Linux-libre 5.4.39-gnu
[librecmc/linux-libre.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/tls.h>
45
46 MODULE_AUTHOR("Mellanox Technologies");
47 MODULE_DESCRIPTION("Transport Layer Security Support");
48 MODULE_LICENSE("Dual BSD/GPL");
49 MODULE_ALIAS_TCP_ULP("tls");
50
51 enum {
52         TLSV4,
53         TLSV6,
54         TLS_NUM_PROTS,
55 };
56
57 static struct proto *saved_tcpv6_prot;
58 static DEFINE_MUTEX(tcpv6_prot_mutex);
59 static struct proto *saved_tcpv4_prot;
60 static DEFINE_MUTEX(tcpv4_prot_mutex);
61 static LIST_HEAD(device_list);
62 static DEFINE_SPINLOCK(device_spinlock);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          struct proto *base);
67
68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73 }
74
75 int wait_on_pending_writer(struct sock *sk, long *timeo)
76 {
77         int rc = 0;
78         DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80         add_wait_queue(sk_sleep(sk), &wait);
81         while (1) {
82                 if (!*timeo) {
83                         rc = -EAGAIN;
84                         break;
85                 }
86
87                 if (signal_pending(current)) {
88                         rc = sock_intr_errno(*timeo);
89                         break;
90                 }
91
92                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93                         break;
94         }
95         remove_wait_queue(sk_sleep(sk), &wait);
96         return rc;
97 }
98
99 int tls_push_sg(struct sock *sk,
100                 struct tls_context *ctx,
101                 struct scatterlist *sg,
102                 u16 first_offset,
103                 int flags)
104 {
105         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106         int ret = 0;
107         struct page *p;
108         size_t size;
109         int offset = first_offset;
110
111         size = sg->length - offset;
112         offset += sg->offset;
113
114         ctx->in_tcp_sendpages = true;
115         while (1) {
116                 if (sg_is_last(sg))
117                         sendpage_flags = flags;
118
119                 /* is sending application-limited? */
120                 tcp_rate_check_app_limited(sk);
121                 p = sg_page(sg);
122 retry:
123                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125                 if (ret != size) {
126                         if (ret > 0) {
127                                 offset += ret;
128                                 size -= ret;
129                                 goto retry;
130                         }
131
132                         offset -= sg->offset;
133                         ctx->partially_sent_offset = offset;
134                         ctx->partially_sent_record = (void *)sg;
135                         ctx->in_tcp_sendpages = false;
136                         return ret;
137                 }
138
139                 put_page(p);
140                 sk_mem_uncharge(sk, sg->length);
141                 sg = sg_next(sg);
142                 if (!sg)
143                         break;
144
145                 offset = sg->offset;
146                 size = sg->length;
147         }
148
149         ctx->in_tcp_sendpages = false;
150
151         return 0;
152 }
153
154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156         struct tls_context *ctx = tls_get_ctx(sk);
157
158         if (tls_is_pending_open_record(ctx))
159                 return ctx->push_pending_record(sk, flags);
160
161         return 0;
162 }
163
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165                       unsigned char *record_type)
166 {
167         struct cmsghdr *cmsg;
168         int rc = -EINVAL;
169
170         for_each_cmsghdr(cmsg, msg) {
171                 if (!CMSG_OK(msg, cmsg))
172                         return -EINVAL;
173                 if (cmsg->cmsg_level != SOL_TLS)
174                         continue;
175
176                 switch (cmsg->cmsg_type) {
177                 case TLS_SET_RECORD_TYPE:
178                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179                                 return -EINVAL;
180
181                         if (msg->msg_flags & MSG_MORE)
182                                 return -EINVAL;
183
184                         rc = tls_handle_open_record(sk, msg->msg_flags);
185                         if (rc)
186                                 return rc;
187
188                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189                         rc = 0;
190                         break;
191                 default:
192                         return -EINVAL;
193                 }
194         }
195
196         return rc;
197 }
198
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200                             int flags)
201 {
202         struct scatterlist *sg;
203         u16 offset;
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213 {
214         struct scatterlist *sg;
215
216         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
217                 put_page(sg_page(sg));
218                 sk_mem_uncharge(sk, sg->length);
219         }
220         ctx->partially_sent_record = NULL;
221 }
222
223 static void tls_write_space(struct sock *sk)
224 {
225         struct tls_context *ctx = tls_get_ctx(sk);
226
227         /* If in_tcp_sendpages call lower protocol write space handler
228          * to ensure we wake up any waiting operations there. For example
229          * if do_tcp_sendpages where to call sk_wait_event.
