Linux-libre 4.9.86-gnu
[librecmc/linux-libre.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <net/flow_dissector.h>
22 #include <scsi/fc/fc_fcoe.h>
23
24 static void dissector_set_key(struct flow_dissector *flow_dissector,
25                               enum flow_dissector_key_id key_id)
26 {
27         flow_dissector->used_keys |= (1 << key_id);
28 }
29
30 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
31                              const struct flow_dissector_key *key,
32                              unsigned int key_count)
33 {
34         unsigned int i;
35
36         memset(flow_dissector, 0, sizeof(*flow_dissector));
37
38         for (i = 0; i < key_count; i++, key++) {
39                 /* User should make sure that every key target offset is withing
40                  * boundaries of unsigned short.
41                  */
42                 BUG_ON(key->offset > USHRT_MAX);
43                 BUG_ON(dissector_uses_key(flow_dissector,
44                                           key->key_id));
45
46                 dissector_set_key(flow_dissector, key->key_id);
47                 flow_dissector->offset[key->key_id] = key->offset;
48         }
49
50         /* Ensure that the dissector always includes control and basic key.
51          * That way we are able to avoid handling lack of these in fast path.
52          */
53         BUG_ON(!dissector_uses_key(flow_dissector,
54                                    FLOW_DISSECTOR_KEY_CONTROL));
55         BUG_ON(!dissector_uses_key(flow_dissector,
56                                    FLOW_DISSECTOR_KEY_BASIC));
57 }
58 EXPORT_SYMBOL(skb_flow_dissector_init);
59
60 /**
61  * __skb_flow_get_ports - extract the upper layer ports and return them
62  * @skb: sk_buff to extract the ports from
63  * @thoff: transport header offset
64  * @ip_proto: protocol for which to get port offset
65  * @data: raw buffer pointer to the packet, if NULL use skb->data
66  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
67  *
68  * The function will try to retrieve the ports at offset thoff + poff where poff
69  * is the protocol port offset returned from proto_ports_offset
70  */
71 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
72                             void *data, int hlen)
73 {
74         int poff = proto_ports_offset(ip_proto);
75
76         if (!data) {
77                 data = skb->data;
78                 hlen = skb_headlen(skb);
79         }
80
81         if (poff >= 0) {
82                 __be32 *ports, _ports;
83
84                 ports = __skb_header_pointer(skb, thoff + poff,
85                                              sizeof(_ports), data, hlen, &_ports);
86                 if (ports)
87                         return *ports;
88         }
89
90         return 0;
91 }
92 EXPORT_SYMBOL(__skb_flow_get_ports);
93
94 /**
95  * __skb_flow_dissect - extract the flow_keys struct and return it
96  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
97  * @flow_dissector: list of keys to dissect
98  * @target_container: target structure to put dissected values into
99  * @data: raw buffer pointer to the packet, if NULL use skb->data
100  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
101  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
102  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
103  *
104  * The function will try to retrieve individual keys into target specified
105  * by flow_dissector from either the skbuff or a raw buffer specified by the
106  * rest parameters.
107  *
108  * Caller must take care of zeroing target container memory.
109  */
110 bool __skb_flow_dissect(const struct sk_buff *skb,
111                         struct flow_dissector *flow_dissector,
112                         void *target_container,
113                         void *data, __be16 proto, int nhoff, int hlen,
114                         unsigned int flags)
115 {
116         struct flow_dissector_key_control *key_control;
117         struct flow_dissector_key_basic *key_basic;
118         struct flow_dissector_key_addrs *key_addrs;
119         struct flow_dissector_key_ports *key_ports;
120         struct flow_dissector_key_tags *key_tags;
121         struct flow_dissector_key_vlan *key_vlan;
122         struct flow_dissector_key_keyid *key_keyid;
123         bool skip_vlan = false;
124         u8 ip_proto = 0;
125         bool ret;
126
127         if (!data) {
128                 data = skb->data;
129                 proto = skb_vlan_tag_present(skb) ?
130                          skb->vlan_proto : skb->protocol;
131                 nhoff = skb_network_offset(skb);
132                 hlen = skb_headlen(skb);
133         }
134
135         /* It is ensured by skb_flow_dissector_init() that control key will
136          * be always present.
