Linux-libre 3.16.41-gnu
[librecmc/linux-libre.git] / net / mac80211 / key.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2008  Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <asm/unaligned.h>
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "debugfs_key.h"
24 #include "aes_ccm.h"
25 #include "aes_cmac.h"
26
27
28 /**
29  * DOC: Key handling basics
30  *
31  * Key handling in mac80211 is done based on per-interface (sub_if_data)
32  * keys and per-station keys. Since each station belongs to an interface,
33  * each station key also belongs to that interface.
34  *
35  * Hardware acceleration is done on a best-effort basis for algorithms
36  * that are implemented in software,  for each key the hardware is asked
37  * to enable that key for offloading but if it cannot do that the key is
38  * simply kept for software encryption (unless it is for an algorithm
39  * that isn't implemented in software).
40  * There is currently no way of knowing whether a key is handled in SW
41  * or HW except by looking into debugfs.
42  *
43  * All key management is internally protected by a mutex. Within all
44  * other parts of mac80211, key references are, just as STA structure
45  * references, protected by RCU. Note, however, that some things are
46  * unprotected, namely the key->sta dereferences within the hardware
47  * acceleration functions. This means that sta_info_destroy() must
48  * remove the key which waits for an RCU grace period.
49  */
50
51 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
52
53 static void assert_key_lock(struct ieee80211_local *local)
54 {
55         lockdep_assert_held(&local->key_mtx);
56 }
57
58 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
59 {
60         /*
61          * When this count is zero, SKB resizing for allocating tailroom
62          * for IV or MMIC is skipped. But, this check has created two race
63          * cases in xmit path while transiting from zero count to one:
64          *
65          * 1. SKB resize was skipped because no key was added but just before
66          * the xmit key is added and SW encryption kicks off.
67          *
68          * 2. SKB resize was skipped because all the keys were hw planted but
69          * just before xmit one of the key is deleted and SW encryption kicks
70          * off.
71          *
72          * In both the above case SW encryption will find not enough space for
73          * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
74          *
75          * Solution has been explained at
76          * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
77          */
78
79         if (!sdata->crypto_tx_tailroom_needed_cnt++) {
80                 /*
81                  * Flush all XMIT packets currently using HW encryption or no
82                  * encryption at all if the count transition is from 0 -> 1.
83                  */
84                 synchronize_net();
85         }
86 }
87
88 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
89 {
90         struct ieee80211_sub_if_data *sdata;
91         struct sta_info *sta;
92         int ret;
93
94         might_sleep();
95
96         if (key->flags & KEY_FLAG_TAINTED)
97                 return -EINVAL;
98
99         if (!key->local->ops->set_key)
100                 goto out_unsupported;
101
102         assert_key_lock(key->local);
103
104         sta = key->sta;
105
106         /*
107          * If this is a per-STA GTK, check if it
108          * is supported; if not, return.
109          */
110         if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
111             !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
112                 goto out_unsupported;
113
114         if (sta && !sta->uploaded)
115                 goto out_unsupported;
116
117         sdata = key->sdata;
118         if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
119                 /*
120                  * The driver doesn't know anything about VLAN interfaces.
121                  * Hence, don't send GTKs for VLAN interfaces to the driver.
