Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68
69                 WARN_ON(start > offset + len);
70
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88
89                         WARN_ON(start > offset + len);
90
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120
121 static int padding_length(struct tls_sw_context_rx *ctx,
122                           struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124         struct strp_msg *rxm = strp_msg(skb);
125         int sub = 0;
126
127         /* Determine zero-padding length */
128         if (prot->version == TLS_1_3_VERSION) {
129                 char content_type = 0;
130                 int err;
131                 int back = 17;
132
133                 while (content_type == 0) {
134                         if (back > rxm->full_len - prot->prepend_size)
135                                 return -EBADMSG;
136                         err = skb_copy_bits(skb,
137                                             rxm->offset + rxm->full_len - back,
138                                             &content_type, 1);
139                         if (err)
140                                 return err;
141                         if (content_type)
142                                 break;
143                         sub++;
144                         back++;
145                 }
146                 ctx->control = content_type;
147         }
148         return sub;
149 }
150
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153         struct aead_request *aead_req = (struct aead_request *)req;
154         struct scatterlist *sgout = aead_req->dst;
155         struct scatterlist *sgin = aead_req->src;
156         struct tls_sw_context_rx *ctx;
157         struct tls_context *tls_ctx;
158         struct tls_prot_info *prot;
159         struct scatterlist *sg;
160         struct sk_buff *skb;
161         unsigned int pages;
162         int pending;
163
164         skb = (struct sk_buff *)req->data;
165         tls_ctx = tls_get_ctx(skb->sk);
166         ctx = tls_sw_ctx_rx(tls_ctx);
167         prot = &tls_ctx->prot_info;
168
169         /* Propagate if there was an err */
170         if (err) {
171                 ctx->async_wait.err = err;
172                 tls_err_abort(skb->sk, err);
173         } else {
174                 struct strp_msg *rxm = strp_msg(skb);
175                 int pad;
176
177                 pad = padding_length(ctx, prot, skb);
178                 if (pad < 0) {
179                         ctx->async_wait.err = pad;
180                         tls_err_abort(skb->sk, pad);
181                 } else {
182                         rxm->full_len -= pad;
183                         rxm->offset += prot->prepend_size;
184                         rxm->full_len -= prot->overhead_size;
185                 }
186         }
187
188         /* After using skb->sk to propagate sk through crypto async callback
189          * we need to NULL it again.
190          */
191         skb->sk = NULL;
192
193
194         /* Free the destination pages if skb was not decrypted inplace */
195         if (sgout != sgin) {
196                 /* Skip the first S/G entry as it points to AAD */
197                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
198                         if (!sg)
199                                 break;
200                         put_page(sg_page(sg));
201                 }
202         }
203
204         kfree(aead_req);
205
206         spin_lock_bh(&ctx->decrypt_compl_lock);
207         pending = atomic_dec_return(&ctx->decrypt_pending);
208
209         if (!pending && ctx->async_notify)
210                 complete(&ctx->async_wait.completion);
211         spin_unlock_bh(&ctx->decrypt_compl_lock);
212 }
213
214 static int tls_do_decryption(struct sock *sk,
215                              struct sk_buff *skb,
216                              struct scatterlist *sgin,
217                              struct scatterlist *sgout,
218                              char *iv_recv,
219                              size_t data_len,
220                              struct aead_request *aead_req,
221                              bool async)
222 {
223         struct tls_context *tls_ctx = tls_get_ctx(sk);
224         struct tls_prot_info *prot = &tls_ctx->prot_info;
225         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
226         int ret;
227
228         aead_request_set_tfm(aead_req, ctx->aead_recv);
229         aead_request_set_ad(aead_req, prot->aad_size);
230         aead_request_set_crypt(aead_req, sgin, sgout,
231                                data_len + prot->tag_size,
232                                (u8 *)iv_recv);
233
234         if (async) {
235                 /* Using skb->sk to push sk through to crypto async callback
236                  * handler. This allows propagating errors up to the socket
237                  * if needed. It _must_ be cleared in the async handler
238                  * before consume_skb is called. We _know_ skb->sk is NULL
239                  * because it is a clone from strparser.
240                  */
241                 skb->sk = sk;
242                 aead_request_set_callback(aead_req,
243                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
244                                           tls_decrypt_done, skb);
245                 atomic_inc(&ctx->decrypt_pending);
246         } else {
247                 aead_request_set_callback(aead_req,
248                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
249                                           crypto_req_done, &ctx->async_wait);
250         }
251
252         ret = crypto_aead_decrypt(aead_req);
253         if (ret == -EINPROGRESS) {
254                 if (async)
255                         return ret;
256
257                 ret = crypto_wait_req(ret, &ctx->async_wait);
258         }
259
260         if (async)
261                 atomic_dec(&ctx->decrypt_pending);
262
263         return ret;
264 }
265
266 static void tls_trim_both_msgs(struct sock *sk, int target_size)
267 {
268         struct tls_context *tls_ctx = tls_get_ctx(sk);
269         struct tls_prot_info *prot = &tls_ctx->prot_info;
270         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
271         struct tls_rec *rec = ctx->open_rec;
272
273         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
274         if (target_size > 0)
275                 target_size += prot->overhead_size;
276         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
277 }
278
279 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
280 {
281         struct tls_context *tls_ctx = tls_get_ctx(sk);
282         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
283         struct tls_rec *rec = ctx->open_rec;
284         struct sk_msg *msg_en = &rec->msg_encrypted;
285
286         return sk_msg_alloc(sk, msg_en, len, 0);
287 }
288
289 static int tls_clone_plaintext_msg(struct sock *sk, int required)
290 {
291         struct tls_context *tls_ctx = tls_get_ctx(sk);
292         struct tls_prot_info *prot = &tls_ctx->prot_info;
293         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
294         struct tls_rec *rec = ctx->open_rec;
295         struct sk_msg *msg_pl = &rec->msg_plaintext;
296         struct sk_msg *msg_en = &rec->msg_encrypted;
297         int skip, len;
298
299         /* We add page references worth len bytes from encrypted sg
300          * at the end of plaintext sg. It is guaranteed that msg_en
301          * has enough required room (ensured by caller).
302          */
303         len = required - msg_pl->sg.size;
304
305         /* Skip initial bytes in msg_en's data to be able to use
306          * same offset of both plain and encrypted data.
307          */
308         skip = prot->prepend_size + msg_pl->sg.size;
309
310         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
311 }
312
313 static struct tls_rec *tls_get_rec(struct sock *sk)
314 {
315         struct tls_context *tls_ctx = tls_get_ctx(sk);
316         struct tls_prot_info *prot = &tls_ctx->prot_info;
317         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
318         struct sk_msg *msg_pl, *msg_en;
319         struct tls_rec *rec;
320         int mem_size;
321
322         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
323
324         rec = kzalloc(mem_size, sk->sk_allocation);
325         if (!rec)
326                 return NULL;
327
328         msg_pl = &rec->msg_plaintext;
329         msg_en = &rec->msg_encrypted;
330
331         sk_msg_init(msg_pl);
332         sk_msg_init(msg_en);
333
334         sg_init_table(rec->sg_aead_in, 2);
335         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
336         sg_unmark_end(&rec->sg_aead_in[1]);
337
338         sg_init_table(rec->sg_aead_out, 2);
339         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
340         sg_unmark_end(&rec->sg_aead_out[1]);
341
342         return rec;
343 }
344
345 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
346 {
347         sk_msg_free(sk, &rec->msg_encrypted);
348         sk_msg_free(sk, &rec->msg_plaintext);
349         kfree(rec);
350 }
351
352 static void tls_free_open_rec(struct sock *sk)
353 {
354         struct tls_context *tls_ctx = tls_get_ctx(sk);
355         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
356         struct tls_rec *rec = ctx->open_rec;
357
358         if (rec) {
359                 tls_free_rec(sk, rec);
360                 ctx->open_rec = NULL;
361         }
362 }
363
364 int tls_tx_records(struct sock *sk, int flags)
365 {
366         struct tls_context *tls_ctx = tls_get_ctx(sk);
367         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
368         struct tls_rec *rec, *tmp;
369         struct sk_msg *msg_en;
370         int tx_flags, rc = 0;
371
372         if (tls_is_partially_sent_record(tls_ctx)) {
373                 rec = list_first_entry(&ctx->tx_list,
374                                        struct tls_rec, list);
375
376                 if (flags == -1)
377                         tx_flags = rec->tx_flags;
378                 else
379                         tx_flags = flags;
380
381                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
382                 if (rc)
383                         goto tx_err;
384
385                 /* Full record has been transmitted.