230          */
231         if (ctx->in_tcp_sendpages) {
232                 ctx->sk_write_space(sk);
233                 return;
234         }
235
236 #ifdef CONFIG_TLS_DEVICE
237         if (ctx->tx_conf == TLS_HW)
238                 tls_device_write_space(sk, ctx);
239         else
240 #endif
241                 tls_sw_write_space(sk, ctx);
242
243         ctx->sk_write_space(sk);
244 }
245
246 /**
247  * tls_ctx_free() - free TLS ULP context
248  * @sk:  socket to with @ctx is attached
249  * @ctx: TLS context structure
250  *
251  * Free TLS context. If @sk is %NULL caller guarantees that the socket
252  * to which @ctx was attached has no outstanding references.
253  */
254 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
255 {
256         if (!ctx)
257                 return;
258
259         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261         mutex_destroy(&ctx->tx_lock);
262
263         if (sk)
264                 kfree_rcu(ctx, rcu);
265         else
266                 kfree(ctx);
267 }
268
269 static void tls_sk_proto_cleanup(struct sock *sk,
270                                  struct tls_context *ctx, long timeo)
271 {
272         if (unlikely(sk->sk_write_pending) &&
273             !wait_on_pending_writer(sk, &timeo))
274                 tls_handle_open_record(sk, 0);
275
276         /* We need these for tls_sw_fallback handling of other packets */
277         if (ctx->tx_conf == TLS_SW) {
278                 kfree(ctx->tx.rec_seq);
279                 kfree(ctx->tx.iv);
280                 tls_sw_release_resources_tx(sk);
281         } else if (ctx->tx_conf == TLS_HW) {
282                 tls_device_free_resources_tx(sk);
283         }
284
285         if (ctx->rx_conf == TLS_SW)
286                 tls_sw_release_resources_rx(sk);
287         else if (ctx->rx_conf == TLS_HW)
288                 tls_device_offload_cleanup_rx(sk);
289 }
290
291 static void tls_sk_proto_close(struct sock *sk, long timeout)
292 {
293         struct inet_connection_sock *icsk = inet_csk(sk);
294         struct tls_context *ctx = tls_get_ctx(sk);
295         long timeo = sock_sndtimeo(sk, 0);
296         bool free_ctx;
297
298         if (ctx->tx_conf == TLS_SW)
299                 tls_sw_cancel_work_tx(ctx);
300
301         lock_sock(sk);
302         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
303
304         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
305                 tls_sk_proto_cleanup(sk, ctx, timeo);
306
307         write_lock_bh(&sk->sk_callback_lock);
308         if (free_ctx)
309                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
310         sk->sk_prot = ctx->sk_proto;
311         if (sk->sk_write_space == tls_write_space)
312                 sk->sk_write_space = ctx->sk_write_space;
313         write_unlock_bh(&sk->sk_callback_lock);
314         release_sock(sk);
315         if (ctx->tx_conf == TLS_SW)
316                 tls_sw_free_ctx_tx(ctx);
317         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
318                 tls_sw_strparser_done(ctx);
319         if (ctx->rx_conf == TLS_SW)
320                 tls_sw_free_ctx_rx(ctx);
321         ctx->sk_proto->close(sk, timeout);
322
323         if (free_ctx)
324                 tls_ctx_free(sk, ctx);
325 }
326
327 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
328                                 int __user *optlen)
329 {
330         int rc = 0;
331         struct tls_context *ctx = tls_get_ctx(sk);
332         struct tls_crypto_info *crypto_info;
333         int len;
334
335         if (get_user(len, optlen))
336                 return -EFAULT;
337
338         if (!optval || (len < sizeof(*crypto_info))) {
339                 rc = -EINVAL;
340                 goto out;
341         }
342
343         if (!ctx) {
344                 rc = -EBUSY;
345                 goto out;
346         }
347
348         /* get user crypto info */
349         crypto_info = &ctx->crypto_send.info;
350
351         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
352                 rc = -EBUSY;
353                 goto out;
354         }
355
356         if (len == sizeof(*crypto_info)) {
357                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
358                         rc = -EFAULT;
359                 goto out;
360         }
361
362         switch (crypto_info->cipher_type) {
363         case TLS_CIPHER_AES_GCM_128: {
364                 struct tls12_crypto_info_aes_gcm_128 *
365                   crypto_info_aes_gcm_128 =
366                   container_of(crypto_info,
367                                struct tls12_crypto_info_aes_gcm_128,
368                                info);
369
370                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
371                         rc = -EINVAL;
372                         goto out;
373                 }
374                 lock_sock(sk);
375                 memcpy(crypto_info_aes_gcm_128->iv,
