_WIDTH_160:
1484                 vht_opclass = 129;
1485                 break;
1486         case NL80211_CHAN_WIDTH_80P80:
1487                 vht_opclass = 130;
1488                 break;
1489         case NL80211_CHAN_WIDTH_10:
1490         case NL80211_CHAN_WIDTH_5:
1491                 return false; /* unsupported for now */
1492         default:
1493                 vht_opclass = 0;
1494                 break;
1495         }
1496
1497         /* 5 GHz, channels 36..48 */
1498         if (freq >= 5180 && freq <= 5240) {
1499                 if (vht_opclass) {
1500                         *op_class = vht_opclass;
1501                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1502                         if (freq > chandef->chan->center_freq)
1503                                 *op_class = 116;
1504                         else
1505                                 *op_class = 117;
1506                 } else {
1507                         *op_class = 115;
1508                 }
1509
1510                 return true;
1511         }
1512
1513         /* 5 GHz, channels 52..64 */
1514         if (freq >= 5260 && freq <= 5320) {
1515                 if (vht_opclass) {
1516                         *op_class = vht_opclass;
1517                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1518                         if (freq > chandef->chan->center_freq)
1519                                 *op_class = 119;
1520                         else
1521                                 *op_class = 120;
1522                 } else {
1523                         *op_class = 118;
1524                 }
1525
1526                 return true;
1527         }
1528
1529         /* 5 GHz, channels 100..144 */
1530         if (freq >= 5500 && freq <= 5720) {
1531                 if (vht_opclass) {
1532                         *op_class = vht_opclass;
1533                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1534                         if (freq > chandef->chan->center_freq)
1535                                 *op_class = 122;
1536                         else
1537                                 *op_class = 123;
1538                 } else {
1539                         *op_class = 121;
1540                 }
1541
1542                 return true;
1543         }
1544
1545         /* 5 GHz, channels 149..169 */
1546         if (freq >= 5745 && freq <= 5845) {
1547                 if (vht_opclass) {
1548                         *op_class = vht_opclass;
1549                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1550                         if (freq > chandef->chan->center_freq)
1551                                 *op_class = 126;
1552                         else
1553                                 *op_class = 127;
1554                 } else if (freq <= 5805) {
1555                         *op_class = 124;
1556                 } else {
1557                         *op_class = 125;
1558                 }
1559
1560                 return true;
1561         }
1562
1563         /* 56.16 GHz, channel 1..4 */
1564         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1565                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1566                         return false;
1567
1568                 *op_class = 180;
1569                 return true;
1570         }
1571
1572         /* not supported yet */
1573         return false;
1574 }
1575 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1576
1577 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1578                                        u32 *beacon_int_gcd,
1579                                        bool *beacon_int_different)
1580 {
1581         struct wireless_dev *wdev;
1582
1583         *beacon_int_gcd = 0;
1584         *beacon_int_different = false;
1585
1586         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1587                 if (!wdev->beacon_interval)
1588                         continue;
1589
1590                 if (!*beacon_int_gcd) {
1591                         *beacon_int_gcd = wdev->beacon_interval;
1592                         continue;
1593                 }
1594
1595                 if (wdev->beacon_interval == *beacon_int_gcd)
1596                         continue;
1597
1598                 *beacon_int_different = true;
1599                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1600         }
1601
1602         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1603                 if (*beacon_int_gcd)
1604                         *beacon_int_different = true;
1605                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1606         }
1607 }
1608
1609 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1610                                  enum nl80211_iftype iftype, u32 beacon_int)
1611 {
1612         /*
1613          * This is just a basic pre-condition check; if interface combinations
1614          * are possible the driver must already be checking those with a call
1615          * to cfg80211_check_combinations(), in which case we'll validate more
1616          * through the cfg80211_calculate_bi_data() call and code in
1617          * cfg80211_iter_combinations().
