Linux-libre 4.19.116-gnu
[librecmc/linux-libre.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
242 {
243         struct mmu_gather_batch *batch;
244
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb_table_flush(tlb);
247 #endif
248         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
249                 free_pages_and_swap_cache(batch->pages, batch->nr);
250                 batch->nr = 0;
251         }
252         tlb->active = &tlb->local;
253 }
254
255 void tlb_flush_mmu(struct mmu_gather *tlb)
256 {
257         tlb_flush_mmu_tlbonly(tlb);
258         tlb_flush_mmu_free(tlb);
259 }
260
261 /* tlb_finish_mmu
262  *      Called at the end of the shootdown operation to free up any resources
263  *      that were required.
264  */
265 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
266                 unsigned long start, unsigned long end, bool force)
267 {
268         struct mmu_gather_batch *batch, *next;
269
270         if (force)
271                 __tlb_adjust_range(tlb, start, end - start);
272
273         tlb_flush_mmu(tlb);
274
275         /* keep the page table cache within bounds */
276         check_pgt_cache();
277
278         for (batch = tlb->local.next; batch; batch = next) {
279                 next = batch->next;
280                 free_pages((unsigned long)batch, 0);
281         }
282         tlb->local.next = NULL;
283 }
284
285 /* __tlb_remove_page
286  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287  *      handling the additional races in SMP caused by other CPUs caching valid
288  *      mappings in their TLBs. Returns the number of free page slots left.
289  *      When out of page slots we must call tlb_flush_mmu().
290  *returns true if the caller should flush.
291  */
292 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->end);
297         VM_WARN_ON(tlb->page_size != page_size);
298
299         batch = tlb->active;
300         /*
301          * Add the page and check if we are full. If so
302          * force a flush.
303          */
304         batch->pages[batch->nr++] = page;
305         if (batch->nr == batch->max) {
306                 if (!tlb_next_batch(tlb))
307                         return true;
308                 batch = tlb->active;
309         }
310         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
311
312         return false;
313 }
314
315 #endif /* HAVE_GENERIC_MMU_GATHER */
316
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318
319 /*
320  * See the comment near struct mmu_table_batch.
321  */
322
323 /*
324  * If we want tlb_remove_table() to imply TLB invalidates.
325  */
326 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
327 {
328 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
329         /*
330          * Invalidate page-table caches used by hardware walkers. Then we still
331          * need to RCU-sched wait while freeing the pages because software
332          * walkers can still be in-flight.
333          */
334         tlb_flush_mmu_tlbonly(tlb);
335 #endif
336 }
337
338 static void tlb_remove_table_smp_sync(void *arg)
339 {
340         /* Simply deliver the interrupt */
341 }
342
343 static void tlb_remove_table_one(void *table)
344 {
345         /*
346          * This isn't an RCU grace period and hence the page-tables cannot be
347          * assumed to be actually RCU-freed.
348          *
349          * It is however sufficient for software page-table walkers that rely on
350          * IRQ disabling. See the comment near struct mmu_table_batch.
351          */
352         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
353         __tlb_remove_table(table);
354 }
355
356 static void tlb_remove_table_rcu(struct rcu_head *head)
357 {
358         struct mmu_table_batch *batch;
359         int i;
360
361         batch = container_of(head, struct mmu_table_batch, rcu);
362
363         for (i = 0; i < batch->nr; i++)
364                 __tlb_remove_table(batch->tables[i]);
365
366         free_page((unsigned long)batch);
367 }
368
369 void tlb_table_flush(struct mmu_gather *tlb)
370 {
371         struct mmu_table_batch **batch = &tlb->batch;
372
373         if (*batch) {
374                 tlb_table_invalidate(tlb);
375                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376                 *batch = NULL;
377         }
378 }
379
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382         struct mmu_table_batch **batch = &tlb->batch;
383
384         if (*batch == NULL) {
385                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386                 if (*batch == NULL) {
387                         tlb_table_invalidate(tlb);
388                         tlb_remove_table_one(table);
389                         return;
390                 }
391                 (*batch)->nr = 0;
392         }
393
394         (*batch)->tables[(*batch)->nr++] = table;
395         if ((*batch)->nr == MAX_TABLE_BATCH)
396                 tlb_table_flush(tlb);
397 }
398
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400
401 /**
402  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
403  * @tlb: the mmu_gather structure to initialize
404  * @mm: the mm_struct of the target address space
405  * @start: start of the region that will be removed from the page-table
406  * @end: end of the region that will be removed from the page-table
407  *
408  * Called to initialize an (on-stack) mmu_gather structure for page-table
409  * tear-down from @mm. The @start and @end are set to 0 and -1
410  * respectively when @mm is without users and we're going to destroy
411  * the full address space (exit/execve).
412  */
413 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
414                         unsigned long start, unsigned long end)
415 {
416         arch_tlb_gather_mmu(tlb, mm, start, end);
417         inc_tlb_flush_pending(tlb->mm);
418 }
419
420 void tlb_finish_mmu(struct mmu_gather *tlb,
421                 unsigned long start, unsigned long end)
422 {
423         /*
424          * If there are parallel threads are doing PTE changes on same range
425          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
426          * flush by batching, a thread has stable TLB entry can fail to flush
427          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
428          * forcefully if we detect parallel PTE batching threads.
429          */
430         bool force = mm_tlb_flush_nested(tlb->mm);
431
432         arch_tlb_finish_mmu(tlb, start, end, force);
433         dec_tlb_flush_pending(tlb->mm);
434 }
435
436 /*
437  * Note: this doesn't free the actual pages themselves. That
438  * has been handled earlier when unmapping all the memory regions.
439  */
440 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
441                            unsigned long addr)
442 {
443         pgtable_t token = pmd_pgtable(*pmd);
444         pmd_clear(pmd);
445         pte_free_tlb(tlb, token, addr);
446         mm_dec_nr_ptes(tlb->mm);
447 }
448
449 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
450                                 unsigned long addr, unsigned long end,
451                                 unsigned long floor, unsigned long ceiling)
452 {
453         pmd_t *pmd;
454         unsigned long next;
455         unsigned long start;
456
457         start = addr;
458         pmd = pmd_offset(pud, addr);
459         do {
460                 next = pmd_addr_end(addr, end);
461                 if (pmd_none_or_clear_bad(pmd))
462                         continue;
463                 free_pte_range(tlb, pmd, addr);
464         } while (pmd++, addr = next, addr != end);
465
466         start &= PUD_MASK;
467         if (start < floor)
468                 return;
469         if (ceiling) {
470                 ceiling &= PUD_MASK;
471                 if (!ceiling)
472                         return;
473         }
474         if (end - 1 > ceiling - 1)
475                 return;
476
477         pmd = pmd_offset(pud, start);
478         pud_clear(pud);
479         pmd_free_tlb(tlb, pmd, start);
480         mm_dec_nr_pmds(tlb->mm);
481 }
482
483 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
484                                 unsigned long addr, unsigned long end,
485                                 unsigned long floor, unsigned long ceiling)
486 {
487         pud_t *pud;
488         unsigned long next;
489         unsigned long start;
490
491         start = addr;
492         pud = pud_offset(p4d, addr);
493         do {
494                 next = pud_addr_end(addr, end);
495                 if (pud_none_or_clear_bad(pud))
496                         continue;
497                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
498         } while (pud++, addr = next, addr != end);
499
500         start &= P4D_MASK;
501         if (start < floor)
502                 return;
503         if (ceiling) {
504                 ceiling &= P4D_MASK;
505                 if (!ceiling)
506                         return;
507         }
508         if (end - 1 > ceiling - 1)
509                 return;
510
511         pud = pud_offset(p4d, start);
512         p4d_clear(p4d);
513         pud_free_tlb(tlb, pud, start);
514         mm_dec_nr_puds(tlb->mm);
515 }
516
517 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
518                                 unsigned long addr, unsigned long end,
519                                 unsigned long floor, unsigned long ceiling)
520 {
521         p4d_t *p4d;
522         unsigned long next;
523         unsigned long start;
524
525         start = addr;
526         p4d = p4d_offset(pgd, addr);
527         do {
528                 next = p4d_addr_end(addr, end);
529                 if (p4d_none_or_clear_bad(p4d))
530                         continue;
531                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
532         } while (p4d++, addr = next, addr != end);
533
534         start &= PGDIR_MASK;
535         if (start < floor)
536                 return;
537         if (ceiling) {
538                 ceiling &= PGDIR_MASK;
539                 if (!ceiling)
540                         return;
541         }
542         if (end - 1 > ceiling - 1)
543                 return;
544
545         p4d = p4d_offset(pgd, start);
546         pgd_clear(pgd);
547         p4d_free_tlb(tlb, p4d, start);
548 }
549
550 /*
551  * This function frees user-level page tables of a process.
552  */
553 void free_pgd_range(struct mmu_gather *tlb,
554                         unsigned long addr, unsigned long end,
555                         unsigned long floor, unsigned long ceiling)
556 {
557         pgd_t *pgd;
558         unsigned long next;
559
560         /*
561          * The next few lines have given us lots of grief...
562          *
563          * Why are we testing PMD* at this top level?  Because often
564          * there will be no work to do at all, and we'd prefer not to
565          * go all the way down to the bottom just to discover that.
566          *
567          * Why all these "- 1"s?  Because 0 represents both the bottom
568          * of the address space and the top of it (using -1 for the
569          * top wouldn't help much: the masks would do the wrong thing).
570          * The rule is that addr 0 and floor 0 refer to the bottom of
571          * the address space, but end 0 and ceiling 0 refer to the top
572          * Comparisons need to use "end - 1" and "ceiling - 1" (though
573          * that end 0 case should be mythical).
574          *
575          * Wherever addr is brought up or ceiling brought down, we must
576          * be careful to reject "the opposite 0" before it confuses the
577          * subsequent tests.  But what about where end is brought down
578          * by PMD_SIZE below? no, end can't go down to 0 there.
579          *
580          * Whereas we round start (addr) and ceiling down, by different
581          * masks at different levels, in order to test whether a table
582          * now has no other vmas using it, so can be freed, we don't
583          * bother to round floor or end up - the tests don't need that.
584          */
585
586         addr &= PMD_MASK;
587         if (addr < floor) {
588                 addr += PMD_SIZE;
589                 if (!addr)
590                         return;
591         }
592         if (ceiling) {
593                 ceiling &= PMD_MASK;
594                 if (!ceiling)
595                         return;
596         }
597         if (end - 1 > ceiling - 1)
598                 end -= PMD_SIZE;
599         if (addr > end - 1)
600                 return;
601         /*
602          * We add page table cache pages with PAGE_SIZE,
603          * (see pte_free_tlb()), flush the tlb if we need
604          */
605         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
606         pgd = pgd_offset(tlb->mm, addr);
607         do {
608                 next = pgd_addr_end(addr, end);
609                 if (pgd_none_or_clear_bad(pgd))
610                         continue;
611                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
612         } while (pgd++, addr = next, addr != end);
613 }
614
615 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
616                 unsigned long floor, unsigned long ceiling)
617 {
618         while (vma) {
619                 struct vm_area_struct *next = vma->vm_next;
620                 unsigned long addr = vma->vm_start;
621
622                 /*
623                  * Hide vma from rmap and truncate_pagecache before freeing
624                  * pgtables
625                  */
626                 unlink_anon_vmas(vma);
627                 unlink_file_vma(vma);
628
629                 if (is_vm_hugetlb_page(vma)) {
630                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
631                                 floor, next ? next->vm_start : ceiling);
632                 } else {
633                         /*
634                          * Optimization: gather nearby vmas into one call down
635                          */
636                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
637                                && !is_vm_hugetlb_page(next)) {
638                                 vma = next;
639                                 next = vma->vm_next;
640                                 unlink_anon_vmas(vma);
641                                 unlink_file_vma(vma);
642                         }
643                         free_pgd_range(tlb, addr, vma->vm_end,
644                                 floor, next ? next->vm_start : ceiling);
645                 }
646                 vma = next;
647         }
648 }
649
650 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
651 {
652         spinlock_t *ptl;
653         pgtable_t new = pte_alloc_one(mm, address);
654         if (!new)
655                 return -ENOMEM;
656
657         /*
658          * Ensure all pte setup (eg. pte page lock and page clearing) are
659          * visible before the pte is made visible to other CPUs by being
660          * put into page tables.
661          *
662          * The other side of the story is the pointer chasing in the page
663          * table walking code (when walking the page table without locking;
664          * ie. most of the time). Fortunately, these data accesses consist
665          * of a chain of data-dependent loads, meaning most CPUs (alpha
666          * being the notable exception) will already guarantee loads are
667          * seen in-order. See the alpha page table accessors for the
668          * smp_read_barrier_depends() barriers in page table walking code.
669          */
670         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
671
672         ptl = pmd_lock(mm, pmd);
673         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
674                 mm_inc_nr_ptes(mm);
675                 pmd_populate(mm, pmd, new);
676                 new = NULL;
677         }
678         spin_unlock(ptl);
679         if (new)
680                 pte_free(mm, new);
681         return 0;
682 }
683
684 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
685 {
686         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
687         if (!new)
688                 return -ENOMEM;
689
690         smp_wmb(); /* See comment in __pte_alloc */
691
692         spin_lock(&init_mm.page_table_lock);
693         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
694                 pmd_populate_kernel(&init_mm, pmd, new);
695                 new = NULL;
696         }
697         spin_unlock(&init_mm.page_table_lock);
698         if (new)
699                 pte_free_kernel(&init_mm, new);
700         return 0;
701 }
702
703 static inline void init_rss_vec(int *rss)
704 {
705         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
706 }
707
708 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
709 {
710         int i;
711
712         if (current->mm == mm)
713                 sync_mm_rss(mm);
714         for (i = 0; i < NR_MM_COUNTERS; i++)
715                 if (rss[i])
716                         add_mm_counter(mm, i, rss[i]);
717 }
718
719 /*
720  * This function is called to print an error when a bad pte
721  * is found. For example, we might have a PFN-mapped pte in
722  * a region that doesn't allow it.
723  *
724  * The calling function must still handle the error.
725  */
726 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
727                           pte_t pte, struct page *page)
728 {
729         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
730         p4d_t *p4d = p4d_offset(pgd, addr);
731         pud_t *pud = pud_offset(p4d, addr);
732         pmd_t *pmd = pmd_offset(pud, addr);
733         struct address_space *mapping;
734         pgoff_t index;
735         static unsigned long resume;
736         static unsigned long nr_shown;
737         static unsigned long nr_unshown;
738
739         /*
740          * Allow a burst of 60 reports, then keep quiet for that minute;
741          * or allow a steady drip of one report per second.
742          */
743         if (nr_shown == 60) {
744                 if (time_before(jiffies, resume)) {
745                         nr_unshown++;
746                         return;
747                 }
748                 if (nr_unshown) {
749                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
750                                  nr_unshown);
751                         nr_unshown = 0;
752                 }
753                 nr_shown = 0;
754         }
755         if (nr_shown++ == 0)
756                 resume = jiffies + 60 * HZ;
757
758         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
759         index = linear_page_index(vma, addr);
760
761         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
762                  current->comm,
763                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
764         if (page)
765                 dump_page(page, "bad pte");
766         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
767                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
768         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
769                  vma->vm_file,
770                  vma->vm_ops ? vma->vm_ops->fault : NULL,
771                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
772                  mapping ? mapping->a_ops->readpage : NULL);
773         dump_stack();
774         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
775 }
776
777 /*
778  * vm_normal_page -- This function gets the "struct page" associated with a pte.
779  *
780  * "Special" mappings do not wish to be associated with a "struct page" (either
781  * it doesn't exist, or it exists but they don't want to touch it). In this
782  * case, NULL is returned here. "Normal" mappings do have a struct page.
783  *
784  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
785  * pte bit, in which case this function is trivial. Secondly, an architecture
786  * may not have a spare pte bit, which requires a more complicated scheme,
787  * described below.
788  *
789  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
790  * special mapping (even if there are underlying and valid "struct pages").
791  * COWed pages of a VM_PFNMAP are always normal.
792  *
793  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
794  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
795  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
796  * mapping will always honor the rule
797  *
798  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
799  *
800  * And for normal mappings this is false.
801  *
802  * This restricts such mappings to be a linear translation from virtual address
803  * to pfn. To get around this restriction, we allow arbitrary mappings so long
804  * as the vma is not a COW mapping; in that case, we know that all ptes are
805  * special (because none can have been COWed).
806  *
807  *
808  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
809  *
810  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
811  * page" backing, however the difference is that _all_ pages with a struct
812  * page (that is, those where pfn_valid is true) are refcounted and considered
813  * normal pages by the VM. The disadvantage is that pages are refcounted
814  * (which can be slower and simply not an option for some PFNMAP users). The
815  * advantage is that we don't have to follow the strict linearity rule of
816  * PFNMAP mappings in order to support COWable mappings.
817  *
818  */
819 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
820                              pte_t pte, bool with_public_device)
821 {
822         unsigned long pfn = pte_pfn(pte);
823
824         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
825                 if (likely(!pte_special(pte)))
826                         goto check_pfn;
827                 if (vma->vm_ops && vma->vm_ops->find_special_page)
828                         return vma->vm_ops->find_special_page(vma, addr);
829                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
830                         return NULL;
831                 if (is_zero_pfn(pfn))
832                         return NULL;
833
834                 /*
835                  * Device public pages are special pages (they are ZONE_DEVICE
836                  * pages but different from persistent memory). They behave
837                  * allmost like normal pages. The difference is that they are
838                  * not on the lru and thus should never be involve with any-
839                  * thing that involve lru manipulation (mlock, numa balancing,
840                  * ...).