386                  * Remove the head of tx_list
387                  */
388                 list_del(&rec->list);
389                 sk_msg_free(sk, &rec->msg_plaintext);
390                 kfree(rec);
391         }
392
393         /* Tx all ready records */
394         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
395                 if (READ_ONCE(rec->tx_ready)) {
396                         if (flags == -1)
397                                 tx_flags = rec->tx_flags;
398                         else
399                                 tx_flags = flags;
400
401                         msg_en = &rec->msg_encrypted;
402                         rc = tls_push_sg(sk, tls_ctx,
403                                          &msg_en->sg.data[msg_en->sg.curr],
404                                          0, tx_flags);
405                         if (rc)
406                                 goto tx_err;
407
408                         list_del(&rec->list);
409                         sk_msg_free(sk, &rec->msg_plaintext);
410                         kfree(rec);
411                 } else {
412                         break;
413                 }
414         }
415
416 tx_err:
417         if (rc < 0 && rc != -EAGAIN)
418                 tls_err_abort(sk, EBADMSG);
419
420         return rc;
421 }
422
423 static void tls_encrypt_done(struct crypto_async_request *req, int err)
424 {
425         struct aead_request *aead_req = (struct aead_request *)req;
426         struct sock *sk = req->data;
427         struct tls_context *tls_ctx = tls_get_ctx(sk);
428         struct tls_prot_info *prot = &tls_ctx->prot_info;
429         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
430         struct scatterlist *sge;
431         struct sk_msg *msg_en;
432         struct tls_rec *rec;
433         bool ready = false;
434         int pending;
435
436         rec = container_of(aead_req, struct tls_rec, aead_req);
437         msg_en = &rec->msg_encrypted;
438
439         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
440         sge->offset -= prot->prepend_size;
441         sge->length += prot->prepend_size;
442
443         /* Check if error is previously set on socket */
444         if (err || sk->sk_err) {
445                 rec = NULL;
446
447                 /* If err is already set on socket, return the same code */
448                 if (sk->sk_err) {
449                         ctx->async_wait.err = sk->sk_err;
450                 } else {
451                         ctx->async_wait.err = err;
452                         tls_err_abort(sk, err);
453                 }
454         }
455
456         if (rec) {
457                 struct tls_rec *first_rec;
458
459                 /* Mark the record as ready for transmission */
460                 smp_store_mb(rec->tx_ready, true);
461
462                 /* If received record is at head of tx_list, schedule tx */
463                 first_rec = list_first_entry(&ctx->tx_list,
464                                              struct tls_rec, list);
465                 if (rec == first_rec)
466                         ready = true;
467         }
468
469         spin_lock_bh(&ctx->encrypt_compl_lock);
470         pending = atomic_dec_return(&ctx->encrypt_pending);
471
472         if (!pending && ctx->async_notify)
473                 complete(&ctx->async_wait.completion);
474         spin_unlock_bh(&ctx->encrypt_compl_lock);
475
476         if (!ready)
477                 return;
478
479         /* Schedule the transmission */
480         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
481                 schedule_delayed_work(&ctx->tx_work.work, 1);
482 }
483
484 static int tls_do_encryption(struct sock *sk,
485                              struct tls_context *tls_ctx,
486                              struct tls_sw_context_tx *ctx,
487                              struct aead_request *aead_req,
488                              size_t data_len, u32 start)
489 {
490         struct tls_prot_info *prot = &tls_ctx->prot_info;
491         struct tls_rec *rec = ctx->open_rec;
492         struct sk_msg *msg_en = &rec->msg_encrypted;
493         struct scatterlist *sge = sk_msg_elem(msg_en, start);
494         int rc, iv_offset = 0;
495
496         /* For CCM based ciphers, first byte of IV is a constant */
497         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
498                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
499                 iv_offset = 1;
500         }
501
502         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
503                prot->iv_size + prot->salt_size);
504
505         xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
506
507         sge->offset += prot->prepend_size;
508         sge->length -= prot->prepend_size;
509
510         msg_en->sg.curr = start;
511
512         aead_request_set_tfm(aead_req, ctx->aead_send);
513         aead_request_set_ad(aead_req, prot->aad_size);
514         aead_request_set_crypt(aead_req, rec->sg_aead_in,
515                                rec->sg_aead_out,
516                                data_len, rec->iv_data);
517
518         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
519                                   tls_encrypt_done, sk);
520
521         /* Add the record in tx_list */
522         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
523         atomic_inc(&ctx->encrypt_pending);
524
525         rc = crypto_aead_encrypt(aead_req);
526         if (!rc || rc != -EINPROGRESS) {
527                 atomic_dec(&ctx->encrypt_pending);
528                 sge->offset -= prot->prepend_size;
529                 sge->length += prot->prepend_size;
530         }
531
532         if (!rc) {
533                 WRITE_ONCE(rec->tx_ready, true);
534         } else if (rc != -EINPROGRESS) {
535                 list_del(&rec->list);
536                 return rc;
537         }
538
539         /* Unhook the record from context if encryption is not failure */
540         ctx->open_rec = NULL;
541         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
542         return rc;
543 }
544
545 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
546                                  struct tls_rec **to, struct sk_msg *msg_opl,
547                                  struct sk_msg *msg_oen, u32 split_point,
548                                  u32 tx_overhead_size, u32 *orig_end)
549 {
550         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
551         struct scatterlist *sge, *osge, *nsge;
552         u32 orig_size = msg_opl->sg.size;
553         struct scatterlist tmp = { };
554         struct sk_msg *msg_npl;
555         struct tls_rec *new;
556         int ret;
557
558         new = tls_get_rec(sk);
559         if (!new)
560                 return -ENOMEM;
561         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
562                            tx_overhead_size, 0);
563         if (ret < 0) {
564                 tls_free_rec(sk, new);
565                 return ret;
566         }
567
568         *orig_end = msg_opl->sg.end;
569         i = msg_opl->sg.start;
570         sge = sk_msg_elem(msg_opl, i);
571         while (apply && sge->length) {
572                 if (sge->length > apply) {
573                         u32 len = sge->length - apply;
574
575                         get_page(sg_page(sge));
576                         sg_set_page(&tmp, sg_page(sge), len,
577                                     sge->offset + apply);
578                         sge->length = apply;
579                         bytes += apply;
580                         apply = 0;
581                 } else {
582                         apply -= sge->length;
583                         bytes += sge->length;
584                 }
585
586                 sk_msg_iter_var_next(i);
587                 if (i == msg_opl->sg.end)
588                         break;
589                 sge = sk_msg_elem(msg_opl, i);
590         }
591
592         msg_opl->sg.end = i;
593         msg_opl->sg.curr = i;
594         msg_opl->sg.copybreak = 0;
595         msg_opl->apply_bytes = 0;
596         msg_opl->sg.size = bytes;
597
598         msg_npl = &new->msg_plaintext;
599         msg_npl->apply_bytes = apply;
600         msg_npl->sg.size = orig_size - bytes;
601
602         j = msg_npl->sg.start;
603         nsge = sk_msg_elem(msg_npl, j);
604         if (tmp.length) {
605                 memcpy(nsge, &tmp, sizeof(*nsge));
606                 sk_msg_iter_var_next(j);
607                 nsge = sk_msg_elem(msg_npl, j);
608         }
609
610         osge = sk_msg_elem(msg_opl, i);
611         while (osge->length) {
612                 memcpy(nsge, osge, sizeof(*nsge));
613                 sg_unmark_end(nsge);
614                 sk_msg_iter_var_next(i);
615                 sk_msg_iter_var_next(j);
616                 if (i == *orig_end)
617                         break;
618                 osge = sk_msg_elem(msg_opl, i);
619                 nsge = sk_msg_elem(msg_npl, j);
620         }
621
622         msg_npl->sg.end = j;
623         msg_npl->sg.curr = j;
624         msg_npl->sg.copybreak = 0;
625
626         *to = new;
627         return 0;
628 }
629
630 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
631                                   struct tls_rec *from, u32 orig_end)
632 {
633         struct sk_msg *msg_npl = &from->msg_plaintext;
634         struct sk_msg *msg_opl = &to->msg_plaintext;
635         struct scatterlist *osge, *nsge;
636         u32 i, j;
637
638         i = msg_opl->sg.end;
639         sk_msg_iter_var_prev(i);
640         j = msg_npl->sg.start;
641
642         osge = sk_msg_elem(msg_opl, i);
643         nsge = sk_msg_elem(msg_npl, j);
644
645         if (sg_page(osge) == sg_page(nsge) &&
646             osge->offset + osge->length == nsge->offset) {
647                 osge->length += nsge->length;
648                 put_page(sg_page(nsge));
649         }
650
651         msg_opl->sg.end = orig_end;
652         msg_opl->sg.curr = orig_end;
653         msg_opl->sg.copybreak = 0;
654         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
655         msg_opl->sg.size += msg_npl->sg.size;
656
657         sk_msg_free(sk, &to->msg_encrypted);
658         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
659
660         kfree(from);
661 }
662
663 static int tls_push_record(struct sock *sk, int flags,
664                            unsigned char record_type)
665 {
666         struct tls_context *tls_ctx = tls_get_ctx(sk);
667         struct tls_prot_info *prot = &tls_ctx->prot_info;
668         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
669         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
670         u32 i, split_point, uninitialized_var(orig_end);
671         struct sk_msg *msg_pl, *msg_en;
672         struct aead_request *req;
673         bool split;
674         int rc;
675
676         if (!rec)
677                 return 0;
678
679         msg_pl = &rec->msg_plaintext;
680         msg_en = &rec->msg_encrypted;
681
682         split_point = msg_pl->apply_bytes;
683         split = split_point && split_point < msg_pl->sg.size;
684         if (unlikely((!split &&
685                       msg_pl->sg.size +
686                       prot->overhead_size > msg_en->sg.size) ||
687                      (split &&
688                       split_point +
689                       prot->overhead_size > msg_en->sg.size))) {
690                 split = true;
691                 split_point = msg_en->sg.size;
692         }
693         if (split) {
694                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
695                                            split_point, prot->overhead_size,
696                                            &orig_end);
697                 if (rc < 0)
698                         return rc;
699                 /* This can happen if above tls_split_open_record allocates
700                  * a single large encryption buffer instead of two smaller
701                  * ones. In this case adjust pointers and continue without
702                  * split.