1618          */
1619
1620         if (beacon_int < 10 || beacon_int > 10000)
1621                 return -EINVAL;
1622
1623         return 0;
1624 }
1625
1626 int cfg80211_iter_combinations(struct wiphy *wiphy,
1627                                struct iface_combination_params *params,
1628                                void (*iter)(const struct ieee80211_iface_combination *c,
1629                                             void *data),
1630                                void *data)
1631 {
1632         const struct ieee80211_regdomain *regdom;
1633         enum nl80211_dfs_regions region = 0;
1634         int i, j, iftype;
1635         int num_interfaces = 0;
1636         u32 used_iftypes = 0;
1637         u32 beacon_int_gcd;
1638         bool beacon_int_different;
1639
1640         /*
1641          * This is a bit strange, since the iteration used to rely only on
1642          * the data given by the driver, but here it now relies on context,
1643          * in form of the currently operating interfaces.
1644          * This is OK for all current users, and saves us from having to
1645          * push the GCD calculations into all the drivers.
1646          * In the future, this should probably rely more on data that's in
1647          * cfg80211 already - the only thing not would appear to be any new
1648          * interfaces (while being brought up) and channel/radar data.
1649          */
1650         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1651                                    &beacon_int_gcd, &beacon_int_different);
1652
1653         if (params->radar_detect) {
1654                 rcu_read_lock();
1655                 regdom = rcu_dereference(cfg80211_regdomain);
1656                 if (regdom)
1657                         region = regdom->dfs_region;
1658                 rcu_read_unlock();
1659         }
1660
1661         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1662                 num_interfaces += params->iftype_num[iftype];
1663                 if (params->iftype_num[iftype] > 0 &&
1664                     !(wiphy->software_iftypes & BIT(iftype)))
1665                         used_iftypes |= BIT(iftype);
1666         }
1667
1668         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1669                 const struct ieee80211_iface_combination *c;
1670                 struct ieee80211_iface_limit *limits;
1671                 u32 all_iftypes = 0;
1672
1673                 c = &wiphy->iface_combinations[i];
1674
1675                 if (num_interfaces > c->max_interfaces)
1676                         continue;
1677                 if (params->num_different_channels > c->num_different_channels)
1678                         continue;
1679
1680                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1681                                  GFP_KERNEL);
1682                 if (!limits)
1683                         return -ENOMEM;
1684
1685                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1686                         if (wiphy->software_iftypes & BIT(iftype))
1687                                 continue;
1688                         for (j = 0; j < c->n_limits; j++) {
1689                                 all_iftypes |= limits[j].types;
1690                                 if (!(limits[j].types & BIT(iftype)))
1691                                         continue;
1692                                 if (limits[j].max < params->iftype_num[iftype])
1693                                         goto cont;
1694                                 limits[j].max -= params->iftype_num[iftype];
1695                         }
1696                 }
1697
1698                 if (params->radar_detect !=
1699                         (c->radar_detect_widths & params->radar_detect))
1700                         goto cont;
1701
1702                 if (params->radar_detect && c->radar_detect_regions &&
1703                     !(c->radar_detect_regions & BIT(region)))
1704                         goto cont;
1705
1706                 /* Finally check that all iftypes that we're currently
1707                  * using are actually part of this combination. If they
1708                  * aren't then we can't use this combination and have
1709                  * to continue to the next.
1710                  */
1711                 if ((all_iftypes & used_iftypes) != used_iftypes)
1712                         goto cont;
1713
1714                 if (beacon_int_gcd) {
1715                         if (c->beacon_int_min_gcd &&
1716                             beacon_int_gcd < c->beacon_int_min_gcd)
1717                                 goto cont;
1718                         if (!c->beacon_int_min_gcd && beacon_int_different)
1719                                 goto cont;
1720                 }
1721
1722                 /* This combination covered all interface types and
1723                  * supported the requested numbers, so we're good.
