Linux-libre 4.19.123-gnu
[librecmc/linux-libre.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                         }
252                 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255                 if (PageHuge(new)) {
256                         pte = pte_mkhuge(pte);
257                         pte = arch_make_huge_pte(pte, vma, new, 0);
258                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259                         if (PageAnon(new))
260                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
261                         else
262                                 page_dup_rmap(new, true);
263                 } else
264 #endif
265                 {
266                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268                         if (PageAnon(new))
269                                 page_add_anon_rmap(new, vma, pvmw.address, false);
270                         else
271                                 page_add_file_rmap(new, false);
272                 }
273                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274                         mlock_vma_page(new);
275
276                 if (PageTransHuge(page) && PageMlocked(page))
277                         clear_page_mlock(page);
278
279                 /* No need to invalidate - it was non-present before */
280                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281         }
282
283         return true;
284 }
285
286 /*
287  * Get rid of all migration entries and replace them by
288  * references to the indicated page.
289  */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292         struct rmap_walk_control rwc = {
293                 .rmap_one = remove_migration_pte,
294                 .arg = old,
295         };
296
297         if (locked)
298                 rmap_walk_locked(new, &rwc);
299         else
300                 rmap_walk(new, &rwc);
301 }
302
303 /*
304  * Something used the pte of a page under migration. We need to
305  * get to the page and wait until migration is finished.
306  * When we return from this function the fault will be retried.
307  */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309                                 spinlock_t *ptl)
310 {
311         pte_t pte;
312         swp_entry_t entry;
313         struct page *page;
314
315         spin_lock(ptl);
316         pte = *ptep;
317         if (!is_swap_pte(pte))
318                 goto out;
319
320         entry = pte_to_swp_entry(pte);
321         if (!is_migration_entry(entry))
322                 goto out;
323
324         page = migration_entry_to_page(entry);
325
326         /*
327          * Once radix-tree replacement of page migration started, page_count
328          * *must* be zero. And, we don't want to call wait_on_page_locked()
329          * against a page without get_page().
330          * So, we use get_page_unless_zero(), here. Even failed, page fault
331          * will occur again.
332          */
333         if (!get_page_unless_zero(page))
334                 goto out;
335         pte_unmap_unlock(ptep, ptl);
336         wait_on_page_locked(page);
337         put_page(page);
338         return;
339 out:
340         pte_unmap_unlock(ptep, ptl);
341 }
342
343 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
344                                 unsigned long address)
345 {
346         spinlock_t *ptl = pte_lockptr(mm, pmd);
347         pte_t *ptep = pte_offset_map(pmd, address);
348         __migration_entry_wait(mm, ptep, ptl);
349 }
350
351 void migration_entry_wait_huge(struct vm_area_struct *vma,
352                 struct mm_struct *mm, pte_t *pte)
353 {
354         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
355         __migration_entry_wait(mm, pte, ptl);
356 }
357
358 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
359 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
360 {
361         spinlock_t *ptl;
362         struct page *page;
363
364         ptl = pmd_lock(mm, pmd);
365         if (!is_pmd_migration_entry(*pmd))
366                 goto unlock;
367         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
368         if (!get_page_unless_zero(page))
369                 goto unlock;
370         spin_unlock(ptl);
371         wait_on_page_locked(page);
372         put_page(page);
373         return;
374 unlock:
375         spin_unlock(ptl);
376 }
377 #endif
378
379 #ifdef CONFIG_BLOCK
380 /* Returns true if all buffers are successfully locked */
381 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
382                                                         enum migrate_mode mode)
383 {
384         struct buffer_head *bh = head;
385
386         /* Simple case, sync compaction */
387         if (mode != MIGRATE_ASYNC) {
388                 do {
389                         get_bh(bh);
390                         lock_buffer(bh);
391                         bh = bh->b_this_page;
392
393                 } while (bh != head);
394
395                 return true;
396         }
397
398         /* async case, we cannot block on lock_buffer so use trylock_buffer */
399         do {
400                 get_bh(bh);
401                 if (!trylock_buffer(bh)) {
402                         /*
403                          * We failed to lock the buffer and cannot stall in
404                          * async migration. Release the taken locks
405                          */
406                         struct buffer_head *failed_bh = bh;
407                         put_bh(failed_bh);
408                         bh = head;
409                         while (bh != failed_bh) {
410                                 unlock_buffer(bh);
411                                 put_bh(bh);
412                                 bh = bh->b_this_page;
413                         }
414                         return false;
415                 }
416
417                 bh = bh->b_this_page;
418         } while (bh != head);
419         return true;
420 }
421 #else
422 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
423                                                         enum migrate_mode mode)
424 {
425         return true;
426 }
427 #endif /* CONFIG_BLOCK */
428
429 /*
430  * Replace the page in the mapping.
431  *
432  * The number of remaining references must be:
433  * 1 for anonymous pages without a mapping
434  * 2 for pages with a mapping
435  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
436  */
437 int migrate_page_move_mapping(struct address_space *mapping,
438                 struct page *newpage, struct page *page,
439                 struct buffer_head *head, enum migrate_mode mode,
440                 int extra_count)
441 {
442         struct zone *oldzone, *newzone;
443         int dirty;
444         int expected_count = 1 + extra_count;
445         void **pslot;
446
447         /*
448          * Device public or private pages have an extra refcount as they are
449          * ZONE_DEVICE pages.
450          */
451         expected_count += is_device_private_page(page);
452         expected_count += is_device_public_page(page);
453
454         if (!mapping) {
455                 /* Anonymous page without mapping */
456                 if (page_count(page) != expected_count)
457                         return -EAGAIN;
458
459                 /* No turning back from here */
460                 newpage->index = page->index;
461                 newpage->mapping = page->mapping;
462                 if (PageSwapBacked(page))
463                         __SetPageSwapBacked(newpage);
464
465                 return MIGRATEPAGE_SUCCESS;
466         }
467
468         oldzone = page_zone(page);
469         newzone = page_zone(newpage);
470
471         xa_lock_irq(&mapping->i_pages);
472
473         pslot = radix_tree_lookup_slot(&mapping->i_pages,
474                                         page_index(page));
475
476         expected_count += hpage_nr_pages(page) + page_has_private(page);
477         if (page_count(page) != expected_count ||
478                 radix_tree_deref_slot_protected(pslot,
479                                         &mapping->i_pages.xa_lock) != page) {
480                 xa_unlock_irq(&mapping->i_pages);
481                 return -EAGAIN;
482         }
483
484         if (!page_ref_freeze(page, expected_count)) {
485                 xa_unlock_irq(&mapping->i_pages);
486                 return -EAGAIN;
487         }
488
489         /*
490          * In the async migration case of moving a page with buffers, lock the
491          * buffers using trylock before the mapping is moved. If the mapping
492          * was moved, we later failed to lock the buffers and could not move
493          * the mapping back due to an elevated page count, we would have to
494          * block waiting on other references to be dropped.
495          */
496         if (mode == MIGRATE_ASYNC && head &&
497                         !buffer_migrate_lock_buffers(head, mode)) {
498                 page_ref_unfreeze(page, expected_count);
499                 xa_unlock_irq(&mapping->i_pages);
500                 return -EAGAIN;
501         }
502
503         /*
504          * Now we know that no one else is looking at the page:
505          * no turning back from here.
506          */
507         newpage->index = page->index;
508         newpage->mapping = page->mapping;
509         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
510         if (PageSwapBacked(page)) {
511                 __SetPageSwapBacked(newpage);
512                 if (PageSwapCache(page)) {
513                         SetPageSwapCache(newpage);
514                         set_page_private(newpage, page_private(page));
515                 }
516         } else {
517                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
518         }
519
520         /* Move dirty while page refs frozen and newpage not yet exposed */
521         dirty = PageDirty(page);
522         if (dirty) {
523                 ClearPageDirty(page);
524                 SetPageDirty(newpage);
525         }
526
527         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
528         if (PageTransHuge(page)) {
529                 int i;
530                 int index = page_index(page);
531
532                 for (i = 1; i < HPAGE_PMD_NR; i++) {
533                         pslot = radix_tree_lookup_slot(&mapping->i_pages,
534                                                        index + i);
535                         radix_tree_replace_slot(&mapping->i_pages, pslot,
536                                                 newpage + i);
537                 }
538         }
539
540         /*
541          * Drop cache reference from old page by unfreezing
542          * to one less reference.
543          * We know this isn't the last reference.
544          */
545         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
546
547         xa_unlock(&mapping->i_pages);
548         /* Leave irq disabled to prevent preemption while updating stats */
549
550         /*
551          * If moved to a different zone then also account
552          * the page for that zone. Other VM counters will be
553          * taken care of when we establish references to the
554          * new page and drop references to the old page.
555          *
556          * Note that anonymous pages are accounted for
557          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
558          * are mapped to swap space.
559          */
560         if (newzone != oldzone) {
561                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
562                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
563                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
564                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
565                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
566                 }
567                 if (dirty && mapping_cap_account_dirty(mapping)) {
568                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
569                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
570                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
571                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
572                 }
573         }
574         local_irq_enable();
575
576         return MIGRATEPAGE_SUCCESS;
577 }
578 EXPORT_SYMBOL(migrate_page_move_mapping);
579
580 /*
581  * The expected number of remaining references is the same as that
582  * of migrate_page_move_mapping().
583  */
584 int migrate_huge_page_move_mapping(struct address_space *mapping,
585                                    struct page *newpage, struct page *page)
586 {
587         int expected_count;
588         void **pslot;
589
590         xa_lock_irq(&mapping->i_pages);
591
592         pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
593
594         expected_count = 2 + page_has_private(page);
595         if (page_count(page) != expected_count ||
596                 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
597                 xa_unlock_irq(&mapping->i_pages);
598                 return -EAGAIN;
599         }
600
601         if (!page_ref_freeze(page, expected_count)) {
602                 xa_unlock_irq(&mapping->i_pages);
603                 return -EAGAIN;
604         }
605
606         newpage->index = page->index;
607         newpage->mapping = page->mapping;
608
609         get_page(newpage);
610
611         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
612
613         page_ref_unfreeze(page, expected_count - 1);
614
615         xa_unlock_irq(&mapping->i_pages);
616
617         return MIGRATEPAGE_SUCCESS;
618 }
619
620 /*
621  * Gigantic pages are so large that we do not guarantee that page++ pointer
622  * arithmetic will work across the entire page.  We need something more
623  * specialized.