841                  *
842                  * This is why we still want to return NULL for such page from
843                  * vm_normal_page() so that we do not have to special case all
844                  * call site of vm_normal_page().
845                  */
846                 if (likely(pfn <= highest_memmap_pfn)) {
847                         struct page *page = pfn_to_page(pfn);
848
849                         if (is_device_public_page(page)) {
850                                 if (with_public_device)
851                                         return page;
852                                 return NULL;
853                         }
854                 }
855
856                 if (pte_devmap(pte))
857                         return NULL;
858
859                 print_bad_pte(vma, addr, pte, NULL);
860                 return NULL;
861         }
862
863         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
864
865         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
866                 if (vma->vm_flags & VM_MIXEDMAP) {
867                         if (!pfn_valid(pfn))
868                                 return NULL;
869                         goto out;
870                 } else {
871                         unsigned long off;
872                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
873                         if (pfn == vma->vm_pgoff + off)
874                                 return NULL;
875                         if (!is_cow_mapping(vma->vm_flags))
876                                 return NULL;
877                 }
878         }
879
880         if (is_zero_pfn(pfn))
881                 return NULL;
882
883 check_pfn:
884         if (unlikely(pfn > highest_memmap_pfn)) {
885                 print_bad_pte(vma, addr, pte, NULL);
886                 return NULL;
887         }
888
889         /*
890          * NOTE! We still have PageReserved() pages in the page tables.
891          * eg. VDSO mappings can cause them to exist.
892          */
893 out:
894         return pfn_to_page(pfn);
895 }
896
897 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
898 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
899                                 pmd_t pmd)
900 {
901         unsigned long pfn = pmd_pfn(pmd);
902
903         /*
904          * There is no pmd_special() but there may be special pmds, e.g.
905          * in a direct-access (dax) mapping, so let's just replicate the
906          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
907          */
908         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
909                 if (vma->vm_flags & VM_MIXEDMAP) {
910                         if (!pfn_valid(pfn))
911                                 return NULL;
912                         goto out;
913                 } else {
914                         unsigned long off;
915                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
916                         if (pfn == vma->vm_pgoff + off)
917                                 return NULL;
918                         if (!is_cow_mapping(vma->vm_flags))
919                                 return NULL;
920                 }
921         }
922
923         if (pmd_devmap(pmd))
924                 return NULL;
925         if (is_zero_pfn(pfn))
926                 return NULL;
927         if (unlikely(pfn > highest_memmap_pfn))
928                 return NULL;
929
930         /*
931          * NOTE! We still have PageReserved() pages in the page tables.
932          * eg. VDSO mappings can cause them to exist.
933          */
934 out:
935         return pfn_to_page(pfn);
936 }
937 #endif
938
939 /*
940  * copy one vm_area from one task to the other. Assumes the page tables
941  * already present in the new task to be cleared in the whole range
942  * covered by this vma.
943  */
944
945 static inline unsigned long
946 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
947                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
948                 unsigned long addr, int *rss)
949 {
950         unsigned long vm_flags = vma->vm_flags;
951         pte_t pte = *src_pte;
952         struct page *page;
953
954         /* pte contains position in swap or file, so copy. */
955         if (unlikely(!pte_present(pte))) {
956                 swp_entry_t entry = pte_to_swp_entry(pte);
957
958                 if (likely(!non_swap_entry(entry))) {
959                         if (swap_duplicate(entry) < 0)
960                                 return entry.val;
961
962                         /* make sure dst_mm is on swapoff's mmlist. */
963                         if (unlikely(list_empty(&dst_mm->mmlist))) {
964                                 spin_lock(&mmlist_lock);
965                                 if (list_empty(&dst_mm->mmlist))
966                                         list_add(&dst_mm->mmlist,
967                                                         &src_mm->mmlist);
968                                 spin_unlock(&mmlist_lock);
969                         }
970                         rss[MM_SWAPENTS]++;
971                 } else if (is_migration_entry(entry)) {
972                         page = migration_entry_to_page(entry);
973
974                         rss[mm_counter(page)]++;
975
976                         if (is_write_migration_entry(entry) &&
977                                         is_cow_mapping(vm_flags)) {
978                                 /*
979                                  * COW mappings require pages in both
980                                  * parent and child to be set to read.
981                                  */
982                                 make_migration_entry_read(&entry);
983                                 pte = swp_entry_to_pte(entry);
984                                 if (pte_swp_soft_dirty(*src_pte))
985                                         pte = pte_swp_mksoft_dirty(pte);
986                                 set_pte_at(src_mm, addr, src_pte, pte);
987                         }
988                 } else if (is_device_private_entry(entry)) {
989                         page = device_private_entry_to_page(entry);
990
991                         /*
992                          * Update rss count even for unaddressable pages, as
993                          * they should treated just like normal pages in this
994                          * respect.
995                          *
996                          * We will likely want to have some new rss counters
997                          * for unaddressable pages, at some point. But for now
998                          * keep things as they are.
999                          */
1000                         get_page(page);
1001                         rss[mm_counter(page)]++;
1002                         page_dup_rmap(page, false);
1003
1004                         /*
1005                          * We do not preserve soft-dirty information, because so
1006                          * far, checkpoint/restore is the only feature that
1007                          * requires that. And checkpoint/restore does not work
1008                          * when a device driver is involved (you cannot easily
1009                          * save and restore device driver state).
1010                          */
1011                         if (is_write_device_private_entry(entry) &&
1012                             is_cow_mapping(vm_flags)) {
1013                                 make_device_private_entry_read(&entry);
1014                                 pte = swp_entry_to_pte(entry);
1015                                 set_pte_at(src_mm, addr, src_pte, pte);
1016                         }
1017                 }
1018                 goto out_set_pte;
1019         }
1020
1021         /*
1022          * If it's a COW mapping, write protect it both
1023          * in the parent and the child
1024          */
1025         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1026                 ptep_set_wrprotect(src_mm, addr, src_pte);
1027                 pte = pte_wrprotect(pte);
1028         }
1029
1030         /*
1031          * If it's a shared mapping, mark it clean in
1032          * the child
1033          */
1034         if (vm_flags & VM_SHARED)
1035                 pte = pte_mkclean(pte);
1036         pte = pte_mkold(pte);
1037
1038         page = vm_normal_page(vma, addr, pte);
1039         if (page) {
1040                 get_page(page);
1041                 page_dup_rmap(page, false);
1042                 rss[mm_counter(page)]++;
1043         } else if (pte_devmap(pte)) {
1044                 page = pte_page(pte);
1045
1046                 /*
1047                  * Cache coherent device memory behave like regular page and
1048                  * not like persistent memory page. For more informations see
1049                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1050                  */
1051                 if (is_device_public_page(page)) {
1052                         get_page(page);
1053                         page_dup_rmap(page, false);
1054                         rss[mm_counter(page)]++;
1055                 }
1056         }
1057
1058 out_set_pte:
1059         set_pte_at(dst_mm, addr, dst_pte, pte);
1060         return 0;
1061 }
1062
1063 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1064                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1065                    unsigned long addr, unsigned long end)
1066 {
1067         pte_t *orig_src_pte, *orig_dst_pte;
1068         pte_t *src_pte, *dst_pte;
1069         spinlock_t *src_ptl, *dst_ptl;
1070         int progress = 0;
1071         int rss[NR_MM_COUNTERS];
1072         swp_entry_t entry = (swp_entry_t){0};
1073
1074 again:
1075         init_rss_vec(rss);
1076
1077         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1078         if (!dst_pte)
1079                 return -ENOMEM;
1080         src_pte = pte_offset_map(src_pmd, addr);
1081         src_ptl = pte_lockptr(src_mm, src_pmd);
1082         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1083         orig_src_pte = src_pte;
1084         orig_dst_pte = dst_pte;
1085         arch_enter_lazy_mmu_mode();
1086
1087         do {
1088                 /*
1089                  * We are holding two locks at this point - either of them
1090                  * could generate latencies in another task on another CPU.
1091                  */
1092                 if (progress >= 32) {
1093                         progress = 0;
1094                         if (need_resched() ||
1095                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1096                                 break;
1097                 }
1098                 if (pte_none(*src_pte)) {
1099                         progress++;
1100                         continue;
1101                 }
1102                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1103                                                         vma, addr, rss);
1104                 if (entry.val)
1105                         break;
1106                 progress += 8;
1107         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1108
1109         arch_leave_lazy_mmu_mode();
1110         spin_unlock(src_ptl);
1111         pte_unmap(orig_src_pte);
1112         add_mm_rss_vec(dst_mm, rss);
1113         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1114         cond_resched();
1115
1116         if (entry.val) {
1117                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1118                         return -ENOMEM;
1119                 progress = 0;
1120         }
1121         if (addr != end)
1122                 goto again;
1123         return 0;
1124 }
1125
1126 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1127                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1128                 unsigned long addr, unsigned long end)
1129 {
1130         pmd_t *src_pmd, *dst_pmd;
1131         unsigned long next;
1132
1133         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1134         if (!dst_pmd)
1135                 return -ENOMEM;
1136         src_pmd = pmd_offset(src_pud, addr);
1137         do {
1138                 next = pmd_addr_end(addr, end);
1139                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1140                         || pmd_devmap(*src_pmd)) {
1141                         int err;
1142                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1143                         err = copy_huge_pmd(dst_mm, src_mm,
1144                                             dst_pmd, src_pmd, addr, vma);
1145                         if (err == -ENOMEM)
1146                                 return -ENOMEM;
1147                         if (!err)
1148                                 continue;
1149                         /* fall through */
1150                 }
1151                 if (pmd_none_or_clear_bad(src_pmd))
1152                         continue;
1153                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1154                                                 vma, addr, next))
1155                         return -ENOMEM;
1156         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1157         return 0;
1158 }
1159
1160 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1161                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1162                 unsigned long addr, unsigned long end)
1163 {
1164         pud_t *src_pud, *dst_pud;
1165         unsigned long next;
1166
1167         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1168         if (!dst_pud)
1169                 return -ENOMEM;
1170         src_pud = pud_offset(src_p4d, addr);
1171         do {
1172                 next = pud_addr_end(addr, end);
1173                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1174                         int err;
1175
1176                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1177                         err = copy_huge_pud(dst_mm, src_mm,
1178                                             dst_pud, src_pud, addr, vma);
1179                         if (err == -ENOMEM)
1180                                 return -ENOMEM;
1181                         if (!err)
1182                                 continue;
1183                         /* fall through */
1184                 }
1185                 if (pud_none_or_clear_bad(src_pud))
1186                         continue;
1187                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1188                                                 vma, addr, next))
1189                         return -ENOMEM;
1190         } while (dst_pud++, src_pud++, addr = next, addr != end);
1191         return 0;
1192 }
1193
1194 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1196                 unsigned long addr, unsigned long end)
1197 {
1198         p4d_t *src_p4d, *dst_p4d;
1199         unsigned long next;
1200
1201         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1202         if (!dst_p4d)
1203                 return -ENOMEM;
1204         src_p4d = p4d_offset(src_pgd, addr);
1205         do {
1206                 next = p4d_addr_end(addr, end);
1207                 if (p4d_none_or_clear_bad(src_p4d))
1208                         continue;
1209                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1210                                                 vma, addr, next))
1211                         return -ENOMEM;
1212         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1213         return 0;
1214 }
1215
1216 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1217                 struct vm_area_struct *vma)
1218 {
1219         pgd_t *src_pgd, *dst_pgd;
1220         unsigned long next;
1221         unsigned long addr = vma->vm_start;
1222         unsigned long end = vma->vm_end;
1223         unsigned long mmun_start;       /* For mmu_notifiers */
1224         unsigned long mmun_end;         /* For mmu_notifiers */
1225         bool is_cow;
1226         int ret;
1227
1228         /*
1229          * Don't copy ptes where a page fault will fill them correctly.
1230          * Fork becomes much lighter when there are big shared or private
1231          * readonly mappings. The tradeoff is that copy_page_range is more
1232          * efficient than faulting.
1233          */
1234         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1235                         !vma->anon_vma)
1236                 return 0;
1237
1238         if (is_vm_hugetlb_page(vma))
1239                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1240
1241         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1242                 /*
1243                  * We do not free on error cases below as remove_vma
1244                  * gets called on error from higher level routine
1245                  */
1246                 ret = track_pfn_copy(vma);
1247                 if (ret)
1248                         return ret;
1249         }
1250
1251         /*
1252          * We need to invalidate the secondary MMU mappings only when
1253          * there could be a permission downgrade on the ptes of the
1254          * parent mm. And a permission downgrade will only happen if
1255          * is_cow_mapping() returns true.
1256          */
1257         is_cow = is_cow_mapping(vma->vm_flags);
1258         mmun_start = addr;
1259         mmun_end   = end;
1260         if (is_cow)
1261                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1262                                                     mmun_end);
1263
1264         ret = 0;
1265         dst_pgd = pgd_offset(dst_mm, addr);
1266         src_pgd = pgd_offset(src_mm, addr);
1267         do {
1268                 next = pgd_addr_end(addr, end);
1269                 if (pgd_none_or_clear_bad(src_pgd))
1270                         continue;
1271                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1272                                             vma, addr, next))) {
1273                         ret = -ENOMEM;
1274                         break;
1275                 }
1276         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1277
1278         if (is_cow)
1279                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1280         return ret;
1281 }
1282
1283 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1284                                 struct vm_area_struct *vma, pmd_t *pmd,
1285                                 unsigned long addr, unsigned long end,
1286                                 struct zap_details *details)
1287 {
1288         struct mm_struct *mm = tlb->mm;
1289         int force_flush = 0;
1290         int rss[NR_MM_COUNTERS];
1291         spinlock_t *ptl;
1292         pte_t *start_pte;
1293         pte_t *pte;
1294         swp_entry_t entry;
1295
1296         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1297 again:
1298         init_rss_vec(rss);
1299         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1300         pte = start_pte;
1301         flush_tlb_batched_pending(mm);
1302         arch_enter_lazy_mmu_mode();
1303         do {
1304                 pte_t ptent = *pte;
1305                 if (pte_none(ptent))
1306                         continue;
1307
1308                 if (pte_present(ptent)) {
1309                         struct page *page;
1310
1311                         page = _vm_normal_page(vma, addr, ptent, true);
1312                         if (unlikely(details) && page) {
1313                                 /*
1314                                  * unmap_shared_mapping_pages() wants to
1315                                  * invalidate cache without truncating:
1316                                  * unmap shared but keep private pages.
1317                                  */
1318                                 if (details->check_mapping &&
1319                                     details->check_mapping != page_rmapping(page))
1320                                         continue;
1321                         }
1322                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1323                                                         tlb->fullmm);
1324                         tlb_remove_tlb_entry(tlb, pte, addr);
1325                         if (unlikely(!page))
1326                                 continue;
1327
1328                         if (!PageAnon(page)) {
1329                                 if (pte_dirty(ptent)) {
1330                                         force_flush = 1;
1331                                         set_page_dirty(page);
1332                                 }
1333                                 if (pte_young(ptent) &&
1334                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1335                                         mark_page_accessed(page);
1336                         }
1337                         rss[mm_counter(page)]--;
1338                         page_remove_rmap(page, false);
1339                         if (unlikely(page_mapcount(page) < 0))
1340                                 print_bad_pte(vma, addr, ptent, page);
1341                         if (unlikely(__tlb_remove_page(tlb, page))) {
1342                                 force_flush = 1;
1343                                 addr += PAGE_SIZE;
1344                                 break;
1345                         }
1346                         continue;
1347                 }
1348
1349                 entry = pte_to_swp_entry(ptent);
1350                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1351                         struct page *page = device_private_entry_to_page(entry);
1352
1353                         if (unlikely(details && details->check_mapping)) {
1354                                 /*
1355                                  * unmap_shared_mapping_pages() wants to
1356                                  * invalidate cache without truncating:
1357                                  * unmap shared but keep private pages.
1358                                  */
1359                                 if (details->check_mapping !=
1360                                     page_rmapping(page))
1361                                         continue;
1362                         }
1363
1364                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1365                         rss[mm_counter(page)]--;
1366                         page_remove_rmap(page, false);
1367                         put_page(page);
1368                         continue;
1369                 }
1370
1371                 /* If details->check_mapping, we leave swap entries. */
1372                 if (unlikely(details))
1373                         continue;
1374
1375                 entry = pte_to_swp_entry(ptent);
1376                 if (!non_swap_entry(entry))
1377                         rss[MM_SWAPENTS]--;
1378                 else if (is_migration_entry(entry)) {
1379                         struct page *page;
1380
1381                         page = migration_entry_to_page(entry);
1382                         rss[mm_counter(page)]--;
1383                 }
1384                 if (unlikely(!free_swap_and_cache(entry)))
1385                         print_bad_pte(vma, addr, ptent, NULL);
1386                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1387         } while (pte++, addr += PAGE_SIZE, addr != end);
1388
1389         add_mm_rss_vec(mm, rss);
1390         arch_leave_lazy_mmu_mode();
1391
1392         /* Do the actual TLB flush before dropping ptl */
1393         if (force_flush)
1394                 tlb_flush_mmu_tlbonly(tlb);
1395         pte_unmap_unlock(start_pte, ptl);
1396
1397         /*
1398          * If we forced a TLB flush (either due to running out of
1399          * batch buffers or because we needed to flush dirty TLB
1400          * entries before releasing the ptl), free the batched
1401          * memory too. Restart if we didn't do everything.
