Linux-libre 4.4.228-gnu
[librecmc/linux-libre.git] / lib / bitmap.c
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/export.h>
9 #include <linux/thread_info.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/slab.h>
16
17 #include <asm/page.h>
18 #include <asm/uaccess.h>
19
20 /*
21  * bitmaps provide an array of bits, implemented using an an
22  * array of unsigned longs.  The number of valid bits in a
23  * given bitmap does _not_ need to be an exact multiple of
24  * BITS_PER_LONG.
25  *
26  * The possible unused bits in the last, partially used word
27  * of a bitmap are 'don't care'.  The implementation makes
28  * no particular effort to keep them zero.  It ensures that
29  * their value will not affect the results of any operation.
30  * The bitmap operations that return Boolean (bitmap_empty,
31  * for example) or scalar (bitmap_weight, for example) results
32  * carefully filter out these unused bits from impacting their
33  * results.
34  *
35  * These operations actually hold to a slightly stronger rule:
36  * if you don't input any bitmaps to these ops that have some
37  * unused bits set, then they won't output any set unused bits
38  * in output bitmaps.
39  *
40  * The byte ordering of bitmaps is more natural on little
41  * endian architectures.  See the big-endian headers
42  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43  * for the best explanations of this ordering.
44  */
45
46 int __bitmap_equal(const unsigned long *bitmap1,
47                 const unsigned long *bitmap2, unsigned int bits)
48 {
49         unsigned int k, lim = bits/BITS_PER_LONG;
50         for (k = 0; k < lim; ++k)
51                 if (bitmap1[k] != bitmap2[k])
52                         return 0;
53
54         if (bits % BITS_PER_LONG)
55                 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56                         return 0;
57
58         return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61
62 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
63 {
64         unsigned int k, lim = bits/BITS_PER_LONG;
65         for (k = 0; k < lim; ++k)
66                 dst[k] = ~src[k];
67
68         if (bits % BITS_PER_LONG)
69                 dst[k] = ~src[k];
70 }
71 EXPORT_SYMBOL(__bitmap_complement);
72
73 /**
74  * __bitmap_shift_right - logical right shift of the bits in a bitmap
75  *   @dst : destination bitmap
76  *   @src : source bitmap
77  *   @shift : shift by this many bits
78  *   @nbits : bitmap size, in bits
79  *
80  * Shifting right (dividing) means moving bits in the MS -> LS bit
81  * direction.  Zeros are fed into the vacated MS positions and the
82  * LS bits shifted off the bottom are lost.
83  */
84 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
85                         unsigned shift, unsigned nbits)
86 {
87         unsigned k, lim = BITS_TO_LONGS(nbits);
88         unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
89         unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
90         for (k = 0; off + k < lim; ++k) {
91                 unsigned long upper, lower;
92
93                 /*
94                  * If shift is not word aligned, take lower rem bits of
95                  * word above and make them the top rem bits of result.
96                  */
97                 if (!rem || off + k + 1 >= lim)
98                         upper = 0;
99                 else {
100                         upper = src[off + k + 1];
101                         if (off + k + 1 == lim - 1)
102                                 upper &= mask;
103                         upper <<= (BITS_PER_LONG - rem);
104                 }
105                 lower = src[off + k];
106                 if (off + k == lim - 1)
107                         lower &= mask;
108                 lower >>= rem;
109                 dst[k] = lower | upper;
110         }
111         if (off)
112                 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
113 }
114 EXPORT_SYMBOL(__bitmap_shift_right);
115
116
117 /**
118  * __bitmap_shift_left - logical left shift of the bits in a bitmap
119  *   @dst : destination bitmap
120  *   @src : source bitmap
121  *   @shift : shift by this many bits
122  *   @nbits : bitmap size, in bits
123  *
124  * Shifting left (multiplying) means moving bits in the LS -> MS
125  * direction.  Zeros are fed into the vacated LS bit positions
126  * and those MS bits shifted off the top are lost.
127  */
128
129 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
130                         unsigned int shift, unsigned int nbits)
131 {
132         int k;
133         unsigned int lim = BITS_TO_LONGS(nbits);
134         unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
135         for (k = lim - off - 1; k >= 0; --k) {
136                 unsigned long upper, lower;
137
138                 /*
139                  * If shift is not word aligned, take upper rem bits of
140                  * word below and make them the bottom rem bits of result.