624  */
625 static void __copy_gigantic_page(struct page *dst, struct page *src,
626                                 int nr_pages)
627 {
628         int i;
629         struct page *dst_base = dst;
630         struct page *src_base = src;
631
632         for (i = 0; i < nr_pages; ) {
633                 cond_resched();
634                 copy_highpage(dst, src);
635
636                 i++;
637                 dst = mem_map_next(dst, dst_base, i);
638                 src = mem_map_next(src, src_base, i);
639         }
640 }
641
642 static void copy_huge_page(struct page *dst, struct page *src)
643 {
644         int i;
645         int nr_pages;
646
647         if (PageHuge(src)) {
648                 /* hugetlbfs page */
649                 struct hstate *h = page_hstate(src);
650                 nr_pages = pages_per_huge_page(h);
651
652                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
653                         __copy_gigantic_page(dst, src, nr_pages);
654                         return;
655                 }
656         } else {
657                 /* thp page */
658                 BUG_ON(!PageTransHuge(src));
659                 nr_pages = hpage_nr_pages(src);
660         }
661
662         for (i = 0; i < nr_pages; i++) {
663                 cond_resched();
664                 copy_highpage(dst + i, src + i);
665         }
666 }
667
668 /*
669  * Copy the page to its new location
670  */
671 void migrate_page_states(struct page *newpage, struct page *page)
672 {
673         int cpupid;
674
675         if (PageError(page))
676                 SetPageError(newpage);
677         if (PageReferenced(page))
678                 SetPageReferenced(newpage);
679         if (PageUptodate(page))
680                 SetPageUptodate(newpage);
681         if (TestClearPageActive(page)) {
682                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
683                 SetPageActive(newpage);
684         } else if (TestClearPageUnevictable(page))
685                 SetPageUnevictable(newpage);
686         if (PageChecked(page))
687                 SetPageChecked(newpage);
688         if (PageMappedToDisk(page))
689                 SetPageMappedToDisk(newpage);
690
691         /* Move dirty on pages not done by migrate_page_move_mapping() */
692         if (PageDirty(page))
693                 SetPageDirty(newpage);
694
695         if (page_is_young(page))
696                 set_page_young(newpage);
697         if (page_is_idle(page))
698                 set_page_idle(newpage);
699
700         /*
701          * Copy NUMA information to the new page, to prevent over-eager
702          * future migrations of this same page.
703          */
704         cpupid = page_cpupid_xchg_last(page, -1);
705         page_cpupid_xchg_last(newpage, cpupid);
706
707         ksm_migrate_page(newpage, page);
708         /*
709          * Please do not reorder this without considering how mm/ksm.c's
710          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
711          */
712         if (PageSwapCache(page))
713                 ClearPageSwapCache(page);
714         ClearPagePrivate(page);
715         set_page_private(page, 0);
716
717         /*
718          * If any waiters have accumulated on the new page then
719          * wake them up.
720          */
721         if (PageWriteback(newpage))
722                 end_page_writeback(newpage);
723
724         copy_page_owner(page, newpage);
725
726         mem_cgroup_migrate(page, newpage);
727 }
728 EXPORT_SYMBOL(migrate_page_states);
729
730 void migrate_page_copy(struct page *newpage, struct page *page)
731 {
732         if (PageHuge(page) || PageTransHuge(page))
733                 copy_huge_page(newpage, page);
734         else
735                 copy_highpage(newpage, page);
736
737         migrate_page_states(newpage, page);
738 }
739 EXPORT_SYMBOL(migrate_page_copy);
740
741 /************************************************************
742  *                    Migration functions
743  ***********************************************************/
744
745 /*
746  * Common logic to directly migrate a single LRU page suitable for
747  * pages that do not use PagePrivate/PagePrivate2.
748  *
749  * Pages are locked upon entry and exit.
750  */
751 int migrate_page(struct address_space *mapping,
752                 struct page *newpage, struct page *page,
753                 enum migrate_mode mode)
754 {
755         int rc;
756
757         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
758
759         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
760
761         if (rc != MIGRATEPAGE_SUCCESS)
762                 return rc;
763
764         if (mode != MIGRATE_SYNC_NO_COPY)
765                 migrate_page_copy(newpage, page);
766         else
767                 migrate_page_states(newpage, page);
768         return MIGRATEPAGE_SUCCESS;
769 }
770 EXPORT_SYMBOL(migrate_page);
771
772 #ifdef CONFIG_BLOCK
773 /*
774  * Migration function for pages with buffers. This function can only be used
775  * if the underlying filesystem guarantees that no other references to "page"
776  * exist.
777  */
778 int buffer_migrate_page(struct address_space *mapping,
779                 struct page *newpage, struct page *page, enum migrate_mode mode)
780 {
781         struct buffer_head *bh, *head;
782         int rc;
783
784         if (!page_has_buffers(page))
785                 return migrate_page(mapping, newpage, page, mode);
786
787         head = page_buffers(page);
788
789         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
790
791         if (rc != MIGRATEPAGE_SUCCESS)
792                 return rc;
793
794         /*
795          * In the async case, migrate_page_move_mapping locked the buffers
796          * with an IRQ-safe spinlock held. In the sync case, the buffers
797          * need to be locked now
798          */
799         if (mode != MIGRATE_ASYNC)
800                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
801
802         ClearPagePrivate(page);
803         set_page_private(newpage, page_private(page));
804         set_page_private(page, 0);
805         put_page(page);
806         get_page(newpage);
807
808         bh = head;
809         do {
810                 set_bh_page(bh, newpage, bh_offset(bh));
811                 bh = bh->b_this_page;
812
813         } while (bh != head);
814
815         SetPagePrivate(newpage);
816
817         if (mode != MIGRATE_SYNC_NO_COPY)
818                 migrate_page_copy(newpage, page);
819         else
820                 migrate_page_states(newpage, page);
821
822         bh = head;
823         do {
824                 unlock_buffer(bh);
825                 put_bh(bh);
826                 bh = bh->b_this_page;
827
828         } while (bh != head);
829
830         return MIGRATEPAGE_SUCCESS;
831 }
832 EXPORT_SYMBOL(buffer_migrate_page);
833 #endif
834
835 /*
836  * Writeback a page to clean the dirty state
837  */
838 static int writeout(struct address_space *mapping, struct page *page)
839 {
840         struct writeback_control wbc = {
841                 .sync_mode = WB_SYNC_NONE,
842                 .nr_to_write = 1,
843                 .range_start = 0,
844                 .range_end = LLONG_MAX,
845                 .for_reclaim = 1
846         };
847         int rc;
848
849         if (!mapping->a_ops->writepage)
850                 /* No write method for the address space */
851                 return -EINVAL;
852
853         if (!clear_page_dirty_for_io(page))
854                 /* Someone else already triggered a write */
855                 return -EAGAIN;
856
857         /*
858          * A dirty page may imply that the underlying filesystem has
859          * the page on some queue. So the page must be clean for
860          * migration. Writeout may mean we loose the lock and the
861          * page state is no longer what we checked for earlier.
862          * At this point we know that the migration attempt cannot
863          * be successful.
864          */
865         remove_migration_ptes(page, page, false);
866
867         rc = mapping->a_ops->writepage(page, &wbc);
868
869         if (rc != AOP_WRITEPAGE_ACTIVATE)
870                 /* unlocked. Relock */
871                 lock_page(page);
872
873         return (rc < 0) ? -EIO : -EAGAIN;
874 }
875
876 /*
877  * Default handling if a filesystem does not provide a migration function.
878  */
879 static int fallback_migrate_page(struct address_space *mapping,
880         struct page *newpage, struct page *page, enum migrate_mode mode)
881 {
882         if (PageDirty(page)) {
883                 /* Only writeback pages in full synchronous migration */
884                 switch (mode) {
885                 case MIGRATE_SYNC:
886                 case MIGRATE_SYNC_NO_COPY:
887                         break;
888                 default:
889                         return -EBUSY;
890                 }
891                 return writeout(mapping, page);
892         }
893
894         /*
895          * Buffers may be managed in a filesystem specific way.
896          * We must have no buffers or drop them.
897          */
898         if (page_has_private(page) &&
899             !try_to_release_page(page, GFP_KERNEL))
900                 return -EAGAIN;
901
902         return migrate_page(mapping, newpage, page, mode);
903 }
904
905 /*
906  * Move a page to a newly allocated page
907  * The page is locked and all ptes have been successfully removed.
908  *
909  * The new page will have replaced the old page if this function
910  * is successful.
911  *
912  * Return value:
913  *   < 0 - error code
914  *  MIGRATEPAGE_SUCCESS - success
915  */
916 static int move_to_new_page(struct page *newpage, struct page *page,
917                                 enum migrate_mode mode)
918 {
919         struct address_space *mapping;
920         int rc = -EAGAIN;
921         bool is_lru = !__PageMovable(page);
922
923         VM_BUG_ON_PAGE(!PageLocked(page), page);
924         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
925
926         mapping = page_mapping(page);
927
928         if (likely(is_lru)) {
929                 if (!mapping)
930                         rc = migrate_page(mapping, newpage, page, mode);
931                 else if (mapping->a_ops->migratepage)
932                         /*
933                          * Most pages have a mapping and most filesystems
934                          * provide a migratepage callback. Anonymous pages
935                          * are part of swap space which also has its own
936                          * migratepage callback. This is the most common path
937                          * for page migration.
938                          */
939                         rc = mapping->a_ops->migratepage(mapping, newpage,
940                                                         page, mode);
941                 else
942                         rc = fallback_migrate_page(mapping, newpage,
943                                                         page, mode);
944         } else {
945                 /*
946                  * In case of non-lru page, it could be released after
947                  * isolation step. In that case, we shouldn't try migration.
948                  */
949                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
950                 if (!PageMovable(page)) {
951                         rc = MIGRATEPAGE_SUCCESS;
952                         __ClearPageIsolated(page);
953                         goto out;
954                 }
955
956                 rc = mapping->a_ops->migratepage(mapping, newpage,
957                                                 page, mode);
958                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
959                         !PageIsolated(page));
960         }
961
962         /*
963          * When successful, old pagecache page->mapping must be cleared before
964          * page is freed; but stats require that PageAnon be left as PageAnon.
965          */
966         if (rc == MIGRATEPAGE_SUCCESS) {
967                 if (__PageMovable(page)) {
968                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
969
970                         /*
971                          * We clear PG_movable under page_lock so any compactor
972                          * cannot try to migrate this page.
973                          */
974                         __ClearPageIsolated(page);
975                 }
976
977                 /*
978                  * Anonymous and movable page->mapping will be cleard by
979                  * free_pages_prepare so don't reset it here for keeping
980                  * the type to work PageAnon, for example.