1402          */
1403         if (force_flush) {
1404                 force_flush = 0;
1405                 tlb_flush_mmu_free(tlb);
1406                 if (addr != end)
1407                         goto again;
1408         }
1409
1410         return addr;
1411 }
1412
1413 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1414                                 struct vm_area_struct *vma, pud_t *pud,
1415                                 unsigned long addr, unsigned long end,
1416                                 struct zap_details *details)
1417 {
1418         pmd_t *pmd;
1419         unsigned long next;
1420
1421         pmd = pmd_offset(pud, addr);
1422         do {
1423                 next = pmd_addr_end(addr, end);
1424                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1425                         if (next - addr != HPAGE_PMD_SIZE)
1426                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1427                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1428                                 goto next;
1429                         /* fall through */
1430                 }
1431                 /*
1432                  * Here there can be other concurrent MADV_DONTNEED or
1433                  * trans huge page faults running, and if the pmd is
1434                  * none or trans huge it can change under us. This is
1435                  * because MADV_DONTNEED holds the mmap_sem in read
1436                  * mode.
1437                  */
1438                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1439                         goto next;
1440                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1441 next:
1442                 cond_resched();
1443         } while (pmd++, addr = next, addr != end);
1444
1445         return addr;
1446 }
1447
1448 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1449                                 struct vm_area_struct *vma, p4d_t *p4d,
1450                                 unsigned long addr, unsigned long end,
1451                                 struct zap_details *details)
1452 {
1453         pud_t *pud;
1454         unsigned long next;
1455
1456         pud = pud_offset(p4d, addr);
1457         do {
1458                 next = pud_addr_end(addr, end);
1459                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1460                         if (next - addr != HPAGE_PUD_SIZE) {
1461                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1462                                 split_huge_pud(vma, pud, addr);
1463                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1464                                 goto next;
1465                         /* fall through */
1466                 }
1467                 if (pud_none_or_clear_bad(pud))
1468                         continue;
1469                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1470 next:
1471                 cond_resched();
1472         } while (pud++, addr = next, addr != end);
1473
1474         return addr;
1475 }
1476
1477 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1478                                 struct vm_area_struct *vma, pgd_t *pgd,
1479                                 unsigned long addr, unsigned long end,
1480                                 struct zap_details *details)
1481 {
1482         p4d_t *p4d;
1483         unsigned long next;
1484
1485         p4d = p4d_offset(pgd, addr);
1486         do {
1487                 next = p4d_addr_end(addr, end);
1488                 if (p4d_none_or_clear_bad(p4d))
1489                         continue;
1490                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1491         } while (p4d++, addr = next, addr != end);
1492
1493         return addr;
1494 }
1495
1496 void unmap_page_range(struct mmu_gather *tlb,
1497                              struct vm_area_struct *vma,
1498                              unsigned long addr, unsigned long end,
1499                              struct zap_details *details)
1500 {
1501         pgd_t *pgd;
1502         unsigned long next;
1503
1504         BUG_ON(addr >= end);
1505         tlb_start_vma(tlb, vma);
1506         pgd = pgd_offset(vma->vm_mm, addr);
1507         do {
1508                 next = pgd_addr_end(addr, end);
1509                 if (pgd_none_or_clear_bad(pgd))
1510                         continue;
1511                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1512         } while (pgd++, addr = next, addr != end);
1513         tlb_end_vma(tlb, vma);
1514 }
1515
1516
1517 static void unmap_single_vma(struct mmu_gather *tlb,
1518                 struct vm_area_struct *vma, unsigned long start_addr,
1519                 unsigned long end_addr,
1520                 struct zap_details *details)
1521 {
1522         unsigned long start = max(vma->vm_start, start_addr);
1523         unsigned long end;
1524
1525         if (start >= vma->vm_end)
1526                 return;
1527         end = min(vma->vm_end, end_addr);
1528         if (end <= vma->vm_start)
1529                 return;
1530
1531         if (vma->vm_file)
1532                 uprobe_munmap(vma, start, end);
1533
1534         if (unlikely(vma->vm_flags & VM_PFNMAP))
1535                 untrack_pfn(vma, 0, 0);
1536
1537         if (start != end) {
1538                 if (unlikely(is_vm_hugetlb_page(vma))) {
1539                         /*
1540                          * It is undesirable to test vma->vm_file as it
1541                          * should be non-null for valid hugetlb area.
1542                          * However, vm_file will be NULL in the error
1543                          * cleanup path of mmap_region. When
1544                          * hugetlbfs ->mmap method fails,
1545                          * mmap_region() nullifies vma->vm_file
1546                          * before calling this function to clean up.
1547                          * Since no pte has actually been setup, it is
1548                          * safe to do nothing in this case.
1549                          */
1550                         if (vma->vm_file) {
1551                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1552                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1553                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1554                         }
1555                 } else
1556                         unmap_page_range(tlb, vma, start, end, details);
1557         }
1558 }
1559
1560 /**
1561  * unmap_vmas - unmap a range of memory covered by a list of vma's
1562  * @tlb: address of the caller's struct mmu_gather
1563  * @vma: the starting vma
1564  * @start_addr: virtual address at which to start unmapping
1565  * @end_addr: virtual address at which to end unmapping
1566  *
1567  * Unmap all pages in the vma list.
1568  *
1569  * Only addresses between `start' and `end' will be unmapped.
1570  *
1571  * The VMA list must be sorted in ascending virtual address order.
1572  *
1573  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1574  * range after unmap_vmas() returns.  So the only responsibility here is to
1575  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1576  * drops the lock and schedules.
1577  */
1578 void unmap_vmas(struct mmu_gather *tlb,
1579                 struct vm_area_struct *vma, unsigned long start_addr,
1580                 unsigned long end_addr)
1581 {
1582         struct mm_struct *mm = vma->vm_mm;
1583
1584         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1585         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1586                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1587         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1588 }
1589
1590 /**
1591  * zap_page_range - remove user pages in a given range
1592  * @vma: vm_area_struct holding the applicable pages
1593  * @start: starting address of pages to zap
1594  * @size: number of bytes to zap
1595  *
1596  * Caller must protect the VMA list
1597  */
1598 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1599                 unsigned long size)
1600 {
1601         struct mm_struct *mm = vma->vm_mm;
1602         struct mmu_gather tlb;
1603         unsigned long end = start + size;
1604
1605         lru_add_drain();
1606         tlb_gather_mmu(&tlb, mm, start, end);
1607         update_hiwater_rss(mm);
1608         mmu_notifier_invalidate_range_start(mm, start, end);
1609         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1610                 unmap_single_vma(&tlb, vma, start, end, NULL);
1611         mmu_notifier_invalidate_range_end(mm, start, end);
1612         tlb_finish_mmu(&tlb, start, end);
1613 }
1614
1615 /**
1616  * zap_page_range_single - remove user pages in a given range
1617  * @vma: vm_area_struct holding the applicable pages
1618  * @address: starting address of pages to zap
1619  * @size: number of bytes to zap
1620  * @details: details of shared cache invalidation
1621  *
1622  * The range must fit into one VMA.
1623  */
1624 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1625                 unsigned long size, struct zap_details *details)
1626 {
1627         struct mm_struct *mm = vma->vm_mm;
1628         struct mmu_gather tlb;
1629         unsigned long end = address + size;
1630
1631         lru_add_drain();
1632         tlb_gather_mmu(&tlb, mm, address, end);
1633         update_hiwater_rss(mm);
1634         mmu_notifier_invalidate_range_start(mm, address, end);
1635         unmap_single_vma(&tlb, vma, address, end, details);
1636         mmu_notifier_invalidate_range_end(mm, address, end);
1637         tlb_finish_mmu(&tlb, address, end);
1638 }
1639
1640 /**
1641  * zap_vma_ptes - remove ptes mapping the vma
1642  * @vma: vm_area_struct holding ptes to be zapped
1643  * @address: starting address of pages to zap
1644  * @size: number of bytes to zap
1645  *
1646  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1647  *
1648  * The entire address range must be fully contained within the vma.
1649  *
1650  */
1651 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1652                 unsigned long size)
1653 {
1654         if (address < vma->vm_start || address + size > vma->vm_end ||
1655                         !(vma->vm_flags & VM_PFNMAP))
1656                 return;
1657
1658         zap_page_range_single(vma, address, size, NULL);
1659 }
1660 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1661
1662 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1663                         spinlock_t **ptl)
1664 {
1665         pgd_t *pgd;
1666         p4d_t *p4d;
1667         pud_t *pud;
1668         pmd_t *pmd;
1669
1670         pgd = pgd_offset(mm, addr);
1671         p4d = p4d_alloc(mm, pgd, addr);
1672         if (!p4d)
1673                 return NULL;
1674         pud = pud_alloc(mm, p4d, addr);
1675         if (!pud)
1676                 return NULL;
1677         pmd = pmd_alloc(mm, pud, addr);
1678         if (!pmd)
1679                 return NULL;
1680
1681         VM_BUG_ON(pmd_trans_huge(*pmd));
1682         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1683 }
1684
1685 /*
1686  * This is the old fallback for page remapping.
1687  *
1688  * For historical reasons, it only allows reserved pages. Only
1689  * old drivers should use this, and they needed to mark their
1690  * pages reserved for the old functions anyway.
1691  */
1692 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1693                         struct page *page, pgprot_t prot)
1694 {
1695         struct mm_struct *mm = vma->vm_mm;
1696         int retval;
1697         pte_t *pte;
1698         spinlock_t *ptl;
1699
1700         retval = -EINVAL;
1701         if (PageAnon(page))
1702                 goto out;
1703         retval = -ENOMEM;
1704         flush_dcache_page(page);
1705         pte = get_locked_pte(mm, addr, &ptl);
1706         if (!pte)
1707                 goto out;
1708         retval = -EBUSY;
1709         if (!pte_none(*pte))
1710                 goto out_unlock;
1711
1712         /* Ok, finally just insert the thing.. */
1713         get_page(page);
1714         inc_mm_counter_fast(mm, mm_counter_file(page));
1715         page_add_file_rmap(page, false);
1716         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1717
1718         retval = 0;
1719         pte_unmap_unlock(pte, ptl);
1720         return retval;
1721 out_unlock:
1722         pte_unmap_unlock(pte, ptl);
1723 out:
1724         return retval;
1725 }
1726
1727 /**
1728  * vm_insert_page - insert single page into user vma
1729  * @vma: user vma to map to
1730  * @addr: target user address of this page
1731  * @page: source kernel page
1732  *
1733  * This allows drivers to insert individual pages they've allocated
1734  * into a user vma.
1735  *
1736  * The page has to be a nice clean _individual_ kernel allocation.
1737  * If you allocate a compound page, you need to have marked it as
1738  * such (__GFP_COMP), or manually just split the page up yourself
1739  * (see split_page()).
1740  *
1741  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1742  * took an arbitrary page protection parameter. This doesn't allow
1743  * that. Your vma protection will have to be set up correctly, which
1744  * means that if you want a shared writable mapping, you'd better
1745  * ask for a shared writable mapping!
1746  *
1747  * The page does not need to be reserved.
1748  *
1749  * Usually this function is called from f_op->mmap() handler
1750  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1751  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1752  * function from other places, for example from page-fault handler.
1753  */
1754 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1755                         struct page *page)
1756 {
1757         if (addr < vma->vm_start || addr >= vma->vm_end)
1758                 return -EFAULT;
1759         if (!page_count(page))
1760                 return -EINVAL;
1761         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1762                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1763                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1764                 vma->vm_flags |= VM_MIXEDMAP;
1765         }
1766         return insert_page(vma, addr, page, vma->vm_page_prot);
1767 }
1768 EXPORT_SYMBOL(vm_insert_page);
1769
1770 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1771                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1772 {
1773         struct mm_struct *mm = vma->vm_mm;
1774         int retval;
1775         pte_t *pte, entry;
1776         spinlock_t *ptl;
1777
1778         retval = -ENOMEM;
1779         pte = get_locked_pte(mm, addr, &ptl);
1780         if (!pte)
1781                 goto out;
1782         retval = -EBUSY;
1783         if (!pte_none(*pte)) {
1784                 if (mkwrite) {
1785                         /*
1786                          * For read faults on private mappings the PFN passed
1787                          * in may not match the PFN we have mapped if the
1788                          * mapped PFN is a writeable COW page.  In the mkwrite
1789                          * case we are creating a writable PTE for a shared
1790                          * mapping and we expect the PFNs to match. If they
1791                          * don't match, we are likely racing with block
1792                          * allocation and mapping invalidation so just skip the
1793                          * update.
1794                          */
1795                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1796                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1797                                 goto out_unlock;
1798                         }
1799                         entry = pte_mkyoung(*pte);
1800                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1801                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1802                                 update_mmu_cache(vma, addr, pte);
1803                 }
1804                 goto out_unlock;
1805         }
1806
1807         /* Ok, finally just insert the thing.. */
1808         if (pfn_t_devmap(pfn))
1809                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1810         else
1811                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1812
1813         if (mkwrite) {
1814                 entry = pte_mkyoung(entry);
1815                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1816         }
1817
1818         set_pte_at(mm, addr, pte, entry);
1819         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1820
1821         retval = 0;
1822 out_unlock:
1823         pte_unmap_unlock(pte, ptl);
1824 out:
1825         return retval;
1826 }
1827
1828 /**
1829  * vm_insert_pfn - insert single pfn into user vma
1830  * @vma: user vma to map to
1831  * @addr: target user address of this page
1832  * @pfn: source kernel pfn
1833  *
1834  * Similar to vm_insert_page, this allows drivers to insert individual pages
1835  * they've allocated into a user vma. Same comments apply.
1836  *
1837  * This function should only be called from a vm_ops->fault handler, and
1838  * in that case the handler should return NULL.
1839  *
1840  * vma cannot be a COW mapping.
1841  *
1842  * As this is called only for pages that do not currently exist, we
1843  * do not need to flush old virtual caches or the TLB.
1844  */
1845 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1846                         unsigned long pfn)
1847 {
1848         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1849 }
1850 EXPORT_SYMBOL(vm_insert_pfn);
1851
1852 /**
1853  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1854  * @vma: user vma to map to
1855  * @addr: target user address of this page
1856  * @pfn: source kernel pfn
1857  * @pgprot: pgprot flags for the inserted page
1858  *
1859  * This is exactly like vm_insert_pfn, except that it allows drivers to
1860  * to override pgprot on a per-page basis.
1861  *
1862  * This only makes sense for IO mappings, and it makes no sense for
1863  * cow mappings.  In general, using multiple vmas is preferable;
1864  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1865  * impractical.
1866  */
1867 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1868                         unsigned long pfn, pgprot_t pgprot)
1869 {
1870         int ret;
1871         /*
1872          * Technically, architectures with pte_special can avoid all these
1873          * restrictions (same for remap_pfn_range).  However we would like
1874          * consistency in testing and feature parity among all, so we should
1875          * try to keep these invariants in place for everybody.
1876          */
1877         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1878         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1879                                                 (VM_PFNMAP|VM_MIXEDMAP));
1880         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1881         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1882
1883         if (addr < vma->vm_start || addr >= vma->vm_end)
1884                 return -EFAULT;
1885
1886         if (!pfn_modify_allowed(pfn, pgprot))
1887                 return -EACCES;
1888
1889         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1890
1891         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1892                         false);
1893
1894         return ret;
1895 }
1896 EXPORT_SYMBOL(vm_insert_pfn_prot);
1897
1898 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1899 {
1900         /* these checks mirror the abort conditions in vm_normal_page */
1901         if (vma->vm_flags & VM_MIXEDMAP)
1902                 return true;
1903         if (pfn_t_devmap(pfn))
1904                 return true;
1905         if (pfn_t_special(pfn))
1906                 return true;
1907         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1908                 return true;
1909         return false;
1910 }
1911
1912 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1913                         pfn_t pfn, bool mkwrite)
1914 {
1915         pgprot_t pgprot = vma->vm_page_prot;
1916
1917         BUG_ON(!vm_mixed_ok(vma, pfn));
1918
1919         if (addr < vma->vm_start || addr >= vma->vm_end)
1920                 return -EFAULT;
1921
1922         track_pfn_insert(vma, &pgprot, pfn);
1923
1924         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1925                 return -EACCES;
1926
1927         /*
1928          * If we don't have pte special, then we have to use the pfn_valid()
1929          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1930          * refcount the page if pfn_valid is true (hence insert_page rather
1931          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1932          * without pte special, it would there be refcounted as a normal page.
1933          */
1934         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1935             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1936                 struct page *page;
1937
1938                 /*
1939                  * At this point we are committed to insert_page()
1940                  * regardless of whether the caller specified flags that
1941                  * result in pfn_t_has_page() == false.
1942                  */
1943                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1944                 return insert_page(vma, addr, page, pgprot);
1945         }
1946         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1947 }
1948
1949 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1950                         pfn_t pfn)
1951 {
1952         return __vm_insert_mixed(vma, addr, pfn, false);
1953
1954 }
1955 EXPORT_SYMBOL(vm_insert_mixed);
1956
1957 /*
1958  *  If the insertion of PTE failed because someone else already added a
1959  *  different entry in the mean time, we treat that as success as we assume
1960  *  the same entry was actually inserted.