141                  */
142                 if (rem && k > 0)
143                         lower = src[k - 1] >> (BITS_PER_LONG - rem);
144                 else
145                         lower = 0;
146                 upper = src[k] << rem;
147                 dst[k + off] = lower | upper;
148         }
149         if (off)
150                 memset(dst, 0, off*sizeof(unsigned long));
151 }
152 EXPORT_SYMBOL(__bitmap_shift_left);
153
154 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
155                                 const unsigned long *bitmap2, unsigned int bits)
156 {
157         unsigned int k;
158         unsigned int lim = bits/BITS_PER_LONG;
159         unsigned long result = 0;
160
161         for (k = 0; k < lim; k++)
162                 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
163         if (bits % BITS_PER_LONG)
164                 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
165                            BITMAP_LAST_WORD_MASK(bits));
166         return result != 0;
167 }
168 EXPORT_SYMBOL(__bitmap_and);
169
170 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
171                                 const unsigned long *bitmap2, unsigned int bits)
172 {
173         unsigned int k;
174         unsigned int nr = BITS_TO_LONGS(bits);
175
176         for (k = 0; k < nr; k++)
177                 dst[k] = bitmap1[k] | bitmap2[k];
178 }
179 EXPORT_SYMBOL(__bitmap_or);
180
181 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
182                                 const unsigned long *bitmap2, unsigned int bits)
183 {
184         unsigned int k;
185         unsigned int nr = BITS_TO_LONGS(bits);
186
187         for (k = 0; k < nr; k++)
188                 dst[k] = bitmap1[k] ^ bitmap2[k];
189 }
190 EXPORT_SYMBOL(__bitmap_xor);
191
192 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
193                                 const unsigned long *bitmap2, unsigned int bits)
194 {
195         unsigned int k;
196         unsigned int lim = bits/BITS_PER_LONG;
197         unsigned long result = 0;
198
199         for (k = 0; k < lim; k++)
200                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
201         if (bits % BITS_PER_LONG)
202                 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
203                            BITMAP_LAST_WORD_MASK(bits));
204         return result != 0;
205 }
206 EXPORT_SYMBOL(__bitmap_andnot);
207
208 int __bitmap_intersects(const unsigned long *bitmap1,
209                         const unsigned long *bitmap2, unsigned int bits)
210 {
211         unsigned int k, lim = bits/BITS_PER_LONG;
212         for (k = 0; k < lim; ++k)
213                 if (bitmap1[k] & bitmap2[k])
214                         return 1;
215
216         if (bits % BITS_PER_LONG)
217                 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
218                         return 1;
219         return 0;
220 }
221 EXPORT_SYMBOL(__bitmap_intersects);
222
223 int __bitmap_subset(const unsigned long *bitmap1,
224                     const unsigned long *bitmap2, unsigned int bits)
225 {
226         unsigned int k, lim = bits/BITS_PER_LONG;
227         for (k = 0; k < lim; ++k)
228                 if (bitmap1[k] & ~bitmap2[k])
229                         return 0;
230
231         if (bits % BITS_PER_LONG)
232                 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
233                         return 0;
234         return 1;
235 }
236 EXPORT_SYMBOL(__bitmap_subset);
237
238 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
239 {
240         unsigned int k, lim = bits/BITS_PER_LONG;
241         int w = 0;
242
243         for (k = 0; k < lim; k++)
244                 w += hweight_long(bitmap[k]);
245
246         if (bits % BITS_PER_LONG)
247                 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
248
249         return w;
250 }
251 EXPORT_SYMBOL(__bitmap_weight);
252
253 void bitmap_set(unsigned long *map, unsigned int start, int len)
254 {
255         unsigned long *p = map + BIT_WORD(start);
256         const unsigned int size = start + len;
257         int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
258         unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
259
260         while (len - bits_to_set >= 0) {
261                 *p |= mask_to_set;
262                 len -= bits_to_set;
263                 bits_to_set = BITS_PER_LONG;
264                 mask_to_set = ~0UL;
265                 p++;
266         }
267         if (len) {
268                 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
269                 *p |= mask_to_set;
270         }
271 }
272 EXPORT_SYMBOL(bitmap_set);
273
274 void bitmap_clear(unsigned long *map, unsigned int start, int len)
275 {
276         unsigned long *p = map + BIT_WORD(start);
277         const unsigned int size = start + len;
278         int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
279         unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
280
281         while (len - bits_to_clear >= 0) {
282                 *p &= ~mask_to_clear;
283                 len -= bits_to_clear;
284                 bits_to_clear = BITS_PER_LONG;
285                 mask_to_clear = ~0UL;
286                 p++;
287         }
288         if (len) {
289                 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
290                 *p &= ~mask_to_clear;
291         }
292 }
293 EXPORT_SYMBOL(bitmap_clear);
294
295 /**
296  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
297  * @map: The address to base the search on
298  * @size: The bitmap size in bits
299  * @start: The bitnumber to start searching at
300  * @nr: The number of zeroed bits we're looking for
301  * @align_mask: Alignment mask for zero area
302  * @align_offset: Alignment offset for zero area.