981                  */
982                 if (!PageMappingFlags(page))
983                         page->mapping = NULL;
984
985                 if (unlikely(is_zone_device_page(newpage))) {
986                         if (is_device_public_page(newpage))
987                                 flush_dcache_page(newpage);
988                 } else
989                         flush_dcache_page(newpage);
990
991         }
992 out:
993         return rc;
994 }
995
996 static int __unmap_and_move(struct page *page, struct page *newpage,
997                                 int force, enum migrate_mode mode)
998 {
999         int rc = -EAGAIN;
1000         int page_was_mapped = 0;
1001         struct anon_vma *anon_vma = NULL;
1002         bool is_lru = !__PageMovable(page);
1003
1004         if (!trylock_page(page)) {
1005                 if (!force || mode == MIGRATE_ASYNC)
1006                         goto out;
1007
1008                 /*
1009                  * It's not safe for direct compaction to call lock_page.
1010                  * For example, during page readahead pages are added locked
1011                  * to the LRU. Later, when the IO completes the pages are
1012                  * marked uptodate and unlocked. However, the queueing
1013                  * could be merging multiple pages for one bio (e.g.
1014                  * mpage_readpages). If an allocation happens for the
1015                  * second or third page, the process can end up locking
1016                  * the same page twice and deadlocking. Rather than
1017                  * trying to be clever about what pages can be locked,
1018                  * avoid the use of lock_page for direct compaction
1019                  * altogether.
1020                  */
1021                 if (current->flags & PF_MEMALLOC)
1022                         goto out;
1023
1024                 lock_page(page);
1025         }
1026
1027         if (PageWriteback(page)) {
1028                 /*
1029                  * Only in the case of a full synchronous migration is it
1030                  * necessary to wait for PageWriteback. In the async case,
1031                  * the retry loop is too short and in the sync-light case,
1032                  * the overhead of stalling is too much
1033                  */
1034                 switch (mode) {
1035                 case MIGRATE_SYNC:
1036                 case MIGRATE_SYNC_NO_COPY:
1037                         break;
1038                 default:
1039                         rc = -EBUSY;
1040                         goto out_unlock;
1041                 }
1042                 if (!force)
1043                         goto out_unlock;
1044                 wait_on_page_writeback(page);
1045         }
1046
1047         /*
1048          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1049          * we cannot notice that anon_vma is freed while we migrates a page.
1050          * This get_anon_vma() delays freeing anon_vma pointer until the end
1051          * of migration. File cache pages are no problem because of page_lock()
1052          * File Caches may use write_page() or lock_page() in migration, then,
1053          * just care Anon page here.
1054          *
1055          * Only page_get_anon_vma() understands the subtleties of
1056          * getting a hold on an anon_vma from outside one of its mms.
1057          * But if we cannot get anon_vma, then we won't need it anyway,
1058          * because that implies that the anon page is no longer mapped
1059          * (and cannot be remapped so long as we hold the page lock).
1060          */
1061         if (PageAnon(page) && !PageKsm(page))
1062                 anon_vma = page_get_anon_vma(page);
1063
1064         /*
1065          * Block others from accessing the new page when we get around to
1066          * establishing additional references. We are usually the only one
1067          * holding a reference to newpage at this point. We used to have a BUG
1068          * here if trylock_page(newpage) fails, but would like to allow for
1069          * cases where there might be a race with the previous use of newpage.
1070          * This is much like races on refcount of oldpage: just don't BUG().
1071          */
1072         if (unlikely(!trylock_page(newpage)))
1073                 goto out_unlock;
1074
1075         if (unlikely(!is_lru)) {
1076                 rc = move_to_new_page(newpage, page, mode);
1077                 goto out_unlock_both;
1078         }
1079
1080         /*
1081          * Corner case handling:
1082          * 1. When a new swap-cache page is read into, it is added to the LRU
1083          * and treated as swapcache but it has no rmap yet.
1084          * Calling try_to_unmap() against a page->mapping==NULL page will
1085          * trigger a BUG.  So handle it here.
1086          * 2. An orphaned page (see truncate_complete_page) might have
1087          * fs-private metadata. The page can be picked up due to memory
1088          * offlining.  Everywhere else except page reclaim, the page is
1089          * invisible to the vm, so the page can not be migrated.  So try to
1090          * free the metadata, so the page can be freed.
1091          */
1092         if (!page->mapping) {
1093                 VM_BUG_ON_PAGE(PageAnon(page), page);
1094                 if (page_has_private(page)) {
1095                         try_to_free_buffers(page);
1096                         goto out_unlock_both;
1097                 }
1098         } else if (page_mapped(page)) {
1099                 /* Establish migration ptes */
1100                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1101                                 page);
1102                 try_to_unmap(page,
1103                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1104                 page_was_mapped = 1;
1105         }
1106
1107         if (!page_mapped(page))
1108                 rc = move_to_new_page(newpage, page, mode);
1109
1110         if (page_was_mapped)
1111                 remove_migration_ptes(page,
1112                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1113
1114 out_unlock_both:
1115         unlock_page(newpage);
1116 out_unlock:
1117         /* Drop an anon_vma reference if we took one */
1118         if (anon_vma)
1119                 put_anon_vma(anon_vma);
1120         unlock_page(page);
1121 out:
1122         /*
1123          * If migration is successful, decrease refcount of the newpage
1124          * which will not free the page because new page owner increased
1125          * refcounter. As well, if it is LRU page, add the page to LRU
1126          * list in here. Use the old state of the isolated source page to
1127          * determine if we migrated a LRU page. newpage was already unlocked
1128          * and possibly modified by its owner - don't rely on the page
1129          * state.
1130          */
1131         if (rc == MIGRATEPAGE_SUCCESS) {
1132                 if (unlikely(!is_lru))
1133                         put_page(newpage);
1134                 else
1135                         putback_lru_page(newpage);
1136         }
1137
1138         return rc;
1139 }
1140
1141 /*
1142  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1143  * around it.
1144  */
1145 #if defined(CONFIG_ARM) && \
1146         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1147 #define ICE_noinline noinline
1148 #else
1149 #define ICE_noinline
1150 #endif
1151
1152 /*
1153  * Obtain the lock on page, remove all ptes and migrate the page
1154  * to the newly allocated page in newpage.
1155  */
1156 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1157                                    free_page_t put_new_page,
1158                                    unsigned long private, struct page *page,
1159                                    int force, enum migrate_mode mode,
1160                                    enum migrate_reason reason)
1161 {
1162         int rc = MIGRATEPAGE_SUCCESS;
1163         struct page *newpage;
1164
1165         if (!thp_migration_supported() && PageTransHuge(page))
1166                 return -ENOMEM;
1167
1168         newpage = get_new_page(page, private);
1169         if (!newpage)
1170                 return -ENOMEM;
1171
1172         if (page_count(page) == 1) {
1173                 /* page was freed from under us. So we are done. */
1174                 ClearPageActive(page);
1175                 ClearPageUnevictable(page);
1176                 if (unlikely(__PageMovable(page))) {
1177                         lock_page(page);
1178                         if (!PageMovable(page))
1179                                 __ClearPageIsolated(page);
1180                         unlock_page(page);
1181                 }
1182                 if (put_new_page)
1183                         put_new_page(newpage, private);
1184                 else
1185                         put_page(newpage);
1186                 goto out;
1187         }
1188
1189         rc = __unmap_and_move(page, newpage, force, mode);
1190         if (rc == MIGRATEPAGE_SUCCESS)
1191                 set_page_owner_migrate_reason(newpage, reason);
1192
1193 out:
1194         if (rc != -EAGAIN) {
1195                 /*
1196                  * A page that has been migrated has all references
1197                  * removed and will be freed. A page that has not been
1198                  * migrated will have kepts its references and be
1199                  * restored.
1200                  */
1201                 list_del(&page->lru);
1202
1203                 /*
1204                  * Compaction can migrate also non-LRU pages which are
1205                  * not accounted to NR_ISOLATED_*. They can be recognized
1206                  * as __PageMovable
1207                  */
1208                 if (likely(!__PageMovable(page)))
1209                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1210                                         page_is_file_cache(page), -hpage_nr_pages(page));
1211         }
1212
1213         /*
1214          * If migration is successful, releases reference grabbed during
1215          * isolation. Otherwise, restore the page to right list unless
1216          * we want to retry.
1217          */
1218         if (rc == MIGRATEPAGE_SUCCESS) {
1219                 put_page(page);
1220                 if (reason == MR_MEMORY_FAILURE) {
1221                         /*
1222                          * Set PG_HWPoison on just freed page
1223                          * intentionally. Although it's rather weird,
1224                          * it's how HWPoison flag works at the moment.
1225                          */
1226                         if (set_hwpoison_free_buddy_page(page))
1227                                 num_poisoned_pages_inc();
1228                 }
1229         } else {
1230                 if (rc != -EAGAIN) {
1231                         if (likely(!__PageMovable(page))) {
1232                                 putback_lru_page(page);
1233                                 goto put_new;
1234                         }
1235
1236                         lock_page(page);
1237                         if (PageMovable(page))
1238                                 putback_movable_page(page);
1239                         else
1240                                 __ClearPageIsolated(page);
1241                         unlock_page(page);
1242                         put_page(page);
1243                 }
1244 put_new:
1245                 if (put_new_page)
1246                         put_new_page(newpage, private);
1247                 else
1248                         put_page(newpage);
1249         }
1250
1251         return rc;
1252 }
1253
1254 /*
1255  * Counterpart of unmap_and_move_page() for hugepage migration.
1256  *
1257  * This function doesn't wait the completion of hugepage I/O
1258  * because there is no race between I/O and migration for hugepage.
1259  * Note that currently hugepage I/O occurs only in direct I/O
1260  * where no lock is held and PG_writeback is irrelevant,
1261  * and writeback status of all subpages are counted in the reference
1262  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1263  * under direct I/O, the reference of the head page is 512 and a bit more.)
1264  * This means that when we try to migrate hugepage whose subpages are
1265  * doing direct I/O, some references remain after try_to_unmap() and
1266  * hugepage migration fails without data corruption.
1267  *
1268  * There is also no race when direct I/O is issued on the page under migration,
1269  * because then pte is replaced with migration swap entry and direct I/O code
1270  * will wait in the page fault for migration to complete.
1271  */
1272 static int unmap_and_move_huge_page(new_page_t get_new_page,
1273                                 free_page_t put_new_page, unsigned long private,
1274                                 struct page *hpage, int force,
1275                                 enum migrate_mode mode, int reason)
1276 {
1277         int rc = -EAGAIN;
1278         int page_was_mapped = 0;
1279         struct page *new_hpage;
1280         struct anon_vma *anon_vma = NULL;
1281
1282         /*
1283          * Movability of hugepages depends on architectures and hugepage size.
1284          * This check is necessary because some callers of hugepage migration
1285          * like soft offline and memory hotremove don't walk through page
1286          * tables or check whether the hugepage is pmd-based or not before
1287          * kicking migration.