137          */
138         key_control = skb_flow_dissector_target(flow_dissector,
139                                                 FLOW_DISSECTOR_KEY_CONTROL,
140                                                 target_container);
141
142         /* It is ensured by skb_flow_dissector_init() that basic key will
143          * be always present.
144          */
145         key_basic = skb_flow_dissector_target(flow_dissector,
146                                               FLOW_DISSECTOR_KEY_BASIC,
147                                               target_container);
148
149         if (dissector_uses_key(flow_dissector,
150                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
151                 struct ethhdr *eth = eth_hdr(skb);
152                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
153
154                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
155                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
156                                                           target_container);
157                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
158         }
159
160 again:
161         switch (proto) {
162         case htons(ETH_P_IP): {
163                 const struct iphdr *iph;
164                 struct iphdr _iph;
165 ip:
166                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
167                 if (!iph || iph->ihl < 5)
168                         goto out_bad;
169                 nhoff += iph->ihl * 4;
170
171                 ip_proto = iph->protocol;
172
173                 if (dissector_uses_key(flow_dissector,
174                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
175                         key_addrs = skb_flow_dissector_target(flow_dissector,
176                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
177                                                               target_container);
178
179                         memcpy(&key_addrs->v4addrs, &iph->saddr,
180                                sizeof(key_addrs->v4addrs));
181                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
182                 }
183
184                 if (ip_is_fragment(iph)) {
185                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
186
187                         if (iph->frag_off & htons(IP_OFFSET)) {
188                                 goto out_good;
189                         } else {
190                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
191                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
192                                         goto out_good;
193                         }
194                 }
195
196                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
197                         goto out_good;
198
199                 break;
200         }
201         case htons(ETH_P_IPV6): {
202                 const struct ipv6hdr *iph;
203                 struct ipv6hdr _iph;
204
205 ipv6:
206                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
207                 if (!iph)
208                         goto out_bad;
209
210                 ip_proto = iph->nexthdr;
211                 nhoff += sizeof(struct ipv6hdr);
212
213                 if (dissector_uses_key(flow_dissector,
214                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
215                         key_addrs = skb_flow_dissector_target(flow_dissector,
216                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
217                                                               target_container);
218
219                         memcpy(&key_addrs->v6addrs, &iph->saddr,
220                                sizeof(key_addrs->v6addrs));
221                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
222                 }
223
224                 if ((dissector_uses_key(flow_dissector,
225                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
226                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
227                     ip6_flowlabel(iph)) {
228                         __be32 flow_label = ip6_flowlabel(iph);
229
230                         if (dissector_uses_key(flow_dissector,
231                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
232                                 key_tags = skb_flow_dissector_target(flow_dissector,
233                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
234                                                                      target_container);
235                                 key_tags->flow_label = ntohl(flow_label);
236                         }
237                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
238                                 goto out_good;
239                 }
240
241                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
242                         goto out_good;
243
244                 break;
245         }
246         case htons(ETH_P_8021AD):
247         case htons(ETH_P_8021Q): {
248                 const struct vlan_hdr *vlan;
249                 struct vlan_hdr _vlan;
250                 bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
251
252                 if (vlan_tag_present)
253                         proto = skb->protocol;
254
255                 if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
256                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
257                                                     data, hlen, &_vlan);
258                         if (!vlan)
259                                 goto out_bad;
260                         proto = vlan->h_vlan_encapsulated_proto;
261                         nhoff += sizeof(*vlan);
262                         if (skip_vlan)
263                                 goto again;
264                 }
265
266                 skip_vlan = true;
267                 if (dissector_uses_key(flow_dissector,
268                                        FLOW_DISSECTOR_KEY_VLAN)) {
269                         key_vlan = skb_flow_dissector_target(flow_dissector,
270                                                              FLOW_DISSECTOR_KEY_VLAN,
271                                                              target_container);
272
273                         if (vlan_tag_present) {
274                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
275                                 key_vlan->vlan_priority =
276                                         (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
277                         } else {
278                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
279                                         VLAN_VID_MASK;
280                                 key_vlan->vlan_priority =
281                                         (ntohs(vlan->h_vlan_TCI) &
282                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