122                  */
123                 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
124                         goto out_unsupported;
125         }
126
127         ret = drv_set_key(key->local, SET_KEY, sdata,
128                           sta ? &sta->sta : NULL, &key->conf);
129
130         if (!ret) {
131                 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
132
133                 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
134                       (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
135                       (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
136                         sdata->crypto_tx_tailroom_needed_cnt--;
137
138                 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
139                         (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
140
141                 return 0;
142         }
143
144         if (ret != -ENOSPC && ret != -EOPNOTSUPP)
145                 sdata_err(sdata,
146                           "failed to set key (%d, %pM) to hardware (%d)\n",
147                           key->conf.keyidx,
148                           sta ? sta->sta.addr : bcast_addr, ret);
149
150  out_unsupported:
151         switch (key->conf.cipher) {
152         case WLAN_CIPHER_SUITE_WEP40:
153         case WLAN_CIPHER_SUITE_WEP104:
154         case WLAN_CIPHER_SUITE_TKIP:
155         case WLAN_CIPHER_SUITE_CCMP:
156         case WLAN_CIPHER_SUITE_AES_CMAC:
157                 /* all of these we can do in software */
158                 return 0;
159         default:
160                 return -EINVAL;
161         }
162 }
163
164 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
165 {
166         struct ieee80211_sub_if_data *sdata;
167         struct sta_info *sta;
168         int ret;
169
170         might_sleep();
171
172         if (!key || !key->local->ops->set_key)
173                 return;
174
175         assert_key_lock(key->local);
176
177         if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
178                 return;
179
180         sta = key->sta;
181         sdata = key->sdata;
182
183         if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
184               (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
185               (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
186                 increment_tailroom_need_count(sdata);
187
188         ret = drv_set_key(key->local, DISABLE_KEY, sdata,
189                           sta ? &sta->sta : NULL, &key->conf);
190
191         if (ret)
192                 sdata_err(sdata,
193                           "failed to remove key (%d, %pM) from hardware (%d)\n",
194                           key->conf.keyidx,
195                           sta ? sta->sta.addr : bcast_addr, ret);
196
197         key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
198 }
199
200 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
201                                         int idx, bool uni, bool multi)
202 {
203         struct ieee80211_key *key = NULL;
204
205         assert_key_lock(sdata->local);
206
207         if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
208                 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
209
210         if (uni) {
211                 rcu_assign_pointer(sdata->default_unicast_key, key);
212                 drv_set_default_unicast_key(sdata->local, sdata, idx);
213         }
214
215         if (multi)
216                 rcu_assign_pointer(sdata->default_multicast_key, key);
217
218         ieee80211_debugfs_key_update_default(sdata);
219 }
220
221 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
222                                bool uni, bool multi)
223 {
224         mutex_lock(&sdata->local->key_mtx);
225         __ieee80211_set_default_key(sdata, idx, uni, multi);
226         mutex_unlock(&sdata->local->key_mtx);
227 }
228
229 static void
230 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
231 {
232         struct ieee80211_key *key = NULL;
233
234         assert_key_lock(sdata->local);
235
236         if (idx >= NUM_DEFAULT_KEYS &&
237             idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
238                 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
239
240         rcu_assign_pointer(sdata->default_mgmt_key, key);
241
242         ieee80211_debugfs_key_update_default(sdata);
243 }
244
245 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
246                                     int idx)
247 {
248         mutex_lock(&sdata->local->key_mtx);
249         __ieee80211_set_default_mgmt_key(sdata, idx);
250         mutex_unlock(&sdata->local->key_mtx);
251 }
252
253
254 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
255                                   struct sta_info *sta,
256                                   bool pairwise,
257                                   struct ieee80211_key *old,
258                                   struct ieee80211_key *new)
259 {
260         int idx;
261         bool defunikey, defmultikey, defmgmtkey;
262
263         /* caller must provide at least one old/new */
264         if (WARN_ON(!new && !old))
265                 return;
266
267         if (new)
268                 list_add_tail(&new->list, &sdata->key_list);
269
270         WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
271
272         if (old)
273                 idx = old->conf.keyidx;
274         else
275                 idx = new->conf.keyidx;
276
277         if (sta) {
278                 if (pairwise) {
279                         rcu_assign_pointer(sta->ptk[idx], new);
280                         sta->ptk_idx = idx;
281                 } else {
282                         rcu_assign_pointer(sta->gtk[idx], new);
283                         sta->gtk_idx = idx;
