Linux-libre 4.10.3-gnu
[librecmc/linux-libre.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
123 {
124
125         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         u64 now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
203 {
204 }
205 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         u64 cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         u64 interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         ++tk->cs_was_changed_seq;
237         old_clock = tk->tkr_mono.clock;
238         tk->tkr_mono.clock = clock;
239         tk->tkr_mono.read = clock->read;
240         tk->tkr_mono.mask = clock->mask;
241         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243         tk->tkr_raw.clock = clock;
244         tk->tkr_raw.read = clock->read;
245         tk->tkr_raw.mask = clock->mask;
246         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248         /* Do the ns -> cycle conversion first, using original mult */
249         tmp = NTP_INTERVAL_LENGTH;
250         tmp <<= clock->shift;
251         ntpinterval = tmp;
252         tmp += clock->mult/2;
253         do_div(tmp, clock->mult);
254         if (tmp == 0)
255                 tmp = 1;
256
257         interval = (u64) tmp;
258         tk->cycle_interval = interval;
259
260         /* Go back from cycles -> shifted ns */
261         tk->xtime_interval = interval * clock->mult;
262         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263         tk->raw_interval = (interval * clock->mult) >> clock->shift;
264
265          /* if changing clocks, convert xtime_nsec shift units */
266         if (old_clock) {
267                 int shift_change = clock->shift - old_clock->shift;
268                 if (shift_change < 0)
269                         tk->tkr_mono.xtime_nsec >>= -shift_change;
270                 else
271                         tk->tkr_mono.xtime_nsec <<= shift_change;
272         }
273         tk->tkr_raw.xtime_nsec = 0;
274
275         tk->tkr_mono.shift = clock->shift;
276         tk->tkr_raw.shift = clock->shift;
277
278         tk->ntp_error = 0;
279         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282         /*
283          * The timekeeper keeps its own mult values for the currently
284          * active clocksource. These value will be adjusted via NTP
285          * to counteract clock drifting.
286          */
287         tk->tkr_mono.mult = clock->mult;
288         tk->tkr_raw.mult = clock->mult;
289         tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
302 {
303         u64 nsec;
304
305         nsec = delta * tkr->mult + tkr->xtime_nsec;
306         nsec >>= tkr->shift;
307
308         /* If arch requires, add in get_arch_timeoffset() */
309         return nsec + arch_gettimeoffset();
310 }
311
312 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
313 {
314         u64 delta;
315
316         delta = timekeeping_get_delta(tkr);
317         return timekeeping_delta_to_ns(tkr, delta);
318 }
319
320 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
321 {
322         u64 delta;
323
324         /* calculate the delta since the last update_wall_time */
325         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
326         return timekeeping_delta_to_ns(tkr, delta);
327 }
328
329 /**
330  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331  * @tkr: Timekeeping readout base from which we take the update
332  *
333  * We want to use this from any context including NMI and tracing /
334  * instrumenting the timekeeping code itself.
335  *
336  * Employ the latch technique; see @raw_write_seqcount_latch.
337  *
338  * So if a NMI hits the update of base[0] then it will use base[1]
339  * which is still consistent. In the worst case this can result is a
340  * slightly wrong timestamp (a few nanoseconds). See
341  * @ktime_get_mono_fast_ns.
342  */
343 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
344 {
345         struct tk_read_base *base = tkf->base;
346
347         /* Force readers off to base[1] */
348         raw_write_seqcount_latch(&tkf->seq);
349
350         /* Update base[0] */
351         memcpy(base, tkr, sizeof(*base));
352
353         /* Force readers back to base[0] */
354         raw_write_seqcount_latch(&tkf->seq);
355
356         /* Update base[1] */
357         memcpy(base + 1, base, sizeof(*base));
358 }
359
360 /**
361  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
362  *
363  * This timestamp is not guaranteed to be monotonic across an update.
364  * The timestamp is calculated by:
365  *
366  *      now = base_mono + clock_delta * slope
367  *
368  * So if the update lowers the slope, readers who are forced to the
369  * not yet updated second array are still using the old steeper slope.
370  *
371  * tmono
372  * ^
373  * |    o  n
374  * |   o n
375  * |  u
376  * | o
377  * |o
378  * |12345678---> reader order
379  *
380  * o = old slope
381  * u = update
382  * n = new slope
383  *
384  * So reader 6 will observe time going backwards versus reader 5.
385  *
386  * While other CPUs are likely to be able observe that, the only way
387  * for a CPU local observation is when an NMI hits in the middle of
388  * the update. Timestamps taken from that NMI context might be ahead
389  * of the following timestamps. Callers need to be aware of that and
390  * deal with it.