283                         }
284                 }
285
286                 goto again;
287         }
288         case htons(ETH_P_PPP_SES): {
289                 struct {
290                         struct pppoe_hdr hdr;
291                         __be16 proto;
292                 } *hdr, _hdr;
293                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
294                 if (!hdr)
295                         goto out_bad;
296                 proto = hdr->proto;
297                 nhoff += PPPOE_SES_HLEN;
298                 switch (proto) {
299                 case htons(PPP_IP):
300                         goto ip;
301                 case htons(PPP_IPV6):
302                         goto ipv6;
303                 default:
304                         goto out_bad;
305                 }
306         }
307         case htons(ETH_P_TIPC): {
308                 struct {
309                         __be32 pre[3];
310                         __be32 srcnode;
311                 } *hdr, _hdr;
312                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
313                 if (!hdr)
314                         goto out_bad;
315
316                 if (dissector_uses_key(flow_dissector,
317                                        FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
318                         key_addrs = skb_flow_dissector_target(flow_dissector,
319                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
320                                                               target_container);
321                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
322                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
323                 }
324                 goto out_good;
325         }
326
327         case htons(ETH_P_MPLS_UC):
328         case htons(ETH_P_MPLS_MC): {
329                 struct mpls_label *hdr, _hdr[2];
330 mpls:
331                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
332                                            hlen, &_hdr);
333                 if (!hdr)
334                         goto out_bad;
335
336                 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
337                      MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
338                         if (dissector_uses_key(flow_dissector,
339                                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
340                                 key_keyid = skb_flow_dissector_target(flow_dissector,
341                                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
342                                                                       target_container);
343                                 key_keyid->keyid = hdr[1].entry &
344                                         htonl(MPLS_LS_LABEL_MASK);
345                         }
346
347                         goto out_good;
348                 }
349
350                 goto out_good;
351         }
352
353         case htons(ETH_P_FCOE):
354                 if ((hlen - nhoff) < FCOE_HEADER_LEN)
355                         goto out_bad;
356
357                 nhoff += FCOE_HEADER_LEN;
358                 goto out_good;
359         default:
360                 goto out_bad;
361         }
362
363 ip_proto_again:
364         switch (ip_proto) {
365         case IPPROTO_GRE: {
366                 struct gre_base_hdr *hdr, _hdr;
367                 u16 gre_ver;
368                 int offset = 0;
369
370                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
371                 if (!hdr)
372                         goto out_bad;
373
374                 /* Only look inside GRE without routing */
375                 if (hdr->flags & GRE_ROUTING)
376                         break;
377
378                 /* Only look inside GRE for version 0 and 1 */
379                 gre_ver = ntohs(hdr->flags & GRE_VERSION);
380                 if (gre_ver > 1)
381                         break;
382
383                 proto = hdr->protocol;
384                 if (gre_ver) {
385                         /* Version1 must be PPTP, and check the flags */
386                         if (!(proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
387                                 break;
388                 }
389
390                 offset += sizeof(struct gre_base_hdr);
391
392                 if (hdr->flags & GRE_CSUM)
393                         offset += sizeof(((struct gre_full_hdr *)0)->csum) +
394                                   sizeof(((struct gre_full_hdr *)0)->reserved1);
395
396                 if (hdr->flags & GRE_KEY) {
397                         const __be32 *keyid;
398                         __be32 _keyid;
399
400                         keyid = __skb_header_pointer(skb, nhoff + offset, sizeof(_keyid),
401                                                      data, hlen, &_keyid);
402                         if (!keyid)
403                                 goto out_bad;
404
405                         if (dissector_uses_key(flow_dissector,
406                                                FLOW_DISSECTOR_KEY_GRE_KEYID)) {
407                                 key_keyid = skb_flow_dissector_target(flow_dissector,
408                                                                       FLOW_DISSECTOR_KEY_GRE_KEYID,
409                                                                       target_container);
410                                 if (gre_ver == 0)
411                                         key_keyid->keyid = *keyid;
412                                 else
413                                         key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
414                         }
415                         offset += sizeof(((struct gre_full_hdr *)0)->key);
416                 }
417
418                 if (hdr->flags & GRE_SEQ)
419                         offset += sizeof(((struct pptp_gre_header *)0)->seq);
420
421                 if (gre_ver == 0) {
422                         if (proto == htons(ETH_P_TEB)) {
423                                 const struct ethhdr *eth;
424                                 struct ethhdr _eth;
425
426                                 eth = __skb_header_pointer(skb, nhoff + offset,
427                                                            sizeof(_eth),
428                                                            data, hlen, &_eth);
429                                 if (!eth)
430                                         goto out_bad;
431                                 proto = eth->h_proto;
432                                 offset += sizeof(*eth);
433
434                                 /* Cap headers that we access via pointers at the
435                                  * end of the Ethernet header as our maximum alignment
436                                  * at that point is only 2 bytes.