703                  */
704                 if (!msg_pl->sg.size) {
705                         tls_merge_open_record(sk, rec, tmp, orig_end);
706                         msg_pl = &rec->msg_plaintext;
707                         msg_en = &rec->msg_encrypted;
708                         split = false;
709                 }
710                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
711                             prot->overhead_size);
712         }
713
714         rec->tx_flags = flags;
715         req = &rec->aead_req;
716
717         i = msg_pl->sg.end;
718         sk_msg_iter_var_prev(i);
719
720         rec->content_type = record_type;
721         if (prot->version == TLS_1_3_VERSION) {
722                 /* Add content type to end of message.  No padding added */
723                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
724                 sg_mark_end(&rec->sg_content_type);
725                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
726                          &rec->sg_content_type);
727         } else {
728                 sg_mark_end(sk_msg_elem(msg_pl, i));
729         }
730
731         if (msg_pl->sg.end < msg_pl->sg.start) {
732                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
733                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
734                          msg_pl->sg.data);
735         }
736
737         i = msg_pl->sg.start;
738         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
739
740         i = msg_en->sg.end;
741         sk_msg_iter_var_prev(i);
742         sg_mark_end(sk_msg_elem(msg_en, i));
743
744         i = msg_en->sg.start;
745         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
746
747         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
748                      tls_ctx->tx.rec_seq, prot->rec_seq_size,
749                      record_type, prot->version);
750
751         tls_fill_prepend(tls_ctx,
752                          page_address(sg_page(&msg_en->sg.data[i])) +
753                          msg_en->sg.data[i].offset,
754                          msg_pl->sg.size + prot->tail_size,
755                          record_type, prot->version);
756
757         tls_ctx->pending_open_record_frags = false;
758
759         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
760                                msg_pl->sg.size + prot->tail_size, i);
761         if (rc < 0) {
762                 if (rc != -EINPROGRESS) {
763                         tls_err_abort(sk, EBADMSG);
764                         if (split) {
765                                 tls_ctx->pending_open_record_frags = true;
766                                 tls_merge_open_record(sk, rec, tmp, orig_end);
767                         }
768                 }
769                 ctx->async_capable = 1;
770                 return rc;
771         } else if (split) {
772                 msg_pl = &tmp->msg_plaintext;
773                 msg_en = &tmp->msg_encrypted;
774                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
775                 tls_ctx->pending_open_record_frags = true;
776                 ctx->open_rec = tmp;
777         }
778
779         return tls_tx_records(sk, flags);
780 }
781
782 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
783                                bool full_record, u8 record_type,
784                                ssize_t *copied, int flags)
785 {
786         struct tls_context *tls_ctx = tls_get_ctx(sk);
787         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
788         struct sk_msg msg_redir = { };
789         struct sk_psock *psock;
790         struct sock *sk_redir;
791         struct tls_rec *rec;
792         bool enospc, policy;
793         int err = 0, send;
794         u32 delta = 0;
795
796         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
797         psock = sk_psock_get(sk);
798         if (!psock || !policy) {
799                 err = tls_push_record(sk, flags, record_type);
800                 if (err && sk->sk_err == EBADMSG) {
801                         *copied -= sk_msg_free(sk, msg);
802                         tls_free_open_rec(sk);
803                         err = -sk->sk_err;
804                 }
805                 if (psock)
806                         sk_psock_put(sk, psock);
807                 return err;
808         }
809 more_data:
810         enospc = sk_msg_full(msg);
811         if (psock->eval == __SK_NONE) {
812                 delta = msg->sg.size;
813                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
814                 delta -= msg->sg.size;
815         }
816         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
817             !enospc && !full_record) {
818                 err = -ENOSPC;
819                 goto out_err;
820         }
821         msg->cork_bytes = 0;
822         send = msg->sg.size;
823         if (msg->apply_bytes && msg->apply_bytes < send)
824                 send = msg->apply_bytes;
825
826         switch (psock->eval) {
827         case __SK_PASS:
828                 err = tls_push_record(sk, flags, record_type);
829                 if (err && sk->sk_err == EBADMSG) {
830                         *copied -= sk_msg_free(sk, msg);
831                         tls_free_open_rec(sk);
832                         err = -sk->sk_err;
833                         goto out_err;
834                 }
835                 break;
836         case __SK_REDIRECT:
837                 sk_redir = psock->sk_redir;
838                 memcpy(&msg_redir, msg, sizeof(*msg));
839                 if (msg->apply_bytes < send)
840                         msg->apply_bytes = 0;
841                 else
842                         msg->apply_bytes -= send;
843                 sk_msg_return_zero(sk, msg, send);
844                 msg->sg.size -= send;
845                 release_sock(sk);
846                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
847                 lock_sock(sk);
848                 if (err < 0) {
849                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
850                         msg->sg.size = 0;
851                 }
852                 if (msg->sg.size == 0)
853                         tls_free_open_rec(sk);
854                 break;
855         case __SK_DROP:
856         default:
857                 sk_msg_free_partial(sk, msg, send);
858                 if (msg->apply_bytes < send)
859                         msg->apply_bytes = 0;
860                 else
861                         msg->apply_bytes -= send;
862                 if (msg->sg.size == 0)
863                         tls_free_open_rec(sk);
864                 *copied -= (send + delta);
865                 err = -EACCES;
866         }
867
868         if (likely(!err)) {
869                 bool reset_eval = !ctx->open_rec;
870
871                 rec = ctx->open_rec;
872                 if (rec) {
873                         msg = &rec->msg_plaintext;
874                         if (!msg->apply_bytes)
875                                 reset_eval = true;
876                 }
877                 if (reset_eval) {
878                         psock->eval = __SK_NONE;
879                         if (psock->sk_redir) {
880                                 sock_put(psock->sk_redir);
881                                 psock->sk_redir = NULL;
882                         }
883                 }
884                 if (rec)
885                         goto more_data;
886         }
887  out_err:
888         sk_psock_put(sk, psock);
889         return err;
890 }
891
892 static int tls_sw_push_pending_record(struct sock *sk, int flags)
893 {
894         struct tls_context *tls_ctx = tls_get_ctx(sk);
895         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
896         struct tls_rec *rec = ctx->open_rec;
897         struct sk_msg *msg_pl;
898         size_t copied;
899
900         if (!rec)
901                 return 0;
902
903         msg_pl = &rec->msg_plaintext;
904         copied = msg_pl->sg.size;
905         if (!copied)
906                 return 0;
907
908         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
909                                    &copied, flags);
910 }
911
912 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
913 {
914         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
915         struct tls_context *tls_ctx = tls_get_ctx(sk);
916         struct tls_prot_info *prot = &tls_ctx->prot_info;
917         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918         bool async_capable = ctx->async_capable;
919         unsigned char record_type = TLS_RECORD_TYPE_DATA;
920         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
921         bool eor = !(msg->msg_flags & MSG_MORE);
922         size_t try_to_copy;
923         ssize_t copied = 0;
924         struct sk_msg *msg_pl, *msg_en;
925         struct tls_rec *rec;
926         int required_size;
927         int num_async = 0;
928         bool full_record;
929         int record_room;
930         int num_zc = 0;
931         int orig_size;
932         int ret = 0;
933         int pending;
934
935         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
936                 return -EOPNOTSUPP;
937
938         mutex_lock(&tls_ctx->tx_lock);
939         lock_sock(sk);
940
941         if (unlikely(msg->msg_controllen)) {
942                 ret = tls_proccess_cmsg(sk, msg, &record_type);
943                 if (ret) {
944                         if (ret == -EINPROGRESS)
945                                 num_async++;
946                         else if (ret != -EAGAIN)
947                                 goto send_end;
948                 }
949         }
950
951         while (msg_data_left(msg)) {
952                 if (sk->sk_err) {
953                         ret = -sk->sk_err;
954                         goto send_end;
955                 }
956
957                 if (ctx->open_rec)
958                         rec = ctx->open_rec;
959                 else
960                         rec = ctx->open_rec = tls_get_rec(sk);
961                 if (!rec) {
962                         ret = -ENOMEM;
963                         goto send_end;
964                 }
965
966                 msg_pl = &rec->msg_plaintext;
967                 msg_en = &rec->msg_encrypted;
968
969                 orig_size = msg_pl->sg.size;
970                 full_record = false;
971                 try_to_copy = msg_data_left(msg);
972                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
973                 if (try_to_copy >= record_room) {
974                         try_to_copy = record_room;
975                         full_record = true;
976                 }
977
978                 required_size = msg_pl->sg.size + try_to_copy +
979                                 prot->overhead_size;
980
981                 if (!sk_stream_memory_free(sk))
982                         goto wait_for_sndbuf;
983
984 alloc_encrypted:
985                 ret = tls_alloc_encrypted_msg(sk, required_size);
986                 if (ret) {
987                         if (ret != -ENOSPC)
988                                 goto wait_for_memory;
989
990                         /* Adjust try_to_copy according to the amount that was
991                          * actually allocated. The difference is due
992                          * to max sg elements limit
993                          */
994                         try_to_copy -= required_size - msg_en->sg.size;
995                         full_record = true;
996                 }
997
998                 if (!is_kvec && (full_record || eor) && !async_capable) {
999                         u32 first = msg_pl->sg.end;
1000
1001                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1002                                                         msg_pl, try_to_copy);
1003                         if (ret)
1004                                 goto fallback_to_reg_send;
1005
1006                         num_zc++;
1007                         copied += try_to_copy;
1008
1009                         sk_msg_sg_copy_set(msg_pl, first);
1010                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1011                                                   record_type, &copied,
1012                                                   msg->msg_flags);