303  *
304  * The @align_mask should be one less than a power of 2; the effect is that
305  * the bit offset of all zero areas this function finds plus @align_offset
306  * is multiple of that power of 2.
307  */
308 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
309                                              unsigned long size,
310                                              unsigned long start,
311                                              unsigned int nr,
312                                              unsigned long align_mask,
313                                              unsigned long align_offset)
314 {
315         unsigned long index, end, i;
316 again:
317         index = find_next_zero_bit(map, size, start);
318
319         /* Align allocation */
320         index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
321
322         end = index + nr;
323         if (end > size)
324                 return end;
325         i = find_next_bit(map, end, index);
326         if (i < end) {
327                 start = i + 1;
328                 goto again;
329         }
330         return index;
331 }
332 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
333
334 /*
335  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
336  * second version by Paul Jackson, third by Joe Korty.
337  */
338
339 #define CHUNKSZ                         32
340 #define nbits_to_hold_value(val)        fls(val)
341 #define BASEDEC 10              /* fancier cpuset lists input in decimal */
342
343 /**
344  * __bitmap_parse - convert an ASCII hex string into a bitmap.
345  * @buf: pointer to buffer containing string.
346  * @buflen: buffer size in bytes.  If string is smaller than this
347  *    then it must be terminated with a \0.
348  * @is_user: location of buffer, 0 indicates kernel space
349  * @maskp: pointer to bitmap array that will contain result.
350  * @nmaskbits: size of bitmap, in bits.
351  *
352  * Commas group hex digits into chunks.  Each chunk defines exactly 32
353  * bits of the resultant bitmask.  No chunk may specify a value larger
354  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
355  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
356  * characters and for grouping errors such as "1,,5", ",44", "," and "".
357  * Leading and trailing whitespace accepted, but not embedded whitespace.
358  */
359 int __bitmap_parse(const char *buf, unsigned int buflen,
360                 int is_user, unsigned long *maskp,
361                 int nmaskbits)
362 {
363         int c, old_c, totaldigits, ndigits, nchunks, nbits;
364         u32 chunk;
365         const char __user __force *ubuf = (const char __user __force *)buf;
366
367         bitmap_zero(maskp, nmaskbits);
368
369         nchunks = nbits = totaldigits = c = 0;
370         do {
371                 chunk = 0;
372                 ndigits = totaldigits;
373
374                 /* Get the next chunk of the bitmap */
375                 while (buflen) {
376                         old_c = c;
377                         if (is_user) {
378                                 if (__get_user(c, ubuf++))
379                                         return -EFAULT;
380                         }
381                         else
382                                 c = *buf++;
383                         buflen--;
384                         if (isspace(c))
385                                 continue;
386
387                         /*
388                          * If the last character was a space and the current
389                          * character isn't '\0', we've got embedded whitespace.
390                          * This is a no-no, so throw an error.
391                          */
392                         if (totaldigits && c && isspace(old_c))
393                                 return -EINVAL;
394
395                         /* A '\0' or a ',' signal the end of the chunk */
396                         if (c == '\0' || c == ',')
397                                 break;
398
399                         if (!isxdigit(c))
400                                 return -EINVAL;
401
402                         /*
403                          * Make sure there are at least 4 free bits in 'chunk'.
404                          * If not, this hexdigit will overflow 'chunk', so
405                          * throw an error.
406                          */
407                         if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
408                                 return -EOVERFLOW;
409
410                         chunk = (chunk << 4) | hex_to_bin(c);
411                         totaldigits++;
412                 }
413                 if (ndigits == totaldigits)
414                         return -EINVAL;
415                 if (nchunks == 0 && chunk == 0)
416                         continue;
417
418                 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
419                 *maskp |= chunk;
420                 nchunks++;
421                 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
422                 if (nbits > nmaskbits)
423                         return -EOVERFLOW;
424         } while (buflen && c == ',');
425
426         return 0;
427 }
428 EXPORT_SYMBOL(__bitmap_parse);
429
430 /**
431  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
432  *
433  * @ubuf: pointer to user buffer containing string.
434  * @ulen: buffer size in bytes.  If string is smaller than this
435  *    then it must be terminated with a \0.
436  * @maskp: pointer to bitmap array that will contain result.
437  * @nmaskbits: size of bitmap, in bits.
438  *
439  * Wrapper for __bitmap_parse(), providing it with user buffer.
440  *
441  * We cannot have this as an inline function in bitmap.h because it needs
442  * linux/uaccess.h to get the access_ok() declaration and this causes
443  * cyclic dependencies.