376                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
377                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
378                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
379                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
380                 release_sock(sk);
381                 if (copy_to_user(optval,
382                                  crypto_info_aes_gcm_128,
383                                  sizeof(*crypto_info_aes_gcm_128)))
384                         rc = -EFAULT;
385                 break;
386         }
387         case TLS_CIPHER_AES_GCM_256: {
388                 struct tls12_crypto_info_aes_gcm_256 *
389                   crypto_info_aes_gcm_256 =
390                   container_of(crypto_info,
391                                struct tls12_crypto_info_aes_gcm_256,
392                                info);
393
394                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
395                         rc = -EINVAL;
396                         goto out;
397                 }
398                 lock_sock(sk);
399                 memcpy(crypto_info_aes_gcm_256->iv,
400                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
401                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
402                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
403                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
404                 release_sock(sk);
405                 if (copy_to_user(optval,
406                                  crypto_info_aes_gcm_256,
407                                  sizeof(*crypto_info_aes_gcm_256)))
408                         rc = -EFAULT;
409                 break;
410         }
411         default:
412                 rc = -EINVAL;
413         }
414
415 out:
416         return rc;
417 }
418
419 static int do_tls_getsockopt(struct sock *sk, int optname,
420                              char __user *optval, int __user *optlen)
421 {
422         int rc = 0;
423
424         switch (optname) {
425         case TLS_TX:
426                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
427                 break;
428         default:
429                 rc = -ENOPROTOOPT;
430                 break;
431         }
432         return rc;
433 }
434
435 static int tls_getsockopt(struct sock *sk, int level, int optname,
436                           char __user *optval, int __user *optlen)
437 {
438         struct tls_context *ctx = tls_get_ctx(sk);
439
440         if (level != SOL_TLS)
441                 return ctx->sk_proto->getsockopt(sk, level,
442                                                  optname, optval, optlen);
443
444         return do_tls_getsockopt(sk, optname, optval, optlen);
445 }
446
447 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
448                                   unsigned int optlen, int tx)
449 {
450         struct tls_crypto_info *crypto_info;
451         struct tls_crypto_info *alt_crypto_info;
452         struct tls_context *ctx = tls_get_ctx(sk);
453         size_t optsize;
454         int rc = 0;
455         int conf;
456
457         if (!optval || (optlen < sizeof(*crypto_info))) {
458                 rc = -EINVAL;
459                 goto out;
460         }
461
462         if (tx) {
463                 crypto_info = &ctx->crypto_send.info;
464                 alt_crypto_info = &ctx->crypto_recv.info;
465         } else {
466                 crypto_info = &ctx->crypto_recv.info;
467                 alt_crypto_info = &ctx->crypto_send.info;
468         }
469
470         /* Currently we don't support set crypto info more than one time */
471         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
472                 rc = -EBUSY;
473                 goto out;
474         }
475
476         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
477         if (rc) {
478                 rc = -EFAULT;
479                 goto err_crypto_info;
480         }
481
482         /* check version */
483         if (crypto_info->version != TLS_1_2_VERSION &&
484             crypto_info->version != TLS_1_3_VERSION) {
485                 rc = -EINVAL;
486                 goto err_crypto_info;
487         }
488
489         /* Ensure that TLS version and ciphers are same in both directions */
490         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
491                 if (alt_crypto_info->version != crypto_info->version ||
492                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
493                         rc = -EINVAL;
494                         goto err_crypto_info;
495                 }
496         }
497
498         switch (crypto_info->cipher_type) {
499         case TLS_CIPHER_AES_GCM_128:
500                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
501                 break;
502         case TLS_CIPHER_AES_GCM_256: {
503                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