284                 }
285         } else {
286                 defunikey = old &&
287                         old == key_mtx_dereference(sdata->local,
288                                                 sdata->default_unicast_key);
289                 defmultikey = old &&
290                         old == key_mtx_dereference(sdata->local,
291                                                 sdata->default_multicast_key);
292                 defmgmtkey = old &&
293                         old == key_mtx_dereference(sdata->local,
294                                                 sdata->default_mgmt_key);
295
296                 if (defunikey && !new)
297                         __ieee80211_set_default_key(sdata, -1, true, false);
298                 if (defmultikey && !new)
299                         __ieee80211_set_default_key(sdata, -1, false, true);
300                 if (defmgmtkey && !new)
301                         __ieee80211_set_default_mgmt_key(sdata, -1);
302
303                 rcu_assign_pointer(sdata->keys[idx], new);
304                 if (defunikey && new)
305                         __ieee80211_set_default_key(sdata, new->conf.keyidx,
306                                                     true, false);
307                 if (defmultikey && new)
308                         __ieee80211_set_default_key(sdata, new->conf.keyidx,
309                                                     false, true);
310                 if (defmgmtkey && new)
311                         __ieee80211_set_default_mgmt_key(sdata,
312                                                          new->conf.keyidx);
313         }
314
315         if (old)
316                 list_del(&old->list);
317 }
318
319 struct ieee80211_key *
320 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
321                     const u8 *key_data,
322                     size_t seq_len, const u8 *seq,
323                     const struct ieee80211_cipher_scheme *cs)
324 {
325         struct ieee80211_key *key;
326         int i, j, err;
327
328         if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
329                 return ERR_PTR(-EINVAL);
330
331         key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
332         if (!key)
333                 return ERR_PTR(-ENOMEM);
334
335         /*
336          * Default to software encryption; we'll later upload the
337          * key to the hardware if possible.
338          */
339         key->conf.flags = 0;
340         key->flags = 0;
341
342         key->conf.cipher = cipher;
343         key->conf.keyidx = idx;
344         key->conf.keylen = key_len;
345         switch (cipher) {
346         case WLAN_CIPHER_SUITE_WEP40:
347         case WLAN_CIPHER_SUITE_WEP104:
348                 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
349                 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
350                 break;
351         case WLAN_CIPHER_SUITE_TKIP:
352                 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
353                 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
354                 if (seq) {
355                         for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
356                                 key->u.tkip.rx[i].iv32 =
357                                         get_unaligned_le32(&seq[2]);
358                                 key->u.tkip.rx[i].iv16 =
359                                         get_unaligned_le16(seq);
360                         }
361                 }
362                 spin_lock_init(&key->u.tkip.txlock);
363                 break;
364         case WLAN_CIPHER_SUITE_CCMP:
365                 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
366                 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
367                 if (seq) {
368                         for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
369                                 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
370                                         key->u.ccmp.rx_pn[i][j] =
371                                                 seq[IEEE80211_CCMP_PN_LEN - j - 1];
372                 }
373                 /*
374                  * Initialize AES key state here as an optimization so that
375                  * it does not need to be initialized for every packet.
376                  */
377                 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
378                 if (IS_ERR(key->u.ccmp.tfm)) {
379                         err = PTR_ERR(key->u.ccmp.tfm);
380                         kfree(key);
381                         return ERR_PTR(err);
382                 }
383                 break;
384         case WLAN_CIPHER_SUITE_AES_CMAC:
385                 key->conf.iv_len = 0;
386                 key->conf.icv_len = sizeof(struct ieee80211_mmie);
387                 if (seq)
388                         for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
389                                 key->u.aes_cmac.rx_pn[j] =
390                                         seq[IEEE80211_CMAC_PN_LEN - j - 1];
391                 /*
392                  * Initialize AES key state here as an optimization so that
393                  * it does not need to be initialized for every packet.
394                  */
395                 key->u.aes_cmac.tfm =
396                         ieee80211_aes_cmac_key_setup(key_data);
397                 if (IS_ERR(key->u.aes_cmac.tfm)) {
398                         err = PTR_ERR(key->u.aes_cmac.tfm);
399                         kfree(key);
400                         return ERR_PTR(err);
401                 }
402                 break;
403         default:
404                 if (cs) {
405                         size_t len = (seq_len > MAX_PN_LEN) ?