444  */
445 int bitmap_parse_user(const char __user *ubuf,
446                         unsigned int ulen, unsigned long *maskp,
447                         int nmaskbits)
448 {
449         if (!access_ok(VERIFY_READ, ubuf, ulen))
450                 return -EFAULT;
451         return __bitmap_parse((const char __force *)ubuf,
452                                 ulen, 1, maskp, nmaskbits);
453
454 }
455 EXPORT_SYMBOL(bitmap_parse_user);
456
457 /**
458  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
459  * @list: indicates whether the bitmap must be list
460  * @buf: page aligned buffer into which string is placed
461  * @maskp: pointer to bitmap to convert
462  * @nmaskbits: size of bitmap, in bits
463  *
464  * Output format is a comma-separated list of decimal numbers and
465  * ranges if list is specified or hex digits grouped into comma-separated
466  * sets of 8 digits/set. Returns the number of characters written to buf.
467  *
468  * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
469  * sufficient storage remains at @buf to accommodate the
470  * bitmap_print_to_pagebuf() output.
471  */
472 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
473                             int nmaskbits)
474 {
475         ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
476         int n = 0;
477
478         if (len > 1)
479                 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
480                            scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
481         return n;
482 }
483 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
484
485 /**
486  * __bitmap_parselist - convert list format ASCII string to bitmap
487  * @buf: read nul-terminated user string from this buffer
488  * @buflen: buffer size in bytes.  If string is smaller than this
489  *    then it must be terminated with a \0.
490  * @is_user: location of buffer, 0 indicates kernel space
491  * @maskp: write resulting mask here
492  * @nmaskbits: number of bits in mask to be written
493  *
494  * Input format is a comma-separated list of decimal numbers and
495  * ranges.  Consecutively set bits are shown as two hyphen-separated
496  * decimal numbers, the smallest and largest bit numbers set in
497  * the range.
498  *
499  * Returns 0 on success, -errno on invalid input strings.
500  * Error values:
501  *    %-EINVAL: second number in range smaller than first
502  *    %-EINVAL: invalid character in string
503  *    %-ERANGE: bit number specified too large for mask
504  */
505 static int __bitmap_parselist(const char *buf, unsigned int buflen,
506                 int is_user, unsigned long *maskp,
507                 int nmaskbits)
508 {
509         unsigned a, b;
510         int c, old_c, totaldigits, ndigits;
511         const char __user __force *ubuf = (const char __user __force *)buf;
512         int at_start, in_range;
513
514         totaldigits = c = 0;
515         bitmap_zero(maskp, nmaskbits);
516         do {
517                 at_start = 1;
518                 in_range = 0;
519                 a = b = 0;
520                 ndigits = totaldigits;
521
522                 /* Get the next cpu# or a range of cpu#'s */
523                 while (buflen) {
524                         old_c = c;
525                         if (is_user) {
526                                 if (__get_user(c, ubuf++))
527                                         return -EFAULT;
528                         } else
529                                 c = *buf++;
530                         buflen--;
531                         if (isspace(c))
532                                 continue;
533
534                         /* A '\0' or a ',' signal the end of a cpu# or range */
535                         if (c == '\0' || c == ',')
536                                 break;
537                         /*
538                         * whitespaces between digits are not allowed,
539                         * but it's ok if whitespaces are on head or tail.
540                         * when old_c is whilespace,
541                         * if totaldigits == ndigits, whitespace is on head.
542                         * if whitespace is on tail, it should not run here.
543                         * as c was ',' or '\0',
544                         * the last code line has broken the current loop.
545                         */
546                         if ((totaldigits != ndigits) && isspace(old_c))
547                                 return -EINVAL;
548
549                         if (c == '-') {
550                                 if (at_start || in_range)
551                                         return -EINVAL;
552                                 b = 0;
553                                 in_range = 1;
554                                 at_start = 1;
555                                 continue;
556                         }
557
558                         if (!isdigit(c))
559                                 return -EINVAL;
560
561                         b = b * 10 + (c - '0');
562                         if (!in_range)
563                                 a = b;
564                         at_start = 0;
565                         totaldigits++;
566                 }
567                 if (ndigits == totaldigits)
568                         continue;
569                 /* if no digit is after '-', it's wrong*/
570                 if (at_start && in_range)
571                         return -EINVAL;
572                 if (!(a <= b))
573                         return -EINVAL;
574                 if (b >= nmaskbits)
575                         return -ERANGE;
576                 while (a <= b) {
577                         set_bit(a, maskp);
578                         a++;
579                 }
580         } while (buflen && c == ',');
581         return 0;
582 }
583
584 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
585 {
586         char *nl  = strchrnul(bp, '\n');
587         int len = nl - bp;
588
589         return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
590 }
591 EXPORT_SYMBOL(bitmap_parselist);
592
593
594 /**
595  * bitmap_parselist_user()
596  *
597  * @ubuf: pointer to user buffer containing string.