391  */
392 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
393 {
394         struct tk_read_base *tkr;
395         unsigned int seq;
396         u64 now;
397
398         do {
399                 seq = raw_read_seqcount_latch(&tkf->seq);
400                 tkr = tkf->base + (seq & 0x01);
401                 now = ktime_to_ns(tkr->base);
402
403                 now += timekeeping_delta_to_ns(tkr,
404                                 clocksource_delta(
405                                         tkr->read(tkr->clock),
406                                         tkr->cycle_last,
407                                         tkr->mask));
408         } while (read_seqcount_retry(&tkf->seq, seq));
409
410         return now;
411 }
412
413 u64 ktime_get_mono_fast_ns(void)
414 {
415         return __ktime_get_fast_ns(&tk_fast_mono);
416 }
417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
418
419 u64 ktime_get_raw_fast_ns(void)
420 {
421         return __ktime_get_fast_ns(&tk_fast_raw);
422 }
423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
424
425 /**
426  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
427  *
428  * To keep it NMI safe since we're accessing from tracing, we're not using a
429  * separate timekeeper with updates to monotonic clock and boot offset
430  * protected with seqlocks. This has the following minor side effects:
431  *
432  * (1) Its possible that a timestamp be taken after the boot offset is updated
433  * but before the timekeeper is updated. If this happens, the new boot offset
434  * is added to the old timekeeping making the clock appear to update slightly
435  * earlier:
436  *    CPU 0                                        CPU 1
437  *    timekeeping_inject_sleeptime64()
438  *    __timekeeping_inject_sleeptime(tk, delta);
439  *                                                 timestamp();
440  *    timekeeping_update(tk, TK_CLEAR_NTP...);
441  *
442  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
443  * partially updated.  Since the tk->offs_boot update is a rare event, this
444  * should be a rare occurrence which postprocessing should be able to handle.
445  */
446 u64 notrace ktime_get_boot_fast_ns(void)
447 {
448         struct timekeeper *tk = &tk_core.timekeeper;
449
450         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
451 }
452 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
453
454 /* Suspend-time cycles value for halted fast timekeeper. */
455 static u64 cycles_at_suspend;
456
457 static u64 dummy_clock_read(struct clocksource *cs)
458 {
459         return cycles_at_suspend;
460 }
461
462 /**
463  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
464  * @tk: Timekeeper to snapshot.
465  *
466  * It generally is unsafe to access the clocksource after timekeeping has been
467  * suspended, so take a snapshot of the readout base of @tk and use it as the
468  * fast timekeeper's readout base while suspended.  It will return the same
469  * number of cycles every time until timekeeping is resumed at which time the
470  * proper readout base for the fast timekeeper will be restored automatically.
471  */
472 static void halt_fast_timekeeper(struct timekeeper *tk)
473 {
474         static struct tk_read_base tkr_dummy;
475         struct tk_read_base *tkr = &tk->tkr_mono;
476
477         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
478         cycles_at_suspend = tkr->read(tkr->clock);
479         tkr_dummy.read = dummy_clock_read;
480         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
481
482         tkr = &tk->tkr_raw;
483         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
484         tkr_dummy.read = dummy_clock_read;
485         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
486 }
487
488 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
489
490 static inline void update_vsyscall(struct timekeeper *tk)
491 {
492         struct timespec xt, wm;
493
494         xt = timespec64_to_timespec(tk_xtime(tk));
495         wm = timespec64_to_timespec(tk->wall_to_monotonic);
496         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
497                             tk->tkr_mono.cycle_last);
498 }
499
500 static inline void old_vsyscall_fixup(struct timekeeper *tk)
501 {
502         s64 remainder;
503
504         /*
505         * Store only full nanoseconds into xtime_nsec after rounding
506         * it up and add the remainder to the error difference.
507         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
508         * by truncating the remainder in vsyscalls. However, it causes
509         * additional work to be done in timekeeping_adjust(). Once
510         * the vsyscall implementations are converted to use xtime_nsec
511         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
512         * users are removed, this can be killed.