1961  */
1962
1963 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1964                 unsigned long addr, pfn_t pfn)
1965 {
1966         int err;
1967
1968         err =  __vm_insert_mixed(vma, addr, pfn, true);
1969         if (err == -ENOMEM)
1970                 return VM_FAULT_OOM;
1971         if (err < 0 && err != -EBUSY)
1972                 return VM_FAULT_SIGBUS;
1973         return VM_FAULT_NOPAGE;
1974 }
1975 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1976
1977 /*
1978  * maps a range of physical memory into the requested pages. the old
1979  * mappings are removed. any references to nonexistent pages results
1980  * in null mappings (currently treated as "copy-on-access")
1981  */
1982 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1983                         unsigned long addr, unsigned long end,
1984                         unsigned long pfn, pgprot_t prot)
1985 {
1986         pte_t *pte;
1987         spinlock_t *ptl;
1988         int err = 0;
1989
1990         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1991         if (!pte)
1992                 return -ENOMEM;
1993         arch_enter_lazy_mmu_mode();
1994         do {
1995                 BUG_ON(!pte_none(*pte));
1996                 if (!pfn_modify_allowed(pfn, prot)) {
1997                         err = -EACCES;
1998                         break;
1999                 }
2000                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2001                 pfn++;
2002         } while (pte++, addr += PAGE_SIZE, addr != end);
2003         arch_leave_lazy_mmu_mode();
2004         pte_unmap_unlock(pte - 1, ptl);
2005         return err;
2006 }
2007
2008 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2009                         unsigned long addr, unsigned long end,
2010                         unsigned long pfn, pgprot_t prot)
2011 {
2012         pmd_t *pmd;
2013         unsigned long next;
2014         int err;
2015
2016         pfn -= addr >> PAGE_SHIFT;
2017         pmd = pmd_alloc(mm, pud, addr);
2018         if (!pmd)
2019                 return -ENOMEM;
2020         VM_BUG_ON(pmd_trans_huge(*pmd));
2021         do {
2022                 next = pmd_addr_end(addr, end);
2023                 err = remap_pte_range(mm, pmd, addr, next,
2024                                 pfn + (addr >> PAGE_SHIFT), prot);
2025                 if (err)
2026                         return err;
2027         } while (pmd++, addr = next, addr != end);
2028         return 0;
2029 }
2030
2031 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2032                         unsigned long addr, unsigned long end,
2033                         unsigned long pfn, pgprot_t prot)
2034 {
2035         pud_t *pud;
2036         unsigned long next;
2037         int err;
2038
2039         pfn -= addr >> PAGE_SHIFT;
2040         pud = pud_alloc(mm, p4d, addr);
2041         if (!pud)
2042                 return -ENOMEM;
2043         do {
2044                 next = pud_addr_end(addr, end);
2045                 err = remap_pmd_range(mm, pud, addr, next,
2046                                 pfn + (addr >> PAGE_SHIFT), prot);
2047                 if (err)
2048                         return err;
2049         } while (pud++, addr = next, addr != end);
2050         return 0;
2051 }
2052
2053 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2054                         unsigned long addr, unsigned long end,
2055                         unsigned long pfn, pgprot_t prot)
2056 {
2057         p4d_t *p4d;
2058         unsigned long next;
2059         int err;
2060
2061         pfn -= addr >> PAGE_SHIFT;
2062         p4d = p4d_alloc(mm, pgd, addr);
2063         if (!p4d)
2064                 return -ENOMEM;
2065         do {
2066                 next = p4d_addr_end(addr, end);
2067                 err = remap_pud_range(mm, p4d, addr, next,
2068                                 pfn + (addr >> PAGE_SHIFT), prot);
2069                 if (err)
2070                         return err;
2071         } while (p4d++, addr = next, addr != end);
2072         return 0;
2073 }
2074
2075 /**
2076  * remap_pfn_range - remap kernel memory to userspace
2077  * @vma: user vma to map to
2078  * @addr: target user address to start at
2079  * @pfn: physical address of kernel memory
2080  * @size: size of map area
2081  * @prot: page protection flags for this mapping
2082  *
2083  *  Note: this is only safe if the mm semaphore is held when called.
2084  */
2085 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2086                     unsigned long pfn, unsigned long size, pgprot_t prot)
2087 {
2088         pgd_t *pgd;
2089         unsigned long next;
2090         unsigned long end = addr + PAGE_ALIGN(size);
2091         struct mm_struct *mm = vma->vm_mm;
2092         unsigned long remap_pfn = pfn;
2093         int err;
2094
2095         /*
2096          * Physically remapped pages are special. Tell the
2097          * rest of the world about it:
2098          *   VM_IO tells people not to look at these pages
2099          *      (accesses can have side effects).
2100          *   VM_PFNMAP tells the core MM that the base pages are just
2101          *      raw PFN mappings, and do not have a "struct page" associated
2102          *      with them.
2103          *   VM_DONTEXPAND
2104          *      Disable vma merging and expanding with mremap().
2105          *   VM_DONTDUMP
2106          *      Omit vma from core dump, even when VM_IO turned off.
2107          *
2108          * There's a horrible special case to handle copy-on-write
2109          * behaviour that some programs depend on. We mark the "original"
2110          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2111          * See vm_normal_page() for details.
2112          */
2113         if (is_cow_mapping(vma->vm_flags)) {
2114                 if (addr != vma->vm_start || end != vma->vm_end)
2115                         return -EINVAL;
2116                 vma->vm_pgoff = pfn;
2117         }
2118
2119         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2120         if (err)
2121                 return -EINVAL;
2122
2123         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2124
2125         BUG_ON(addr >= end);
2126         pfn -= addr >> PAGE_SHIFT;
2127         pgd = pgd_offset(mm, addr);
2128         flush_cache_range(vma, addr, end);
2129         do {
2130                 next = pgd_addr_end(addr, end);
2131                 err = remap_p4d_range(mm, pgd, addr, next,
2132                                 pfn + (addr >> PAGE_SHIFT), prot);
2133                 if (err)
2134                         break;
2135         } while (pgd++, addr = next, addr != end);
2136
2137         if (err)
2138                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2139
2140         return err;
2141 }
2142 EXPORT_SYMBOL(remap_pfn_range);
2143
2144 /**
2145  * vm_iomap_memory - remap memory to userspace
2146  * @vma: user vma to map to
2147  * @start: start of area
2148  * @len: size of area
2149  *
2150  * This is a simplified io_remap_pfn_range() for common driver use. The
2151  * driver just needs to give us the physical memory range to be mapped,
2152  * we'll figure out the rest from the vma information.
2153  *
2154  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2155  * whatever write-combining details or similar.
2156  */
2157 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2158 {
2159         unsigned long vm_len, pfn, pages;
2160
2161         /* Check that the physical memory area passed in looks valid */
2162         if (start + len < start)
2163                 return -EINVAL;
2164         /*
2165          * You *really* shouldn't map things that aren't page-aligned,
2166          * but we've historically allowed it because IO memory might
2167          * just have smaller alignment.
2168          */
2169         len += start & ~PAGE_MASK;
2170         pfn = start >> PAGE_SHIFT;
2171         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2172         if (pfn + pages < pfn)
2173                 return -EINVAL;
2174
2175         /* We start the mapping 'vm_pgoff' pages into the area */
2176         if (vma->vm_pgoff > pages)
2177                 return -EINVAL;
2178         pfn += vma->vm_pgoff;
2179         pages -= vma->vm_pgoff;
2180
2181         /* Can we fit all of the mapping? */
2182         vm_len = vma->vm_end - vma->vm_start;
2183         if (vm_len >> PAGE_SHIFT > pages)
2184                 return -EINVAL;
2185
2186         /* Ok, let it rip */
2187         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2188 }
2189 EXPORT_SYMBOL(vm_iomap_memory);
2190
2191 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2192                                      unsigned long addr, unsigned long end,
2193                                      pte_fn_t fn, void *data)
2194 {
2195         pte_t *pte;
2196         int err;
2197         pgtable_t token;
2198         spinlock_t *uninitialized_var(ptl);
2199
2200         pte = (mm == &init_mm) ?
2201                 pte_alloc_kernel(pmd, addr) :
2202                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2203         if (!pte)
2204                 return -ENOMEM;
2205
2206         BUG_ON(pmd_huge(*pmd));
2207
2208         arch_enter_lazy_mmu_mode();
2209
2210         token = pmd_pgtable(*pmd);
2211
2212         do {
2213                 err = fn(pte++, token, addr, data);
2214                 if (err)
2215                         break;
2216         } while (addr += PAGE_SIZE, addr != end);
2217
2218         arch_leave_lazy_mmu_mode();
2219
2220         if (mm != &init_mm)
2221                 pte_unmap_unlock(pte-1, ptl);
2222         return err;
2223 }
2224
2225 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2226                                      unsigned long addr, unsigned long end,
2227                                      pte_fn_t fn, void *data)
2228 {
2229         pmd_t *pmd;
2230         unsigned long next;
2231         int err;
2232
2233         BUG_ON(pud_huge(*pud));
2234
2235         pmd = pmd_alloc(mm, pud, addr);
2236         if (!pmd)
2237                 return -ENOMEM;
2238         do {
2239                 next = pmd_addr_end(addr, end);
2240                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2241                 if (err)
2242                         break;
2243         } while (pmd++, addr = next, addr != end);
2244         return err;
2245 }
2246
2247 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2248                                      unsigned long addr, unsigned long end,
2249                                      pte_fn_t fn, void *data)
2250 {
2251         pud_t *pud;
2252         unsigned long next;
2253         int err;
2254
2255         pud = pud_alloc(mm, p4d, addr);
2256         if (!pud)
2257                 return -ENOMEM;
2258         do {
2259                 next = pud_addr_end(addr, end);
2260                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2261                 if (err)
2262                         break;
2263         } while (pud++, addr = next, addr != end);
2264         return err;
2265 }
2266
2267 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2268                                      unsigned long addr, unsigned long end,
2269                                      pte_fn_t fn, void *data)
2270 {
2271         p4d_t *p4d;
2272         unsigned long next;
2273         int err;
2274
2275         p4d = p4d_alloc(mm, pgd, addr);
2276         if (!p4d)
2277                 return -ENOMEM;
2278         do {
2279                 next = p4d_addr_end(addr, end);
2280                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2281                 if (err)
2282                         break;
2283         } while (p4d++, addr = next, addr != end);
2284         return err;
2285 }
2286
2287 /*
2288  * Scan a region of virtual memory, filling in page tables as necessary
2289  * and calling a provided function on each leaf page table.
2290  */
2291 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2292                         unsigned long size, pte_fn_t fn, void *data)
2293 {
2294         pgd_t *pgd;
2295         unsigned long next;
2296         unsigned long end = addr + size;
2297         int err;
2298
2299         if (WARN_ON(addr >= end))
2300                 return -EINVAL;
2301
2302         pgd = pgd_offset(mm, addr);
2303         do {
2304                 next = pgd_addr_end(addr, end);
2305                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2306                 if (err)
2307                         break;
2308         } while (pgd++, addr = next, addr != end);
2309
2310         return err;
2311 }
2312 EXPORT_SYMBOL_GPL(apply_to_page_range);
2313
2314 /*
2315  * handle_pte_fault chooses page fault handler according to an entry which was
2316  * read non-atomically.  Before making any commitment, on those architectures
2317  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2318  * parts, do_swap_page must check under lock before unmapping the pte and
2319  * proceeding (but do_wp_page is only called after already making such a check;
2320  * and do_anonymous_page can safely check later on).
2321  */
2322 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2323                                 pte_t *page_table, pte_t orig_pte)
2324 {
2325         int same = 1;
2326 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2327         if (sizeof(pte_t) > sizeof(unsigned long)) {
2328                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2329                 spin_lock(ptl);
2330                 same = pte_same(*page_table, orig_pte);
2331                 spin_unlock(ptl);
2332         }
2333 #endif
2334         pte_unmap(page_table);
2335         return same;
2336 }
2337
2338 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2339 {
2340         debug_dma_assert_idle(src);
2341
2342         /*
2343          * If the source page was a PFN mapping, we don't have
2344          * a "struct page" for it. We do a best-effort copy by
2345          * just copying from the original user address. If that
2346          * fails, we just zero-fill it. Live with it.
2347          */
2348         if (unlikely(!src)) {
2349                 void *kaddr = kmap_atomic(dst);
2350                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2351
2352                 /*
2353                  * This really shouldn't fail, because the page is there
2354                  * in the page tables. But it might just be unreadable,
2355                  * in which case we just give up and fill the result with
2356                  * zeroes.
2357                  */
2358                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2359                         clear_page(kaddr);
2360                 kunmap_atomic(kaddr);
2361                 flush_dcache_page(dst);
2362         } else
2363                 copy_user_highpage(dst, src, va, vma);
2364 }
2365
2366 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2367 {
2368         struct file *vm_file = vma->vm_file;
2369
2370         if (vm_file)
2371                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2372
2373         /*
2374          * Special mappings (e.g. VDSO) do not have any file so fake
2375          * a default GFP_KERNEL for them.
2376          */
2377         return GFP_KERNEL;
2378 }
2379
2380 /*
2381  * Notify the address space that the page is about to become writable so that
2382  * it can prohibit this or wait for the page to get into an appropriate state.
2383  *
2384  * We do this without the lock held, so that it can sleep if it needs to.
2385  */
2386 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2387 {
2388         vm_fault_t ret;
2389         struct page *page = vmf->page;
2390         unsigned int old_flags = vmf->flags;
2391
2392         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2393
2394         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2395         /* Restore original flags so that caller is not surprised */
2396         vmf->flags = old_flags;
2397         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2398                 return ret;
2399         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2400                 lock_page(page);
2401                 if (!page->mapping) {
2402                         unlock_page(page);
2403                         return 0; /* retry */
2404                 }
2405                 ret |= VM_FAULT_LOCKED;
2406         } else
2407                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2408         return ret;
2409 }
2410
2411 /*
2412  * Handle dirtying of a page in shared file mapping on a write fault.
2413  *
2414  * The function expects the page to be locked and unlocks it.
2415  */
2416 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2417                                     struct page *page)
2418 {
2419         struct address_space *mapping;
2420         bool dirtied;
2421         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2422
2423         dirtied = set_page_dirty(page);
2424         VM_BUG_ON_PAGE(PageAnon(page), page);
2425         /*
2426          * Take a local copy of the address_space - page.mapping may be zeroed
2427          * by truncate after unlock_page().   The address_space itself remains
2428          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2429          * release semantics to prevent the compiler from undoing this copying.
2430          */
2431         mapping = page_rmapping(page);
2432         unlock_page(page);
2433
2434         if ((dirtied || page_mkwrite) && mapping) {
2435                 /*
2436                  * Some device drivers do not set page.mapping
2437                  * but still dirty their pages
2438                  */
2439                 balance_dirty_pages_ratelimited(mapping);
2440         }
2441
2442         if (!page_mkwrite)
2443                 file_update_time(vma->vm_file);
2444 }
2445
2446 /*
2447  * Handle write page faults for pages that can be reused in the current vma
2448  *
2449  * This can happen either due to the mapping being with the VM_SHARED flag,
2450  * or due to us being the last reference standing to the page. In either
2451  * case, all we need to do here is to mark the page as writable and update
2452  * any related book-keeping.
2453  */
2454 static inline void wp_page_reuse(struct vm_fault *vmf)
2455         __releases(vmf->ptl)
2456 {
2457         struct vm_area_struct *vma = vmf->vma;
2458         struct page *page = vmf->page;
2459         pte_t entry;
2460         /*
2461          * Clear the pages cpupid information as the existing
2462          * information potentially belongs to a now completely
2463          * unrelated process.
2464          */
2465         if (page)
2466                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2467
2468         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2469         entry = pte_mkyoung(vmf->orig_pte);
2470         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2471         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2472                 update_mmu_cache(vma, vmf->address, vmf->pte);
2473         pte_unmap_unlock(vmf->pte, vmf->ptl);
2474 }
2475
2476 /*
2477  * Handle the case of a page which we actually need to copy to a new page.
2478  *
2479  * Called with mmap_sem locked and the old page referenced, but
2480  * without the ptl held.
2481  *
2482  * High level logic flow:
2483  *
2484  * - Allocate a page, copy the content of the old page to the new one.
2485  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2486  * - Take the PTL. If the pte changed, bail out and release the allocated page
2487  * - If the pte is still the way we remember it, update the page table and all
2488  *   relevant references. This includes dropping the reference the page-table
2489  *   held to the old page, as well as updating the rmap.
2490  * - In any case, unlock the PTL and drop the reference we took to the old page.
2491  */
2492 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2493 {
2494         struct vm_area_struct *vma = vmf->vma;
2495         struct mm_struct *mm = vma->vm_mm;
2496         struct page *old_page = vmf->page;
2497         struct page *new_page = NULL;
2498         pte_t entry;
2499         int page_copied = 0;
2500         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2501         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2502         struct mem_cgroup *memcg;
2503
2504         if (unlikely(anon_vma_prepare(vma)))
2505                 goto oom;
2506
2507         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2508                 new_page = alloc_zeroed_user_highpage_movable(vma,
2509                                                               vmf->address);
2510                 if (!new_page)
2511                         goto oom;
2512         } else {
2513                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2514                                 vmf->address);
2515                 if (!new_page)
2516                         goto oom;
2517                 cow_user_page(new_page, old_page, vmf->address, vma);
2518         }
2519
2520         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2521                 goto oom_free_new;
2522
2523         __SetPageUptodate(new_page);
2524
2525         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2526
2527         /*
2528          * Re-check the pte - we dropped the lock
2529          */
2530         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2531         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2532                 if (old_page) {
2533                         if (!PageAnon(old_page)) {
2534                                 dec_mm_counter_fast(mm,
2535                                                 mm_counter_file(old_page));
2536                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2537                         }
2538                 } else {
2539                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2540                 }
2541                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2542                 entry = mk_pte(new_page, vma->vm_page_prot);
2543                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2544                 /*
2545                  * Clear the pte entry and flush it first, before updating the
2546                  * pte with the new entry. This will avoid a race condition
2547                  * seen in the presence of one thread doing SMC and another
2548                  * thread doing COW.