504                 break;
505         }
506         case TLS_CIPHER_AES_CCM_128:
507                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
508                 break;
509         default:
510                 rc = -EINVAL;
511                 goto err_crypto_info;
512         }
513
514         if (optlen != optsize) {
515                 rc = -EINVAL;
516                 goto err_crypto_info;
517         }
518
519         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
520                             optlen - sizeof(*crypto_info));
521         if (rc) {
522                 rc = -EFAULT;
523                 goto err_crypto_info;
524         }
525
526         if (tx) {
527                 rc = tls_set_device_offload(sk, ctx);
528                 conf = TLS_HW;
529                 if (rc) {
530                         rc = tls_set_sw_offload(sk, ctx, 1);
531                         if (rc)
532                                 goto err_crypto_info;
533                         conf = TLS_SW;
534                 }
535         } else {
536                 rc = tls_set_device_offload_rx(sk, ctx);
537                 conf = TLS_HW;
538                 if (rc) {
539                         rc = tls_set_sw_offload(sk, ctx, 0);
540                         if (rc)
541                                 goto err_crypto_info;
542                         conf = TLS_SW;
543                 }
544                 tls_sw_strparser_arm(sk, ctx);
545         }
546
547         if (tx)
548                 ctx->tx_conf = conf;
549         else
550                 ctx->rx_conf = conf;
551         update_sk_prot(sk, ctx);
552         if (tx) {
553                 ctx->sk_write_space = sk->sk_write_space;
554                 sk->sk_write_space = tls_write_space;
555         } else {
556                 sk->sk_socket->ops = &tls_sw_proto_ops;
557         }
558         goto out;
559
560 err_crypto_info:
561         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
562 out:
563         return rc;
564 }
565
566 static int do_tls_setsockopt(struct sock *sk, int optname,
567                              char __user *optval, unsigned int optlen)
568 {
569         int rc = 0;
570
571         switch (optname) {
572         case TLS_TX:
573         case TLS_RX:
574                 lock_sock(sk);
575                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
576                                             optname == TLS_TX);
577                 release_sock(sk);
578                 break;
579         default:
580                 rc = -ENOPROTOOPT;
581                 break;
582         }
583         return rc;
584 }
585
586 static int tls_setsockopt(struct sock *sk, int level, int optname,
587                           char __user *optval, unsigned int optlen)
588 {
589         struct tls_context *ctx = tls_get_ctx(sk);
590
591         if (level != SOL_TLS)
592                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
593                                                  optlen);
594
595         return do_tls_setsockopt(sk, optname, optval, optlen);
596 }
597
598 static struct tls_context *create_ctx(struct sock *sk)
599 {
600         struct inet_connection_sock *icsk = inet_csk(sk);
601         struct tls_context *ctx;
602
603         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
604         if (!ctx)
605                 return NULL;
606
607         mutex_init(&ctx->tx_lock);
608         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
609         ctx->sk_proto = sk->sk_prot;
610         return ctx;
611 }
612
613 static void tls_build_proto(struct sock *sk)
614 {
615         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
616
617         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
618         if (ip_ver == TLSV6 &&
619             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
620                 mutex_lock(&tcpv6_prot_mutex);
621                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
622                         build_protos(tls_prots[TLSV6], sk->sk_prot);
623                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
624                 }
625                 mutex_unlock(&tcpv6_prot_mutex);
626         }
627
628         if (ip_ver == TLSV4 &&
629             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
630                 mutex_lock(&tcpv4_prot_mutex);
631                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
632                         build_protos(tls_prots[TLSV4], sk->sk_prot);
633                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
634                 }
635                 mutex_unlock(&tcpv4_prot_mutex);
636         }
637 }
638
639 static void tls_hw_sk_destruct(struct sock *sk)
640 {
641         struct tls_context *ctx = tls_get_ctx(sk);
642         struct inet_connection_sock *icsk = inet_csk(sk);
643
644         ctx->sk_destruct(sk);
645         /* Free ctx */