406                                                 MAX_PN_LEN : seq_len;
407
408                         key->conf.iv_len = cs->hdr_len;
409                         key->conf.icv_len = cs->mic_len;
410                         for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
411                                 for (j = 0; j < len; j++)
412                                         key->u.gen.rx_pn[i][j] =
413                                                         seq[len - j - 1];
414                 }
415         }
416         memcpy(key->conf.key, key_data, key_len);
417         INIT_LIST_HEAD(&key->list);
418
419         return key;
420 }
421
422 static void ieee80211_key_free_common(struct ieee80211_key *key)
423 {
424         if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
425                 ieee80211_aes_key_free(key->u.ccmp.tfm);
426         if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
427                 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
428         kfree(key);
429 }
430
431 static void __ieee80211_key_destroy(struct ieee80211_key *key,
432                                     bool delay_tailroom)
433 {
434         if (key->local)
435                 ieee80211_key_disable_hw_accel(key);
436
437         if (key->local) {
438                 struct ieee80211_sub_if_data *sdata = key->sdata;
439
440                 ieee80211_debugfs_key_remove(key);
441
442                 if (delay_tailroom) {
443                         /* see ieee80211_delayed_tailroom_dec */
444                         sdata->crypto_tx_tailroom_pending_dec++;
445                         schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
446                                               HZ/2);
447                 } else {
448                         sdata->crypto_tx_tailroom_needed_cnt--;
449                 }
450         }
451
452         ieee80211_key_free_common(key);
453 }
454
455 static void ieee80211_key_destroy(struct ieee80211_key *key,
456                                   bool delay_tailroom)
457 {
458         if (!key)
459                 return;
460
461         /*
462          * Synchronize so the TX path can no longer be using
463          * this key before we free/remove it.
464          */
465         synchronize_net();
466
467         __ieee80211_key_destroy(key, delay_tailroom);
468 }
469
470 void ieee80211_key_free_unused(struct ieee80211_key *key)
471 {
472         WARN_ON(key->sdata || key->local);
473         ieee80211_key_free_common(key);
474 }
475
476 int ieee80211_key_link(struct ieee80211_key *key,
477                        struct ieee80211_sub_if_data *sdata,
478                        struct sta_info *sta)
479 {
480         struct ieee80211_local *local = sdata->local;
481         struct ieee80211_key *old_key;
482         int idx, ret;
483         bool pairwise;
484
485         if (WARN_ON(!sdata || !key))
486                 return -EINVAL;
487
488         pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
489         idx = key->conf.keyidx;
490         key->local = sdata->local;
491         key->sdata = sdata;
492         key->sta = sta;
493
494         mutex_lock(&sdata->local->key_mtx);
495
496         if (sta && pairwise)
497                 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
498         else if (sta)
499                 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
500         else
501                 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
502
503         increment_tailroom_need_count(sdata);
504
505         ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
506         ieee80211_key_destroy(old_key, true);
507
508         ieee80211_debugfs_key_add(key);
509
510         if (!local->wowlan) {
511                 ret = ieee80211_key_enable_hw_accel(key);
512                 if (ret)
513                         ieee80211_key_free(key, true);
514         } else {
515                 ret = 0;
516         }
517
518         mutex_unlock(&sdata->local->key_mtx);
519
520         return ret;
521 }
522
523 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
524 {
525         if (!key)
526                 return;
527
528         /*
529          * Replace key with nothingness if it was ever used.