598  * @ulen: buffer size in bytes.  If string is smaller than this
599  *    then it must be terminated with a \0.
600  * @maskp: pointer to bitmap array that will contain result.
601  * @nmaskbits: size of bitmap, in bits.
602  *
603  * Wrapper for bitmap_parselist(), providing it with user buffer.
604  *
605  * We cannot have this as an inline function in bitmap.h because it needs
606  * linux/uaccess.h to get the access_ok() declaration and this causes
607  * cyclic dependencies.
608  */
609 int bitmap_parselist_user(const char __user *ubuf,
610                         unsigned int ulen, unsigned long *maskp,
611                         int nmaskbits)
612 {
613         if (!access_ok(VERIFY_READ, ubuf, ulen))
614                 return -EFAULT;
615         return __bitmap_parselist((const char __force *)ubuf,
616                                         ulen, 1, maskp, nmaskbits);
617 }
618 EXPORT_SYMBOL(bitmap_parselist_user);
619
620
621 /**
622  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
623  *      @buf: pointer to a bitmap
624  *      @pos: a bit position in @buf (0 <= @pos < @nbits)
625  *      @nbits: number of valid bit positions in @buf
626  *
627  * Map the bit at position @pos in @buf (of length @nbits) to the
628  * ordinal of which set bit it is.  If it is not set or if @pos
629  * is not a valid bit position, map to -1.
630  *
631  * If for example, just bits 4 through 7 are set in @buf, then @pos
632  * values 4 through 7 will get mapped to 0 through 3, respectively,
633  * and other @pos values will get mapped to -1.  When @pos value 7
634  * gets mapped to (returns) @ord value 3 in this example, that means
635  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
636  *
637  * The bit positions 0 through @bits are valid positions in @buf.
638  */
639 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
640 {
641         if (pos >= nbits || !test_bit(pos, buf))
642                 return -1;
643
644         return __bitmap_weight(buf, pos);
645 }
646
647 /**
648  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
649  *      @buf: pointer to bitmap
650  *      @ord: ordinal bit position (n-th set bit, n >= 0)
651  *      @nbits: number of valid bit positions in @buf
652  *
653  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
654  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
655  * >= weight(buf), returns @nbits.
656  *
657  * If for example, just bits 4 through 7 are set in @buf, then @ord
658  * values 0 through 3 will get mapped to 4 through 7, respectively,
659  * and all other @ord values returns @nbits.  When @ord value 3
660  * gets mapped to (returns) @pos value 7 in this example, that means
661  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
662  *
663  * The bit positions 0 through @nbits-1 are valid positions in @buf.
664  */
665 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
666 {
667         unsigned int pos;
668
669         for (pos = find_first_bit(buf, nbits);
670              pos < nbits && ord;
671              pos = find_next_bit(buf, nbits, pos + 1))
672                 ord--;
673
674         return pos;
675 }
676
677 /**
678  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
679  *      @dst: remapped result
680  *      @src: subset to be remapped
681  *      @old: defines domain of map
682  *      @new: defines range of map
683  *      @nbits: number of bits in each of these bitmaps
684  *
685  * Let @old and @new define a mapping of bit positions, such that
686  * whatever position is held by the n-th set bit in @old is mapped
687  * to the n-th set bit in @new.  In the more general case, allowing
688  * for the possibility that the weight 'w' of @new is less than the
689  * weight of @old, map the position of the n-th set bit in @old to
690  * the position of the m-th set bit in @new, where m == n % w.
691  *
692  * If either of the @old and @new bitmaps are empty, or if @src and
693  * @dst point to the same location, then this routine copies @src
694  * to @dst.
695  *
696  * The positions of unset bits in @old are mapped to themselves
697  * (the identify map).
698  *
699  * Apply the above specified mapping to @src, placing the result in
700  * @dst, clearing any bits previously set in @dst.
701  *
702  * For example, lets say that @old has bits 4 through 7 set, and
703  * @new has bits 12 through 15 set.  This defines the mapping of bit
704  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
705  * bit positions unchanged.  So if say @src comes into this routine
706  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
707  * 13 and 15 set.