437                                  */
438                                 if (NET_IP_ALIGN)
439                                         hlen = (nhoff + offset);
440                         }
441                 } else { /* version 1, must be PPTP */
442                         u8 _ppp_hdr[PPP_HDRLEN];
443                         u8 *ppp_hdr;
444
445                         if (hdr->flags & GRE_ACK)
446                                 offset += sizeof(((struct pptp_gre_header *)0)->ack);
447
448                         ppp_hdr = __skb_header_pointer(skb, nhoff + offset,
449                                                      sizeof(_ppp_hdr),
450                                                      data, hlen, _ppp_hdr);
451                         if (!ppp_hdr)
452                                 goto out_bad;
453
454                         switch (PPP_PROTOCOL(ppp_hdr)) {
455                         case PPP_IP:
456                                 proto = htons(ETH_P_IP);
457                                 break;
458                         case PPP_IPV6:
459                                 proto = htons(ETH_P_IPV6);
460                                 break;
461                         default:
462                                 /* Could probably catch some more like MPLS */
463                                 break;
464                         }
465
466                         offset += PPP_HDRLEN;
467                 }
468
469                 nhoff += offset;
470                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
471                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
472                         goto out_good;
473
474                 goto again;
475         }
476         case NEXTHDR_HOP:
477         case NEXTHDR_ROUTING:
478         case NEXTHDR_DEST: {
479                 u8 _opthdr[2], *opthdr;
480
481                 if (proto != htons(ETH_P_IPV6))
482                         break;
483
484                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
485                                               data, hlen, &_opthdr);
486                 if (!opthdr)
487                         goto out_bad;
488
489                 ip_proto = opthdr[0];
490                 nhoff += (opthdr[1] + 1) << 3;
491
492                 goto ip_proto_again;
493         }
494         case NEXTHDR_FRAGMENT: {
495                 struct frag_hdr _fh, *fh;
496
497                 if (proto != htons(ETH_P_IPV6))
498                         break;
499
500                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
501                                           data, hlen, &_fh);
502
503                 if (!fh)
504                         goto out_bad;
505
506                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
507
508                 nhoff += sizeof(_fh);
509                 ip_proto = fh->nexthdr;
510
511                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
512                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
513                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
514                                 goto ip_proto_again;
515                 }
516                 goto out_good;
517         }
518         case IPPROTO_IPIP:
519                 proto = htons(ETH_P_IP);
520
521                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
522                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
523                         goto out_good;
524
525                 goto ip;
526         case IPPROTO_IPV6:
527                 proto = htons(ETH_P_IPV6);
528
529                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
530                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
531                         goto out_good;
532
533                 goto ipv6;
534         case IPPROTO_MPLS:
535                 proto = htons(ETH_P_MPLS_UC);
536                 goto mpls;
537         default:
538                 break;
539         }
540
541         if (dissector_uses_key(flow_dissector,
542                                FLOW_DISSECTOR_KEY_PORTS)) {
543                 key_ports = skb_flow_dissector_target(flow_dissector,
544                                                       FLOW_DISSECTOR_KEY_PORTS,
545                                                       target_container);
546                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
547                                                         data, hlen);
548         }
549
550 out_good:
551         ret = true;
552
553 out:
554         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
555         key_basic->n_proto = proto;
556         key_basic->ip_proto = ip_proto;
557
558         return ret;
559
560 out_bad:
561         ret = false;
562         goto out;
563 }
564 EXPORT_SYMBOL(__skb_flow_dissect);
565
566 static u32 hashrnd __read_mostly;
567 static __always_inline void __flow_hash_secret_init(void)
568 {
569         net_get_random_once(&hashrnd, sizeof(hashrnd));
570 }
571
572 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
573                                              u32 keyval)
574 {
575         return jhash2(words, length, keyval);
576 }
577
578 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
579 {
580         const void *p = flow;
581
582         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
583         return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
584 }
585
586 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
587 {
588         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
589         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
590         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
591                      sizeof(*flow) - sizeof(flow->addrs));
592
593         switch (flow->control.addr_type) {
594         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