1013                         if (ret) {
1014                                 if (ret == -EINPROGRESS)
1015                                         num_async++;
1016                                 else if (ret == -ENOMEM)
1017                                         goto wait_for_memory;
1018                                 else if (ctx->open_rec && ret == -ENOSPC)
1019                                         goto rollback_iter;
1020                                 else if (ret != -EAGAIN)
1021                                         goto send_end;
1022                         }
1023                         continue;
1024 rollback_iter:
1025                         copied -= try_to_copy;
1026                         sk_msg_sg_copy_clear(msg_pl, first);
1027                         iov_iter_revert(&msg->msg_iter,
1028                                         msg_pl->sg.size - orig_size);
1029 fallback_to_reg_send:
1030                         sk_msg_trim(sk, msg_pl, orig_size);
1031                 }
1032
1033                 required_size = msg_pl->sg.size + try_to_copy;
1034
1035                 ret = tls_clone_plaintext_msg(sk, required_size);
1036                 if (ret) {
1037                         if (ret != -ENOSPC)
1038                                 goto send_end;
1039
1040                         /* Adjust try_to_copy according to the amount that was
1041                          * actually allocated. The difference is due
1042                          * to max sg elements limit
1043                          */
1044                         try_to_copy -= required_size - msg_pl->sg.size;
1045                         full_record = true;
1046                         sk_msg_trim(sk, msg_en,
1047                                     msg_pl->sg.size + prot->overhead_size);
1048                 }
1049
1050                 if (try_to_copy) {
1051                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1052                                                        msg_pl, try_to_copy);
1053                         if (ret < 0)
1054                                 goto trim_sgl;
1055                 }
1056
1057                 /* Open records defined only if successfully copied, otherwise
1058                  * we would trim the sg but not reset the open record frags.
1059                  */
1060                 tls_ctx->pending_open_record_frags = true;
1061                 copied += try_to_copy;
1062                 if (full_record || eor) {
1063                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1064                                                   record_type, &copied,
1065                                                   msg->msg_flags);
1066                         if (ret) {
1067                                 if (ret == -EINPROGRESS)
1068                                         num_async++;
1069                                 else if (ret == -ENOMEM)
1070                                         goto wait_for_memory;
1071                                 else if (ret != -EAGAIN) {
1072                                         if (ret == -ENOSPC)
1073                                                 ret = 0;
1074                                         goto send_end;
1075                                 }
1076                         }
1077                 }
1078
1079                 continue;
1080
1081 wait_for_sndbuf:
1082                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1083 wait_for_memory:
1084                 ret = sk_stream_wait_memory(sk, &timeo);
1085                 if (ret) {
1086 trim_sgl:
1087                         if (ctx->open_rec)
1088                                 tls_trim_both_msgs(sk, orig_size);
1089                         goto send_end;
1090                 }
1091
1092                 if (ctx->open_rec && msg_en->sg.size < required_size)
1093                         goto alloc_encrypted;
1094         }
1095
1096         if (!num_async) {
1097                 goto send_end;
1098         } else if (num_zc) {
1099                 /* Wait for pending encryptions to get completed */
1100                 spin_lock_bh(&ctx->encrypt_compl_lock);
1101                 ctx->async_notify = true;
1102
1103                 pending = atomic_read(&ctx->encrypt_pending);
1104                 spin_unlock_bh(&ctx->encrypt_compl_lock);
1105                 if (pending)
1106                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1107                 else
1108                         reinit_completion(&ctx->async_wait.completion);
1109
1110                 /* There can be no concurrent accesses, since we have no
1111                  * pending encrypt operations
1112                  */
1113                 WRITE_ONCE(ctx->async_notify, false);
1114
1115                 if (ctx->async_wait.err) {
1116                         ret = ctx->async_wait.err;
1117                         copied = 0;
1118                 }
1119         }
1120
1121         /* Transmit if any encryptions have completed */
1122         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1123                 cancel_delayed_work(&ctx->tx_work.work);
1124                 tls_tx_records(sk, msg->msg_flags);
1125         }
1126
1127 send_end:
1128         ret = sk_stream_error(sk, msg->msg_flags, ret);
1129
1130         release_sock(sk);
1131         mutex_unlock(&tls_ctx->tx_lock);
1132         return copied > 0 ? copied : ret;
1133 }
1134
1135 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1136                               int offset, size_t size, int flags)
1137 {
1138         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1139         struct tls_context *tls_ctx = tls_get_ctx(sk);
1140         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1141         struct tls_prot_info *prot = &tls_ctx->prot_info;
1142         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1143         struct sk_msg *msg_pl;
1144         struct tls_rec *rec;
1145         int num_async = 0;
1146         ssize_t copied = 0;
1147         bool full_record;
1148         int record_room;
1149         int ret = 0;
1150         bool eor;
1151
1152         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1153         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1154
1155         /* Call the sk_stream functions to manage the sndbuf mem. */
1156         while (size > 0) {
1157                 size_t copy, required_size;
1158
1159                 if (sk->sk_err) {
1160                         ret = -sk->sk_err;
1161                         goto sendpage_end;
1162                 }
1163
1164                 if (ctx->open_rec)
1165                         rec = ctx->open_rec;
1166                 else
1167                         rec = ctx->open_rec = tls_get_rec(sk);
1168                 if (!rec) {
1169                         ret = -ENOMEM;
1170                         goto sendpage_end;
1171                 }
1172
1173                 msg_pl = &rec->msg_plaintext;
1174
1175                 full_record = false;
1176                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1177                 copy = size;
1178                 if (copy >= record_room) {
1179                         copy = record_room;
1180                         full_record = true;
1181                 }
1182
1183                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1184
1185                 if (!sk_stream_memory_free(sk))
1186                         goto wait_for_sndbuf;
1187 alloc_payload:
1188                 ret = tls_alloc_encrypted_msg(sk, required_size);
1189                 if (ret) {
1190                         if (ret != -ENOSPC)
1191                                 goto wait_for_memory;
1192
1193                         /* Adjust copy according to the amount that was
1194                          * actually allocated. The difference is due
1195                          * to max sg elements limit
1196                          */
1197                         copy -= required_size - msg_pl->sg.size;
1198                         full_record = true;
1199                 }
1200
1201                 sk_msg_page_add(msg_pl, page, copy, offset);
1202                 sk_mem_charge(sk, copy);
1203
1204                 offset += copy;
1205                 size -= copy;
1206                 copied += copy;
1207
1208                 tls_ctx->pending_open_record_frags = true;
1209                 if (full_record || eor || sk_msg_full(msg_pl)) {
1210                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1211                                                   record_type, &copied, flags);
1212                         if (ret) {
1213                                 if (ret == -EINPROGRESS)
1214                                         num_async++;
1215                                 else if (ret == -ENOMEM)
1216                                         goto wait_for_memory;
1217                                 else if (ret != -EAGAIN) {
1218                                         if (ret == -ENOSPC)
1219                                                 ret = 0;
1220                                         goto sendpage_end;
1221                                 }
1222                         }
1223                 }
1224                 continue;
1225 wait_for_sndbuf:
1226                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1227 wait_for_memory:
1228                 ret = sk_stream_wait_memory(sk, &timeo);
1229                 if (ret) {
1230                         if (ctx->open_rec)
1231                                 tls_trim_both_msgs(sk, msg_pl->sg.size);
1232                         goto sendpage_end;
1233                 }
1234
1235                 if (ctx->open_rec)
1236                         goto alloc_payload;
1237         }
1238
1239         if (num_async) {
1240                 /* Transmit if any encryptions have completed */
1241                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1242                         cancel_delayed_work(&ctx->tx_work.work);
1243                         tls_tx_records(sk, flags);
1244                 }
1245         }
1246 sendpage_end:
1247         ret = sk_stream_error(sk, flags, ret);
1248         return copied > 0 ? copied : ret;
1249 }
1250
1251 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1252                            int offset, size_t size, int flags)
1253 {
1254         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1255                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1256                       MSG_NO_SHARED_FRAGS))
1257                 return -EOPNOTSUPP;
1258
1259         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1260 }
1261
1262 int tls_sw_sendpage(struct sock *sk, struct page *page,
1263                     int offset, size_t size, int flags)
1264 {
1265         struct tls_context *tls_ctx = tls_get_ctx(sk);
1266         int ret;
1267
1268         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1269                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1270                 return -EOPNOTSUPP;
1271
1272         mutex_lock(&tls_ctx->tx_lock);
1273         lock_sock(sk);
1274         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1275         release_sock(sk);
1276         mutex_unlock(&tls_ctx->tx_lock);
1277         return ret;
1278 }
1279
1280 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1281                                      int flags, long timeo, int *err)
1282 {
1283         struct tls_context *tls_ctx = tls_get_ctx(sk);
1284         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1285         struct sk_buff *skb;
1286         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1287
1288         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1289                 if (sk->sk_err) {
1290                         *err = sock_error(sk);
1291                         return NULL;
1292                 }
1293
1294                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1295                         return NULL;
1296
1297                 if (sock_flag(sk, SOCK_DONE))
1298                         return NULL;
1299
1300                 if ((flags & MSG_DONTWAIT) || !timeo) {
1301                         *err = -EAGAIN;
1302                         return NULL;