1288          */
1289         if (!hugepage_migration_supported(page_hstate(hpage))) {
1290                 putback_active_hugepage(hpage);
1291                 return -ENOSYS;
1292         }
1293
1294         new_hpage = get_new_page(hpage, private);
1295         if (!new_hpage)
1296                 return -ENOMEM;
1297
1298         if (!trylock_page(hpage)) {
1299                 if (!force)
1300                         goto out;
1301                 switch (mode) {
1302                 case MIGRATE_SYNC:
1303                 case MIGRATE_SYNC_NO_COPY:
1304                         break;
1305                 default:
1306                         goto out;
1307                 }
1308                 lock_page(hpage);
1309         }
1310
1311         /*
1312          * Check for pages which are in the process of being freed.  Without
1313          * page_mapping() set, hugetlbfs specific move page routine will not
1314          * be called and we could leak usage counts for subpools.
1315          */
1316         if (page_private(hpage) && !page_mapping(hpage)) {
1317                 rc = -EBUSY;
1318                 goto out_unlock;
1319         }
1320
1321         if (PageAnon(hpage))
1322                 anon_vma = page_get_anon_vma(hpage);
1323
1324         if (unlikely(!trylock_page(new_hpage)))
1325                 goto put_anon;
1326
1327         if (page_mapped(hpage)) {
1328                 try_to_unmap(hpage,
1329                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1330                 page_was_mapped = 1;
1331         }
1332
1333         if (!page_mapped(hpage))
1334                 rc = move_to_new_page(new_hpage, hpage, mode);
1335
1336         if (page_was_mapped)
1337                 remove_migration_ptes(hpage,
1338                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1339
1340         unlock_page(new_hpage);
1341
1342 put_anon:
1343         if (anon_vma)
1344                 put_anon_vma(anon_vma);
1345
1346         if (rc == MIGRATEPAGE_SUCCESS) {
1347                 move_hugetlb_state(hpage, new_hpage, reason);
1348                 put_new_page = NULL;
1349         }
1350
1351 out_unlock:
1352         unlock_page(hpage);
1353 out:
1354         if (rc != -EAGAIN)
1355                 putback_active_hugepage(hpage);
1356
1357         /*
1358          * If migration was not successful and there's a freeing callback, use
1359          * it.  Otherwise, put_page() will drop the reference grabbed during
1360          * isolation.
1361          */
1362         if (put_new_page)
1363                 put_new_page(new_hpage, private);
1364         else
1365                 putback_active_hugepage(new_hpage);
1366
1367         return rc;
1368 }
1369
1370 /*
1371  * migrate_pages - migrate the pages specified in a list, to the free pages
1372  *                 supplied as the target for the page migration
1373  *
1374  * @from:               The list of pages to be migrated.
1375  * @get_new_page:       The function used to allocate free pages to be used
1376  *                      as the target of the page migration.
1377  * @put_new_page:       The function used to free target pages if migration
1378  *                      fails, or NULL if no special handling is necessary.
1379  * @private:            Private data to be passed on to get_new_page()
1380  * @mode:               The migration mode that specifies the constraints for
1381  *                      page migration, if any.
1382  * @reason:             The reason for page migration.
1383  *
1384  * The function returns after 10 attempts or if no pages are movable any more
1385  * because the list has become empty or no retryable pages exist any more.
1386  * The caller should call putback_movable_pages() to return pages to the LRU
1387  * or free list only if ret != 0.
1388  *
1389  * Returns the number of pages that were not migrated, or an error code.
1390  */
1391 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1392                 free_page_t put_new_page, unsigned long private,
1393                 enum migrate_mode mode, int reason)
1394 {
1395         int retry = 1;
1396         int nr_failed = 0;
1397         int nr_succeeded = 0;
1398         int pass = 0;
1399         struct page *page;
1400         struct page *page2;
1401         int swapwrite = current->flags & PF_SWAPWRITE;
1402         int rc;
1403
1404         if (!swapwrite)
1405                 current->flags |= PF_SWAPWRITE;
1406
1407         for(pass = 0; pass < 10 && retry; pass++) {
1408                 retry = 0;
1409
1410                 list_for_each_entry_safe(page, page2, from, lru) {
1411 retry:
1412                         cond_resched();
1413
1414                         if (PageHuge(page))
1415                                 rc = unmap_and_move_huge_page(get_new_page,
1416                                                 put_new_page, private, page,
1417                                                 pass > 2, mode, reason);
1418                         else
1419                                 rc = unmap_and_move(get_new_page, put_new_page,
1420                                                 private, page, pass > 2, mode,
1421                                                 reason);
1422
1423                         switch(rc) {
1424                         case -ENOMEM:
1425                                 /*
1426                                  * THP migration might be unsupported or the
1427                                  * allocation could've failed so we should
1428                                  * retry on the same page with the THP split
1429                                  * to base pages.
1430                                  *
1431                                  * Head page is retried immediately and tail
1432                                  * pages are added to the tail of the list so
1433                                  * we encounter them after the rest of the list
1434                                  * is processed.
1435                                  */
1436                                 if (PageTransHuge(page) && !PageHuge(page)) {
1437                                         lock_page(page);
1438                                         rc = split_huge_page_to_list(page, from);
1439                                         unlock_page(page);
1440                                         if (!rc) {
1441                                                 list_safe_reset_next(page, page2, lru);
1442                                                 goto retry;
1443                                         }
1444                                 }
1445                                 nr_failed++;
1446                                 goto out;
1447                         case -EAGAIN:
1448                                 retry++;
1449                                 break;
1450                         case MIGRATEPAGE_SUCCESS:
1451                                 nr_succeeded++;
1452                                 break;
1453                         default:
1454                                 /*
1455                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1456                                  * unlike -EAGAIN case, the failed page is
1457                                  * removed from migration page list and not
1458                                  * retried in the next outer loop.
1459                                  */
1460                                 nr_failed++;
1461                                 break;
1462                         }
1463                 }
1464         }
1465         nr_failed += retry;
1466         rc = nr_failed;
1467 out:
1468         if (nr_succeeded)
1469                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1470         if (nr_failed)
1471                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1472         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1473
1474         if (!swapwrite)
1475                 current->flags &= ~PF_SWAPWRITE;
1476
1477         return rc;
1478 }
1479
1480 #ifdef CONFIG_NUMA
1481
1482 static int store_status(int __user *status, int start, int value, int nr)
1483 {
1484         while (nr-- > 0) {
1485                 if (put_user(value, status + start))
1486                         return -EFAULT;
1487                 start++;
1488         }
1489
1490         return 0;
1491 }
1492
1493 static int do_move_pages_to_node(struct mm_struct *mm,
1494                 struct list_head *pagelist, int node)
1495 {
1496         int err;
1497
1498         if (list_empty(pagelist))
1499                 return 0;
1500
1501         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1502                         MIGRATE_SYNC, MR_SYSCALL);
1503         if (err)
1504                 putback_movable_pages(pagelist);
1505         return err;
1506 }
1507
1508 /*
1509  * Resolves the given address to a struct page, isolates it from the LRU and
1510  * puts it to the given pagelist.
1511  * Returns:
1512  *     errno - if the page cannot be found/isolated
1513  *     0 - when it doesn't have to be migrated because it is already on the
1514  *         target node
1515  *     1 - when it has been queued
1516  */
1517 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1518                 int node, struct list_head *pagelist, bool migrate_all)
1519 {
1520         struct vm_area_struct *vma;
1521         struct page *page;
1522         unsigned int follflags;
1523         int err;
1524
1525         down_read(&mm->mmap_sem);
1526         err = -EFAULT;
1527         vma = find_vma(mm, addr);
1528         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1529                 goto out;
1530
1531         /* FOLL_DUMP to ignore special (like zero) pages */
1532         follflags = FOLL_GET | FOLL_DUMP;
1533         page = follow_page(vma, addr, follflags);
1534
1535         err = PTR_ERR(page);
1536         if (IS_ERR(page))
1537                 goto out;
1538
1539         err = -ENOENT;
1540         if (!page)
1541                 goto out;
1542
1543         err = 0;
1544         if (page_to_nid(page) == node)
1545                 goto out_putpage;
1546
1547         err = -EACCES;
1548         if (page_mapcount(page) > 1 && !migrate_all)
1549                 goto out_putpage;
1550
1551         if (PageHuge(page)) {
1552                 if (PageHead(page)) {
1553                         isolate_huge_page(page, pagelist);
1554                         err = 1;
1555                 }
1556         } else {
1557                 struct page *head;
1558
1559                 head = compound_head(page);
1560                 err = isolate_lru_page(head);
1561                 if (err)
1562                         goto out_putpage;
1563
1564                 err = 1;
1565                 list_add_tail(&head->lru, pagelist);
1566                 mod_node_page_state(page_pgdat(head),
1567                         NR_ISOLATED_ANON + page_is_file_cache(head),
1568                         hpage_nr_pages(head));
1569         }
1570 out_putpage:
1571         /*
1572          * Either remove the duplicate refcount from
1573          * isolate_lru_page() or drop the page ref if it was
1574          * not isolated.
1575          */
1576         put_page(page);
1577 out:
1578         up_read(&mm->mmap_sem);
1579         return err;
1580 }
1581
1582 /*
1583  * Migrate an array of page address onto an array of nodes and fill
1584  * the corresponding array of status.
1585  */
1586 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1587                          unsigned long nr_pages,
1588                          const void __user * __user *pages,
1589                          const int __user *nodes,
1590                          int __user *status, int flags)
1591 {
1592         int current_node = NUMA_NO_NODE;
1593         LIST_HEAD(pagelist);
1594         int start, i;
1595         int err = 0, err1;
1596
1597         migrate_prep();
1598
1599         for (i = start = 0; i < nr_pages; i++) {
1600                 const void __user *p;
1601                 unsigned long addr;
1602                 int node;
1603
1604                 err = -EFAULT;
1605                 if (get_user(p, pages + i))
1606                         goto out_flush;
1607                 if (get_user(node, nodes + i))
1608                         goto out_flush;
1609                 addr = (unsigned long)p;
1610
1611                 err = -ENODEV;
1612                 if (node < 0 || node >= MAX_NUMNODES)
1613                         goto out_flush;
1614                 if (!node_state(node, N_MEMORY))
1615                         goto out_flush;
1616
1617                 err = -EACCES;
1618                 if (!node_isset(node, task_nodes))
1619                         goto out_flush;
1620
1621                 if (current_node == NUMA_NO_NODE) {
1622                         current_node = node;
1623                         start = i;
1624                 } else if (node != current_node) {
1625                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1626                         if (err) {
1627                                 /*
1628                                  * Positive err means the number of failed
1629                                  * pages to migrate.  Since we are going to
1630                                  * abort and return the number of non-migrated
1631                                  * pages, so need to incude the rest of the
1632                                  * nr_pages that have not been attempted as
1633                                  * well.