2549                  */
2550                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2551                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2552                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2553                 lru_cache_add_active_or_unevictable(new_page, vma);
2554                 /*
2555                  * We call the notify macro here because, when using secondary
2556                  * mmu page tables (such as kvm shadow page tables), we want the
2557                  * new page to be mapped directly into the secondary page table.
2558                  */
2559                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2560                 update_mmu_cache(vma, vmf->address, vmf->pte);
2561                 if (old_page) {
2562                         /*
2563                          * Only after switching the pte to the new page may
2564                          * we remove the mapcount here. Otherwise another
2565                          * process may come and find the rmap count decremented
2566                          * before the pte is switched to the new page, and
2567                          * "reuse" the old page writing into it while our pte
2568                          * here still points into it and can be read by other
2569                          * threads.
2570                          *
2571                          * The critical issue is to order this
2572                          * page_remove_rmap with the ptp_clear_flush above.
2573                          * Those stores are ordered by (if nothing else,)
2574                          * the barrier present in the atomic_add_negative
2575                          * in page_remove_rmap.
2576                          *
2577                          * Then the TLB flush in ptep_clear_flush ensures that
2578                          * no process can access the old page before the
2579                          * decremented mapcount is visible. And the old page
2580                          * cannot be reused until after the decremented
2581                          * mapcount is visible. So transitively, TLBs to
2582                          * old page will be flushed before it can be reused.
2583                          */
2584                         page_remove_rmap(old_page, false);
2585                 }
2586
2587                 /* Free the old page.. */
2588                 new_page = old_page;
2589                 page_copied = 1;
2590         } else {
2591                 mem_cgroup_cancel_charge(new_page, memcg, false);
2592         }
2593
2594         if (new_page)
2595                 put_page(new_page);
2596
2597         pte_unmap_unlock(vmf->pte, vmf->ptl);
2598         /*
2599          * No need to double call mmu_notifier->invalidate_range() callback as
2600          * the above ptep_clear_flush_notify() did already call it.
2601          */
2602         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2603         if (old_page) {
2604                 /*
2605                  * Don't let another task, with possibly unlocked vma,
2606                  * keep the mlocked page.
2607                  */
2608                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2609                         lock_page(old_page);    /* LRU manipulation */
2610                         if (PageMlocked(old_page))
2611                                 munlock_vma_page(old_page);
2612                         unlock_page(old_page);
2613                 }
2614                 put_page(old_page);
2615         }
2616         return page_copied ? VM_FAULT_WRITE : 0;
2617 oom_free_new:
2618         put_page(new_page);
2619 oom:
2620         if (old_page)
2621                 put_page(old_page);
2622         return VM_FAULT_OOM;
2623 }
2624
2625 /**
2626  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2627  *                        writeable once the page is prepared
2628  *
2629  * @vmf: structure describing the fault
2630  *
2631  * This function handles all that is needed to finish a write page fault in a
2632  * shared mapping due to PTE being read-only once the mapped page is prepared.
2633  * It handles locking of PTE and modifying it. The function returns
2634  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2635  * lock.
2636  *
2637  * The function expects the page to be locked or other protection against
2638  * concurrent faults / writeback (such as DAX radix tree locks).
2639  */
2640 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2641 {
2642         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2643         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2644                                        &vmf->ptl);
2645         /*
2646          * We might have raced with another page fault while we released the
2647          * pte_offset_map_lock.
2648          */
2649         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2650                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2651                 return VM_FAULT_NOPAGE;
2652         }
2653         wp_page_reuse(vmf);
2654         return 0;
2655 }
2656
2657 /*
2658  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2659  * mapping
2660  */
2661 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2662 {
2663         struct vm_area_struct *vma = vmf->vma;
2664
2665         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2666                 vm_fault_t ret;
2667
2668                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2669                 vmf->flags |= FAULT_FLAG_MKWRITE;
2670                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2671                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2672                         return ret;
2673                 return finish_mkwrite_fault(vmf);
2674         }
2675         wp_page_reuse(vmf);
2676         return VM_FAULT_WRITE;
2677 }
2678
2679 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2680         __releases(vmf->ptl)
2681 {
2682         struct vm_area_struct *vma = vmf->vma;
2683
2684         get_page(vmf->page);
2685
2686         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2687                 vm_fault_t tmp;
2688
2689                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2690                 tmp = do_page_mkwrite(vmf);
2691                 if (unlikely(!tmp || (tmp &
2692                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2693                         put_page(vmf->page);
2694                         return tmp;
2695                 }
2696                 tmp = finish_mkwrite_fault(vmf);
2697                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2698                         unlock_page(vmf->page);
2699                         put_page(vmf->page);
2700                         return tmp;
2701                 }
2702         } else {
2703                 wp_page_reuse(vmf);
2704                 lock_page(vmf->page);
2705         }
2706         fault_dirty_shared_page(vma, vmf->page);
2707         put_page(vmf->page);
2708
2709         return VM_FAULT_WRITE;
2710 }
2711
2712 /*
2713  * This routine handles present pages, when users try to write
2714  * to a shared page. It is done by copying the page to a new address
2715  * and decrementing the shared-page counter for the old page.
2716  *
2717  * Note that this routine assumes that the protection checks have been
2718  * done by the caller (the low-level page fault routine in most cases).
2719  * Thus we can safely just mark it writable once we've done any necessary
2720  * COW.
2721  *
2722  * We also mark the page dirty at this point even though the page will
2723  * change only once the write actually happens. This avoids a few races,
2724  * and potentially makes it more efficient.
2725  *
2726  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2727  * but allow concurrent faults), with pte both mapped and locked.
2728  * We return with mmap_sem still held, but pte unmapped and unlocked.
2729  */
2730 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2731         __releases(vmf->ptl)
2732 {
2733         struct vm_area_struct *vma = vmf->vma;
2734
2735         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2736         if (!vmf->page) {
2737                 /*
2738                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2739                  * VM_PFNMAP VMA.
2740                  *
2741                  * We should not cow pages in a shared writeable mapping.
2742                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2743                  */
2744                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2745                                      (VM_WRITE|VM_SHARED))
2746                         return wp_pfn_shared(vmf);
2747
2748                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2749                 return wp_page_copy(vmf);
2750         }
2751
2752         /*
2753          * Take out anonymous pages first, anonymous shared vmas are
2754          * not dirty accountable.
2755          */
2756         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2757                 int total_map_swapcount;
2758                 if (!trylock_page(vmf->page)) {
2759                         get_page(vmf->page);
2760                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2761                         lock_page(vmf->page);
2762                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2763                                         vmf->address, &vmf->ptl);
2764                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2765                                 unlock_page(vmf->page);
2766                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2767                                 put_page(vmf->page);
2768                                 return 0;
2769                         }
2770                         put_page(vmf->page);
2771                 }
2772                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2773                         if (total_map_swapcount == 1) {
2774                                 /*
2775                                  * The page is all ours. Move it to
2776                                  * our anon_vma so the rmap code will
2777                                  * not search our parent or siblings.
2778                                  * Protected against the rmap code by
2779                                  * the page lock.
2780                                  */
2781                                 page_move_anon_rmap(vmf->page, vma);
2782                         }
2783                         unlock_page(vmf->page);
2784                         wp_page_reuse(vmf);
2785                         return VM_FAULT_WRITE;
2786                 }
2787                 unlock_page(vmf->page);
2788         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2789                                         (VM_WRITE|VM_SHARED))) {
2790                 return wp_page_shared(vmf);
2791         }
2792
2793         /*
2794          * Ok, we need to copy. Oh, well..
2795          */
2796         get_page(vmf->page);
2797
2798         pte_unmap_unlock(vmf->pte, vmf->ptl);
2799         return wp_page_copy(vmf);
2800 }
2801
2802 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2803                 unsigned long start_addr, unsigned long end_addr,
2804                 struct zap_details *details)
2805 {
2806         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2807 }
2808
2809 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2810                                             struct zap_details *details)
2811 {
2812         struct vm_area_struct *vma;
2813         pgoff_t vba, vea, zba, zea;
2814
2815         vma_interval_tree_foreach(vma, root,
2816                         details->first_index, details->last_index) {
2817
2818                 vba = vma->vm_pgoff;
2819                 vea = vba + vma_pages(vma) - 1;
2820                 zba = details->first_index;
2821                 if (zba < vba)
2822                         zba = vba;
2823                 zea = details->last_index;
2824                 if (zea > vea)
2825                         zea = vea;
2826
2827                 unmap_mapping_range_vma(vma,
2828                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2829                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2830                                 details);
2831         }
2832 }
2833
2834 /**
2835  * unmap_mapping_pages() - Unmap pages from processes.
2836  * @mapping: The address space containing pages to be unmapped.
2837  * @start: Index of first page to be unmapped.
2838  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2839  * @even_cows: Whether to unmap even private COWed pages.
2840  *
2841  * Unmap the pages in this address space from any userspace process which
2842  * has them mmaped.  Generally, you want to remove COWed pages as well when
2843  * a file is being truncated, but not when invalidating pages from the page
2844  * cache.
2845  */
2846 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2847                 pgoff_t nr, bool even_cows)
2848 {
2849         struct zap_details details = { };
2850
2851         details.check_mapping = even_cows ? NULL : mapping;
2852         details.first_index = start;
2853         details.last_index = start + nr - 1;
2854         if (details.last_index < details.first_index)
2855                 details.last_index = ULONG_MAX;
2856
2857         i_mmap_lock_write(mapping);
2858         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2859                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2860         i_mmap_unlock_write(mapping);
2861 }
2862
2863 /**
2864  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2865  * address_space corresponding to the specified byte range in the underlying
2866  * file.
2867  *
2868  * @mapping: the address space containing mmaps to be unmapped.
2869  * @holebegin: byte in first page to unmap, relative to the start of
2870  * the underlying file.  This will be rounded down to a PAGE_SIZE
2871  * boundary.  Note that this is different from truncate_pagecache(), which
2872  * must keep the partial page.  In contrast, we must get rid of
2873  * partial pages.
2874  * @holelen: size of prospective hole in bytes.  This will be rounded
2875  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2876  * end of the file.
2877  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2878  * but 0 when invalidating pagecache, don't throw away private data.
2879  */
2880 void unmap_mapping_range(struct address_space *mapping,
2881                 loff_t const holebegin, loff_t const holelen, int even_cows)
2882 {
2883         pgoff_t hba = holebegin >> PAGE_SHIFT;
2884         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2885
2886         /* Check for overflow. */
2887         if (sizeof(holelen) > sizeof(hlen)) {
2888                 long long holeend =
2889                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2890                 if (holeend & ~(long long)ULONG_MAX)
2891                         hlen = ULONG_MAX - hba + 1;
2892         }
2893
2894         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2895 }
2896 EXPORT_SYMBOL(unmap_mapping_range);
2897
2898 /*
2899  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2900  * but allow concurrent faults), and pte mapped but not yet locked.
2901  * We return with pte unmapped and unlocked.
2902  *
2903  * We return with the mmap_sem locked or unlocked in the same cases
2904  * as does filemap_fault().
2905  */
2906 vm_fault_t do_swap_page(struct vm_fault *vmf)
2907 {
2908         struct vm_area_struct *vma = vmf->vma;
2909         struct page *page = NULL, *swapcache;
2910         struct mem_cgroup *memcg;
2911         swp_entry_t entry;
2912         pte_t pte;
2913         int locked;
2914         int exclusive = 0;
2915         vm_fault_t ret = 0;
2916
2917         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2918                 goto out;
2919
2920         entry = pte_to_swp_entry(vmf->orig_pte);
2921         if (unlikely(non_swap_entry(entry))) {
2922                 if (is_migration_entry(entry)) {
2923                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2924                                              vmf->address);
2925                 } else if (is_device_private_entry(entry)) {
2926                         /*
2927                          * For un-addressable device memory we call the pgmap
2928                          * fault handler callback. The callback must migrate
2929                          * the page back to some CPU accessible page.
2930                          */
2931                         ret = device_private_entry_fault(vma, vmf->address, entry,
2932                                                  vmf->flags, vmf->pmd);
2933                 } else if (is_hwpoison_entry(entry)) {
2934                         ret = VM_FAULT_HWPOISON;
2935                 } else {
2936                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2937                         ret = VM_FAULT_SIGBUS;
2938                 }
2939                 goto out;
2940         }
2941
2942
2943         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2944         page = lookup_swap_cache(entry, vma, vmf->address);
2945         swapcache = page;
2946
2947         if (!page) {
2948                 struct swap_info_struct *si = swp_swap_info(entry);
2949
2950                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2951                                 __swap_count(si, entry) == 1) {
2952                         /* skip swapcache */
2953                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2954                                                         vmf->address);
2955                         if (page) {
2956                                 __SetPageLocked(page);
2957                                 __SetPageSwapBacked(page);
2958                                 set_page_private(page, entry.val);
2959                                 lru_cache_add_anon(page);
2960                                 swap_readpage(page, true);
2961                         }
2962                 } else {
2963                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2964                                                 vmf);
2965                         swapcache = page;
2966                 }
2967
2968                 if (!page) {
2969                         /*
2970                          * Back out if somebody else faulted in this pte
2971                          * while we released the pte lock.
2972                          */
2973                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2974                                         vmf->address, &vmf->ptl);
2975                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2976                                 ret = VM_FAULT_OOM;
2977                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2978                         goto unlock;
2979                 }
2980
2981                 /* Had to read the page from swap area: Major fault */
2982                 ret = VM_FAULT_MAJOR;
2983                 count_vm_event(PGMAJFAULT);
2984                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2985         } else if (PageHWPoison(page)) {
2986                 /*
2987                  * hwpoisoned dirty swapcache pages are kept for killing
2988                  * owner processes (which may be unknown at hwpoison time)
2989                  */
2990                 ret = VM_FAULT_HWPOISON;
2991                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992                 goto out_release;
2993         }
2994
2995         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2996
2997         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2998         if (!locked) {
2999                 ret |= VM_FAULT_RETRY;
3000                 goto out_release;
3001         }
3002
3003         /*
3004          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3005          * release the swapcache from under us.  The page pin, and pte_same
3006          * test below, are not enough to exclude that.  Even if it is still
3007          * swapcache, we need to check that the page's swap has not changed.
3008          */
3009         if (unlikely((!PageSwapCache(page) ||
3010                         page_private(page) != entry.val)) && swapcache)
3011                 goto out_page;
3012
3013         page = ksm_might_need_to_copy(page, vma, vmf->address);
3014         if (unlikely(!page)) {
3015                 ret = VM_FAULT_OOM;
3016                 page = swapcache;
3017                 goto out_page;
3018         }
3019
3020         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3021                                         &memcg, false)) {
3022                 ret = VM_FAULT_OOM;
3023                 goto out_page;
3024         }
3025
3026         /*
3027          * Back out if somebody else already faulted in this pte.
3028          */
3029         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3030                         &vmf->ptl);
3031         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3032                 goto out_nomap;
3033
3034         if (unlikely(!PageUptodate(page))) {
3035                 ret = VM_FAULT_SIGBUS;
3036                 goto out_nomap;
3037         }
3038
3039         /*
3040          * The page isn't present yet, go ahead with the fault.
3041          *
3042          * Be careful about the sequence of operations here.
3043          * To get its accounting right, reuse_swap_page() must be called
3044          * while the page is counted on swap but not yet in mapcount i.e.
3045          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3046          * must be called after the swap_free(), or it will never succeed.
3047          */
3048
3049         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3050         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3051         pte = mk_pte(page, vma->vm_page_prot);
3052         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3053                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3054                 vmf->flags &= ~FAULT_FLAG_WRITE;
3055                 ret |= VM_FAULT_WRITE;
3056                 exclusive = RMAP_EXCLUSIVE;
3057         }
3058         flush_icache_page(vma, page);
3059         if (pte_swp_soft_dirty(vmf->orig_pte))
3060                 pte = pte_mksoft_dirty(pte);
3061         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3062         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3063         vmf->orig_pte = pte;
3064
3065         /* ksm created a completely new copy */
3066         if (unlikely(page != swapcache && swapcache)) {
3067                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3068                 mem_cgroup_commit_charge(page, memcg, false, false);
3069                 lru_cache_add_active_or_unevictable(page, vma);
3070         } else {
3071                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3072                 mem_cgroup_commit_charge(page, memcg, true, false);
3073                 activate_page(page);
3074         }
3075
3076         swap_free(entry);
3077         if (mem_cgroup_swap_full(page) ||
3078             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3079                 try_to_free_swap(page);
3080         unlock_page(page);
3081         if (page != swapcache && swapcache) {
3082                 /*
3083                  * Hold the lock to avoid the swap entry to be reused
3084                  * until we take the PT lock for the pte_same() check
3085                  * (to avoid false positives from pte_same). For
3086                  * further safety release the lock after the swap_free
3087                  * so that the swap count won't change under a
3088                  * parallel locked swapcache.