1303                 }
1304
1305                 add_wait_queue(sk_sleep(sk), &wait);
1306                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1307                 sk_wait_event(sk, &timeo,
1308                               ctx->recv_pkt != skb ||
1309                               !sk_psock_queue_empty(psock),
1310                               &wait);
1311                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1312                 remove_wait_queue(sk_sleep(sk), &wait);
1313
1314                 /* Handle signals */
1315                 if (signal_pending(current)) {
1316                         *err = sock_intr_errno(timeo);
1317                         return NULL;
1318                 }
1319         }
1320
1321         return skb;
1322 }
1323
1324 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1325                                int length, int *pages_used,
1326                                unsigned int *size_used,
1327                                struct scatterlist *to,
1328                                int to_max_pages)
1329 {
1330         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1331         struct page *pages[MAX_SKB_FRAGS];
1332         unsigned int size = *size_used;
1333         ssize_t copied, use;
1334         size_t offset;
1335
1336         while (length > 0) {
1337                 i = 0;
1338                 maxpages = to_max_pages - num_elem;
1339                 if (maxpages == 0) {
1340                         rc = -EFAULT;
1341                         goto out;
1342                 }
1343                 copied = iov_iter_get_pages(from, pages,
1344                                             length,
1345                                             maxpages, &offset);
1346                 if (copied <= 0) {
1347                         rc = -EFAULT;
1348                         goto out;
1349                 }
1350
1351                 iov_iter_advance(from, copied);
1352
1353                 length -= copied;
1354                 size += copied;
1355                 while (copied) {
1356                         use = min_t(int, copied, PAGE_SIZE - offset);
1357
1358                         sg_set_page(&to[num_elem],
1359                                     pages[i], use, offset);
1360                         sg_unmark_end(&to[num_elem]);
1361                         /* We do not uncharge memory from this API */
1362
1363                         offset = 0;
1364                         copied -= use;
1365
1366                         i++;
1367                         num_elem++;
1368                 }
1369         }
1370         /* Mark the end in the last sg entry if newly added */
1371         if (num_elem > *pages_used)
1372                 sg_mark_end(&to[num_elem - 1]);
1373 out:
1374         if (rc)
1375                 iov_iter_revert(from, size - *size_used);
1376         *size_used = size;
1377         *pages_used = num_elem;
1378
1379         return rc;
1380 }
1381
1382 /* This function decrypts the input skb into either out_iov or in out_sg
1383  * or in skb buffers itself. The input parameter 'zc' indicates if
1384  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1385  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1386  * NULL, then the decryption happens inside skb buffers itself, i.e.
1387  * zero-copy gets disabled and 'zc' is updated.
1388  */
1389
1390 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1391                             struct iov_iter *out_iov,
1392                             struct scatterlist *out_sg,
1393                             int *chunk, bool *zc, bool async)
1394 {
1395         struct tls_context *tls_ctx = tls_get_ctx(sk);
1396         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1397         struct tls_prot_info *prot = &tls_ctx->prot_info;
1398         struct strp_msg *rxm = strp_msg(skb);
1399         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1400         struct aead_request *aead_req;
1401         struct sk_buff *unused;
1402         u8 *aad, *iv, *mem = NULL;
1403         struct scatterlist *sgin = NULL;
1404         struct scatterlist *sgout = NULL;
1405         const int data_len = rxm->full_len - prot->overhead_size +
1406                              prot->tail_size;
1407         int iv_offset = 0;
1408
1409         if (*zc && (out_iov || out_sg)) {
1410                 if (out_iov)
1411                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1412                 else
1413                         n_sgout = sg_nents(out_sg);
1414                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1415                                  rxm->full_len - prot->prepend_size);
1416         } else {
1417                 n_sgout = 0;
1418                 *zc = false;
1419                 n_sgin = skb_cow_data(skb, 0, &unused);
1420         }
1421
1422         if (n_sgin < 1)
1423                 return -EBADMSG;
1424
1425         /* Increment to accommodate AAD */
1426         n_sgin = n_sgin + 1;
1427
1428         nsg = n_sgin + n_sgout;
1429
1430         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1431         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1432         mem_size = mem_size + prot->aad_size;
1433         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1434
1435         /* Allocate a single block of memory which contains
1436          * aead_req || sgin[] || sgout[] || aad || iv.
1437          * This order achieves correct alignment for aead_req, sgin, sgout.
1438          */
1439         mem = kmalloc(mem_size, sk->sk_allocation);
1440         if (!mem)
1441                 return -ENOMEM;
1442
1443         /* Segment the allocated memory */
1444         aead_req = (struct aead_request *)mem;
1445         sgin = (struct scatterlist *)(mem + aead_size);
1446         sgout = sgin + n_sgin;
1447         aad = (u8 *)(sgout + n_sgout);
1448         iv = aad + prot->aad_size;
1449
1450         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1451         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1452                 iv[0] = 2;
1453                 iv_offset = 1;
1454         }
1455
1456         /* Prepare IV */
1457         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1458                             iv + iv_offset + prot->salt_size,
1459                             prot->iv_size);
1460         if (err < 0) {
1461                 kfree(mem);
1462                 return err;
1463         }
1464         if (prot->version == TLS_1_3_VERSION)
1465                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1466                        crypto_aead_ivsize(ctx->aead_recv));
1467         else
1468                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1469
1470         xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1471
1472         /* Prepare AAD */
1473         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1474                      prot->tail_size,
1475                      tls_ctx->rx.rec_seq, prot->rec_seq_size,
1476                      ctx->control, prot->version);
1477
1478         /* Prepare sgin */
1479         sg_init_table(sgin, n_sgin);
1480         sg_set_buf(&sgin[0], aad, prot->aad_size);
1481         err = skb_to_sgvec(skb, &sgin[1],
1482                            rxm->offset + prot->prepend_size,
1483                            rxm->full_len - prot->prepend_size);
1484         if (err < 0) {
1485                 kfree(mem);
1486                 return err;
1487         }
1488
1489         if (n_sgout) {
1490                 if (out_iov) {
1491                         sg_init_table(sgout, n_sgout);
1492                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1493
1494                         *chunk = 0;
1495                         err = tls_setup_from_iter(sk, out_iov, data_len,
1496                                                   &pages, chunk, &sgout[1],
1497                                                   (n_sgout - 1));
1498                         if (err < 0)
1499                                 goto fallback_to_reg_recv;
1500                 } else if (out_sg) {
1501                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1502                 } else {
1503                         goto fallback_to_reg_recv;
1504                 }
1505         } else {
1506 fallback_to_reg_recv:
1507                 sgout = sgin;
1508                 pages = 0;
1509                 *chunk = data_len;
1510                 *zc = false;
1511         }
1512
1513         /* Prepare and submit AEAD request */
1514         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1515                                 data_len, aead_req, async);
1516         if (err == -EINPROGRESS)
1517                 return err;
1518
1519         /* Release the pages in case iov was mapped to pages */
1520         for (; pages > 0; pages--)
1521                 put_page(sg_page(&sgout[pages]));
1522
1523         kfree(mem);
1524         return err;
1525 }
1526
1527 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1528                               struct iov_iter *dest, int *chunk, bool *zc,
1529                               bool async)
1530 {
1531         struct tls_context *tls_ctx = tls_get_ctx(sk);
1532         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1533         struct tls_prot_info *prot = &tls_ctx->prot_info;
1534         struct strp_msg *rxm = strp_msg(skb);
1535         int pad, err = 0;
1536
1537         if (!ctx->decrypted) {
1538                 if (tls_ctx->rx_conf == TLS_HW) {
1539                         err = tls_device_decrypted(sk, skb);
1540                         if (err < 0)
1541                                 return err;
1542                 }
1543
1544                 /* Still not decrypted after tls_device */
1545                 if (!ctx->decrypted) {
1546                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1547                                                async);
1548                         if (err < 0) {
1549                                 if (err == -EINPROGRESS)
1550                                         tls_advance_record_sn(sk, prot,
1551                                                               &tls_ctx->rx);
1552
1553                                 return err;
1554                         }
1555                 } else {
1556                         *zc = false;
1557                 }
1558
1559                 pad = padding_length(ctx, prot, skb);
1560                 if (pad < 0)
1561                         return pad;
1562
1563                 rxm->full_len -= pad;
1564                 rxm->offset += prot->prepend_size;
1565                 rxm->full_len -= prot->overhead_size;
1566                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1567                 ctx->decrypted = true;
1568                 ctx->saved_data_ready(sk);
1569         } else {
1570                 *zc = false;
1571         }
1572
1573         return err;
1574 }
1575
1576 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1577                 struct scatterlist *sgout)
1578 {
1579         bool zc = true;
1580         int chunk;
1581
1582         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1583 }
1584
1585 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1586                                unsigned int len)
1587 {
1588         struct tls_context *tls_ctx = tls_get_ctx(sk);
1589         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1590
1591         if (skb) {
1592                 struct strp_msg *rxm = strp_msg(skb);
1593
1594                 if (len < rxm->full_len) {
1595                         rxm->offset += len;
1596                         rxm->full_len -= len;
1597                         return false;
1598                 }
1599                 consume_skb(skb);
1600         }
1601
1602         /* Finished with message */
1603         ctx->recv_pkt = NULL;
1604         __strp_unpause(&ctx->strp);
1605
1606         return true;
1607 }
1608
1609 /* This function traverses the rx_list in tls receive context to copies the
1610  * decrypted records into the buffer provided by caller zero copy is not
1611  * true. Further, the records are removed from the rx_list if it is not a peek
1612  * case and the record has been consumed completely.