530          */
531         if (key->sdata)
532                 ieee80211_key_replace(key->sdata, key->sta,
533                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
534                                 key, NULL);
535         ieee80211_key_destroy(key, delay_tailroom);
536 }
537
538 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
539 {
540         struct ieee80211_key *key;
541
542         ASSERT_RTNL();
543
544         if (WARN_ON(!ieee80211_sdata_running(sdata)))
545                 return;
546
547         mutex_lock(&sdata->local->key_mtx);
548
549         sdata->crypto_tx_tailroom_needed_cnt = 0;
550
551         list_for_each_entry(key, &sdata->key_list, list) {
552                 increment_tailroom_need_count(sdata);
553                 ieee80211_key_enable_hw_accel(key);
554         }
555
556         mutex_unlock(&sdata->local->key_mtx);
557 }
558
559 void ieee80211_iter_keys(struct ieee80211_hw *hw,
560                          struct ieee80211_vif *vif,
561                          void (*iter)(struct ieee80211_hw *hw,
562                                       struct ieee80211_vif *vif,
563                                       struct ieee80211_sta *sta,
564                                       struct ieee80211_key_conf *key,
565                                       void *data),
566                          void *iter_data)
567 {
568         struct ieee80211_local *local = hw_to_local(hw);
569         struct ieee80211_key *key, *tmp;
570         struct ieee80211_sub_if_data *sdata;
571
572         ASSERT_RTNL();
573
574         mutex_lock(&local->key_mtx);
575         if (vif) {
576                 sdata = vif_to_sdata(vif);
577                 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
578                         iter(hw, &sdata->vif,
579                              key->sta ? &key->sta->sta : NULL,
580                              &key->conf, iter_data);
581         } else {
582                 list_for_each_entry(sdata, &local->interfaces, list)
583                         list_for_each_entry_safe(key, tmp,
584                                                  &sdata->key_list, list)
585                                 iter(hw, &sdata->vif,
586                                      key->sta ? &key->sta->sta : NULL,
587                                      &key->conf, iter_data);
588         }
589         mutex_unlock(&local->key_mtx);
590 }
591 EXPORT_SYMBOL(ieee80211_iter_keys);
592
593 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
594                                       struct list_head *keys)
595 {
596         struct ieee80211_key *key, *tmp;
597
598         sdata->crypto_tx_tailroom_needed_cnt -=
599                 sdata->crypto_tx_tailroom_pending_dec;
600         sdata->crypto_tx_tailroom_pending_dec = 0;
601
602         ieee80211_debugfs_key_remove_mgmt_default(sdata);
603
604         list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
605                 ieee80211_key_replace(key->sdata, key->sta,
606                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
607                                 key, NULL);
608                 list_add_tail(&key->list, keys);
609         }
610
611         ieee80211_debugfs_key_update_default(sdata);
612 }
613
614 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
615                          bool force_synchronize)
616 {
617         struct ieee80211_local *local = sdata->local;
618         struct ieee80211_sub_if_data *vlan;
619         struct ieee80211_key *key, *tmp;
620         LIST_HEAD(keys);
621
622         cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
623
624         mutex_lock(&local->key_mtx);
625
626         ieee80211_free_keys_iface(sdata, &keys);
627
628         if (sdata->vif.type == NL80211_IFTYPE_AP) {
629                 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
630                         ieee80211_free_keys_iface(vlan, &keys);
631         }
632
633         if (!list_empty(&keys) || force_synchronize)
634                 synchronize_net();
635         list_for_each_entry_safe(key, tmp, &keys, list)
636                 __ieee80211_key_destroy(key, false);
637
638         WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
639                      sdata->crypto_tx_tailroom_pending_dec);
640         if (sdata->vif.type == NL80211_IFTYPE_AP) {
641                 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
642                         WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
643                                      vlan->crypto_tx_tailroom_pending_dec);
644         }
645
646         mutex_unlock(&local->key_mtx);
647 }
648
649 void ieee80211_free_sta_keys(struct ieee80211_local *local,
650                              struct sta_info *sta)
651 {
652         struct ieee80211_key *key;
653         int i;
654
655         mutex_lock(&local->key_mtx);
656         for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
657                 key = key_mtx_dereference(local, sta->gtk[i]);
658                 if (!key)
659                         continue;
660                 ieee80211_key_replace(key->sdata, key->sta,
661                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
662                                 key, NULL);
663                 __ieee80211_key_destroy(key, true);
664         }
665
666         for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
667                 key = key_mtx_dereference(local, sta->ptk[i]);
668                 if (!key)
669                         continue;
670                 ieee80211_key_replace(key->sdata, key->sta,
671                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
672                                 key, NULL);
673                 __ieee80211_key_destroy(key, true);
674         }
675
676         mutex_unlock(&local->key_mtx);
677 }
678
679 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
680 {
681         struct ieee80211_sub_if_data *sdata;
682
683         sdata = container_of(wk, struct ieee80211_sub_if_data,
684                              dec_tailroom_needed_wk.work);
685
686         /*
687          * The reason for the delayed tailroom needed decrementing is to
688          * make roaming faster: during roaming, all keys are first deleted
689          * and then new keys are installed. The first new key causes the
690          * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
691          * the cost of synchronize_net() (which can be slow). Avoid this
692          * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
693          * key removal for a while, so if we roam the value is larger than
694          * zero and no 0->1 transition happens.