513         */
514         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
515         if (remainder != 0) {
516                 tk->tkr_mono.xtime_nsec -= remainder;
517                 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
518                 tk->ntp_error += remainder << tk->ntp_error_shift;
519                 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
520         }
521 }
522 #else
523 #define old_vsyscall_fixup(tk)
524 #endif
525
526 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
527
528 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
529 {
530         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
531 }
532
533 /**
534  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
535  */
536 int pvclock_gtod_register_notifier(struct notifier_block *nb)
537 {
538         struct timekeeper *tk = &tk_core.timekeeper;
539         unsigned long flags;
540         int ret;
541
542         raw_spin_lock_irqsave(&timekeeper_lock, flags);
543         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
544         update_pvclock_gtod(tk, true);
545         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
546
547         return ret;
548 }
549 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
550
551 /**
552  * pvclock_gtod_unregister_notifier - unregister a pvclock
553  * timedata update listener
554  */
555 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
556 {
557         unsigned long flags;
558         int ret;
559
560         raw_spin_lock_irqsave(&timekeeper_lock, flags);
561         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
562         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
563
564         return ret;
565 }
566 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
567
568 /*
569  * tk_update_leap_state - helper to update the next_leap_ktime
570  */
571 static inline void tk_update_leap_state(struct timekeeper *tk)
572 {
573         tk->next_leap_ktime = ntp_get_next_leap();
574         if (tk->next_leap_ktime != KTIME_MAX)
575                 /* Convert to monotonic time */
576                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
577 }
578
579 /*
580  * Update the ktime_t based scalar nsec members of the timekeeper
581  */
582 static inline void tk_update_ktime_data(struct timekeeper *tk)
583 {
584         u64 seconds;
585         u32 nsec;
586
587         /*
588          * The xtime based monotonic readout is:
589          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
590          * The ktime based monotonic readout is:
591          *      nsec = base_mono + now();
592          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
593          */
594         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
595         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
596         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
597
598         /* Update the monotonic raw base */
599         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
600
601         /*
602          * The sum of the nanoseconds portions of xtime and
603          * wall_to_monotonic can be greater/equal one second. Take
604          * this into account before updating tk->ktime_sec.
605          */
606         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
607         if (nsec >= NSEC_PER_SEC)
608                 seconds++;
609         tk->ktime_sec = seconds;
610 }
611
612 /* must hold timekeeper_lock */
613 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
614 {
615         if (action & TK_CLEAR_NTP) {
616                 tk->ntp_error = 0;
617                 ntp_clear();
618         }
619
620         tk_update_leap_state(tk);
621         tk_update_ktime_data(tk);
622
623         update_vsyscall(tk);
624         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
625
626         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
627         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
628
629         if (action & TK_CLOCK_WAS_SET)
630                 tk->clock_was_set_seq++;
631         /*
632          * The mirroring of the data to the shadow-timekeeper needs
633          * to happen last here to ensure we don't over-write the
634          * timekeeper structure on the next update with stale data
635          */
636         if (action & TK_MIRROR)
637                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
638                        sizeof(tk_core.timekeeper));
639 }
640
641 /**
642  * timekeeping_forward_now - update clock to the current time
643  *
644  * Forward the current clock to update its state since the last call to
645  * update_wall_time(). This is useful before significant clock changes,
646  * as it avoids having to deal with this time offset explicitly.
647  */
648 static void timekeeping_forward_now(struct timekeeper *tk)
649 {
650         struct clocksource *clock = tk->tkr_mono.clock;
651         u64 cycle_now, delta;
652         u64 nsec;
653
654         cycle_now = tk->tkr_mono.read(clock);
655         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
656         tk->tkr_mono.cycle_last = cycle_now;
657         tk->tkr_raw.cycle_last  = cycle_now;
658
659         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
660
661         /* If arch requires, add in get_arch_timeoffset() */
662         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
663
664         tk_normalize_xtime(tk);
665
666         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
667         timespec64_add_ns(&tk->raw_time, nsec);
668 }
669
670 /**
671  * __getnstimeofday64 - Returns the time of day in a timespec64.
672  * @ts:         pointer to the timespec to be set
673  *
674  * Updates the time of day in the timespec.
675  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
676  */
677 int __getnstimeofday64(struct timespec64 *ts)
678 {
679         struct timekeeper *tk = &tk_core.timekeeper;
680         unsigned long seq;
681         u64 nsecs;
682
683         do {
684                 seq = read_seqcount_begin(&tk_core.seq);
685
686                 ts->tv_sec = tk->xtime_sec;
687                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
688
689         } while (read_seqcount_retry(&tk_core.seq, seq));
690
691         ts->tv_nsec = 0;
692         timespec64_add_ns(ts, nsecs);
693
694         /*
695          * Do not bail out early, in case there were callers still using
696          * the value, even in the face of the WARN_ON.
697          */
698         if (unlikely(timekeeping_suspended))
699                 return -EAGAIN;
700         return 0;
701 }
702 EXPORT_SYMBOL(__getnstimeofday64);
703
704 /**
705  * getnstimeofday64 - Returns the time of day in a timespec64.