646         rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
647         tls_ctx_free(sk, ctx);
648 }
649
650 static int tls_hw_prot(struct sock *sk)
651 {
652         struct tls_context *ctx;
653         struct tls_device *dev;
654         int rc = 0;
655
656         spin_lock_bh(&device_spinlock);
657         list_for_each_entry(dev, &device_list, dev_list) {
658                 if (dev->feature && dev->feature(dev)) {
659                         ctx = create_ctx(sk);
660                         if (!ctx)
661                                 goto out;
662
663                         spin_unlock_bh(&device_spinlock);
664                         tls_build_proto(sk);
665                         ctx->sk_destruct = sk->sk_destruct;
666                         sk->sk_destruct = tls_hw_sk_destruct;
667                         ctx->rx_conf = TLS_HW_RECORD;
668                         ctx->tx_conf = TLS_HW_RECORD;
669                         update_sk_prot(sk, ctx);
670                         spin_lock_bh(&device_spinlock);
671                         rc = 1;
672                         break;
673                 }
674         }
675 out:
676         spin_unlock_bh(&device_spinlock);
677         return rc;
678 }
679
680 static void tls_hw_unhash(struct sock *sk)
681 {
682         struct tls_context *ctx = tls_get_ctx(sk);
683         struct tls_device *dev;
684
685         spin_lock_bh(&device_spinlock);
686         list_for_each_entry(dev, &device_list, dev_list) {
687                 if (dev->unhash) {
688                         kref_get(&dev->kref);
689                         spin_unlock_bh(&device_spinlock);
690                         dev->unhash(dev, sk);
691                         kref_put(&dev->kref, dev->release);
692                         spin_lock_bh(&device_spinlock);
693                 }
694         }
695         spin_unlock_bh(&device_spinlock);
696         ctx->sk_proto->unhash(sk);
697 }
698
699 static int tls_hw_hash(struct sock *sk)
700 {
701         struct tls_context *ctx = tls_get_ctx(sk);
702         struct tls_device *dev;
703         int err;
704
705         err = ctx->sk_proto->hash(sk);
706         spin_lock_bh(&device_spinlock);
707         list_for_each_entry(dev, &device_list, dev_list) {
708                 if (dev->hash) {
709                         kref_get(&dev->kref);
710                         spin_unlock_bh(&device_spinlock);
711                         err |= dev->hash(dev, sk);
712                         kref_put(&dev->kref, dev->release);
713                         spin_lock_bh(&device_spinlock);
714                 }
715         }
716         spin_unlock_bh(&device_spinlock);
717
718         if (err)
719                 tls_hw_unhash(sk);
720         return err;
721 }
722
723 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
724                          struct proto *base)
725 {
726         prot[TLS_BASE][TLS_BASE] = *base;
727         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
728         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
729         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
730
731         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
732         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
733         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
734
735         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
736         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
737         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
738         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
739
740         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
741         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
742         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
743         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
744
745 #ifdef CONFIG_TLS_DEVICE
746         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
747         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
748         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
749
750         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
751         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
752         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
753
754         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
755
756         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
757
758         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
759 #endif
760
761         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
762         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
763         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
764 }
765
766 static int tls_init(struct sock *sk)
767 {
768         struct tls_context *ctx;
769         int rc = 0;
770
771         if (tls_hw_prot(sk))
772                 return 0;
773
774         /* The TLS ulp is currently supported only for TCP sockets
775          * in ESTABLISHED state.