1634                                  */
1635                                 if (err > 0)
1636                                         err += nr_pages - i - 1;
1637                                 goto out;
1638                         }
1639                         err = store_status(status, start, current_node, i - start);
1640                         if (err)
1641                                 goto out;
1642                         start = i;
1643                         current_node = node;
1644                 }
1645
1646                 /*
1647                  * Errors in the page lookup or isolation are not fatal and we simply
1648                  * report them via status
1649                  */
1650                 err = add_page_for_migration(mm, addr, current_node,
1651                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1652
1653                 if (!err) {
1654                         /* The page is already on the target node */
1655                         err = store_status(status, i, current_node, 1);
1656                         if (err)
1657                                 goto out_flush;
1658                         continue;
1659                 } else if (err > 0) {
1660                         /* The page is successfully queued for migration */
1661                         continue;
1662                 }
1663
1664                 err = store_status(status, i, err, 1);
1665                 if (err)
1666                         goto out_flush;
1667
1668                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1669                 if (err) {
1670                         if (err > 0)
1671                                 err += nr_pages - i - 1;
1672                         goto out;
1673                 }
1674                 if (i > start) {
1675                         err = store_status(status, start, current_node, i - start);
1676                         if (err)
1677                                 goto out;
1678                 }
1679                 current_node = NUMA_NO_NODE;
1680         }
1681 out_flush:
1682         if (list_empty(&pagelist))
1683                 return err;
1684
1685         /* Make sure we do not overwrite the existing error */
1686         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1687         /*
1688          * Don't have to report non-attempted pages here since:
1689          *     - If the above loop is done gracefully all pages have been
1690          *       attempted.
1691          *     - If the above loop is aborted it means a fatal error
1692          *       happened, should return ret.
1693          */
1694         if (!err1)
1695                 err1 = store_status(status, start, current_node, i - start);
1696         if (err >= 0)
1697                 err = err1;
1698 out:
1699         return err;
1700 }
1701
1702 /*
1703  * Determine the nodes of an array of pages and store it in an array of status.
1704  */
1705 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1706                                 const void __user **pages, int *status)
1707 {
1708         unsigned long i;
1709
1710         down_read(&mm->mmap_sem);
1711
1712         for (i = 0; i < nr_pages; i++) {
1713                 unsigned long addr = (unsigned long)(*pages);
1714                 struct vm_area_struct *vma;
1715                 struct page *page;
1716                 int err = -EFAULT;
1717
1718                 vma = find_vma(mm, addr);
1719                 if (!vma || addr < vma->vm_start)
1720                         goto set_status;
1721
1722                 /* FOLL_DUMP to ignore special (like zero) pages */
1723                 page = follow_page(vma, addr, FOLL_DUMP);
1724
1725                 err = PTR_ERR(page);
1726                 if (IS_ERR(page))
1727                         goto set_status;
1728
1729                 err = page ? page_to_nid(page) : -ENOENT;
1730 set_status:
1731                 *status = err;
1732
1733                 pages++;
1734                 status++;
1735         }
1736
1737         up_read(&mm->mmap_sem);
1738 }
1739
1740 /*
1741  * Determine the nodes of a user array of pages and store it in
1742  * a user array of status.
1743  */
1744 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1745                          const void __user * __user *pages,
1746                          int __user *status)
1747 {
1748 #define DO_PAGES_STAT_CHUNK_NR 16
1749         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1750         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1751
1752         while (nr_pages) {
1753                 unsigned long chunk_nr;
1754
1755                 chunk_nr = nr_pages;
1756                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1757                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1758
1759                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1760                         break;
1761
1762                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1763
1764                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1765                         break;
1766
1767                 pages += chunk_nr;
1768                 status += chunk_nr;
1769                 nr_pages -= chunk_nr;
1770         }
1771         return nr_pages ? -EFAULT : 0;
1772 }
1773
1774 /*
1775  * Move a list of pages in the address space of the currently executing
1776  * process.
1777  */
1778 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1779                              const void __user * __user *pages,
1780                              const int __user *nodes,
1781                              int __user *status, int flags)
1782 {
1783         struct task_struct *task;
1784         struct mm_struct *mm;
1785         int err;
1786         nodemask_t task_nodes;
1787
1788         /* Check flags */
1789         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1790                 return -EINVAL;
1791
1792         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1793                 return -EPERM;
1794
1795         /* Find the mm_struct */
1796         rcu_read_lock();
1797         task = pid ? find_task_by_vpid(pid) : current;
1798         if (!task) {
1799                 rcu_read_unlock();
1800                 return -ESRCH;
1801         }
1802         get_task_struct(task);
1803
1804         /*
1805          * Check if this process has the right to modify the specified
1806          * process. Use the regular "ptrace_may_access()" checks.
1807          */
1808         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1809                 rcu_read_unlock();
1810                 err = -EPERM;
1811                 goto out;
1812         }
1813         rcu_read_unlock();
1814
1815         err = security_task_movememory(task);
1816         if (err)
1817                 goto out;
1818
1819         task_nodes = cpuset_mems_allowed(task);
1820         mm = get_task_mm(task);
1821         put_task_struct(task);
1822
1823         if (!mm)
1824                 return -EINVAL;
1825
1826         if (nodes)
1827                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1828                                     nodes, status, flags);
1829         else
1830                 err = do_pages_stat(mm, nr_pages, pages, status);
1831
1832         mmput(mm);
1833         return err;
1834
1835 out:
1836         put_task_struct(task);
1837         return err;
1838 }
1839
1840 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1841                 const void __user * __user *, pages,
1842                 const int __user *, nodes,
1843                 int __user *, status, int, flags)
1844 {
1845         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1846 }
1847
1848 #ifdef CONFIG_COMPAT
1849 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1850                        compat_uptr_t __user *, pages32,
1851                        const int __user *, nodes,
1852                        int __user *, status,
1853                        int, flags)
1854 {
1855         const void __user * __user *pages;
1856         int i;
1857
1858         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1859         for (i = 0; i < nr_pages; i++) {
1860                 compat_uptr_t p;
1861
1862                 if (get_user(p, pages32 + i) ||
1863                         put_user(compat_ptr(p), pages + i))
1864                         return -EFAULT;
1865         }
1866         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1867 }
1868 #endif /* CONFIG_COMPAT */
1869
1870 #ifdef CONFIG_NUMA_BALANCING
1871 /*
1872  * Returns true if this is a safe migration target node for misplaced NUMA
1873  * pages. Currently it only checks the watermarks which crude
1874  */
1875 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1876                                    unsigned long nr_migrate_pages)
1877 {
1878         int z;
1879
1880         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1881                 struct zone *zone = pgdat->node_zones + z;
1882
1883                 if (!populated_zone(zone))
1884                         continue;
1885
1886                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1887                 if (!zone_watermark_ok(zone, 0,
1888                                        high_wmark_pages(zone) +
1889                                        nr_migrate_pages,
1890                                        0, 0))
1891                         continue;
1892                 return true;
1893         }
1894         return false;
1895 }
1896
1897 static struct page *alloc_misplaced_dst_page(struct page *page,
1898                                            unsigned long data)
1899 {
1900         int nid = (int) data;
1901         struct page *newpage;
1902
1903         newpage = __alloc_pages_node(nid,
1904                                          (GFP_HIGHUSER_MOVABLE |
1905                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1906                                           __GFP_NORETRY | __GFP_NOWARN) &
1907                                          ~__GFP_RECLAIM, 0);
1908
1909         return newpage;
1910 }
1911
1912 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1913 {
1914         int page_lru;
1915
1916         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1917
1918         /* Avoid migrating to a node that is nearly full */
1919         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1920                 return 0;
1921
1922         if (isolate_lru_page(page))
1923                 return 0;
1924
1925         /*
1926          * migrate_misplaced_transhuge_page() skips page migration's usual
1927          * check on page_count(), so we must do it here, now that the page
1928          * has been isolated: a GUP pin, or any other pin, prevents migration.
1929          * The expected page count is 3: 1 for page's mapcount and 1 for the
1930          * caller's pin and 1 for the reference taken by isolate_lru_page().
1931          */
1932         if (PageTransHuge(page) && page_count(page) != 3) {
1933                 putback_lru_page(page);
1934                 return 0;
1935         }
1936
1937         page_lru = page_is_file_cache(page);
1938         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1939                                 hpage_nr_pages(page));
1940
1941         /*
1942          * Isolating the page has taken another reference, so the
1943          * caller's reference can be safely dropped without the page
1944          * disappearing underneath us during migration.
1945          */
1946         put_page(page);
1947         return 1;
1948 }
1949
1950 bool pmd_trans_migrating(pmd_t pmd)
1951 {
1952         struct page *page = pmd_page(pmd);
1953         return PageLocked(page);
1954 }
1955
1956 /*
1957  * Attempt to migrate a misplaced page to the specified destination
1958  * node. Caller is expected to have an elevated reference count on
1959  * the page that will be dropped by this function before returning.
1960  */
1961 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1962                            int node)
1963 {
1964         pg_data_t *pgdat = NODE_DATA(node);
1965         int isolated;
1966         int nr_remaining;
1967         LIST_HEAD(migratepages);
1968
1969         /*
1970          * Don't migrate file pages that are mapped in multiple processes
1971          * with execute permissions as they are probably shared libraries.
1972          */
1973         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1974             (vma->vm_flags & VM_EXEC))
1975                 goto out;
1976
1977         /*
1978          * Also do not migrate dirty pages as not all filesystems can move
1979          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1980          */
1981         if (page_is_file_cache(page) && PageDirty(page))
1982                 goto out;
1983
1984         isolated = numamigrate_isolate_page(pgdat, page);
1985         if (!isolated)
1986                 goto out;
1987
1988         list_add(&page->lru, &migratepages);
1989         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1990                                      NULL, node, MIGRATE_ASYNC,
1991                                      MR_NUMA_MISPLACED);
1992         if (nr_remaining) {
1993                 if (!list_empty(&migratepages)) {
1994                         list_del(&page->lru);
1995                         dec_node_page_state(page, NR_ISOLATED_ANON +
1996                                         page_is_file_cache(page));
1997                         putback_lru_page(page);
1998                 }
1999                 isolated = 0;
2000         } else
2001                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2002         BUG_ON(!list_empty(&migratepages));
2003         return isolated;
2004
2005 out:
2006         put_page(page);
2007         return 0;
2008 }
2009 #endif /* CONFIG_NUMA_BALANCING */
2010
2011 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2012 /*
2013  * Migrates a THP to a given target node. page must be locked and is unlocked
2014  * before returning.