3089                  */
3090                 unlock_page(swapcache);
3091                 put_page(swapcache);
3092         }
3093
3094         if (vmf->flags & FAULT_FLAG_WRITE) {
3095                 ret |= do_wp_page(vmf);
3096                 if (ret & VM_FAULT_ERROR)
3097                         ret &= VM_FAULT_ERROR;
3098                 goto out;
3099         }
3100
3101         /* No need to invalidate - it was non-present before */
3102         update_mmu_cache(vma, vmf->address, vmf->pte);
3103 unlock:
3104         pte_unmap_unlock(vmf->pte, vmf->ptl);
3105 out:
3106         return ret;
3107 out_nomap:
3108         mem_cgroup_cancel_charge(page, memcg, false);
3109         pte_unmap_unlock(vmf->pte, vmf->ptl);
3110 out_page:
3111         unlock_page(page);
3112 out_release:
3113         put_page(page);
3114         if (page != swapcache && swapcache) {
3115                 unlock_page(swapcache);
3116                 put_page(swapcache);
3117         }
3118         return ret;
3119 }
3120
3121 /*
3122  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3123  * but allow concurrent faults), and pte mapped but not yet locked.
3124  * We return with mmap_sem still held, but pte unmapped and unlocked.
3125  */
3126 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3127 {
3128         struct vm_area_struct *vma = vmf->vma;
3129         struct mem_cgroup *memcg;
3130         struct page *page;
3131         vm_fault_t ret = 0;
3132         pte_t entry;
3133
3134         /* File mapping without ->vm_ops ? */
3135         if (vma->vm_flags & VM_SHARED)
3136                 return VM_FAULT_SIGBUS;
3137
3138         /*
3139          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3140          * pte_offset_map() on pmds where a huge pmd might be created
3141          * from a different thread.
3142          *
3143          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3144          * parallel threads are excluded by other means.
3145          *
3146          * Here we only have down_read(mmap_sem).
3147          */
3148         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3149                 return VM_FAULT_OOM;
3150
3151         /* See the comment in pte_alloc_one_map() */
3152         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3153                 return 0;
3154
3155         /* Use the zero-page for reads */
3156         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3157                         !mm_forbids_zeropage(vma->vm_mm)) {
3158                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3159                                                 vma->vm_page_prot));
3160                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3161                                 vmf->address, &vmf->ptl);
3162                 if (!pte_none(*vmf->pte))
3163                         goto unlock;
3164                 ret = check_stable_address_space(vma->vm_mm);
3165                 if (ret)
3166                         goto unlock;
3167                 /* Deliver the page fault to userland, check inside PT lock */
3168                 if (userfaultfd_missing(vma)) {
3169                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3170                         return handle_userfault(vmf, VM_UFFD_MISSING);
3171                 }
3172                 goto setpte;
3173         }
3174
3175         /* Allocate our own private page. */
3176         if (unlikely(anon_vma_prepare(vma)))
3177                 goto oom;
3178         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3179         if (!page)
3180                 goto oom;
3181
3182         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3183                                         false))
3184                 goto oom_free_page;
3185
3186         /*
3187          * The memory barrier inside __SetPageUptodate makes sure that
3188          * preceeding stores to the page contents become visible before
3189          * the set_pte_at() write.
3190          */
3191         __SetPageUptodate(page);
3192
3193         entry = mk_pte(page, vma->vm_page_prot);
3194         if (vma->vm_flags & VM_WRITE)
3195                 entry = pte_mkwrite(pte_mkdirty(entry));
3196
3197         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3198                         &vmf->ptl);
3199         if (!pte_none(*vmf->pte))
3200                 goto release;
3201
3202         ret = check_stable_address_space(vma->vm_mm);
3203         if (ret)
3204                 goto release;
3205
3206         /* Deliver the page fault to userland, check inside PT lock */
3207         if (userfaultfd_missing(vma)) {
3208                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3209                 mem_cgroup_cancel_charge(page, memcg, false);
3210                 put_page(page);
3211                 return handle_userfault(vmf, VM_UFFD_MISSING);
3212         }
3213
3214         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3215         page_add_new_anon_rmap(page, vma, vmf->address, false);
3216         mem_cgroup_commit_charge(page, memcg, false, false);
3217         lru_cache_add_active_or_unevictable(page, vma);
3218 setpte:
3219         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3220
3221         /* No need to invalidate - it was non-present before */
3222         update_mmu_cache(vma, vmf->address, vmf->pte);
3223 unlock:
3224         pte_unmap_unlock(vmf->pte, vmf->ptl);
3225         return ret;
3226 release:
3227         mem_cgroup_cancel_charge(page, memcg, false);
3228         put_page(page);
3229         goto unlock;
3230 oom_free_page:
3231         put_page(page);
3232 oom:
3233         return VM_FAULT_OOM;
3234 }
3235
3236 /*
3237  * The mmap_sem must have been held on entry, and may have been
3238  * released depending on flags and vma->vm_ops->fault() return value.
3239  * See filemap_fault() and __lock_page_retry().
3240  */
3241 static vm_fault_t __do_fault(struct vm_fault *vmf)
3242 {
3243         struct vm_area_struct *vma = vmf->vma;
3244         vm_fault_t ret;
3245
3246         /*
3247          * Preallocate pte before we take page_lock because this might lead to
3248          * deadlocks for memcg reclaim which waits for pages under writeback:
3249          *                              lock_page(A)
3250          *                              SetPageWriteback(A)
3251          *                              unlock_page(A)
3252          * lock_page(B)
3253          *                              lock_page(B)
3254          * pte_alloc_pne
3255          *   shrink_page_list
3256          *     wait_on_page_writeback(A)
3257          *                              SetPageWriteback(B)
3258          *                              unlock_page(B)
3259          *                              # flush A, B to clear the writeback
3260          */
3261         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3262                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3263                                                   vmf->address);
3264                 if (!vmf->prealloc_pte)
3265                         return VM_FAULT_OOM;
3266                 smp_wmb(); /* See comment in __pte_alloc() */
3267         }
3268
3269         ret = vma->vm_ops->fault(vmf);
3270         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3271                             VM_FAULT_DONE_COW)))
3272                 return ret;
3273
3274         if (unlikely(PageHWPoison(vmf->page))) {
3275                 if (ret & VM_FAULT_LOCKED)
3276                         unlock_page(vmf->page);
3277                 put_page(vmf->page);
3278                 vmf->page = NULL;
3279                 return VM_FAULT_HWPOISON;
3280         }
3281
3282         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3283                 lock_page(vmf->page);
3284         else
3285                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3286
3287         return ret;
3288 }
3289
3290 /*
3291  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3292  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3293  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3294  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3295  */
3296 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3297 {
3298         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3299 }
3300
3301 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3302 {
3303         struct vm_area_struct *vma = vmf->vma;
3304
3305         if (!pmd_none(*vmf->pmd))
3306                 goto map_pte;
3307         if (vmf->prealloc_pte) {
3308                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3309                 if (unlikely(!pmd_none(*vmf->pmd))) {
3310                         spin_unlock(vmf->ptl);
3311                         goto map_pte;
3312                 }
3313
3314                 mm_inc_nr_ptes(vma->vm_mm);
3315                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3316                 spin_unlock(vmf->ptl);
3317                 vmf->prealloc_pte = NULL;
3318         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3319                 return VM_FAULT_OOM;
3320         }
3321 map_pte:
3322         /*
3323          * If a huge pmd materialized under us just retry later.  Use
3324          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3325          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3326          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3327          * running immediately after a huge pmd fault in a different thread of
3328          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3329          * All we have to ensure is that it is a regular pmd that we can walk
3330          * with pte_offset_map() and we can do that through an atomic read in
3331          * C, which is what pmd_trans_unstable() provides.
3332          */
3333         if (pmd_devmap_trans_unstable(vmf->pmd))
3334                 return VM_FAULT_NOPAGE;
3335
3336         /*
3337          * At this point we know that our vmf->pmd points to a page of ptes
3338          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3339          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3340          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3341          * be valid and we will re-check to make sure the vmf->pte isn't
3342          * pte_none() under vmf->ptl protection when we return to
3343          * alloc_set_pte().
3344          */
3345         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3346                         &vmf->ptl);
3347         return 0;
3348 }
3349
3350 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3351
3352 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3353 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3354                 unsigned long haddr)
3355 {
3356         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3357                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3358                 return false;
3359         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3360                 return false;
3361         return true;
3362 }
3363
3364 static void deposit_prealloc_pte(struct vm_fault *vmf)
3365 {
3366         struct vm_area_struct *vma = vmf->vma;
3367
3368         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3369         /*
3370          * We are going to consume the prealloc table,
3371          * count that as nr_ptes.
3372          */
3373         mm_inc_nr_ptes(vma->vm_mm);
3374         vmf->prealloc_pte = NULL;
3375 }
3376
3377 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3378 {
3379         struct vm_area_struct *vma = vmf->vma;
3380         bool write = vmf->flags & FAULT_FLAG_WRITE;
3381         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3382         pmd_t entry;
3383         int i;
3384         vm_fault_t ret;
3385
3386         if (!transhuge_vma_suitable(vma, haddr))
3387                 return VM_FAULT_FALLBACK;
3388
3389         ret = VM_FAULT_FALLBACK;
3390         page = compound_head(page);
3391
3392         /*
3393          * Archs like ppc64 need additonal space to store information
3394          * related to pte entry. Use the preallocated table for that.
3395          */
3396         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3397                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3398                 if (!vmf->prealloc_pte)
3399                         return VM_FAULT_OOM;
3400                 smp_wmb(); /* See comment in __pte_alloc() */
3401         }
3402
3403         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3404         if (unlikely(!pmd_none(*vmf->pmd)))
3405                 goto out;
3406
3407         for (i = 0; i < HPAGE_PMD_NR; i++)
3408                 flush_icache_page(vma, page + i);
3409
3410         entry = mk_huge_pmd(page, vma->vm_page_prot);
3411         if (write)
3412                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3413
3414         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3415         page_add_file_rmap(page, true);
3416         /*
3417          * deposit and withdraw with pmd lock held
3418          */
3419         if (arch_needs_pgtable_deposit())
3420                 deposit_prealloc_pte(vmf);
3421
3422         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3423
3424         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3425
3426         /* fault is handled */
3427         ret = 0;
3428         count_vm_event(THP_FILE_MAPPED);
3429 out:
3430         spin_unlock(vmf->ptl);
3431         return ret;
3432 }
3433 #else
3434 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3435 {
3436         BUILD_BUG();
3437         return 0;
3438 }
3439 #endif
3440
3441 /**
3442  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3443  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3444  *
3445  * @vmf: fault environment
3446  * @memcg: memcg to charge page (only for private mappings)
3447  * @page: page to map
3448  *
3449  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3450  * return.
3451  *
3452  * Target users are page handler itself and implementations of
3453  * vm_ops->map_pages.
3454  */
3455 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3456                 struct page *page)
3457 {
3458         struct vm_area_struct *vma = vmf->vma;
3459         bool write = vmf->flags & FAULT_FLAG_WRITE;
3460         pte_t entry;
3461         vm_fault_t ret;
3462
3463         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3464                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3465                 /* THP on COW? */
3466                 VM_BUG_ON_PAGE(memcg, page);
3467
3468                 ret = do_set_pmd(vmf, page);
3469                 if (ret != VM_FAULT_FALLBACK)
3470                         return ret;
3471         }
3472
3473         if (!vmf->pte) {
3474                 ret = pte_alloc_one_map(vmf);
3475                 if (ret)
3476                         return ret;
3477         }
3478
3479         /* Re-check under ptl */
3480         if (unlikely(!pte_none(*vmf->pte)))
3481                 return VM_FAULT_NOPAGE;
3482
3483         flush_icache_page(vma, page);
3484         entry = mk_pte(page, vma->vm_page_prot);
3485         if (write)
3486                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3487         /* copy-on-write page */
3488         if (write && !(vma->vm_flags & VM_SHARED)) {
3489                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3490                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3491                 mem_cgroup_commit_charge(page, memcg, false, false);
3492                 lru_cache_add_active_or_unevictable(page, vma);
3493         } else {
3494                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3495                 page_add_file_rmap(page, false);
3496         }
3497         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3498
3499         /* no need to invalidate: a not-present page won't be cached */
3500         update_mmu_cache(vma, vmf->address, vmf->pte);
3501
3502         return 0;
3503 }
3504
3505
3506 /**
3507  * finish_fault - finish page fault once we have prepared the page to fault
3508  *
3509  * @vmf: structure describing the fault
3510  *
3511  * This function handles all that is needed to finish a page fault once the
3512  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3513  * given page, adds reverse page mapping, handles memcg charges and LRU
3514  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3515  * error.
3516  *
3517  * The function expects the page to be locked and on success it consumes a
3518  * reference of a page being mapped (for the PTE which maps it).
3519  */
3520 vm_fault_t finish_fault(struct vm_fault *vmf)
3521 {
3522         struct page *page;
3523         vm_fault_t ret = 0;
3524
3525         /* Did we COW the page? */
3526         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3527             !(vmf->vma->vm_flags & VM_SHARED))
3528                 page = vmf->cow_page;
3529         else
3530                 page = vmf->page;
3531
3532         /*
3533          * check even for read faults because we might have lost our CoWed
3534          * page
3535          */
3536         if (!(vmf->vma->vm_flags & VM_SHARED))
3537                 ret = check_stable_address_space(vmf->vma->vm_mm);
3538         if (!ret)
3539                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3540         if (vmf->pte)
3541                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3542         return ret;
3543 }
3544
3545 static unsigned long fault_around_bytes __read_mostly =
3546         rounddown_pow_of_two(65536);
3547
3548 #ifdef CONFIG_DEBUG_FS
3549 static int fault_around_bytes_get(void *data, u64 *val)
3550 {
3551         *val = fault_around_bytes;
3552         return 0;
3553 }
3554
3555 /*
3556  * fault_around_bytes must be rounded down to the nearest page order as it's
3557  * what do_fault_around() expects to see.
3558  */
3559 static int fault_around_bytes_set(void *data, u64 val)
3560 {
3561         if (val / PAGE_SIZE > PTRS_PER_PTE)
3562                 return -EINVAL;
3563         if (val > PAGE_SIZE)
3564                 fault_around_bytes = rounddown_pow_of_two(val);
3565         else
3566                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3567         return 0;
3568 }
3569 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3570                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3571
3572 static int __init fault_around_debugfs(void)
3573 {
3574         void *ret;
3575
3576         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3577                         &fault_around_bytes_fops);
3578         if (!ret)
3579                 pr_warn("Failed to create fault_around_bytes in debugfs");
3580         return 0;
3581 }
3582 late_initcall(fault_around_debugfs);
3583 #endif
3584
3585 /*
3586  * do_fault_around() tries to map few pages around the fault address. The hope
3587  * is that the pages will be needed soon and this will lower the number of
3588  * faults to handle.
3589  *
3590  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3591  * not ready to be mapped: not up-to-date, locked, etc.
3592  *
3593  * This function is called with the page table lock taken. In the split ptlock
3594  * case the page table lock only protects only those entries which belong to
3595  * the page table corresponding to the fault address.
3596  *
3597  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3598  * only once.
3599  *
3600  * fault_around_bytes defines how many bytes we'll try to map.
3601  * do_fault_around() expects it to be set to a power of two less than or equal
3602  * to PTRS_PER_PTE.
3603  *
3604  * The virtual address of the area that we map is naturally aligned to
3605  * fault_around_bytes rounded down to the machine page size
3606  * (and therefore to page order).  This way it's easier to guarantee
3607  * that we don't cross page table boundaries.
3608  */
3609 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3610 {
3611         unsigned long address = vmf->address, nr_pages, mask;
3612         pgoff_t start_pgoff = vmf->pgoff;
3613         pgoff_t end_pgoff;
3614         int off;
3615         vm_fault_t ret = 0;
3616
3617         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3618         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3619
3620         vmf->address = max(address & mask, vmf->vma->vm_start);
3621         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3622         start_pgoff -= off;
3623
3624         /*
3625          *  end_pgoff is either the end of the page table, the end of
3626          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3627          */
3628         end_pgoff = start_pgoff -
3629                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3630                 PTRS_PER_PTE - 1;
3631         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3632                         start_pgoff + nr_pages - 1);
3633
3634         if (pmd_none(*vmf->pmd)) {
3635                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3636                                                   vmf->address);
3637                 if (!vmf->prealloc_pte)
3638                         goto out;
3639                 smp_wmb(); /* See comment in __pte_alloc() */
3640         }
3641
3642         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3643
3644         /* Huge page is mapped? Page fault is solved */
3645         if (pmd_trans_huge(*vmf->pmd)) {
3646                 ret = VM_FAULT_NOPAGE;
3647                 goto out;
3648         }
3649
3650         /* ->map_pages() haven't done anything useful. Cold page cache? */
3651         if (!vmf->pte)
3652                 goto out;
3653
3654         /* check if the page fault is solved */
3655         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3656         if (!pte_none(*vmf->pte))
3657                 ret = VM_FAULT_NOPAGE;
3658         pte_unmap_unlock(vmf->pte, vmf->ptl);
3659 out:
3660         vmf->address = address;
3661         vmf->pte = NULL;
3662         return ret;
3663 }
3664
3665 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3666 {
3667         struct vm_area_struct *vma = vmf->vma;
3668         vm_fault_t ret = 0;
3669
3670         /*
3671          * Let's call ->map_pages() first and use ->fault() as fallback
3672          * if page by the offset is not ready to be mapped (cold cache or
3673          * something).