695          *
696          * The cost is that if the AP switching was from an AP with keys
697          * to one without, we still allocate tailroom while it would no
698          * longer be needed. However, in the typical (fast) roaming case
699          * within an ESS this usually won't happen.
700          */
701
702         mutex_lock(&sdata->local->key_mtx);
703         sdata->crypto_tx_tailroom_needed_cnt -=
704                 sdata->crypto_tx_tailroom_pending_dec;
705         sdata->crypto_tx_tailroom_pending_dec = 0;
706         mutex_unlock(&sdata->local->key_mtx);
707 }
708
709 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
710                                 const u8 *replay_ctr, gfp_t gfp)
711 {
712         struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
713
714         trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
715
716         cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
717 }
718 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
719
720 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
721                               struct ieee80211_key_seq *seq)
722 {
723         struct ieee80211_key *key;
724         u64 pn64;
725
726         if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
727                 return;
728
729         key = container_of(keyconf, struct ieee80211_key, conf);
730
731         switch (key->conf.cipher) {
732         case WLAN_CIPHER_SUITE_TKIP:
733                 seq->tkip.iv32 = key->u.tkip.tx.iv32;
734                 seq->tkip.iv16 = key->u.tkip.tx.iv16;
735                 break;
736         case WLAN_CIPHER_SUITE_CCMP:
737                 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
738                 seq->ccmp.pn[5] = pn64;
739                 seq->ccmp.pn[4] = pn64 >> 8;
740                 seq->ccmp.pn[3] = pn64 >> 16;
741                 seq->ccmp.pn[2] = pn64 >> 24;
742                 seq->ccmp.pn[1] = pn64 >> 32;
743                 seq->ccmp.pn[0] = pn64 >> 40;
744                 break;
745         case WLAN_CIPHER_SUITE_AES_CMAC:
746                 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
747                 seq->ccmp.pn[5] = pn64;
748                 seq->ccmp.pn[4] = pn64 >> 8;
749                 seq->ccmp.pn[3] = pn64 >> 16;
750                 seq->ccmp.pn[2] = pn64 >> 24;
751                 seq->ccmp.pn[1] = pn64 >> 32;
752                 seq->ccmp.pn[0] = pn64 >> 40;
753                 break;
754         default:
755                 WARN_ON(1);
756         }
757 }
758 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
759
760 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
761                               int tid, struct ieee80211_key_seq *seq)
762 {
763         struct ieee80211_key *key;
764         const u8 *pn;
765
766         key = container_of(keyconf, struct ieee80211_key, conf);
767
768         switch (key->conf.cipher) {
769         case WLAN_CIPHER_SUITE_TKIP:
770                 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
771                         return;
772                 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
773                 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
774                 break;
775         case WLAN_CIPHER_SUITE_CCMP:
776                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
777                         return;
778                 if (tid < 0)
779                         pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
780                 else
781                         pn = key->u.ccmp.rx_pn[tid];
782                 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
783                 break;
784         case WLAN_CIPHER_SUITE_AES_CMAC:
785                 if (WARN_ON(tid != 0))
786                         return;
787                 pn = key->u.aes_cmac.rx_pn;
788                 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
789                 break;
790         }
791 }
792 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
793
794 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
795                               struct ieee80211_key_seq *seq)
796 {
797         struct ieee80211_key *key;
798         u64 pn64;
799
800         key = container_of(keyconf, struct ieee80211_key, conf);
801
802         switch (key->conf.cipher) {
803         case WLAN_CIPHER_SUITE_TKIP:
804                 key->u.tkip.tx.iv32 = seq->tkip.iv32;
805                 key->u.tkip.tx.iv16 = seq->tkip.iv16;
806                 break;
807         case WLAN_CIPHER_SUITE_CCMP:
808                 pn64 = (u64)seq->ccmp.pn[5] |
809                        ((u64)seq->ccmp.pn[4] << 8) |