2015  */
2016 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2017                                 struct vm_area_struct *vma,
2018                                 pmd_t *pmd, pmd_t entry,
2019                                 unsigned long address,
2020                                 struct page *page, int node)
2021 {
2022         spinlock_t *ptl;
2023         pg_data_t *pgdat = NODE_DATA(node);
2024         int isolated = 0;
2025         struct page *new_page = NULL;
2026         int page_lru = page_is_file_cache(page);
2027         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2028         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2029
2030         new_page = alloc_pages_node(node,
2031                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2032                 HPAGE_PMD_ORDER);
2033         if (!new_page)
2034                 goto out_fail;
2035         prep_transhuge_page(new_page);
2036
2037         isolated = numamigrate_isolate_page(pgdat, page);
2038         if (!isolated) {
2039                 put_page(new_page);
2040                 goto out_fail;
2041         }
2042
2043         /* Prepare a page as a migration target */
2044         __SetPageLocked(new_page);
2045         if (PageSwapBacked(page))
2046                 __SetPageSwapBacked(new_page);
2047
2048         /* anon mapping, we can simply copy page->mapping to the new page: */
2049         new_page->mapping = page->mapping;
2050         new_page->index = page->index;
2051         migrate_page_copy(new_page, page);
2052         WARN_ON(PageLRU(new_page));
2053
2054         /* Recheck the target PMD */
2055         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2056         ptl = pmd_lock(mm, pmd);
2057         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2058                 spin_unlock(ptl);
2059                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2060
2061                 /* Reverse changes made by migrate_page_copy() */
2062                 if (TestClearPageActive(new_page))
2063                         SetPageActive(page);
2064                 if (TestClearPageUnevictable(new_page))
2065                         SetPageUnevictable(page);
2066
2067                 unlock_page(new_page);
2068                 put_page(new_page);             /* Free it */
2069
2070                 /* Retake the callers reference and putback on LRU */
2071                 get_page(page);
2072                 putback_lru_page(page);
2073                 mod_node_page_state(page_pgdat(page),
2074                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2075
2076                 goto out_unlock;
2077         }
2078
2079         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2080         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2081
2082         /*
2083          * Overwrite the old entry under pagetable lock and establish
2084          * the new PTE. Any parallel GUP will either observe the old
2085          * page blocking on the page lock, block on the page table
2086          * lock or observe the new page. The SetPageUptodate on the
2087          * new page and page_add_new_anon_rmap guarantee the copy is
2088          * visible before the pagetable update.
2089          */
2090         flush_cache_range(vma, mmun_start, mmun_end);
2091         page_add_anon_rmap(new_page, vma, mmun_start, true);
2092         /*
2093          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2094          * has already been flushed globally.  So no TLB can be currently
2095          * caching this non present pmd mapping.  There's no need to clear the
2096          * pmd before doing set_pmd_at(), nor to flush the TLB after
2097          * set_pmd_at().  Clearing the pmd here would introduce a race
2098          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2099          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2100          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2101          * pmd.
2102          */
2103         set_pmd_at(mm, mmun_start, pmd, entry);
2104         update_mmu_cache_pmd(vma, address, &entry);
2105
2106         page_ref_unfreeze(page, 2);
2107         mlock_migrate_page(new_page, page);
2108         page_remove_rmap(page, true);
2109         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2110
2111         spin_unlock(ptl);
2112         /*
2113          * No need to double call mmu_notifier->invalidate_range() callback as
2114          * the above pmdp_huge_clear_flush_notify() did already call it.
2115          */
2116         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2117
2118         /* Take an "isolate" reference and put new page on the LRU. */
2119         get_page(new_page);
2120         putback_lru_page(new_page);
2121
2122         unlock_page(new_page);
2123         unlock_page(page);
2124         put_page(page);                 /* Drop the rmap reference */
2125         put_page(page);                 /* Drop the LRU isolation reference */
2126
2127         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2128         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2129
2130         mod_node_page_state(page_pgdat(page),
2131                         NR_ISOLATED_ANON + page_lru,
2132                         -HPAGE_PMD_NR);
2133         return isolated;
2134
2135 out_fail:
2136         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2137         ptl = pmd_lock(mm, pmd);
2138         if (pmd_same(*pmd, entry)) {
2139                 entry = pmd_modify(entry, vma->vm_page_prot);
2140                 set_pmd_at(mm, mmun_start, pmd, entry);
2141                 update_mmu_cache_pmd(vma, address, &entry);
2142         }
2143         spin_unlock(ptl);
2144
2145 out_unlock:
2146         unlock_page(page);
2147         put_page(page);
2148         return 0;
2149 }
2150 #endif /* CONFIG_NUMA_BALANCING */
2151
2152 #endif /* CONFIG_NUMA */
2153
2154 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2155 struct migrate_vma {
2156         struct vm_area_struct   *vma;
2157         unsigned long           *dst;
2158         unsigned long           *src;
2159         unsigned long           cpages;
2160         unsigned long           npages;
2161         unsigned long           start;
2162         unsigned long           end;
2163 };
2164
2165 static int migrate_vma_collect_hole(unsigned long start,
2166                                     unsigned long end,
2167                                     struct mm_walk *walk)
2168 {
2169         struct migrate_vma *migrate = walk->private;
2170         unsigned long addr;
2171
2172         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2173                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2174                 migrate->dst[migrate->npages] = 0;
2175                 migrate->npages++;
2176                 migrate->cpages++;
2177         }
2178
2179         return 0;
2180 }
2181
2182 static int migrate_vma_collect_skip(unsigned long start,
2183                                     unsigned long end,
2184                                     struct mm_walk *walk)
2185 {
2186         struct migrate_vma *migrate = walk->private;
2187         unsigned long addr;
2188
2189         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2190                 migrate->dst[migrate->npages] = 0;
2191                 migrate->src[migrate->npages++] = 0;
2192         }
2193
2194         return 0;
2195 }
2196
2197 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2198                                    unsigned long start,
2199                                    unsigned long end,
2200                                    struct mm_walk *walk)
2201 {
2202         struct migrate_vma *migrate = walk->private;
2203         struct vm_area_struct *vma = walk->vma;
2204         struct mm_struct *mm = vma->vm_mm;
2205         unsigned long addr = start, unmapped = 0;
2206         spinlock_t *ptl;
2207         pte_t *ptep;
2208
2209 again:
2210         if (pmd_none(*pmdp))
2211                 return migrate_vma_collect_hole(start, end, walk);
2212
2213         if (pmd_trans_huge(*pmdp)) {
2214                 struct page *page;
2215
2216                 ptl = pmd_lock(mm, pmdp);
2217                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2218                         spin_unlock(ptl);
2219                         goto again;
2220                 }
2221
2222                 page = pmd_page(*pmdp);
2223                 if (is_huge_zero_page(page)) {
2224                         spin_unlock(ptl);
2225                         split_huge_pmd(vma, pmdp, addr);
2226                         if (pmd_trans_unstable(pmdp))
2227                                 return migrate_vma_collect_skip(start, end,
2228                                                                 walk);
2229                 } else {
2230                         int ret;
2231
2232                         get_page(page);
2233                         spin_unlock(ptl);
2234                         if (unlikely(!trylock_page(page)))
2235                                 return migrate_vma_collect_skip(start, end,
2236                                                                 walk);
2237                         ret = split_huge_page(page);
2238                         unlock_page(page);
2239                         put_page(page);
2240                         if (ret)
2241                                 return migrate_vma_collect_skip(start, end,
2242                                                                 walk);
2243                         if (pmd_none(*pmdp))
2244                                 return migrate_vma_collect_hole(start, end,
2245                                                                 walk);
2246                 }
2247         }
2248
2249         if (unlikely(pmd_bad(*pmdp)))
2250                 return migrate_vma_collect_skip(start, end, walk);
2251
2252         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2253         arch_enter_lazy_mmu_mode();
2254
2255         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2256                 unsigned long mpfn, pfn;
2257                 struct page *page;
2258                 swp_entry_t entry;
2259                 pte_t pte;
2260
2261                 pte = *ptep;
2262                 pfn = pte_pfn(pte);
2263
2264                 if (pte_none(pte)) {
2265                         mpfn = MIGRATE_PFN_MIGRATE;
2266                         migrate->cpages++;
2267                         pfn = 0;
2268                         goto next;
2269                 }
2270
2271                 if (!pte_present(pte)) {
2272                         mpfn = pfn = 0;
2273
2274                         /*
2275                          * Only care about unaddressable device page special
2276                          * page table entry. Other special swap entries are not
2277                          * migratable, and we ignore regular swapped page.
2278                          */
2279                         entry = pte_to_swp_entry(pte);
2280                         if (!is_device_private_entry(entry))
2281                                 goto next;
2282
2283                         page = device_private_entry_to_page(entry);
2284                         mpfn = migrate_pfn(page_to_pfn(page))|
2285                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2286                         if (is_write_device_private_entry(entry))
2287                                 mpfn |= MIGRATE_PFN_WRITE;
2288                 } else {
2289                         if (is_zero_pfn(pfn)) {
2290                                 mpfn = MIGRATE_PFN_MIGRATE;
2291                                 migrate->cpages++;
2292                                 pfn = 0;
2293                                 goto next;
2294                         }
2295                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2296                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2297                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2298                 }
2299
2300                 /* FIXME support THP */
2301                 if (!page || !page->mapping || PageTransCompound(page)) {
2302                         mpfn = pfn = 0;
2303                         goto next;
2304                 }
2305                 pfn = page_to_pfn(page);
2306
2307                 /*
2308                  * By getting a reference on the page we pin it and that blocks
2309                  * any kind of migration. Side effect is that it "freezes" the
2310                  * pte.
2311                  *
2312                  * We drop this reference after isolating the page from the lru
2313                  * for non device page (device page are not on the lru and thus
2314                  * can't be dropped from it).
2315                  */
2316                 get_page(page);
2317                 migrate->cpages++;
2318
2319                 /*
2320                  * Optimize for the common case where page is only mapped once
2321                  * in one process. If we can lock the page, then we can safely
2322                  * set up a special migration page table entry now.
2323                  */
2324                 if (trylock_page(page)) {
2325                         pte_t swp_pte;
2326
2327                         mpfn |= MIGRATE_PFN_LOCKED;
2328                         ptep_get_and_clear(mm, addr, ptep);
2329
2330                         /* Setup special migration page table entry */
2331                         entry = make_migration_entry(page, mpfn &
2332                                                      MIGRATE_PFN_WRITE);
2333                         swp_pte = swp_entry_to_pte(entry);
2334                         if (pte_soft_dirty(pte))
2335                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2336                         set_pte_at(mm, addr, ptep, swp_pte);
2337
2338                         /*
2339                          * This is like regular unmap: we remove the rmap and
2340                          * drop page refcount. Page won't be freed, as we took
2341                          * a reference just above.