595                 diff -= sizeof(flow->addrs.v4addrs);
596                 break;
597         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
598                 diff -= sizeof(flow->addrs.v6addrs);
599                 break;
600         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
601                 diff -= sizeof(flow->addrs.tipcaddrs);
602                 break;
603         }
604         return (sizeof(*flow) - diff) / sizeof(u32);
605 }
606
607 __be32 flow_get_u32_src(const struct flow_keys *flow)
608 {
609         switch (flow->control.addr_type) {
610         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
611                 return flow->addrs.v4addrs.src;
612         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
613                 return (__force __be32)ipv6_addr_hash(
614                         &flow->addrs.v6addrs.src);
615         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
616                 return flow->addrs.tipcaddrs.srcnode;
617         default:
618                 return 0;
619         }
620 }
621 EXPORT_SYMBOL(flow_get_u32_src);
622
623 __be32 flow_get_u32_dst(const struct flow_keys *flow)
624 {
625         switch (flow->control.addr_type) {
626         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
627                 return flow->addrs.v4addrs.dst;
628         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
629                 return (__force __be32)ipv6_addr_hash(
630                         &flow->addrs.v6addrs.dst);
631         default:
632                 return 0;
633         }
634 }
635 EXPORT_SYMBOL(flow_get_u32_dst);
636
637 static inline void __flow_hash_consistentify(struct flow_keys *keys)
638 {
639         int addr_diff, i;
640
641         switch (keys->control.addr_type) {
642         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
643                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
644                             (__force u32)keys->addrs.v4addrs.src;
645                 if ((addr_diff < 0) ||
646                     (addr_diff == 0 &&
647                      ((__force u16)keys->ports.dst <
648                       (__force u16)keys->ports.src))) {
649                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
650                         swap(keys->ports.src, keys->ports.dst);
651                 }
652                 break;
653         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
654                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
655                                    &keys->addrs.v6addrs.src,
656                                    sizeof(keys->addrs.v6addrs.dst));
657                 if ((addr_diff < 0) ||
658                     (addr_diff == 0 &&
659                      ((__force u16)keys->ports.dst <
660                       (__force u16)keys->ports.src))) {
661                         for (i = 0; i < 4; i++)
662                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
663                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
664                         swap(keys->ports.src, keys->ports.dst);
665                 }
666                 break;
667         }
668 }
669
670 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
671 {
672         u32 hash;
673
674         __flow_hash_consistentify(keys);
675
676         hash = __flow_hash_words(flow_keys_hash_start(keys),
677                                  flow_keys_hash_length(keys), keyval);
678         if (!hash)
679                 hash = 1;
680
681         return hash;
682 }
683
684 u32 flow_hash_from_keys(struct flow_keys *keys)
685 {
686         __flow_hash_secret_init();
687         return __flow_hash_from_keys(keys, hashrnd);
688 }
689 EXPORT_SYMBOL(flow_hash_from_keys);
690
691 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
692                                   struct flow_keys *keys, u32 keyval)
693 {
694         skb_flow_dissect_flow_keys(skb, keys,
695                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
696
697         return __flow_hash_from_keys(keys, keyval);
698 }
699
700 struct _flow_keys_digest_data {
701         __be16  n_proto;
702         u8      ip_proto;
703         u8      padding;
704         __be32  ports;
705         __be32  src;
706         __be32  dst;
707 };
708
709 void make_flow_keys_digest(struct flow_keys_digest *digest,
710                            const struct flow_keys *flow)
711 {
712         struct _flow_keys_digest_data *data =
713             (struct _flow_keys_digest_data *)digest;
714
715         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
716
717         memset(digest, 0, sizeof(*digest));
718
719         data->n_proto = flow->basic.n_proto;
720         data->ip_proto = flow->basic.ip_proto;
721         data->ports = flow->ports.ports;
722         data->src = flow->addrs.v4addrs.src;
723         data->dst = flow->addrs.v4addrs.dst;
724 }
725 EXPORT_SYMBOL(make_flow_keys_digest);
726
727 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
728
729 u32 __skb_get_hash_symmetric(struct sk_buff *skb)
730 {
731         struct flow_keys keys;
732
733         __flow_hash_secret_init();
734
735         memset(&keys, 0, sizeof(keys));
736         __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
737                            NULL, 0, 0, 0,
738                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
739
740         return __flow_hash_from_keys(&keys, hashrnd);
741 }
742 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
743
744 /**
745  * __skb_get_hash: calculate a flow hash
746  * @skb: sk_buff to calculate flow hash from
747  *
748  * This function calculates a flow hash based on src/dst addresses
749  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
750  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
751  * if hash is a canonical 4-tuple hash over transport ports.