1613  */
1614 static int process_rx_list(struct tls_sw_context_rx *ctx,
1615                            struct msghdr *msg,
1616                            u8 *control,
1617                            bool *cmsg,
1618                            size_t skip,
1619                            size_t len,
1620                            bool zc,
1621                            bool is_peek)
1622 {
1623         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1624         u8 ctrl = *control;
1625         u8 msgc = *cmsg;
1626         struct tls_msg *tlm;
1627         ssize_t copied = 0;
1628
1629         /* Set the record type in 'control' if caller didn't pass it */
1630         if (!ctrl && skb) {
1631                 tlm = tls_msg(skb);
1632                 ctrl = tlm->control;
1633         }
1634
1635         while (skip && skb) {
1636                 struct strp_msg *rxm = strp_msg(skb);
1637                 tlm = tls_msg(skb);
1638
1639                 /* Cannot process a record of different type */
1640                 if (ctrl != tlm->control)
1641                         return 0;
1642
1643                 if (skip < rxm->full_len)
1644                         break;
1645
1646                 skip = skip - rxm->full_len;
1647                 skb = skb_peek_next(skb, &ctx->rx_list);
1648         }
1649
1650         while (len && skb) {
1651                 struct sk_buff *next_skb;
1652                 struct strp_msg *rxm = strp_msg(skb);
1653                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1654
1655                 tlm = tls_msg(skb);
1656
1657                 /* Cannot process a record of different type */
1658                 if (ctrl != tlm->control)
1659                         return 0;
1660
1661                 /* Set record type if not already done. For a non-data record,
1662                  * do not proceed if record type could not be copied.
1663                  */
1664                 if (!msgc) {
1665                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1666                                             sizeof(ctrl), &ctrl);
1667                         msgc = true;
1668                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1669                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1670                                         return -EIO;
1671
1672                                 *cmsg = msgc;
1673                         }
1674                 }
1675
1676                 if (!zc || (rxm->full_len - skip) > len) {
1677                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1678                                                     msg, chunk);
1679                         if (err < 0)
1680                                 return err;
1681                 }
1682
1683                 len = len - chunk;
1684                 copied = copied + chunk;
1685
1686                 /* Consume the data from record if it is non-peek case*/
1687                 if (!is_peek) {
1688                         rxm->offset = rxm->offset + chunk;
1689                         rxm->full_len = rxm->full_len - chunk;
1690
1691                         /* Return if there is unconsumed data in the record */
1692                         if (rxm->full_len - skip)
1693                                 break;
1694                 }
1695
1696                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1697                  * So from the 2nd record, 'skip' should be 0.
1698                  */
1699                 skip = 0;
1700
1701                 if (msg)
1702                         msg->msg_flags |= MSG_EOR;
1703
1704                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1705
1706                 if (!is_peek) {
1707                         skb_unlink(skb, &ctx->rx_list);
1708                         consume_skb(skb);
1709                 }
1710
1711                 skb = next_skb;
1712         }
1713
1714         *control = ctrl;
1715         return copied;
1716 }
1717
1718 int tls_sw_recvmsg(struct sock *sk,
1719                    struct msghdr *msg,
1720                    size_t len,
1721                    int nonblock,
1722                    int flags,
1723                    int *addr_len)
1724 {
1725         struct tls_context *tls_ctx = tls_get_ctx(sk);
1726         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1727         struct tls_prot_info *prot = &tls_ctx->prot_info;
1728         struct sk_psock *psock;
1729         unsigned char control = 0;
1730         ssize_t decrypted = 0;
1731         struct strp_msg *rxm;
1732         struct tls_msg *tlm;
1733         struct sk_buff *skb;
1734         ssize_t copied = 0;
1735         bool cmsg = false;
1736         int target, err = 0;
1737         long timeo;
1738         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1739         bool is_peek = flags & MSG_PEEK;
1740         int num_async = 0;
1741         int pending;
1742
1743         flags |= nonblock;
1744
1745         if (unlikely(flags & MSG_ERRQUEUE))
1746                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1747
1748         psock = sk_psock_get(sk);
1749         lock_sock(sk);
1750
1751         /* Process pending decrypted records. It must be non-zero-copy */
1752         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1753                               is_peek);
1754         if (err < 0) {
1755                 tls_err_abort(sk, err);
1756                 goto end;
1757         } else {
1758                 copied = err;
1759         }
1760
1761         if (len <= copied)
1762                 goto recv_end;
1763
1764         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1765         len = len - copied;
1766         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1767
1768         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1769                 bool retain_skb = false;
1770                 bool zc = false;
1771                 int to_decrypt;
1772                 int chunk = 0;
1773                 bool async_capable;
1774                 bool async = false;
1775
1776                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1777                 if (!skb) {
1778                         if (psock) {
1779                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1780                                                             msg, len, flags);
1781
1782                                 if (ret > 0) {
1783                                         decrypted += ret;
1784                                         len -= ret;
1785                                         continue;
1786                                 }
1787                         }
1788                         goto recv_end;
1789                 } else {
1790                         tlm = tls_msg(skb);
1791                         if (prot->version == TLS_1_3_VERSION)
1792                                 tlm->control = 0;
1793                         else
1794                                 tlm->control = ctx->control;
1795                 }
1796
1797                 rxm = strp_msg(skb);
1798
1799                 to_decrypt = rxm->full_len - prot->overhead_size;
1800
1801                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1802                     ctx->control == TLS_RECORD_TYPE_DATA &&
1803                     prot->version != TLS_1_3_VERSION)
1804                         zc = true;
1805
1806                 /* Do not use async mode if record is non-data */
1807                 if (ctx->control == TLS_RECORD_TYPE_DATA)
1808                         async_capable = ctx->async_capable;
1809                 else
1810                         async_capable = false;
1811
1812                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1813                                          &chunk, &zc, async_capable);
1814                 if (err < 0 && err != -EINPROGRESS) {
1815                         tls_err_abort(sk, EBADMSG);
1816                         goto recv_end;
1817                 }
1818
1819                 if (err == -EINPROGRESS) {
1820                         async = true;
1821                         num_async++;
1822                 } else if (prot->version == TLS_1_3_VERSION) {
1823                         tlm->control = ctx->control;
1824                 }
1825
1826                 /* If the type of records being processed is not known yet,
1827                  * set it to record type just dequeued. If it is already known,
1828                  * but does not match the record type just dequeued, go to end.
1829                  * We always get record type here since for tls1.2, record type
1830                  * is known just after record is dequeued from stream parser.
1831                  * For tls1.3, we disable async.