2342                          */
2343                         page_remove_rmap(page, false);
2344                         put_page(page);
2345
2346                         if (pte_present(pte))
2347                                 unmapped++;
2348                 }
2349
2350 next:
2351                 migrate->dst[migrate->npages] = 0;
2352                 migrate->src[migrate->npages++] = mpfn;
2353         }
2354         arch_leave_lazy_mmu_mode();
2355         pte_unmap_unlock(ptep - 1, ptl);
2356
2357         /* Only flush the TLB if we actually modified any entries */
2358         if (unmapped)
2359                 flush_tlb_range(walk->vma, start, end);
2360
2361         return 0;
2362 }
2363
2364 /*
2365  * migrate_vma_collect() - collect pages over a range of virtual addresses
2366  * @migrate: migrate struct containing all migration information
2367  *
2368  * This will walk the CPU page table. For each virtual address backed by a
2369  * valid page, it updates the src array and takes a reference on the page, in
2370  * order to pin the page until we lock it and unmap it.
2371  */
2372 static void migrate_vma_collect(struct migrate_vma *migrate)
2373 {
2374         struct mm_walk mm_walk = {
2375                 .pmd_entry = migrate_vma_collect_pmd,
2376                 .pte_hole = migrate_vma_collect_hole,
2377                 .vma = migrate->vma,
2378                 .mm = migrate->vma->vm_mm,
2379                 .private = migrate,
2380         };
2381
2382         mmu_notifier_invalidate_range_start(mm_walk.mm,
2383                                             migrate->start,
2384                                             migrate->end);
2385         walk_page_range(migrate->start, migrate->end, &mm_walk);
2386         mmu_notifier_invalidate_range_end(mm_walk.mm,
2387                                           migrate->start,
2388                                           migrate->end);
2389
2390         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2391 }
2392
2393 /*
2394  * migrate_vma_check_page() - check if page is pinned or not
2395  * @page: struct page to check
2396  *
2397  * Pinned pages cannot be migrated. This is the same test as in
2398  * migrate_page_move_mapping(), except that here we allow migration of a
2399  * ZONE_DEVICE page.
2400  */
2401 static bool migrate_vma_check_page(struct page *page)
2402 {
2403         /*
2404          * One extra ref because caller holds an extra reference, either from
2405          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2406          * a device page.
2407          */
2408         int extra = 1;
2409
2410         /*
2411          * FIXME support THP (transparent huge page), it is bit more complex to
2412          * check them than regular pages, because they can be mapped with a pmd
2413          * or with a pte (split pte mapping).
2414          */
2415         if (PageCompound(page))
2416                 return false;
2417
2418         /* Page from ZONE_DEVICE have one extra reference */
2419         if (is_zone_device_page(page)) {
2420                 /*
2421                  * Private page can never be pin as they have no valid pte and
2422                  * GUP will fail for those. Yet if there is a pending migration
2423                  * a thread might try to wait on the pte migration entry and
2424                  * will bump the page reference count. Sadly there is no way to
2425                  * differentiate a regular pin from migration wait. Hence to
2426                  * avoid 2 racing thread trying to migrate back to CPU to enter
2427                  * infinite loop (one stoping migration because the other is
2428                  * waiting on pte migration entry). We always return true here.
2429                  *
2430                  * FIXME proper solution is to rework migration_entry_wait() so
2431                  * it does not need to take a reference on page.
2432                  */
2433                 if (is_device_private_page(page))
2434                         return true;
2435
2436                 /*
2437                  * Only allow device public page to be migrated and account for
2438                  * the extra reference count imply by ZONE_DEVICE pages.
2439                  */
2440                 if (!is_device_public_page(page))
2441                         return false;
2442                 extra++;
2443         }
2444
2445         /* For file back page */
2446         if (page_mapping(page))
2447                 extra += 1 + page_has_private(page);
2448
2449         if ((page_count(page) - extra) > page_mapcount(page))
2450                 return false;
2451
2452         return true;
2453 }
2454
2455 /*
2456  * migrate_vma_prepare() - lock pages and isolate them from the lru
2457  * @migrate: migrate struct containing all migration information
2458  *
2459  * This locks pages that have been collected by migrate_vma_collect(). Once each
2460  * page is locked it is isolated from the lru (for non-device pages). Finally,
2461  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2462  * migrated by concurrent kernel threads.
2463  */
2464 static void migrate_vma_prepare(struct migrate_vma *migrate)
2465 {
2466         const unsigned long npages = migrate->npages;
2467         const unsigned long start = migrate->start;
2468         unsigned long addr, i, restore = 0;
2469         bool allow_drain = true;
2470
2471         lru_add_drain();
2472
2473         for (i = 0; (i < npages) && migrate->cpages; i++) {
2474                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2475                 bool remap = true;
2476
2477                 if (!page)
2478                         continue;
2479
2480                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2481                         /*
2482                          * Because we are migrating several pages there can be
2483                          * a deadlock between 2 concurrent migration where each
2484                          * are waiting on each other page lock.
2485                          *
2486                          * Make migrate_vma() a best effort thing and backoff
2487                          * for any page we can not lock right away.
2488                          */
2489                         if (!trylock_page(page)) {
2490                                 migrate->src[i] = 0;
2491                                 migrate->cpages--;
2492                                 put_page(page);
2493                                 continue;
2494                         }
2495                         remap = false;
2496                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2497                 }
2498
2499                 /* ZONE_DEVICE pages are not on LRU */
2500                 if (!is_zone_device_page(page)) {
2501                         if (!PageLRU(page) && allow_drain) {
2502                                 /* Drain CPU's pagevec */
2503                                 lru_add_drain_all();
2504                                 allow_drain = false;
2505                         }
2506
2507                         if (isolate_lru_page(page)) {
2508                                 if (remap) {
2509                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2510                                         migrate->cpages--;
2511                                         restore++;
2512                                 } else {
2513                                         migrate->src[i] = 0;
2514                                         unlock_page(page);
2515                                         migrate->cpages--;
2516                                         put_page(page);
2517                                 }
2518                                 continue;
2519                         }
2520
2521                         /* Drop the reference we took in collect */
2522                         put_page(page);
2523                 }
2524
2525                 if (!migrate_vma_check_page(page)) {
2526                         if (remap) {
2527                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2528                                 migrate->cpages--;
2529                                 restore++;
2530
2531                                 if (!is_zone_device_page(page)) {
2532                                         get_page(page);
2533                                         putback_lru_page(page);
2534                                 }
2535                         } else {
2536                                 migrate->src[i] = 0;
2537                                 unlock_page(page);
2538                                 migrate->cpages--;
2539
2540                                 if (!is_zone_device_page(page))
2541                                         putback_lru_page(page);
2542                                 else
2543                                         put_page(page);
2544                         }
2545                 }
2546         }
2547
2548         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2549                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2550
2551                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2552                         continue;
2553
2554                 remove_migration_pte(page, migrate->vma, addr, page);
2555
2556                 migrate->src[i] = 0;
2557                 unlock_page(page);
2558                 put_page(page);
2559                 restore--;
2560         }
2561 }
2562
2563 /*
2564  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2565  * @migrate: migrate struct containing all migration information
2566  *
2567  * Replace page mapping (CPU page table pte) with a special migration pte entry
2568  * and check again if it has been pinned. Pinned pages are restored because we
2569  * cannot migrate them.
2570  *
2571  * This is the last step before we call the device driver callback to allocate
2572  * destination memory and copy contents of original page over to new page.
2573  */
2574 static void migrate_vma_unmap(struct migrate_vma *migrate)
2575 {
2576         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2577         const unsigned long npages = migrate->npages;
2578         const unsigned long start = migrate->start;
2579         unsigned long addr, i, restore = 0;
2580
2581         for (i = 0; i < npages; i++) {
2582                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2583
2584                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2585                         continue;
2586
2587                 if (page_mapped(page)) {
2588                         try_to_unmap(page, flags);
2589                         if (page_mapped(page))
2590                                 goto restore;
2591                 }
2592
2593                 if (migrate_vma_check_page(page))
2594                         continue;
2595
2596 restore:
2597                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2598                 migrate->cpages--;
2599                 restore++;
2600         }
2601
2602         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2603                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2604
2605                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2606                         continue;
2607
2608                 remove_migration_ptes(page, page, false);
2609
2610                 migrate->src[i] = 0;
2611                 unlock_page(page);
2612                 restore--;
2613
2614                 if (is_zone_device_page(page))
2615                         put_page(page);
2616                 else
2617                         putback_lru_page(page);
2618         }
2619 }
2620
2621 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2622                                     unsigned long addr,
2623                                     struct page *page,
2624                                     unsigned long *src,
2625                                     unsigned long *dst)
2626 {
2627         struct vm_area_struct *vma = migrate->vma;
2628         struct mm_struct *mm = vma->vm_mm;
2629         struct mem_cgroup *memcg;
2630         bool flush = false;
2631         spinlock_t *ptl;
2632         pte_t entry;
2633         pgd_t *pgdp;
2634         p4d_t *p4dp;
2635         pud_t *pudp;
2636         pmd_t *pmdp;
2637         pte_t *ptep;
2638
2639         /* Only allow populating anonymous memory */
2640         if (!vma_is_anonymous(vma))
2641                 goto abort;
2642
2643         pgdp = pgd_offset(mm, addr);
2644         p4dp = p4d_alloc(mm, pgdp, addr);
2645         if (!p4dp)
2646                 goto abort;
2647         pudp = pud_alloc(mm, p4dp, addr);
2648         if (!pudp)
2649                 goto abort;
2650         pmdp = pmd_alloc(mm, pudp, addr);
2651         if (!pmdp)
2652                 goto abort;
2653
2654         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2655                 goto abort;
2656
2657         /*
2658          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2659          * pte_offset_map() on pmds where a huge pmd might be created
2660          * from a different thread.
2661          *
2662          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2663          * parallel threads are excluded by other means.
2664          *
2665          * Here we only have down_read(mmap_sem).
2666          */
2667         if (pte_alloc(mm, pmdp, addr))
2668                 goto abort;
2669
2670         /* See the comment in pte_alloc_one_map() */
2671         if (unlikely(pmd_trans_unstable(pmdp)))
2672                 goto abort;
2673
2674         if (unlikely(anon_vma_prepare(vma)))
2675                 goto abort;
2676         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2677                 goto abort;
2678
2679         /*
2680          * The memory barrier inside __SetPageUptodate makes sure that
2681          * preceding stores to the page contents become visible before
2682          * the set_pte_at() write.