810                        ((u64)seq->ccmp.pn[3] << 16) |
811                        ((u64)seq->ccmp.pn[2] << 24) |
812                        ((u64)seq->ccmp.pn[1] << 32) |
813                        ((u64)seq->ccmp.pn[0] << 40);
814                 atomic64_set(&key->u.ccmp.tx_pn, pn64);
815                 break;
816         case WLAN_CIPHER_SUITE_AES_CMAC:
817                 pn64 = (u64)seq->aes_cmac.pn[5] |
818                        ((u64)seq->aes_cmac.pn[4] << 8) |
819                        ((u64)seq->aes_cmac.pn[3] << 16) |
820                        ((u64)seq->aes_cmac.pn[2] << 24) |
821                        ((u64)seq->aes_cmac.pn[1] << 32) |
822                        ((u64)seq->aes_cmac.pn[0] << 40);
823                 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
824                 break;
825         default:
826                 WARN_ON(1);
827                 break;
828         }
829 }
830 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
831
832 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
833                               int tid, struct ieee80211_key_seq *seq)
834 {
835         struct ieee80211_key *key;
836         u8 *pn;
837
838         key = container_of(keyconf, struct ieee80211_key, conf);
839
840         switch (key->conf.cipher) {
841         case WLAN_CIPHER_SUITE_TKIP:
842                 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
843                         return;
844                 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
845                 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
846                 break;
847         case WLAN_CIPHER_SUITE_CCMP:
848                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
849                         return;
850                 if (tid < 0)
851                         pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
852                 else
853                         pn = key->u.ccmp.rx_pn[tid];
854                 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
855                 break;
856         case WLAN_CIPHER_SUITE_AES_CMAC:
857                 if (WARN_ON(tid != 0))
858                         return;
859                 pn = key->u.aes_cmac.rx_pn;
860                 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
861                 break;
862         default:
863                 WARN_ON(1);
864                 break;
865         }
866 }
867 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
868
869 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
870 {
871         struct ieee80211_key *key;
872
873         key = container_of(keyconf, struct ieee80211_key, conf);
874
875         assert_key_lock(key->local);
876
877         /*
878          * if key was uploaded, we assume the driver will/has remove(d)
879          * it, so adjust bookkeeping accordingly
880          */
881         if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
882                 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
883
884                 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
885                       (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
886                       (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
887                         increment_tailroom_need_count(key->sdata);
888         }
889
890         ieee80211_key_free(key, false);
891 }
892 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
893
894 struct ieee80211_key_conf *
895 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
896                         struct ieee80211_key_conf *keyconf)
897 {
898         struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
899         struct ieee80211_local *local = sdata->local;
900         struct ieee80211_key *key;
901         int err;
902
903         if (WARN_ON(!local->wowlan))
904                 return ERR_PTR(-EINVAL);
905
906         if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
907                 return ERR_PTR(-EINVAL);
908
909         key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
910                                   keyconf->keylen, keyconf->key,
911                                   0, NULL, NULL);
912         if (IS_ERR(key))
913                 return ERR_CAST(key);
914
915         if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
916                 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
917
918         err = ieee80211_key_link(key, sdata, NULL);
919         if (err)
920                 return ERR_PTR(err);
921
922         return &key->conf;
923 }
924 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);