752  */
753 void __skb_get_hash(struct sk_buff *skb)
754 {
755         struct flow_keys keys;
756         u32 hash;
757
758         __flow_hash_secret_init();
759
760         hash = ___skb_get_hash(skb, &keys, hashrnd);
761
762         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
763 }
764 EXPORT_SYMBOL(__skb_get_hash);
765
766 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
767 {
768         struct flow_keys keys;
769
770         return ___skb_get_hash(skb, &keys, perturb);
771 }
772 EXPORT_SYMBOL(skb_get_hash_perturb);
773
774 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
775 {
776         struct flow_keys keys;
777
778         memset(&keys, 0, sizeof(keys));
779
780         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
781                sizeof(keys.addrs.v6addrs.src));
782         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
783                sizeof(keys.addrs.v6addrs.dst));
784         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
785         keys.ports.src = fl6->fl6_sport;
786         keys.ports.dst = fl6->fl6_dport;
787         keys.keyid.keyid = fl6->fl6_gre_key;
788         keys.tags.flow_label = (__force u32)fl6->flowlabel;
789         keys.basic.ip_proto = fl6->flowi6_proto;
790
791         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
792                           flow_keys_have_l4(&keys));
793
794         return skb->hash;
795 }
796 EXPORT_SYMBOL(__skb_get_hash_flowi6);
797
798 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
799 {
800         struct flow_keys keys;
801
802         memset(&keys, 0, sizeof(keys));
803
804         keys.addrs.v4addrs.src = fl4->saddr;
805         keys.addrs.v4addrs.dst = fl4->daddr;
806         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
807         keys.ports.src = fl4->fl4_sport;
808         keys.ports.dst = fl4->fl4_dport;
809         keys.keyid.keyid = fl4->fl4_gre_key;
810         keys.basic.ip_proto = fl4->flowi4_proto;
811
812         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
813                           flow_keys_have_l4(&keys));
814
815         return skb->hash;
816 }
817 EXPORT_SYMBOL(__skb_get_hash_flowi4);
818
819 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
820                    const struct flow_keys *keys, int hlen)
821 {
822         u32 poff = keys->control.thoff;
823
824         /* skip L4 headers for fragments after the first */
825         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
826             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
827                 return poff;
828
829         switch (keys->basic.ip_proto) {
830         case IPPROTO_TCP: {
831                 /* access doff as u8 to avoid unaligned access */
832                 const u8 *doff;
833                 u8 _doff;
834
835                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
836                                             data, hlen, &_doff);
837                 if (!doff)
838                         return poff;
839
840                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
841                 break;
842         }
843         case IPPROTO_UDP:
844         case IPPROTO_UDPLITE:
845                 poff += sizeof(struct udphdr);
846                 break;
847         /* For the rest, we do not really care about header
848          * extensions at this point for now.