3674          */
3675         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3676                 ret = do_fault_around(vmf);
3677                 if (ret)
3678                         return ret;
3679         }
3680
3681         ret = __do_fault(vmf);
3682         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683                 return ret;
3684
3685         ret |= finish_fault(vmf);
3686         unlock_page(vmf->page);
3687         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3688                 put_page(vmf->page);
3689         return ret;
3690 }
3691
3692 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3693 {
3694         struct vm_area_struct *vma = vmf->vma;
3695         vm_fault_t ret;
3696
3697         if (unlikely(anon_vma_prepare(vma)))
3698                 return VM_FAULT_OOM;
3699
3700         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3701         if (!vmf->cow_page)
3702                 return VM_FAULT_OOM;
3703
3704         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3705                                 &vmf->memcg, false)) {
3706                 put_page(vmf->cow_page);
3707                 return VM_FAULT_OOM;
3708         }
3709
3710         ret = __do_fault(vmf);
3711         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3712                 goto uncharge_out;
3713         if (ret & VM_FAULT_DONE_COW)
3714                 return ret;
3715
3716         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3717         __SetPageUptodate(vmf->cow_page);
3718
3719         ret |= finish_fault(vmf);
3720         unlock_page(vmf->page);
3721         put_page(vmf->page);
3722         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3723                 goto uncharge_out;
3724         return ret;
3725 uncharge_out:
3726         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3727         put_page(vmf->cow_page);
3728         return ret;
3729 }
3730
3731 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3732 {
3733         struct vm_area_struct *vma = vmf->vma;
3734         vm_fault_t ret, tmp;
3735
3736         ret = __do_fault(vmf);
3737         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3738                 return ret;
3739
3740         /*
3741          * Check if the backing address space wants to know that the page is
3742          * about to become writable
3743          */
3744         if (vma->vm_ops->page_mkwrite) {
3745                 unlock_page(vmf->page);
3746                 tmp = do_page_mkwrite(vmf);
3747                 if (unlikely(!tmp ||
3748                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3749                         put_page(vmf->page);
3750                         return tmp;
3751                 }
3752         }
3753
3754         ret |= finish_fault(vmf);
3755         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3756                                         VM_FAULT_RETRY))) {
3757                 unlock_page(vmf->page);
3758                 put_page(vmf->page);
3759                 return ret;
3760         }
3761
3762         fault_dirty_shared_page(vma, vmf->page);
3763         return ret;
3764 }
3765
3766 /*
3767  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3768  * but allow concurrent faults).
3769  * The mmap_sem may have been released depending on flags and our
3770  * return value.  See filemap_fault() and __lock_page_or_retry().
3771  * If mmap_sem is released, vma may become invalid (for example
3772  * by other thread calling munmap()).
3773  */
3774 static vm_fault_t do_fault(struct vm_fault *vmf)
3775 {
3776         struct vm_area_struct *vma = vmf->vma;
3777         struct mm_struct *vm_mm = vma->vm_mm;
3778         vm_fault_t ret;
3779
3780         /*
3781          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3782          */
3783         if (!vma->vm_ops->fault) {
3784                 /*
3785                  * If we find a migration pmd entry or a none pmd entry, which
3786                  * should never happen, return SIGBUS
3787                  */
3788                 if (unlikely(!pmd_present(*vmf->pmd)))
3789                         ret = VM_FAULT_SIGBUS;
3790                 else {
3791                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3792                                                        vmf->pmd,
3793                                                        vmf->address,
3794                                                        &vmf->ptl);
3795                         /*
3796                          * Make sure this is not a temporary clearing of pte
3797                          * by holding ptl and checking again. A R/M/W update
3798                          * of pte involves: take ptl, clearing the pte so that
3799                          * we don't have concurrent modification by hardware
3800                          * followed by an update.
3801                          */
3802                         if (unlikely(pte_none(*vmf->pte)))
3803                                 ret = VM_FAULT_SIGBUS;
3804                         else
3805                                 ret = VM_FAULT_NOPAGE;
3806
3807                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3808                 }
3809         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3810                 ret = do_read_fault(vmf);
3811         else if (!(vma->vm_flags & VM_SHARED))
3812                 ret = do_cow_fault(vmf);
3813         else
3814                 ret = do_shared_fault(vmf);
3815
3816         /* preallocated pagetable is unused: free it */
3817         if (vmf->prealloc_pte) {
3818                 pte_free(vm_mm, vmf->prealloc_pte);
3819                 vmf->prealloc_pte = NULL;
3820         }
3821         return ret;
3822 }
3823
3824 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3825                                 unsigned long addr, int page_nid,
3826                                 int *flags)
3827 {
3828         get_page(page);
3829
3830         count_vm_numa_event(NUMA_HINT_FAULTS);
3831         if (page_nid == numa_node_id()) {
3832                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3833                 *flags |= TNF_FAULT_LOCAL;
3834         }
3835
3836         return mpol_misplaced(page, vma, addr);
3837 }
3838
3839 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3840 {
3841         struct vm_area_struct *vma = vmf->vma;
3842         struct page *page = NULL;
3843         int page_nid = -1;
3844         int last_cpupid;
3845         int target_nid;
3846         bool migrated = false;
3847         pte_t pte;
3848         bool was_writable = pte_savedwrite(vmf->orig_pte);
3849         int flags = 0;
3850
3851         /*
3852          * The "pte" at this point cannot be used safely without
3853          * validation through pte_unmap_same(). It's of NUMA type but
3854          * the pfn may be screwed if the read is non atomic.
3855          */
3856         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3857         spin_lock(vmf->ptl);
3858         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3859                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3860                 goto out;
3861         }
3862
3863         /*
3864          * Make it present again, Depending on how arch implementes non
3865          * accessible ptes, some can allow access by kernel mode.
3866          */
3867         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3868         pte = pte_modify(pte, vma->vm_page_prot);
3869         pte = pte_mkyoung(pte);
3870         if (was_writable)
3871                 pte = pte_mkwrite(pte);
3872         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3873         update_mmu_cache(vma, vmf->address, vmf->pte);
3874
3875         page = vm_normal_page(vma, vmf->address, pte);
3876         if (!page) {
3877                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3878                 return 0;
3879         }
3880
3881         /* TODO: handle PTE-mapped THP */
3882         if (PageCompound(page)) {
3883                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3884                 return 0;
3885         }
3886
3887         /*
3888          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3889          * much anyway since they can be in shared cache state. This misses
3890          * the case where a mapping is writable but the process never writes
3891          * to it but pte_write gets cleared during protection updates and
3892          * pte_dirty has unpredictable behaviour between PTE scan updates,
3893          * background writeback, dirty balancing and application behaviour.
3894          */
3895         if (!pte_write(pte))
3896                 flags |= TNF_NO_GROUP;
3897
3898         /*
3899          * Flag if the page is shared between multiple address spaces. This
3900          * is later used when determining whether to group tasks together
3901          */
3902         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3903                 flags |= TNF_SHARED;
3904
3905         last_cpupid = page_cpupid_last(page);
3906         page_nid = page_to_nid(page);
3907         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3908                         &flags);
3909         pte_unmap_unlock(vmf->pte, vmf->ptl);
3910         if (target_nid == -1) {
3911                 put_page(page);
3912                 goto out;
3913         }
3914
3915         /* Migrate to the requested node */
3916         migrated = migrate_misplaced_page(page, vma, target_nid);
3917         if (migrated) {
3918                 page_nid = target_nid;
3919                 flags |= TNF_MIGRATED;
3920         } else
3921                 flags |= TNF_MIGRATE_FAIL;
3922
3923 out:
3924         if (page_nid != -1)
3925                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3926         return 0;
3927 }
3928
3929 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3930 {
3931         if (vma_is_anonymous(vmf->vma))
3932                 return do_huge_pmd_anonymous_page(vmf);
3933         if (vmf->vma->vm_ops->huge_fault)
3934                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3935         return VM_FAULT_FALLBACK;
3936 }
3937
3938 /* `inline' is required to avoid gcc 4.1.2 build error */
3939 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3940 {
3941         if (vma_is_anonymous(vmf->vma))
3942                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3943         if (vmf->vma->vm_ops->huge_fault)
3944                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3945
3946         /* COW handled on pte level: split pmd */
3947         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3948         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3949
3950         return VM_FAULT_FALLBACK;
3951 }
3952
3953 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3954 {
3955         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3956 }
3957
3958 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3959 {
3960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3961         /* No support for anonymous transparent PUD pages yet */
3962         if (vma_is_anonymous(vmf->vma))
3963                 return VM_FAULT_FALLBACK;
3964         if (vmf->vma->vm_ops->huge_fault)
3965                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3966 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3967         return VM_FAULT_FALLBACK;
3968 }
3969
3970 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3971 {
3972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3973         /* No support for anonymous transparent PUD pages yet */
3974         if (vma_is_anonymous(vmf->vma))
3975                 return VM_FAULT_FALLBACK;
3976         if (vmf->vma->vm_ops->huge_fault)
3977                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3978 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3979         return VM_FAULT_FALLBACK;
3980 }
3981
3982 /*
3983  * These routines also need to handle stuff like marking pages dirty
3984  * and/or accessed for architectures that don't do it in hardware (most
3985  * RISC architectures).  The early dirtying is also good on the i386.
3986  *
3987  * There is also a hook called "update_mmu_cache()" that architectures
3988  * with external mmu caches can use to update those (ie the Sparc or
3989  * PowerPC hashed page tables that act as extended TLBs).
3990  *
3991  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3992  * concurrent faults).
3993  *
3994  * The mmap_sem may have been released depending on flags and our return value.
3995  * See filemap_fault() and __lock_page_or_retry().
3996  */
3997 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3998 {
3999         pte_t entry;
4000
4001         if (unlikely(pmd_none(*vmf->pmd))) {
4002                 /*
4003                  * Leave __pte_alloc() until later: because vm_ops->fault may
4004                  * want to allocate huge page, and if we expose page table
4005                  * for an instant, it will be difficult to retract from
4006                  * concurrent faults and from rmap lookups.
4007                  */
4008                 vmf->pte = NULL;
4009         } else {
4010                 /* See comment in pte_alloc_one_map() */
4011                 if (pmd_devmap_trans_unstable(vmf->pmd))
4012                         return 0;
4013                 /*
4014                  * A regular pmd is established and it can't morph into a huge
4015                  * pmd from under us anymore at this point because we hold the
4016                  * mmap_sem read mode and khugepaged takes it in write mode.
4017                  * So now it's safe to run pte_offset_map().
4018                  */
4019                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4020                 vmf->orig_pte = *vmf->pte;
4021
4022                 /*
4023                  * some architectures can have larger ptes than wordsize,
4024                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4025                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4026                  * accesses.  The code below just needs a consistent view
4027                  * for the ifs and we later double check anyway with the
4028                  * ptl lock held. So here a barrier will do.
4029                  */
4030                 barrier();
4031                 if (pte_none(vmf->orig_pte)) {
4032                         pte_unmap(vmf->pte);
4033                         vmf->pte = NULL;
4034                 }
4035         }
4036
4037         if (!vmf->pte) {
4038                 if (vma_is_anonymous(vmf->vma))
4039                         return do_anonymous_page(vmf);
4040                 else
4041                         return do_fault(vmf);
4042         }
4043
4044         if (!pte_present(vmf->orig_pte))
4045                 return do_swap_page(vmf);
4046
4047         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4048                 return do_numa_page(vmf);
4049
4050         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4051         spin_lock(vmf->ptl);
4052         entry = vmf->orig_pte;
4053         if (unlikely(!pte_same(*vmf->pte, entry)))
4054                 goto unlock;
4055         if (vmf->flags & FAULT_FLAG_WRITE) {
4056                 if (!pte_write(entry))
4057                         return do_wp_page(vmf);
4058                 entry = pte_mkdirty(entry);
4059         }
4060         entry = pte_mkyoung(entry);
4061         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4062                                 vmf->flags & FAULT_FLAG_WRITE)) {
4063                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4064         } else {
4065                 /*
4066                  * This is needed only for protection faults but the arch code
4067                  * is not yet telling us if this is a protection fault or not.
4068                  * This still avoids useless tlb flushes for .text page faults
4069                  * with threads.
4070                  */
4071                 if (vmf->flags & FAULT_FLAG_WRITE)
4072                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4073         }
4074 unlock:
4075         pte_unmap_unlock(vmf->pte, vmf->ptl);
4076         return 0;
4077 }
4078
4079 /*
4080  * By the time we get here, we already hold the mm semaphore
4081  *
4082  * The mmap_sem may have been released depending on flags and our
4083  * return value.  See filemap_fault() and __lock_page_or_retry().
4084  */
4085 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4086                 unsigned long address, unsigned int flags)
4087 {
4088         struct vm_fault vmf = {
4089                 .vma = vma,
4090                 .address = address & PAGE_MASK,
4091                 .flags = flags,
4092                 .pgoff = linear_page_index(vma, address),
4093                 .gfp_mask = __get_fault_gfp_mask(vma),
4094         };
4095         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4096         struct mm_struct *mm = vma->vm_mm;
4097         pgd_t *pgd;
4098         p4d_t *p4d;
4099         vm_fault_t ret;
4100
4101         pgd = pgd_offset(mm, address);
4102         p4d = p4d_alloc(mm, pgd, address);
4103         if (!p4d)
4104                 return VM_FAULT_OOM;
4105
4106         vmf.pud = pud_alloc(mm, p4d, address);
4107         if (!vmf.pud)
4108                 return VM_FAULT_OOM;
4109         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4110                 ret = create_huge_pud(&vmf);
4111                 if (!(ret & VM_FAULT_FALLBACK))
4112                         return ret;
4113         } else {
4114                 pud_t orig_pud = *vmf.pud;
4115
4116                 barrier();
4117                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4118
4119                         /* NUMA case for anonymous PUDs would go here */
4120
4121                         if (dirty && !pud_write(orig_pud)) {
4122                                 ret = wp_huge_pud(&vmf, orig_pud);
4123                                 if (!(ret & VM_FAULT_FALLBACK))
4124                                         return ret;
4125                         } else {
4126                                 huge_pud_set_accessed(&vmf, orig_pud);
4127                                 return 0;
4128                         }
4129                 }
4130         }
4131
4132         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4133         if (!vmf.pmd)
4134                 return VM_FAULT_OOM;
4135         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4136                 ret = create_huge_pmd(&vmf);
4137                 if (!(ret & VM_FAULT_FALLBACK))
4138                         return ret;
4139         } else {
4140                 pmd_t orig_pmd = *vmf.pmd;
4141
4142                 barrier();
4143                 if (unlikely(is_swap_pmd(orig_pmd))) {
4144                         VM_BUG_ON(thp_migration_supported() &&
4145                                           !is_pmd_migration_entry(orig_pmd));
4146                         if (is_pmd_migration_entry(orig_pmd))
4147                                 pmd_migration_entry_wait(mm, vmf.pmd);
4148                         return 0;
4149                 }
4150                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4151                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4152                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4153
4154                         if (dirty && !pmd_write(orig_pmd)) {
4155                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4156                                 if (!(ret & VM_FAULT_FALLBACK))
4157                                         return ret;
4158                         } else {
4159                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4160                                 return 0;
4161                         }
4162                 }
4163         }
4164
4165         return handle_pte_fault(&vmf);
4166 }
4167
4168 /*
4169  * By the time we get here, we already hold the mm semaphore
4170  *
4171  * The mmap_sem may have been released depending on flags and our
4172  * return value.  See filemap_fault() and __lock_page_or_retry().
4173  */
4174 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4175                 unsigned int flags)
4176 {
4177         vm_fault_t ret;
4178
4179         __set_current_state(TASK_RUNNING);
4180
4181         count_vm_event(PGFAULT);
4182         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4183
4184         /* do counter updates before entering really critical section. */
4185         check_sync_rss_stat(current);
4186
4187         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4188                                             flags & FAULT_FLAG_INSTRUCTION,
4189                                             flags & FAULT_FLAG_REMOTE))
4190                 return VM_FAULT_SIGSEGV;
4191
4192         /*
4193          * Enable the memcg OOM handling for faults triggered in user
4194          * space.  Kernel faults are handled more gracefully.
4195          */
4196         if (flags & FAULT_FLAG_USER)
4197                 mem_cgroup_enter_user_fault();
4198
4199         if (unlikely(is_vm_hugetlb_page(vma)))
4200                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4201         else
4202                 ret = __handle_mm_fault(vma, address, flags);
4203
4204         if (flags & FAULT_FLAG_USER) {
4205                 mem_cgroup_exit_user_fault();
4206                 /*
4207                  * The task may have entered a memcg OOM situation but
4208                  * if the allocation error was handled gracefully (no
4209                  * VM_FAULT_OOM), there is no need to kill anything.
4210                  * Just clean up the OOM state peacefully.
4211                  */
4212                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4213                         mem_cgroup_oom_synchronize(false);
4214         }
4215
4216         return ret;
4217 }
4218 EXPORT_SYMBOL_GPL(handle_mm_fault);
4219
4220 #ifndef __PAGETABLE_P4D_FOLDED
4221 /*
4222  * Allocate p4d page table.
4223  * We've already handled the fast-path in-line.
4224  */
4225 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4226 {
4227         p4d_t *new = p4d_alloc_one(mm, address);
4228         if (!new)
4229                 return -ENOMEM;
4230
4231         smp_wmb(); /* See comment in __pte_alloc */
4232
4233         spin_lock(&mm->page_table_lock);
4234         if (pgd_present(*pgd))          /* Another has populated it */
4235                 p4d_free(mm, new);
4236         else
4237                 pgd_populate(mm, pgd, new);
4238         spin_unlock(&mm->page_table_lock);
4239         return 0;
4240 }
4241 #endif /* __PAGETABLE_P4D_FOLDED */
4242
4243 #ifndef __PAGETABLE_PUD_FOLDED
4244 /*
4245  * Allocate page upper directory.