706  * @ts:         pointer to the timespec64 to be set
707  *
708  * Returns the time of day in a timespec64 (WARN if suspended).
709  */
710 void getnstimeofday64(struct timespec64 *ts)
711 {
712         WARN_ON(__getnstimeofday64(ts));
713 }
714 EXPORT_SYMBOL(getnstimeofday64);
715
716 ktime_t ktime_get(void)
717 {
718         struct timekeeper *tk = &tk_core.timekeeper;
719         unsigned int seq;
720         ktime_t base;
721         u64 nsecs;
722
723         WARN_ON(timekeeping_suspended);
724
725         do {
726                 seq = read_seqcount_begin(&tk_core.seq);
727                 base = tk->tkr_mono.base;
728                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
729
730         } while (read_seqcount_retry(&tk_core.seq, seq));
731
732         return ktime_add_ns(base, nsecs);
733 }
734 EXPORT_SYMBOL_GPL(ktime_get);
735
736 u32 ktime_get_resolution_ns(void)
737 {
738         struct timekeeper *tk = &tk_core.timekeeper;
739         unsigned int seq;
740         u32 nsecs;
741
742         WARN_ON(timekeeping_suspended);
743
744         do {
745                 seq = read_seqcount_begin(&tk_core.seq);
746                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
747         } while (read_seqcount_retry(&tk_core.seq, seq));
748
749         return nsecs;
750 }
751 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
752
753 static ktime_t *offsets[TK_OFFS_MAX] = {
754         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
755         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
756         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
757 };
758
759 ktime_t ktime_get_with_offset(enum tk_offsets offs)
760 {
761         struct timekeeper *tk = &tk_core.timekeeper;
762         unsigned int seq;
763         ktime_t base, *offset = offsets[offs];
764         u64 nsecs;
765
766         WARN_ON(timekeeping_suspended);
767
768         do {
769                 seq = read_seqcount_begin(&tk_core.seq);
770                 base = ktime_add(tk->tkr_mono.base, *offset);
771                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
772
773         } while (read_seqcount_retry(&tk_core.seq, seq));
774
775         return ktime_add_ns(base, nsecs);
776
777 }
778 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
779
780 /**
781  * ktime_mono_to_any() - convert mononotic time to any other time
782  * @tmono:      time to convert.
783  * @offs:       which offset to use
784  */
785 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
786 {
787         ktime_t *offset = offsets[offs];
788         unsigned long seq;
789         ktime_t tconv;
790
791         do {
792                 seq = read_seqcount_begin(&tk_core.seq);
793                 tconv = ktime_add(tmono, *offset);
794         } while (read_seqcount_retry(&tk_core.seq, seq));
795
796         return tconv;
797 }
798 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
799
800 /**
801  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
802  */
803 ktime_t ktime_get_raw(void)
804 {
805         struct timekeeper *tk = &tk_core.timekeeper;
806         unsigned int seq;
807         ktime_t base;
808         u64 nsecs;
809
810         do {
811                 seq = read_seqcount_begin(&tk_core.seq);
812                 base = tk->tkr_raw.base;
813                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
814
815         } while (read_seqcount_retry(&tk_core.seq, seq));
816
817         return ktime_add_ns(base, nsecs);
818 }
819 EXPORT_SYMBOL_GPL(ktime_get_raw);
820
821 /**
822  * ktime_get_ts64 - get the monotonic clock in timespec64 format
823  * @ts:         pointer to timespec variable
824  *
825  * The function calculates the monotonic clock from the realtime
826  * clock and the wall_to_monotonic offset and stores the result
827  * in normalized timespec64 format in the variable pointed to by @ts.
828  */
829 void ktime_get_ts64(struct timespec64 *ts)
830 {
831         struct timekeeper *tk = &tk_core.timekeeper;
832         struct timespec64 tomono;
833         unsigned int seq;
834         u64 nsec;
835
836         WARN_ON(timekeeping_suspended);
837
838         do {
839                 seq = read_seqcount_begin(&tk_core.seq);
840                 ts->tv_sec = tk->xtime_sec;
841                 nsec = timekeeping_get_ns(&tk->tkr_mono);
842                 tomono = tk->wall_to_monotonic;
843
844         } while (read_seqcount_retry(&tk_core.seq, seq));
845
846         ts->tv_sec += tomono.tv_sec;
847         ts->tv_nsec = 0;
848         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
849 }
850 EXPORT_SYMBOL_GPL(ktime_get_ts64);
851
852 /**
853  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
854  *
855  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
856  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
857  * works on both 32 and 64 bit systems. On 32 bit systems the readout
858  * covers ~136 years of uptime which should be enough to prevent
859  * premature wrap arounds.