849          */
850         case IPPROTO_ICMP:
851                 poff += sizeof(struct icmphdr);
852                 break;
853         case IPPROTO_ICMPV6:
854                 poff += sizeof(struct icmp6hdr);
855                 break;
856         case IPPROTO_IGMP:
857                 poff += sizeof(struct igmphdr);
858                 break;
859         case IPPROTO_DCCP:
860                 poff += sizeof(struct dccp_hdr);
861                 break;
862         case IPPROTO_SCTP:
863                 poff += sizeof(struct sctphdr);
864                 break;
865         }
866
867         return poff;
868 }
869
870 /**
871  * skb_get_poff - get the offset to the payload
872  * @skb: sk_buff to get the payload offset from
873  *
874  * The function will get the offset to the payload as far as it could
875  * be dissected.  The main user is currently BPF, so that we can dynamically
876  * truncate packets without needing to push actual payload to the user
877  * space and can analyze headers only, instead.
878  */
879 u32 skb_get_poff(const struct sk_buff *skb)
880 {
881         struct flow_keys keys;
882
883         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
884                 return 0;
885
886         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
887 }
888
889 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
890 {
891         memset(keys, 0, sizeof(*keys));
892
893         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
894             sizeof(keys->addrs.v6addrs.src));
895         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
896             sizeof(keys->addrs.v6addrs.dst));
897         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
898         keys->ports.src = fl6->fl6_sport;
899         keys->ports.dst = fl6->fl6_dport;
900         keys->keyid.keyid = fl6->fl6_gre_key;
901         keys->tags.flow_label = (__force u32)fl6->flowlabel;
902         keys->basic.ip_proto = fl6->flowi6_proto;
903
904         return flow_hash_from_keys(keys);
905 }
906 EXPORT_SYMBOL(__get_hash_from_flowi6);
907
908 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
909 {
910         memset(keys, 0, sizeof(*keys));
911
912         keys->addrs.v4addrs.src = fl4->saddr;
913         keys->addrs.v4addrs.dst = fl4->daddr;
914         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
915         keys->ports.src = fl4->fl4_sport;
916         keys->ports.dst = fl4->fl4_dport;
917         keys->keyid.keyid = fl4->fl4_gre_key;
918         keys->basic.ip_proto = fl4->flowi4_proto;
919
920         return flow_hash_from_keys(keys);
921 }
922 EXPORT_SYMBOL(__get_hash_from_flowi4);
923
924 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
925         {
926                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
927                 .offset = offsetof(struct flow_keys, control),
928         },
929         {
930                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
931                 .offset = offsetof(struct flow_keys, basic),
932         },
933         {
934                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
935                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
936         },
937         {
938                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
939                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
940         },
941         {
942                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
943                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
944         },
945         {
946                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
947                 .offset = offsetof(struct flow_keys, ports),
948         },
949         {
950                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
951                 .offset = offsetof(struct flow_keys, vlan),
952         },
953         {
954                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
955                 .offset = offsetof(struct flow_keys, tags),
956         },
957         {
958                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
959                 .offset = offsetof(struct flow_keys, keyid),
960         },
961 };
962
963 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
964         {
965                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
966                 .offset = offsetof(struct flow_keys, control),
967         },
968         {
969                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
970                 .offset = offsetof(struct flow_keys, basic),
971         },
972         {
973                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
974                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
975         },
976         {
977                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
978                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
979         },
980         {
981                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
982                 .offset = offsetof(struct flow_keys, ports),
983         },
984 };
985
986 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
987         {
988                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
989                 .offset = offsetof(struct flow_keys, control),
990         },
991         {
992                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
993                 .offset = offsetof(struct flow_keys, basic),
994         },
995 };
996
997 struct flow_dissector flow_keys_dissector __read_mostly;
998 EXPORT_SYMBOL(flow_keys_dissector);
999
1000 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1001
1002 static int __init init_default_flow_dissectors(void)
1003 {
1004         skb_flow_dissector_init(&flow_keys_dissector,
1005                                 flow_keys_dissector_keys,
1006                                 ARRAY_SIZE(flow_keys_dissector_keys));
1007         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1008                                 flow_keys_dissector_symmetric_keys,
1009                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1010         skb_flow_dissector_init(&flow_keys_buf_dissector,
1011                                 flow_keys_buf_dissector_keys,
1012                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
1013         return 0;
1014 }
1015
1016 core_initcall(init_default_flow_dissectors);