708  */
709 void bitmap_remap(unsigned long *dst, const unsigned long *src,
710                 const unsigned long *old, const unsigned long *new,
711                 unsigned int nbits)
712 {
713         unsigned int oldbit, w;
714
715         if (dst == src)         /* following doesn't handle inplace remaps */
716                 return;
717         bitmap_zero(dst, nbits);
718
719         w = bitmap_weight(new, nbits);
720         for_each_set_bit(oldbit, src, nbits) {
721                 int n = bitmap_pos_to_ord(old, oldbit, nbits);
722
723                 if (n < 0 || w == 0)
724                         set_bit(oldbit, dst);   /* identity map */
725                 else
726                         set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
727         }
728 }
729 EXPORT_SYMBOL(bitmap_remap);
730
731 /**
732  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
733  *      @oldbit: bit position to be mapped
734  *      @old: defines domain of map
735  *      @new: defines range of map
736  *      @bits: number of bits in each of these bitmaps
737  *
738  * Let @old and @new define a mapping of bit positions, such that
739  * whatever position is held by the n-th set bit in @old is mapped
740  * to the n-th set bit in @new.  In the more general case, allowing
741  * for the possibility that the weight 'w' of @new is less than the
742  * weight of @old, map the position of the n-th set bit in @old to
743  * the position of the m-th set bit in @new, where m == n % w.
744  *
745  * The positions of unset bits in @old are mapped to themselves
746  * (the identify map).
747  *
748  * Apply the above specified mapping to bit position @oldbit, returning
749  * the new bit position.
750  *
751  * For example, lets say that @old has bits 4 through 7 set, and
752  * @new has bits 12 through 15 set.  This defines the mapping of bit
753  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
754  * bit positions unchanged.  So if say @oldbit is 5, then this routine
755  * returns 13.
756  */
757 int bitmap_bitremap(int oldbit, const unsigned long *old,
758                                 const unsigned long *new, int bits)
759 {
760         int w = bitmap_weight(new, bits);
761         int n = bitmap_pos_to_ord(old, oldbit, bits);
762         if (n < 0 || w == 0)
763                 return oldbit;
764         else
765                 return bitmap_ord_to_pos(new, n % w, bits);
766 }
767 EXPORT_SYMBOL(bitmap_bitremap);
768
769 /**
770  * bitmap_onto - translate one bitmap relative to another
771  *      @dst: resulting translated bitmap
772  *      @orig: original untranslated bitmap
773  *      @relmap: bitmap relative to which translated
774  *      @bits: number of bits in each of these bitmaps
775  *
776  * Set the n-th bit of @dst iff there exists some m such that the
777  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
778  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
779  * (If you understood the previous sentence the first time your
780  * read it, you're overqualified for your current job.)
781  *
782  * In other words, @orig is mapped onto (surjectively) @dst,
783  * using the map { <n, m> | the n-th bit of @relmap is the
784  * m-th set bit of @relmap }.
785  *
786  * Any set bits in @orig above bit number W, where W is the
787  * weight of (number of set bits in) @relmap are mapped nowhere.
788  * In particular, if for all bits m set in @orig, m >= W, then
789  * @dst will end up empty.  In situations where the possibility
790  * of such an empty result is not desired, one way to avoid it is
791  * to use the bitmap_fold() operator, below, to first fold the
792  * @orig bitmap over itself so that all its set bits x are in the
793  * range 0 <= x < W.  The bitmap_fold() operator does this by
794  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
795  *
796  * Example [1] for bitmap_onto():
797  *  Let's say @relmap has bits 30-39 set, and @orig has bits
798  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
799  *  @dst will have bits 31, 33, 35, 37 and 39 set.
800  *
801  *  When bit 0 is set in @orig, it means turn on the bit in
802  *  @dst corresponding to whatever is the first bit (if any)
803  *  that is turned on in @relmap.  Since bit 0 was off in the
804  *  above example, we leave off that bit (bit 30) in @dst.
805  *
806  *  When bit 1 is set in @orig (as in the above example), it
807  *  means turn on the bit in @dst corresponding to whatever
808  *  is the second bit that is turned on in @relmap.  The second
809  *  bit in @relmap that was turned on in the above example was
810  *  bit 31, so we turned on bit 31 in @dst.
811  *
812  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
813  *  because they were the 4th, 6th, 8th and 10th set bits
814  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
815  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
816  *
817  *  When bit 11 is set in @orig, it means turn on the bit in
818  *  @dst corresponding to whatever is the twelfth bit that is
819  *  turned on in @relmap.  In the above example, there were
820  *  only ten bits turned on in @relmap (30..39), so that bit
821  *  11 was set in @orig had no affect on @dst.
822  *
823  * Example [2] for bitmap_fold() + bitmap_onto():
824  *  Let's say @relmap has these ten bits set:
825  *              40 41 42 43 45 48 53 61 74 95
826  *  (for the curious, that's 40 plus the first ten terms of the
827  *  Fibonacci sequence.)