776          * Supporting sockets in LISTEN state will require us
777          * to modify the accept implementation to clone rather then
778          * share the ulp context.
779          */
780         if (sk->sk_state != TCP_ESTABLISHED)
781                 return -ENOTCONN;
782
783         tls_build_proto(sk);
784
785         /* allocate tls context */
786         write_lock_bh(&sk->sk_callback_lock);
787         ctx = create_ctx(sk);
788         if (!ctx) {
789                 rc = -ENOMEM;
790                 goto out;
791         }
792
793         ctx->tx_conf = TLS_BASE;
794         ctx->rx_conf = TLS_BASE;
795         update_sk_prot(sk, ctx);
796 out:
797         write_unlock_bh(&sk->sk_callback_lock);
798         return rc;
799 }
800
801 static void tls_update(struct sock *sk, struct proto *p,
802                        void (*write_space)(struct sock *sk))
803 {
804         struct tls_context *ctx;
805
806         ctx = tls_get_ctx(sk);
807         if (likely(ctx)) {
808                 ctx->sk_write_space = write_space;
809                 ctx->sk_proto = p;
810         } else {
811                 sk->sk_prot = p;
812                 sk->sk_write_space = write_space;
813         }
814 }
815
816 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
817 {
818         u16 version, cipher_type;
819         struct tls_context *ctx;
820         struct nlattr *start;
821         int err;
822
823         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
824         if (!start)
825                 return -EMSGSIZE;
826
827         rcu_read_lock();
828         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
829         if (!ctx) {
830                 err = 0;
831                 goto nla_failure;
832         }
833         version = ctx->prot_info.version;
834         if (version) {
835                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
836                 if (err)
837                         goto nla_failure;
838         }
839         cipher_type = ctx->prot_info.cipher_type;
840         if (cipher_type) {
841                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
842                 if (err)
843                         goto nla_failure;
844         }
845         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
846         if (err)
847                 goto nla_failure;
848
849         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
850         if (err)
851                 goto nla_failure;
852
853         rcu_read_unlock();
854         nla_nest_end(skb, start);
855         return 0;
856
857 nla_failure:
858         rcu_read_unlock();
859         nla_nest_cancel(skb, start);
860         return err;
861 }
862
863 static size_t tls_get_info_size(const struct sock *sk)
864 {
865         size_t size = 0;
866
867         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
868                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
869                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
870                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
871                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
872                 0;
873
874         return size;
875 }
876
877 void tls_register_device(struct tls_device *device)
878 {
879         spin_lock_bh(&device_spinlock);
880         list_add_tail(&device->dev_list, &device_list);
881         spin_unlock_bh(&device_spinlock);
882 }
883 EXPORT_SYMBOL(tls_register_device);
884
885 void tls_unregister_device(struct tls_device *device)
886 {
887         spin_lock_bh(&device_spinlock);
888         list_del(&device->dev_list);
889         spin_unlock_bh(&device_spinlock);
890 }
891 EXPORT_SYMBOL(tls_unregister_device);
892
893 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
894         .name                   = "tls",
895         .owner                  = THIS_MODULE,
896         .init                   = tls_init,
897         .update                 = tls_update,
898         .get_info               = tls_get_info,
899         .get_info_size          = tls_get_info_size,
900 };
901
902 static int __init tls_register(void)
903 {
904         tls_sw_proto_ops = inet_stream_ops;
905         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
906         tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked,
907
908         tls_device_init();
909         tcp_register_ulp(&tcp_tls_ulp_ops);
910
911         return 0;
912 }
913
914 static void __exit tls_unregister(void)
915 {
916         tcp_unregister_ulp(&tcp_tls_ulp_ops);
917         tls_device_cleanup();
918 }
919
920 module_init(tls_register);
921 module_exit(tls_unregister);