2683          */
2684         __SetPageUptodate(page);
2685
2686         if (is_zone_device_page(page)) {
2687                 if (is_device_private_page(page)) {
2688                         swp_entry_t swp_entry;
2689
2690                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2691                         entry = swp_entry_to_pte(swp_entry);
2692                 } else if (is_device_public_page(page)) {
2693                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2694                         if (vma->vm_flags & VM_WRITE)
2695                                 entry = pte_mkwrite(pte_mkdirty(entry));
2696                         entry = pte_mkdevmap(entry);
2697                 }
2698         } else {
2699                 entry = mk_pte(page, vma->vm_page_prot);
2700                 if (vma->vm_flags & VM_WRITE)
2701                         entry = pte_mkwrite(pte_mkdirty(entry));
2702         }
2703
2704         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2705
2706         if (pte_present(*ptep)) {
2707                 unsigned long pfn = pte_pfn(*ptep);
2708
2709                 if (!is_zero_pfn(pfn)) {
2710                         pte_unmap_unlock(ptep, ptl);
2711                         mem_cgroup_cancel_charge(page, memcg, false);
2712                         goto abort;
2713                 }
2714                 flush = true;
2715         } else if (!pte_none(*ptep)) {
2716                 pte_unmap_unlock(ptep, ptl);
2717                 mem_cgroup_cancel_charge(page, memcg, false);
2718                 goto abort;
2719         }
2720
2721         /*
2722          * Check for usefaultfd but do not deliver the fault. Instead,
2723          * just back off.
2724          */
2725         if (userfaultfd_missing(vma)) {
2726                 pte_unmap_unlock(ptep, ptl);
2727                 mem_cgroup_cancel_charge(page, memcg, false);
2728                 goto abort;
2729         }
2730
2731         inc_mm_counter(mm, MM_ANONPAGES);
2732         page_add_new_anon_rmap(page, vma, addr, false);
2733         mem_cgroup_commit_charge(page, memcg, false, false);
2734         if (!is_zone_device_page(page))
2735                 lru_cache_add_active_or_unevictable(page, vma);
2736         get_page(page);
2737
2738         if (flush) {
2739                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2740                 ptep_clear_flush_notify(vma, addr, ptep);
2741                 set_pte_at_notify(mm, addr, ptep, entry);
2742                 update_mmu_cache(vma, addr, ptep);
2743         } else {
2744                 /* No need to invalidate - it was non-present before */
2745                 set_pte_at(mm, addr, ptep, entry);
2746                 update_mmu_cache(vma, addr, ptep);
2747         }
2748
2749         pte_unmap_unlock(ptep, ptl);
2750         *src = MIGRATE_PFN_MIGRATE;
2751         return;
2752
2753 abort:
2754         *src &= ~MIGRATE_PFN_MIGRATE;
2755 }
2756
2757 /*
2758  * migrate_vma_pages() - migrate meta-data from src page to dst page
2759  * @migrate: migrate struct containing all migration information
2760  *
2761  * This migrates struct page meta-data from source struct page to destination
2762  * struct page. This effectively finishes the migration from source page to the
2763  * destination page.
2764  */
2765 static void migrate_vma_pages(struct migrate_vma *migrate)
2766 {
2767         const unsigned long npages = migrate->npages;
2768         const unsigned long start = migrate->start;
2769         struct vm_area_struct *vma = migrate->vma;
2770         struct mm_struct *mm = vma->vm_mm;
2771         unsigned long addr, i, mmu_start;
2772         bool notified = false;
2773
2774         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2775                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2776                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2777                 struct address_space *mapping;
2778                 int r;
2779
2780                 if (!newpage) {
2781                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2782                         continue;
2783                 }
2784
2785                 if (!page) {
2786                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2787                                 continue;
2788                         }
2789                         if (!notified) {
2790                                 mmu_start = addr;
2791                                 notified = true;
2792                                 mmu_notifier_invalidate_range_start(mm,
2793                                                                 mmu_start,
2794                                                                 migrate->end);
2795                         }
2796                         migrate_vma_insert_page(migrate, addr, newpage,
2797                                                 &migrate->src[i],
2798                                                 &migrate->dst[i]);
2799                         continue;
2800                 }
2801
2802                 mapping = page_mapping(page);
2803
2804                 if (is_zone_device_page(newpage)) {
2805                         if (is_device_private_page(newpage)) {
2806                                 /*
2807                                  * For now only support private anonymous when
2808                                  * migrating to un-addressable device memory.
2809                                  */
2810                                 if (mapping) {
2811                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2812                                         continue;
2813                                 }
2814                         } else if (!is_device_public_page(newpage)) {
2815                                 /*
2816                                  * Other types of ZONE_DEVICE page are not
2817                                  * supported.
2818                                  */
2819                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2820                                 continue;
2821                         }
2822                 }
2823
2824                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2825                 if (r != MIGRATEPAGE_SUCCESS)
2826                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2827         }
2828
2829         /*
2830          * No need to double call mmu_notifier->invalidate_range() callback as
2831          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2832          * did already call it.
2833          */
2834         if (notified)
2835                 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2836                                                        migrate->end);
2837 }
2838
2839 /*
2840  * migrate_vma_finalize() - restore CPU page table entry
2841  * @migrate: migrate struct containing all migration information
2842  *
2843  * This replaces the special migration pte entry with either a mapping to the
2844  * new page if migration was successful for that page, or to the original page
2845  * otherwise.
2846  *
2847  * This also unlocks the pages and puts them back on the lru, or drops the extra
2848  * refcount, for device pages.
2849  */
2850 static void migrate_vma_finalize(struct migrate_vma *migrate)
2851 {
2852         const unsigned long npages = migrate->npages;
2853         unsigned long i;
2854
2855         for (i = 0; i < npages; i++) {
2856                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2857                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2858
2859                 if (!page) {
2860                         if (newpage) {
2861                                 unlock_page(newpage);
2862                                 put_page(newpage);
2863                         }
2864                         continue;
2865                 }
2866
2867                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2868                         if (newpage) {
2869                                 unlock_page(newpage);
2870                                 put_page(newpage);
2871                         }
2872                         newpage = page;
2873                 }
2874
2875                 remove_migration_ptes(page, newpage, false);
2876                 unlock_page(page);
2877                 migrate->cpages--;
2878
2879                 if (is_zone_device_page(page))
2880                         put_page(page);
2881                 else
2882                         putback_lru_page(page);
2883
2884                 if (newpage != page) {
2885                         unlock_page(newpage);
2886                         if (is_zone_device_page(newpage))
2887                                 put_page(newpage);
2888                         else
2889                                 putback_lru_page(newpage);
2890                 }
2891         }
2892 }
2893
2894 /*
2895  * migrate_vma() - migrate a range of memory inside vma
2896  *
2897  * @ops: migration callback for allocating destination memory and copying
2898  * @vma: virtual memory area containing the range to be migrated
2899  * @start: start address of the range to migrate (inclusive)
2900  * @end: end address of the range to migrate (exclusive)
2901  * @src: array of hmm_pfn_t containing source pfns
2902  * @dst: array of hmm_pfn_t containing destination pfns
2903  * @private: pointer passed back to each of the callback
2904  * Returns: 0 on success, error code otherwise
2905  *
2906  * This function tries to migrate a range of memory virtual address range, using
2907  * callbacks to allocate and copy memory from source to destination. First it
2908  * collects all the pages backing each virtual address in the range, saving this
2909  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2910  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2911  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2912  * in the corresponding src array entry. It then restores any pages that are
2913  * pinned, by remapping and unlocking those pages.
2914  *
2915  * At this point it calls the alloc_and_copy() callback. For documentation on
2916  * what is expected from that callback, see struct migrate_vma_ops comments in
2917  * include/linux/migrate.h
2918  *
2919  * After the alloc_and_copy() callback, this function goes over each entry in
2920  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2921  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2922  * then the function tries to migrate struct page information from the source
2923  * struct page to the destination struct page. If it fails to migrate the struct
2924  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2925  * array.
2926  *
2927  * At this point all successfully migrated pages have an entry in the src
2928  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2929  * array entry with MIGRATE_PFN_VALID flag set.
2930  *
2931  * It then calls the finalize_and_map() callback. See comments for "struct
2932  * migrate_vma_ops", in include/linux/migrate.h for details about
2933  * finalize_and_map() behavior.
2934  *
2935  * After the finalize_and_map() callback, for successfully migrated pages, this
2936  * function updates the CPU page table to point to new pages, otherwise it
2937  * restores the CPU page table to point to the original source pages.
2938  *
2939  * Function returns 0 after the above steps, even if no pages were migrated
2940  * (The function only returns an error if any of the arguments are invalid.)
2941  *
2942  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2943  * unsigned long entries.
2944  */
2945 int migrate_vma(const struct migrate_vma_ops *ops,
2946                 struct vm_area_struct *vma,
2947                 unsigned long start,
2948                 unsigned long end,
2949                 unsigned long *src,
2950                 unsigned long *dst,
2951                 void *private)
2952 {
2953         struct migrate_vma migrate;
2954
2955         /* Sanity check the arguments */
2956         start &= PAGE_MASK;
2957         end &= PAGE_MASK;
2958         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2959                         vma_is_dax(vma))
2960                 return -EINVAL;
2961         if (start < vma->vm_start || start >= vma->vm_end)
2962                 return -EINVAL;
2963         if (end <= vma->vm_start || end > vma->vm_end)
2964                 return -EINVAL;
2965         if (!ops || !src || !dst || start >= end)
2966                 return -EINVAL;
2967
2968         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2969         migrate.src = src;
2970         migrate.dst = dst;
2971         migrate.start = start;
2972         migrate.npages = 0;
2973         migrate.cpages = 0;
2974         migrate.end = end;
2975         migrate.vma = vma;
2976
2977         /* Collect, and try to unmap source pages */
2978         migrate_vma_collect(&migrate);
2979         if (!migrate.cpages)
2980                 return 0;
2981
2982         /* Lock and isolate page */
2983         migrate_vma_prepare(&migrate);
2984         if (!migrate.cpages)
2985                 return 0;
2986
2987         /* Unmap pages */
2988         migrate_vma_unmap(&migrate);
2989         if (!migrate.cpages)
2990                 return 0;
2991
2992         /*
2993          * At this point pages are locked and unmapped, and thus they have
2994          * stable content and can safely be copied to destination memory that
2995          * is allocated by the callback.
2996          *
2997          * Note that migration can fail in migrate_vma_struct_page() for each
2998          * individual page.
2999          */
3000         ops->alloc_and_copy(vma, src, dst, start, end, private);
3001
3002         /* This does the real migration of struct page */
3003         migrate_vma_pages(&migrate);
3004
3005         ops->finalize_and_map(vma, src, dst, start, end, private);
3006
3007         /* Unlock and remap pages */
3008         migrate_vma_finalize(&migrate);
3009
3010         return 0;
3011 }
3012 EXPORT_SYMBOL(migrate_vma);
3013 #endif /* defined(MIGRATE_VMA_HELPER) */