1832                  */
1833
1834                 if (!control)
1835                         control = tlm->control;
1836                 else if (control != tlm->control)
1837                         goto recv_end;
1838
1839                 if (!cmsg) {
1840                         int cerr;
1841
1842                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1843                                         sizeof(control), &control);
1844                         cmsg = true;
1845                         if (control != TLS_RECORD_TYPE_DATA) {
1846                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1847                                         err = -EIO;
1848                                         goto recv_end;
1849                                 }
1850                         }
1851                 }
1852
1853                 if (async)
1854                         goto pick_next_record;
1855
1856                 if (!zc) {
1857                         if (rxm->full_len > len) {
1858                                 retain_skb = true;
1859                                 chunk = len;
1860                         } else {
1861                                 chunk = rxm->full_len;
1862                         }
1863
1864                         err = skb_copy_datagram_msg(skb, rxm->offset,
1865                                                     msg, chunk);
1866                         if (err < 0)
1867                                 goto recv_end;
1868
1869                         if (!is_peek) {
1870                                 rxm->offset = rxm->offset + chunk;
1871                                 rxm->full_len = rxm->full_len - chunk;
1872                         }
1873                 }
1874
1875 pick_next_record:
1876                 if (chunk > len)
1877                         chunk = len;
1878
1879                 decrypted += chunk;
1880                 len -= chunk;
1881
1882                 /* For async or peek case, queue the current skb */
1883                 if (async || is_peek || retain_skb) {
1884                         skb_queue_tail(&ctx->rx_list, skb);
1885                         skb = NULL;
1886                 }
1887
1888                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1889                         /* Return full control message to
1890                          * userspace before trying to parse
1891                          * another message type
1892                          */
1893                         msg->msg_flags |= MSG_EOR;
1894                         if (ctx->control != TLS_RECORD_TYPE_DATA)
1895                                 goto recv_end;
1896                 } else {
1897                         break;
1898                 }
1899         }
1900
1901 recv_end:
1902         if (num_async) {
1903                 /* Wait for all previously submitted records to be decrypted */
1904                 spin_lock_bh(&ctx->decrypt_compl_lock);
1905                 ctx->async_notify = true;
1906                 pending = atomic_read(&ctx->decrypt_pending);
1907                 spin_unlock_bh(&ctx->decrypt_compl_lock);
1908                 if (pending) {
1909                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1910                         if (err) {
1911                                 /* one of async decrypt failed */
1912                                 tls_err_abort(sk, err);
1913                                 copied = 0;
1914                                 decrypted = 0;
1915                                 goto end;
1916                         }
1917                 } else {
1918                         reinit_completion(&ctx->async_wait.completion);
1919                 }
1920
1921                 /* There can be no concurrent accesses, since we have no
1922                  * pending decrypt operations
1923                  */
1924                 WRITE_ONCE(ctx->async_notify, false);
1925
1926                 /* Drain records from the rx_list & copy if required */
1927                 if (is_peek || is_kvec)
1928                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1929                                               decrypted, false, is_peek);
1930                 else
1931                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1932                                               decrypted, true, is_peek);
1933                 if (err < 0) {
1934                         tls_err_abort(sk, err);
1935                         copied = 0;
1936                         goto end;
1937                 }
1938         }
1939
1940         copied += decrypted;
1941
1942 end:
1943         release_sock(sk);
1944         if (psock)
1945                 sk_psock_put(sk, psock);
1946         return copied ? : err;
1947 }
1948
1949 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1950                            struct pipe_inode_info *pipe,
1951                            size_t len, unsigned int flags)
1952 {
1953         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1954         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1955         struct strp_msg *rxm = NULL;
1956         struct sock *sk = sock->sk;
1957         struct sk_buff *skb;
1958         ssize_t copied = 0;
1959         int err = 0;
1960         long timeo;
1961         int chunk;
1962         bool zc = false;
1963
1964         lock_sock(sk);
1965
1966         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1967
1968         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1969         if (!skb)
1970                 goto splice_read_end;
1971
1972         if (!ctx->decrypted) {
1973                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1974
1975                 /* splice does not support reading control messages */
1976                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1977                         err = -EINVAL;
1978                         goto splice_read_end;
1979                 }
1980
1981                 if (err < 0) {
1982                         tls_err_abort(sk, EBADMSG);
1983                         goto splice_read_end;
1984                 }
1985                 ctx->decrypted = true;
1986         }
1987         rxm = strp_msg(skb);
1988
1989         chunk = min_t(unsigned int, rxm->full_len, len);
1990         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1991         if (copied < 0)
1992                 goto splice_read_end;
1993
1994         if (likely(!(flags & MSG_PEEK)))
1995                 tls_sw_advance_skb(sk, skb, copied);
1996
1997 splice_read_end:
1998         release_sock(sk);
1999         return copied ? : err;
2000 }
2001
2002 bool tls_sw_stream_read(const struct sock *sk)
2003 {
2004         struct tls_context *tls_ctx = tls_get_ctx(sk);
2005         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2006         bool ingress_empty = true;
2007         struct sk_psock *psock;
2008
2009         rcu_read_lock();
2010         psock = sk_psock(sk);
2011         if (psock)
2012                 ingress_empty = list_empty(&psock->ingress_msg);
2013         rcu_read_unlock();
2014
2015         return !ingress_empty || ctx->recv_pkt ||
2016                 !skb_queue_empty(&ctx->rx_list);
2017 }
2018
2019 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2020 {
2021         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2022         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2023         struct tls_prot_info *prot = &tls_ctx->prot_info;
2024         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2025         struct strp_msg *rxm = strp_msg(skb);
2026         size_t cipher_overhead;
2027         size_t data_len = 0;
2028         int ret;
2029
2030         /* Verify that we have a full TLS header, or wait for more data */
2031         if (rxm->offset + prot->prepend_size > skb->len)
2032                 return 0;
2033
2034         /* Sanity-check size of on-stack buffer. */
2035         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2036                 ret = -EINVAL;
2037                 goto read_failure;
2038         }
2039
2040         /* Linearize header to local buffer */
2041         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2042
2043         if (ret < 0)
2044                 goto read_failure;
2045
2046         ctx->control = header[0];
2047
2048         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2049
2050         cipher_overhead = prot->tag_size;
2051         if (prot->version != TLS_1_3_VERSION)
2052                 cipher_overhead += prot->iv_size;
2053
2054         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2055             prot->tail_size) {
2056                 ret = -EMSGSIZE;
2057                 goto read_failure;
2058         }
2059         if (data_len < cipher_overhead) {
2060                 ret = -EBADMSG;
2061                 goto read_failure;
2062         }
2063
2064         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2065         if (header[1] != TLS_1_2_VERSION_MINOR ||
2066             header[2] != TLS_1_2_VERSION_MAJOR) {
2067                 ret = -EINVAL;
2068                 goto read_failure;
2069         }
2070
2071         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2072                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2073         return data_len + TLS_HEADER_SIZE;
2074
2075 read_failure:
2076         tls_err_abort(strp->sk, ret);
2077
2078         return ret;
2079 }
2080
2081 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2082 {
2083         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2084         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2085
2086         ctx->decrypted = false;
2087
2088         ctx->recv_pkt = skb;
2089         strp_pause(strp);
2090
2091         ctx->saved_data_ready(strp->sk);
2092 }
2093
2094 static void tls_data_ready(struct sock *sk)
2095 {
2096         struct tls_context *tls_ctx = tls_get_ctx(sk);
2097         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2098         struct sk_psock *psock;
2099
2100         strp_data_ready(&ctx->strp);
2101
2102         psock = sk_psock_get(sk);
2103         if (psock) {
2104                 if (!list_empty(&psock->ingress_msg))
2105                         ctx->saved_data_ready(sk);
2106                 sk_psock_put(sk, psock);
2107         }
2108 }
2109
2110 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2111 {
2112         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2113
2114         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2115         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2116         cancel_delayed_work_sync(&ctx->tx_work.work);
2117 }
2118
2119 void tls_sw_release_resources_tx(struct sock *sk)
2120 {
2121         struct tls_context *tls_ctx = tls_get_ctx(sk);
2122         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2123         struct tls_rec *rec, *tmp;
2124
2125         /* Wait for any pending async encryptions to complete */
2126         smp_store_mb(ctx->async_notify, true);
2127         if (atomic_read(&ctx->encrypt_pending))
2128                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2129
2130         tls_tx_records(sk, -1);
2131
2132         /* Free up un-sent records in tx_list. First, free
2133          * the partially sent record if any at head of tx_list.
2134          */
2135         if (tls_ctx->partially_sent_record) {
2136                 tls_free_partial_record(sk, tls_ctx);
2137                 rec = list_first_entry(&ctx->tx_list,
2138                                        struct tls_rec, list);
2139                 list_del(&rec->list);
2140                 sk_msg_free(sk, &rec->msg_plaintext);
2141                 kfree(rec);
2142         }
2143
2144         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2145                 list_del(&rec->list);
2146                 sk_msg_free(sk, &rec->msg_encrypted);
2147                 sk_msg_free(sk, &rec->msg_plaintext);
2148                 kfree(rec);
2149         }
2150
2151         crypto_free_aead(ctx->aead_send);
2152         tls_free_open_rec(sk);
2153 }
2154
2155 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2156 {
2157         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2158
2159         kfree(ctx);
2160 }
2161
2162 void tls_sw_release_resources_rx(struct sock *sk)
2163 {
2164         struct tls_context *tls_ctx = tls_get_ctx(sk);
2165         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2166
2167         kfree(tls_ctx->rx.rec_seq);
2168         kfree(tls_ctx->rx.iv);
2169
2170         if (ctx->aead_recv) {
2171                 kfree_skb(ctx->recv_pkt);
2172                 ctx->recv_pkt = NULL;
2173                 skb_queue_purge(&ctx->rx_list);
2174                 crypto_free_aead(ctx->aead_recv);
2175                 strp_stop(&ctx->strp);
2176                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2177                  * we still want to strp_stop(), but sk->sk_data_ready was
2178                  * never swapped.