1724                  */
1725
1726                 (*iter)(c, data);
1727  cont:
1728                 kfree(limits);
1729         }
1730
1731         return 0;
1732 }
1733 EXPORT_SYMBOL(cfg80211_iter_combinations);
1734
1735 static void
1736 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1737                           void *data)
1738 {
1739         int *num = data;
1740         (*num)++;
1741 }
1742
1743 int cfg80211_check_combinations(struct wiphy *wiphy,
1744                                 struct iface_combination_params *params)
1745 {
1746         int err, num = 0;
1747
1748         err = cfg80211_iter_combinations(wiphy, params,
1749                                          cfg80211_iter_sum_ifcombs, &num);
1750         if (err)
1751                 return err;
1752         if (num == 0)
1753                 return -EBUSY;
1754
1755         return 0;
1756 }
1757 EXPORT_SYMBOL(cfg80211_check_combinations);
1758
1759 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1760                            const u8 *rates, unsigned int n_rates,
1761                            u32 *mask)
1762 {
1763         int i, j;
1764
1765         if (!sband)
1766                 return -EINVAL;
1767
1768         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1769                 return -EINVAL;
1770
1771         *mask = 0;
1772
1773         for (i = 0; i < n_rates; i++) {
1774                 int rate = (rates[i] & 0x7f) * 5;
1775                 bool found = false;
1776
1777                 for (j = 0; j < sband->n_bitrates; j++) {
1778                         if (sband->bitrates[j].bitrate == rate) {
1779                                 found = true;
1780                                 *mask |= BIT(j);
1781                                 break;
1782                         }
1783                 }
1784                 if (!found)
1785                         return -EINVAL;
1786         }
1787
1788         /*
1789          * mask must have at least one bit set here since we
1790          * didn't accept a 0-length rates array nor allowed
1791          * entries in the array that didn't exist
1792          */
1793
1794         return 0;
1795 }
1796
1797 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1798 {
1799         enum nl80211_band band;
1800         unsigned int n_channels = 0;
1801
1802         for (band = 0; band < NUM_NL80211_BANDS; band++)
1803                 if (wiphy->bands[band])
1804                         n_channels += wiphy->bands[band]->n_channels;
1805
1806         return n_channels;
1807 }
1808 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1809
1810 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1811                          struct station_info *sinfo)
1812 {
1813         struct cfg80211_registered_device *rdev;
1814         struct wireless_dev *wdev;
1815
1816         wdev = dev->ieee80211_ptr;
1817         if (!wdev)
1818                 return -EOPNOTSUPP;
1819
1820         rdev = wiphy_to_rdev(wdev->wiphy);
1821         if (!rdev->ops->get_station)
1822                 return -EOPNOTSUPP;
1823
1824         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1825 }
1826 EXPORT_SYMBOL(cfg80211_get_station);
1827
1828 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1829 {
1830         int i;
1831
1832         if (!f)
1833                 return;
1834
1835         kfree(f->serv_spec_info);
1836         kfree(f->srf_bf);
1837         kfree(f->srf_macs);
1838         for (i = 0; i < f->num_rx_filters; i++)
1839                 kfree(f->rx_filters[i].filter);
1840
1841         for (i = 0; i < f->num_tx_filters; i++)
1842                 kfree(f->tx_filters[i].filter);
1843
1844         kfree(f->rx_filters);
1845         kfree(f->tx_filters);
1846         kfree(f);
1847 }
1848 EXPORT_SYMBOL(cfg80211_free_nan_func);
1849
1850 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1851                                 u32 center_freq_khz, u32 bw_khz)
1852 {
1853         u32 start_freq_khz, end_freq_khz;
1854
1855         start_freq_khz = center_freq_khz - (bw_khz / 2);
1856         end_freq_khz = center_freq_khz + (bw_khz / 2);
1857
1858         if (start_freq_khz >= freq_range->start_freq_khz &&
1859             end_freq_khz <= freq_range->end_freq_khz)
1860                 return true;
1861
1862         return false;
1863 }
1864
1865 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1866 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1867 const unsigned char rfc1042_header[] __aligned(2) =
1868         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1869 EXPORT_SYMBOL(rfc1042_header);
1870
1871 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1872 const unsigned char bridge_tunnel_header[] __aligned(2) =
1873         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1874 EXPORT_SYMBOL(bridge_tunnel_header);