828  *
829  *  Further lets say we use the following code, invoking
830  *  bitmap_fold() then bitmap_onto, as suggested above to
831  *  avoid the possibility of an empty @dst result:
832  *
833  *      unsigned long *tmp;     // a temporary bitmap's bits
834  *
835  *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
836  *      bitmap_onto(dst, tmp, relmap, bits);
837  *
838  *  Then this table shows what various values of @dst would be, for
839  *  various @orig's.  I list the zero-based positions of each set bit.
840  *  The tmp column shows the intermediate result, as computed by
841  *  using bitmap_fold() to fold the @orig bitmap modulo ten
842  *  (the weight of @relmap).
843  *
844  *      @orig           tmp            @dst
845  *      0                0             40
846  *      1                1             41
847  *      9                9             95
848  *      10               0             40 (*)
849  *      1 3 5 7          1 3 5 7       41 43 48 61
850  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
851  *      0 9 18 27        0 9 8 7       40 61 74 95
852  *      0 10 20 30       0             40
853  *      0 11 22 33       0 1 2 3       40 41 42 43
854  *      0 12 24 36       0 2 4 6       40 42 45 53
855  *      78 102 211       1 2 8         41 42 74 (*)
856  *
857  * (*) For these marked lines, if we hadn't first done bitmap_fold()
858  *     into tmp, then the @dst result would have been empty.
859  *
860  * If either of @orig or @relmap is empty (no set bits), then @dst
861  * will be returned empty.
862  *
863  * If (as explained above) the only set bits in @orig are in positions
864  * m where m >= W, (where W is the weight of @relmap) then @dst will
865  * once again be returned empty.
866  *
867  * All bits in @dst not set by the above rule are cleared.
868  */
869 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
870                         const unsigned long *relmap, unsigned int bits)
871 {
872         unsigned int n, m;      /* same meaning as in above comment */
873
874         if (dst == orig)        /* following doesn't handle inplace mappings */
875                 return;
876         bitmap_zero(dst, bits);
877
878         /*
879          * The following code is a more efficient, but less
880          * obvious, equivalent to the loop:
881          *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
882          *              n = bitmap_ord_to_pos(orig, m, bits);
883          *              if (test_bit(m, orig))
884          *                      set_bit(n, dst);
885          *      }
886          */
887
888         m = 0;
889         for_each_set_bit(n, relmap, bits) {
890                 /* m == bitmap_pos_to_ord(relmap, n, bits) */
891                 if (test_bit(m, orig))
892                         set_bit(n, dst);
893                 m++;
894         }
895 }
896 EXPORT_SYMBOL(bitmap_onto);
897
898 /**
899  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
900  *      @dst: resulting smaller bitmap
901  *      @orig: original larger bitmap
902  *      @sz: specified size
903  *      @nbits: number of bits in each of these bitmaps
904  *
905  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
906  * Clear all other bits in @dst.  See further the comment and
907  * Example [2] for bitmap_onto() for why and how to use this.
908  */
909 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
910                         unsigned int sz, unsigned int nbits)
911 {
912         unsigned int oldbit;
913
914         if (dst == orig)        /* following doesn't handle inplace mappings */
915                 return;
916         bitmap_zero(dst, nbits);
917
918         for_each_set_bit(oldbit, orig, nbits)
919                 set_bit(oldbit % sz, dst);
920 }
921 EXPORT_SYMBOL(bitmap_fold);
922
923 /*
924  * Common code for bitmap_*_region() routines.
925  *      bitmap: array of unsigned longs corresponding to the bitmap
926  *      pos: the beginning of the region
927  *      order: region size (log base 2 of number of bits)
928  *      reg_op: operation(s) to perform on that region of bitmap
929  *
930  * Can set, verify and/or release a region of bits in a bitmap,
931  * depending on which combination of REG_OP_* flag bits is set.
932  *
933  * A region of a bitmap is a sequence of bits in the bitmap, of
934  * some size '1 << order' (a power of two), aligned to that same
935  * '1 << order' power of two.
936  *
937  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
938  * Returns 0 in all other cases and reg_ops.
939  */
940
941 enum {
942         REG_OP_ISFREE,          /* true if region is all zero bits */
943         REG_OP_ALLOC,           /* set all bits in region */
944         REG_OP_RELEASE,         /* clear all bits in region */
945 };
946
947 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
948 {
949         int nbits_reg;          /* number of bits in region */
950         int index;              /* index first long of region in bitmap */
951         int offset;             /* bit offset region in bitmap[index] */
952         int nlongs_reg;         /* num longs spanned by region in bitmap */
953         int nbitsinlong;        /* num bits of region in each spanned long */
954         unsigned long mask;     /* bitmask for one long of region */
955         int i;                  /* scans bitmap by longs */
956         int ret = 0;            /* return value */
957
958         /*
959          * Either nlongs_reg == 1 (for small orders that fit in one long)
960          * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
961          */
962         nbits_reg = 1 << order;
963         index = pos / BITS_PER_LONG;
964         offset = pos - (index * BITS_PER_LONG);
965         nlongs_reg = BITS_TO_LONGS(nbits_reg);
966         nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
967
968         /*
969          * Can't do "mask = (1UL << nbitsinlong) - 1", as that
970          * overflows if nbitsinlong == BITS_PER_LONG.