2179                  */
2180                 if (ctx->saved_data_ready) {
2181                         write_lock_bh(&sk->sk_callback_lock);
2182                         sk->sk_data_ready = ctx->saved_data_ready;
2183                         write_unlock_bh(&sk->sk_callback_lock);
2184                 }
2185         }
2186 }
2187
2188 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2189 {
2190         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2191
2192         strp_done(&ctx->strp);
2193 }
2194
2195 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2196 {
2197         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2198
2199         kfree(ctx);
2200 }
2201
2202 void tls_sw_free_resources_rx(struct sock *sk)
2203 {
2204         struct tls_context *tls_ctx = tls_get_ctx(sk);
2205
2206         tls_sw_release_resources_rx(sk);
2207         tls_sw_free_ctx_rx(tls_ctx);
2208 }
2209
2210 /* The work handler to transmitt the encrypted records in tx_list */
2211 static void tx_work_handler(struct work_struct *work)
2212 {
2213         struct delayed_work *delayed_work = to_delayed_work(work);
2214         struct tx_work *tx_work = container_of(delayed_work,
2215                                                struct tx_work, work);
2216         struct sock *sk = tx_work->sk;
2217         struct tls_context *tls_ctx = tls_get_ctx(sk);
2218         struct tls_sw_context_tx *ctx;
2219
2220         if (unlikely(!tls_ctx))
2221                 return;
2222
2223         ctx = tls_sw_ctx_tx(tls_ctx);
2224         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2225                 return;
2226
2227         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2228                 return;
2229         mutex_lock(&tls_ctx->tx_lock);
2230         lock_sock(sk);
2231         tls_tx_records(sk, -1);
2232         release_sock(sk);
2233         mutex_unlock(&tls_ctx->tx_lock);
2234 }
2235
2236 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2237 {
2238         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2239
2240         /* Schedule the transmission if tx list is ready */
2241         if (is_tx_ready(tx_ctx) &&
2242             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2243                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2244 }
2245
2246 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2247 {
2248         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2249
2250         write_lock_bh(&sk->sk_callback_lock);
2251         rx_ctx->saved_data_ready = sk->sk_data_ready;
2252         sk->sk_data_ready = tls_data_ready;
2253         write_unlock_bh(&sk->sk_callback_lock);
2254
2255         strp_check_rcv(&rx_ctx->strp);
2256 }
2257
2258 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2259 {
2260         struct tls_context *tls_ctx = tls_get_ctx(sk);
2261         struct tls_prot_info *prot = &tls_ctx->prot_info;
2262         struct tls_crypto_info *crypto_info;
2263         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2264         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2265         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2266         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2267         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2268         struct cipher_context *cctx;
2269         struct crypto_aead **aead;
2270         struct strp_callbacks cb;
2271         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2272         struct crypto_tfm *tfm;
2273         char *iv, *rec_seq, *key, *salt, *cipher_name;
2274         size_t keysize;
2275         int rc = 0;
2276
2277         if (!ctx) {
2278                 rc = -EINVAL;
2279                 goto out;
2280         }
2281
2282         if (tx) {
2283                 if (!ctx->priv_ctx_tx) {
2284                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2285                         if (!sw_ctx_tx) {
2286                                 rc = -ENOMEM;
2287                                 goto out;
2288                         }
2289                         ctx->priv_ctx_tx = sw_ctx_tx;
2290                 } else {
2291                         sw_ctx_tx =
2292                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2293                 }
2294         } else {
2295                 if (!ctx->priv_ctx_rx) {
2296                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2297                         if (!sw_ctx_rx) {
2298                                 rc = -ENOMEM;
2299                                 goto out;
2300                         }
2301                         ctx->priv_ctx_rx = sw_ctx_rx;
2302                 } else {
2303                         sw_ctx_rx =
2304                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2305                 }
2306         }
2307
2308         if (tx) {
2309                 crypto_init_wait(&sw_ctx_tx->async_wait);
2310                 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2311                 crypto_info = &ctx->crypto_send.info;
2312                 cctx = &ctx->tx;
2313                 aead = &sw_ctx_tx->aead_send;
2314                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2315                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2316                 sw_ctx_tx->tx_work.sk = sk;
2317         } else {
2318                 crypto_init_wait(&sw_ctx_rx->async_wait);
2319                 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2320                 crypto_info = &ctx->crypto_recv.info;
2321                 cctx = &ctx->rx;
2322                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2323                 aead = &sw_ctx_rx->aead_recv;
2324         }
2325
2326         switch (crypto_info->cipher_type) {
2327         case TLS_CIPHER_AES_GCM_128: {
2328                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2329                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2330                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2331                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2332                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2333                 rec_seq =
2334                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2335                 gcm_128_info =
2336                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2337                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2338                 key = gcm_128_info->key;
2339                 salt = gcm_128_info->salt;
2340                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2341                 cipher_name = "gcm(aes)";
2342                 break;
2343         }
2344         case TLS_CIPHER_AES_GCM_256: {
2345                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2346                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2347                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2348                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2349                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2350                 rec_seq =
2351                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2352                 gcm_256_info =
2353                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2354                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2355                 key = gcm_256_info->key;
2356                 salt = gcm_256_info->salt;
2357                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2358                 cipher_name = "gcm(aes)";
2359                 break;
2360         }
2361         case TLS_CIPHER_AES_CCM_128: {
2362                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2363                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2364                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2365                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2366                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2367                 rec_seq =
2368                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2369                 ccm_128_info =
2370                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2371                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2372                 key = ccm_128_info->key;
2373                 salt = ccm_128_info->salt;
2374                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2375                 cipher_name = "ccm(aes)";
2376                 break;
2377         }
2378         default:
2379                 rc = -EINVAL;
2380                 goto free_priv;
2381         }
2382
2383         /* Sanity-check the sizes for stack allocations. */
2384         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2385             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2386                 rc = -EINVAL;
2387                 goto free_priv;
2388         }
2389
2390         if (crypto_info->version == TLS_1_3_VERSION) {
2391                 nonce_size = 0;
2392                 prot->aad_size = TLS_HEADER_SIZE;
2393                 prot->tail_size = 1;
2394         } else {
2395                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2396                 prot->tail_size = 0;
2397         }
2398
2399         prot->version = crypto_info->version;
2400         prot->cipher_type = crypto_info->cipher_type;
2401         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2402         prot->tag_size = tag_size;
2403         prot->overhead_size = prot->prepend_size +
2404                               prot->tag_size + prot->tail_size;
2405         prot->iv_size = iv_size;
2406         prot->salt_size = salt_size;
2407         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2408         if (!cctx->iv) {
2409                 rc = -ENOMEM;
2410                 goto free_priv;
2411         }
2412         /* Note: 128 & 256 bit salt are the same size */
2413         prot->rec_seq_size = rec_seq_size;
2414         memcpy(cctx->iv, salt, salt_size);
2415         memcpy(cctx->iv + salt_size, iv, iv_size);
2416         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2417         if (!cctx->rec_seq) {
2418                 rc = -ENOMEM;
2419                 goto free_iv;
2420         }
2421
2422         if (!*aead) {
2423                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2424                 if (IS_ERR(*aead)) {
2425                         rc = PTR_ERR(*aead);
2426                         *aead = NULL;
2427                         goto free_rec_seq;
2428                 }
2429         }
2430
2431         ctx->push_pending_record = tls_sw_push_pending_record;
2432
2433         rc = crypto_aead_setkey(*aead, key, keysize);
2434
2435         if (rc)
2436                 goto free_aead;
2437
2438         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2439         if (rc)
2440                 goto free_aead;
2441
2442         if (sw_ctx_rx) {
2443                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2444
2445                 if (crypto_info->version == TLS_1_3_VERSION)
2446                         sw_ctx_rx->async_capable = false;
2447                 else
2448                         sw_ctx_rx->async_capable =
2449                                 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2450
2451                 /* Set up strparser */
2452                 memset(&cb, 0, sizeof(cb));
2453                 cb.rcv_msg = tls_queue;
2454                 cb.parse_msg = tls_read_size;
2455
2456                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2457         }
2458
2459         goto out;
2460
2461 free_aead:
2462         crypto_free_aead(*aead);
2463         *aead = NULL;
2464 free_rec_seq:
2465         kfree(cctx->rec_seq);
2466         cctx->rec_seq = NULL;
2467 free_iv:
2468         kfree(cctx->iv);
2469         cctx->iv = NULL;
2470 free_priv:
2471         if (tx) {
2472                 kfree(ctx->priv_ctx_tx);
2473                 ctx->priv_ctx_tx = NULL;
2474         } else {
2475                 kfree(ctx->priv_ctx_rx);
2476                 ctx->priv_ctx_rx = NULL;
2477         }
2478 out:
2479         return rc;
2480 }