4246  * We've already handled the fast-path in-line.
4247  */
4248 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4249 {
4250         pud_t *new = pud_alloc_one(mm, address);
4251         if (!new)
4252                 return -ENOMEM;
4253
4254         smp_wmb(); /* See comment in __pte_alloc */
4255
4256         spin_lock(&mm->page_table_lock);
4257 #ifndef __ARCH_HAS_5LEVEL_HACK
4258         if (!p4d_present(*p4d)) {
4259                 mm_inc_nr_puds(mm);
4260                 p4d_populate(mm, p4d, new);
4261         } else  /* Another has populated it */
4262                 pud_free(mm, new);
4263 #else
4264         if (!pgd_present(*p4d)) {
4265                 mm_inc_nr_puds(mm);
4266                 pgd_populate(mm, p4d, new);
4267         } else  /* Another has populated it */
4268                 pud_free(mm, new);
4269 #endif /* __ARCH_HAS_5LEVEL_HACK */
4270         spin_unlock(&mm->page_table_lock);
4271         return 0;
4272 }
4273 #endif /* __PAGETABLE_PUD_FOLDED */
4274
4275 #ifndef __PAGETABLE_PMD_FOLDED
4276 /*
4277  * Allocate page middle directory.
4278  * We've already handled the fast-path in-line.
4279  */
4280 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4281 {
4282         spinlock_t *ptl;
4283         pmd_t *new = pmd_alloc_one(mm, address);
4284         if (!new)
4285                 return -ENOMEM;
4286
4287         smp_wmb(); /* See comment in __pte_alloc */
4288
4289         ptl = pud_lock(mm, pud);
4290 #ifndef __ARCH_HAS_4LEVEL_HACK
4291         if (!pud_present(*pud)) {
4292                 mm_inc_nr_pmds(mm);
4293                 pud_populate(mm, pud, new);
4294         } else  /* Another has populated it */
4295                 pmd_free(mm, new);
4296 #else
4297         if (!pgd_present(*pud)) {
4298                 mm_inc_nr_pmds(mm);
4299                 pgd_populate(mm, pud, new);
4300         } else /* Another has populated it */
4301                 pmd_free(mm, new);
4302 #endif /* __ARCH_HAS_4LEVEL_HACK */
4303         spin_unlock(ptl);
4304         return 0;
4305 }
4306 #endif /* __PAGETABLE_PMD_FOLDED */
4307
4308 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4309                             unsigned long *start, unsigned long *end,
4310                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4311 {
4312         pgd_t *pgd;
4313         p4d_t *p4d;
4314         pud_t *pud;
4315         pmd_t *pmd;
4316         pte_t *ptep;
4317
4318         pgd = pgd_offset(mm, address);
4319         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4320                 goto out;
4321
4322         p4d = p4d_offset(pgd, address);
4323         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4324                 goto out;
4325
4326         pud = pud_offset(p4d, address);
4327         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4328                 goto out;
4329
4330         pmd = pmd_offset(pud, address);
4331         VM_BUG_ON(pmd_trans_huge(*pmd));
4332
4333         if (pmd_huge(*pmd)) {
4334                 if (!pmdpp)
4335                         goto out;
4336
4337                 if (start && end) {
4338                         *start = address & PMD_MASK;
4339                         *end = *start + PMD_SIZE;
4340                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4341                 }
4342                 *ptlp = pmd_lock(mm, pmd);
4343                 if (pmd_huge(*pmd)) {
4344                         *pmdpp = pmd;
4345                         return 0;
4346                 }
4347                 spin_unlock(*ptlp);
4348                 if (start && end)
4349                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4350         }
4351
4352         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4353                 goto out;
4354
4355         if (start && end) {
4356                 *start = address & PAGE_MASK;
4357                 *end = *start + PAGE_SIZE;
4358                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4359         }
4360         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4361         if (!pte_present(*ptep))
4362                 goto unlock;
4363         *ptepp = ptep;
4364         return 0;
4365 unlock:
4366         pte_unmap_unlock(ptep, *ptlp);
4367         if (start && end)
4368                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4369 out:
4370         return -EINVAL;
4371 }
4372
4373 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4374                              pte_t **ptepp, spinlock_t **ptlp)
4375 {
4376         int res;
4377
4378         /* (void) is needed to make gcc happy */
4379         (void) __cond_lock(*ptlp,
4380                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4381                                                     ptepp, NULL, ptlp)));
4382         return res;
4383 }
4384
4385 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4386                              unsigned long *start, unsigned long *end,
4387                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4388 {
4389         int res;
4390
4391         /* (void) is needed to make gcc happy */
4392         (void) __cond_lock(*ptlp,
4393                            !(res = __follow_pte_pmd(mm, address, start, end,
4394                                                     ptepp, pmdpp, ptlp)));
4395         return res;
4396 }
4397 EXPORT_SYMBOL(follow_pte_pmd);
4398
4399 /**
4400  * follow_pfn - look up PFN at a user virtual address
4401  * @vma: memory mapping
4402  * @address: user virtual address
4403  * @pfn: location to store found PFN
4404  *
4405  * Only IO mappings and raw PFN mappings are allowed.
4406  *
4407  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4408  */
4409 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4410         unsigned long *pfn)
4411 {
4412         int ret = -EINVAL;
4413         spinlock_t *ptl;
4414         pte_t *ptep;
4415
4416         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4417                 return ret;
4418
4419         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4420         if (ret)
4421                 return ret;
4422         *pfn = pte_pfn(*ptep);
4423         pte_unmap_unlock(ptep, ptl);
4424         return 0;
4425 }
4426 EXPORT_SYMBOL(follow_pfn);
4427
4428 #ifdef CONFIG_HAVE_IOREMAP_PROT
4429 int follow_phys(struct vm_area_struct *vma,
4430                 unsigned long address, unsigned int flags,
4431                 unsigned long *prot, resource_size_t *phys)
4432 {
4433         int ret = -EINVAL;
4434         pte_t *ptep, pte;
4435         spinlock_t *ptl;
4436
4437         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4438                 goto out;
4439
4440         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4441                 goto out;
4442         pte = *ptep;
4443
4444         if ((flags & FOLL_WRITE) && !pte_write(pte))
4445                 goto unlock;
4446
4447         *prot = pgprot_val(pte_pgprot(pte));
4448         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4449
4450         ret = 0;
4451 unlock:
4452         pte_unmap_unlock(ptep, ptl);
4453 out:
4454         return ret;
4455 }
4456
4457 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4458                         void *buf, int len, int write)
4459 {
4460         resource_size_t phys_addr;
4461         unsigned long prot = 0;
4462         void __iomem *maddr;
4463         int offset = addr & (PAGE_SIZE-1);
4464
4465         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4466                 return -EINVAL;
4467
4468         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4469         if (!maddr)
4470                 return -ENOMEM;
4471
4472         if (write)
4473                 memcpy_toio(maddr + offset, buf, len);
4474         else
4475                 memcpy_fromio(buf, maddr + offset, len);
4476         iounmap(maddr);
4477
4478         return len;
4479 }
4480 EXPORT_SYMBOL_GPL(generic_access_phys);
4481 #endif
4482
4483 /*
4484  * Access another process' address space as given in mm.  If non-NULL, use the
4485  * given task for page fault accounting.
4486  */
4487 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4488                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4489 {
4490         struct vm_area_struct *vma;
4491         void *old_buf = buf;
4492         int write = gup_flags & FOLL_WRITE;
4493
4494         if (down_read_killable(&mm->mmap_sem))
4495                 return 0;
4496
4497         /* ignore errors, just check how much was successfully transferred */
4498         while (len) {
4499                 int bytes, ret, offset;
4500                 void *maddr;
4501                 struct page *page = NULL;
4502
4503                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4504                                 gup_flags, &page, &vma, NULL);
4505                 if (ret <= 0) {
4506 #ifndef CONFIG_HAVE_IOREMAP_PROT
4507                         break;
4508 #else
4509                         /*
4510                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4511                          * we can access using slightly different code.
4512                          */
4513                         vma = find_vma(mm, addr);
4514                         if (!vma || vma->vm_start > addr)
4515                                 break;
4516                         if (vma->vm_ops && vma->vm_ops->access)
4517                                 ret = vma->vm_ops->access(vma, addr, buf,
4518                                                           len, write);
4519                         if (ret <= 0)
4520                                 break;
4521                         bytes = ret;
4522 #endif
4523                 } else {
4524                         bytes = len;
4525                         offset = addr & (PAGE_SIZE-1);
4526                         if (bytes > PAGE_SIZE-offset)
4527                                 bytes = PAGE_SIZE-offset;
4528
4529                         maddr = kmap(page);
4530                         if (write) {
4531                                 copy_to_user_page(vma, page, addr,
4532                                                   maddr + offset, buf, bytes);
4533                                 set_page_dirty_lock(page);
4534                         } else {
4535                                 copy_from_user_page(vma, page, addr,
4536                                                     buf, maddr + offset, bytes);
4537                         }
4538                         kunmap(page);
4539                         put_page(page);
4540                 }
4541                 len -= bytes;
4542                 buf += bytes;
4543                 addr += bytes;
4544         }
4545         up_read(&mm->mmap_sem);
4546
4547         return buf - old_buf;
4548 }
4549
4550 /**
4551  * access_remote_vm - access another process' address space
4552  * @mm:         the mm_struct of the target address space
4553  * @addr:       start address to access
4554  * @buf:        source or destination buffer
4555  * @len:        number of bytes to transfer
4556  * @gup_flags:  flags modifying lookup behaviour
4557  *
4558  * The caller must hold a reference on @mm.
4559  */
4560 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4561                 void *buf, int len, unsigned int gup_flags)
4562 {
4563         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4564 }
4565
4566 /*
4567  * Access another process' address space.
4568  * Source/target buffer must be kernel space,
4569  * Do not walk the page table directly, use get_user_pages
4570  */
4571 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4572                 void *buf, int len, unsigned int gup_flags)
4573 {
4574         struct mm_struct *mm;
4575         int ret;
4576
4577         mm = get_task_mm(tsk);
4578         if (!mm)
4579                 return 0;
4580
4581         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4582
4583         mmput(mm);
4584
4585         return ret;
4586 }
4587 EXPORT_SYMBOL_GPL(access_process_vm);
4588
4589 /*
4590  * Print the name of a VMA.
4591  */
4592 void print_vma_addr(char *prefix, unsigned long ip)
4593 {
4594         struct mm_struct *mm = current->mm;
4595         struct vm_area_struct *vma;
4596
4597         /*
4598          * we might be running from an atomic context so we cannot sleep
4599          */
4600         if (!down_read_trylock(&mm->mmap_sem))
4601                 return;
4602
4603         vma = find_vma(mm, ip);
4604         if (vma && vma->vm_file) {
4605                 struct file *f = vma->vm_file;
4606                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4607                 if (buf) {
4608                         char *p;
4609
4610                         p = file_path(f, buf, PAGE_SIZE);
4611                         if (IS_ERR(p))
4612                                 p = "?";
4613                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4614                                         vma->vm_start,
4615                                         vma->vm_end - vma->vm_start);
4616                         free_page((unsigned long)buf);
4617                 }
4618         }
4619         up_read(&mm->mmap_sem);
4620 }
4621
4622 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4623 void __might_fault(const char *file, int line)
4624 {
4625         /*
4626          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4627          * holding the mmap_sem, this is safe because kernel memory doesn't
4628          * get paged out, therefore we'll never actually fault, and the
4629          * below annotations will generate false positives.
4630          */
4631         if (uaccess_kernel())
4632                 return;
4633         if (pagefault_disabled())
4634                 return;
4635         __might_sleep(file, line, 0);
4636 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4637         if (current->mm)
4638                 might_lock_read(&current->mm->mmap_sem);
4639 #endif
4640 }
4641 EXPORT_SYMBOL(__might_fault);
4642 #endif
4643
4644 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4645 /*
4646  * Process all subpages of the specified huge page with the specified
4647  * operation.  The target subpage will be processed last to keep its
4648  * cache lines hot.
4649  */
4650 static inline void process_huge_page(
4651         unsigned long addr_hint, unsigned int pages_per_huge_page,
4652         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4653         void *arg)
4654 {
4655         int i, n, base, l;
4656         unsigned long addr = addr_hint &
4657                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4658
4659         /* Process target subpage last to keep its cache lines hot */
4660         might_sleep();
4661         n = (addr_hint - addr) / PAGE_SIZE;
4662         if (2 * n <= pages_per_huge_page) {
4663                 /* If target subpage in first half of huge page */
4664                 base = 0;
4665                 l = n;
4666                 /* Process subpages at the end of huge page */
4667                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4668                         cond_resched();
4669                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4670                 }
4671         } else {
4672                 /* If target subpage in second half of huge page */
4673                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4674                 l = pages_per_huge_page - n;
4675                 /* Process subpages at the begin of huge page */
4676                 for (i = 0; i < base; i++) {
4677                         cond_resched();
4678                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4679                 }
4680         }
4681         /*
4682          * Process remaining subpages in left-right-left-right pattern
4683          * towards the target subpage
4684          */
4685         for (i = 0; i < l; i++) {
4686                 int left_idx = base + i;
4687                 int right_idx = base + 2 * l - 1 - i;
4688
4689                 cond_resched();
4690                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4691                 cond_resched();
4692                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4693         }
4694 }
4695
4696 static void clear_gigantic_page(struct page *page,
4697                                 unsigned long addr,
4698                                 unsigned int pages_per_huge_page)
4699 {
4700         int i;
4701         struct page *p = page;
4702
4703         might_sleep();
4704         for (i = 0; i < pages_per_huge_page;
4705              i++, p = mem_map_next(p, page, i)) {
4706                 cond_resched();
4707                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4708         }
4709 }
4710
4711 static void clear_subpage(unsigned long addr, int idx, void *arg)
4712 {
4713         struct page *page = arg;
4714
4715         clear_user_highpage(page + idx, addr);
4716 }
4717
4718 void clear_huge_page(struct page *page,
4719                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4720 {
4721         unsigned long addr = addr_hint &
4722                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4723
4724         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4725                 clear_gigantic_page(page, addr, pages_per_huge_page);
4726                 return;
4727         }
4728
4729         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4730 }
4731
4732 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4733                                     unsigned long addr,
4734                                     struct vm_area_struct *vma,
4735                                     unsigned int pages_per_huge_page)
4736 {
4737         int i;
4738         struct page *dst_base = dst;
4739         struct page *src_base = src;
4740
4741         for (i = 0; i < pages_per_huge_page; ) {
4742                 cond_resched();
4743                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4744
4745                 i++;
4746                 dst = mem_map_next(dst, dst_base, i);
4747                 src = mem_map_next(src, src_base, i);
4748         }
4749 }
4750
4751 struct copy_subpage_arg {
4752         struct page *dst;
4753         struct page *src;
4754         struct vm_area_struct *vma;
4755 };
4756
4757 static void copy_subpage(unsigned long addr, int idx, void *arg)
4758 {
4759         struct copy_subpage_arg *copy_arg = arg;
4760
4761         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4762                            addr, copy_arg->vma);
4763 }
4764
4765 void copy_user_huge_page(struct page *dst, struct page *src,
4766                          unsigned long addr_hint, struct vm_area_struct *vma,
4767                          unsigned int pages_per_huge_page)
4768 {
4769         unsigned long addr = addr_hint &
4770                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4771         struct copy_subpage_arg arg = {
4772                 .dst = dst,
4773                 .src = src,
4774                 .vma = vma,
4775         };
4776
4777         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4778                 copy_user_gigantic_page(dst, src, addr, vma,
4779                                         pages_per_huge_page);
4780                 return;
4781         }
4782
4783         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4784 }
4785
4786 long copy_huge_page_from_user(struct page *dst_page,
4787                                 const void __user *usr_src,
4788                                 unsigned int pages_per_huge_page,
4789                                 bool allow_pagefault)
4790 {
4791         void *src = (void *)usr_src;
4792         void *page_kaddr;
4793         unsigned long i, rc = 0;
4794         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4795
4796         for (i = 0; i < pages_per_huge_page; i++) {
4797                 if (allow_pagefault)
4798                         page_kaddr = kmap(dst_page + i);
4799                 else
4800                         page_kaddr = kmap_atomic(dst_page + i);
4801                 rc = copy_from_user(page_kaddr,
4802                                 (const void __user *)(src + i * PAGE_SIZE),
4803                                 PAGE_SIZE);
4804                 if (allow_pagefault)
4805                         kunmap(dst_page + i);
4806                 else
4807                         kunmap_atomic(page_kaddr);
4808
4809                 ret_val -= (PAGE_SIZE - rc);
4810                 if (rc)
4811                         break;
4812
4813                 cond_resched();
4814         }
4815         return ret_val;
4816 }
4817 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4818
4819 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4820
4821 static struct kmem_cache *page_ptl_cachep;
4822
4823 void __init ptlock_cache_init(void)
4824 {
4825         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4826                         SLAB_PANIC, NULL);
4827 }
4828
4829 bool ptlock_alloc(struct page *page)
4830 {
4831         spinlock_t *ptl;
4832
4833         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4834         if (!ptl)
4835                 return false;
4836         page->ptl = ptl;
4837         return true;
4838 }
4839
4840 void ptlock_free(struct page *page)
4841 {
4842         kmem_cache_free(page_ptl_cachep, page->ptl);
4843 }
4844 #endif