971          */
972         mask = (1UL << (nbitsinlong - 1));
973         mask += mask - 1;
974         mask <<= offset;
975
976         switch (reg_op) {
977         case REG_OP_ISFREE:
978                 for (i = 0; i < nlongs_reg; i++) {
979                         if (bitmap[index + i] & mask)
980                                 goto done;
981                 }
982                 ret = 1;        /* all bits in region free (zero) */
983                 break;
984
985         case REG_OP_ALLOC:
986                 for (i = 0; i < nlongs_reg; i++)
987                         bitmap[index + i] |= mask;
988                 break;
989
990         case REG_OP_RELEASE:
991                 for (i = 0; i < nlongs_reg; i++)
992                         bitmap[index + i] &= ~mask;
993                 break;
994         }
995 done:
996         return ret;
997 }
998
999 /**
1000  * bitmap_find_free_region - find a contiguous aligned mem region
1001  *      @bitmap: array of unsigned longs corresponding to the bitmap
1002  *      @bits: number of bits in the bitmap
1003  *      @order: region size (log base 2 of number of bits) to find
1004  *
1005  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1006  * allocate them (set them to one).  Only consider regions of length
1007  * a power (@order) of two, aligned to that power of two, which
1008  * makes the search algorithm much faster.
1009  *
1010  * Return the bit offset in bitmap of the allocated region,
1011  * or -errno on failure.
1012  */
1013 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1014 {
1015         unsigned int pos, end;          /* scans bitmap by regions of size order */
1016
1017         for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1018                 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1019                         continue;
1020                 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1021                 return pos;
1022         }
1023         return -ENOMEM;
1024 }
1025 EXPORT_SYMBOL(bitmap_find_free_region);
1026
1027 /**
1028  * bitmap_release_region - release allocated bitmap region
1029  *      @bitmap: array of unsigned longs corresponding to the bitmap
1030  *      @pos: beginning of bit region to release
1031  *      @order: region size (log base 2 of number of bits) to release
1032  *
1033  * This is the complement to __bitmap_find_free_region() and releases
1034  * the found region (by clearing it in the bitmap).
1035  *
1036  * No return value.
1037  */
1038 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1039 {
1040         __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1041 }
1042 EXPORT_SYMBOL(bitmap_release_region);
1043
1044 /**
1045  * bitmap_allocate_region - allocate bitmap region
1046  *      @bitmap: array of unsigned longs corresponding to the bitmap
1047  *      @pos: beginning of bit region to allocate
1048  *      @order: region size (log base 2 of number of bits) to allocate
1049  *
1050  * Allocate (set bits in) a specified region of a bitmap.
1051  *
1052  * Return 0 on success, or %-EBUSY if specified region wasn't
1053  * free (not all bits were zero).
1054  */
1055 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1056 {
1057         if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1058                 return -EBUSY;
1059         return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1060 }
1061 EXPORT_SYMBOL(bitmap_allocate_region);
1062
1063 /**
1064  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1065  * @dst:   destination buffer
1066  * @src:   bitmap to copy
1067  * @nbits: number of bits in the bitmap
1068  *
1069  * Require nbits % BITS_PER_LONG == 0.
1070  */
1071 #ifdef __BIG_ENDIAN
1072 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1073 {
1074         unsigned int i;
1075
1076         for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1077                 if (BITS_PER_LONG == 64)
1078                         dst[i] = cpu_to_le64(src[i]);
1079                 else
1080                         dst[i] = cpu_to_le32(src[i]);
1081         }
1082 }
1083 EXPORT_SYMBOL(bitmap_copy_le);
1084 #endif
1085
1086 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1087 {
1088         return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1089                              flags);
1090 }
1091 EXPORT_SYMBOL(bitmap_alloc);
1092
1093 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1094 {
1095         return bitmap_alloc(nbits, flags | __GFP_ZERO);
1096 }
1097 EXPORT_SYMBOL(bitmap_zalloc);
1098
1099 void bitmap_free(const unsigned long *bitmap)
1100 {
1101         kfree(bitmap);
1102 }
1103 EXPORT_SYMBOL(bitmap_free);