860  */
861 time64_t ktime_get_seconds(void)
862 {
863         struct timekeeper *tk = &tk_core.timekeeper;
864
865         WARN_ON(timekeeping_suspended);
866         return tk->ktime_sec;
867 }
868 EXPORT_SYMBOL_GPL(ktime_get_seconds);
869
870 /**
871  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
872  *
873  * Returns the wall clock seconds since 1970. This replaces the
874  * get_seconds() interface which is not y2038 safe on 32bit systems.
875  *
876  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
877  * 32bit systems the access must be protected with the sequence
878  * counter to provide "atomic" access to the 64bit tk->xtime_sec
879  * value.
880  */
881 time64_t ktime_get_real_seconds(void)
882 {
883         struct timekeeper *tk = &tk_core.timekeeper;
884         time64_t seconds;
885         unsigned int seq;
886
887         if (IS_ENABLED(CONFIG_64BIT))
888                 return tk->xtime_sec;
889
890         do {
891                 seq = read_seqcount_begin(&tk_core.seq);
892                 seconds = tk->xtime_sec;
893
894         } while (read_seqcount_retry(&tk_core.seq, seq));
895
896         return seconds;
897 }
898 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
899
900 /**
901  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
902  * but without the sequence counter protect. This internal function
903  * is called just when timekeeping lock is already held.
904  */
905 time64_t __ktime_get_real_seconds(void)
906 {
907         struct timekeeper *tk = &tk_core.timekeeper;
908
909         return tk->xtime_sec;
910 }
911
912 /**
913  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
914  * @systime_snapshot:   pointer to struct receiving the system time snapshot
915  */
916 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
917 {
918         struct timekeeper *tk = &tk_core.timekeeper;
919         unsigned long seq;
920         ktime_t base_raw;
921         ktime_t base_real;
922         u64 nsec_raw;
923         u64 nsec_real;
924         u64 now;
925
926         WARN_ON_ONCE(timekeeping_suspended);
927
928         do {
929                 seq = read_seqcount_begin(&tk_core.seq);
930
931                 now = tk->tkr_mono.read(tk->tkr_mono.clock);
932                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
933                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
934                 base_real = ktime_add(tk->tkr_mono.base,
935                                       tk_core.timekeeper.offs_real);
936                 base_raw = tk->tkr_raw.base;
937                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
938                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
939         } while (read_seqcount_retry(&tk_core.seq, seq));
940
941         systime_snapshot->cycles = now;
942         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
943         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
944 }
945 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
946
947 /* Scale base by mult/div checking for overflow */
948 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
949 {
950         u64 tmp, rem;
951
952         tmp = div64_u64_rem(*base, div, &rem);
953
954         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
955             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
956                 return -EOVERFLOW;
957         tmp *= mult;
958         rem *= mult;
959
960         do_div(rem, div);
961         *base = tmp + rem;
962         return 0;
963 }
964
965 /**
966  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
967  * @history:                    Snapshot representing start of history
968  * @partial_history_cycles:     Cycle offset into history (fractional part)
969  * @total_history_cycles:       Total history length in cycles
970  * @discontinuity:              True indicates clock was set on history period
971  * @ts:                         Cross timestamp that should be adjusted using
972  *      partial/total ratio
973  *
974  * Helper function used by get_device_system_crosststamp() to correct the
975  * crosstimestamp corresponding to the start of the current interval to the
976  * system counter value (timestamp point) provided by the driver. The
977  * total_history_* quantities are the total history starting at the provided
978  * reference point and ending at the start of the current interval. The cycle
979  * count between the driver timestamp point and the start of the current
980  * interval is partial_history_cycles.
981  */
982 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
983                                          u64 partial_history_cycles,
984                                          u64 total_history_cycles,
985                                          bool discontinuity,
986                                          struct system_device_crosststamp *ts)
987 {
988         struct timekeeper *tk = &tk_core.timekeeper;
989         u64 corr_raw, corr_real;
990         bool interp_forward;
991         int ret;
992
993         if (total_history_cycles == 0 || partial_history_cycles == 0)
994                 return 0;
995
996         /* Interpolate shortest distance from beginning or end of history */
997         interp_forward = partial_history_cycles > total_history_cycles/2 ?
998                 true : false;
999         partial_history_cycles = interp_forward ?
1000                 total_history_cycles - partial_history_cycles :
1001                 partial_history_cycles;
1002
1003         /*
1004          * Scale the monotonic raw time delta by:
1005          *      partial_history_cycles / total_history_cycles
1006          */
1007         corr_raw = (u64)ktime_to_ns(
1008                 ktime_sub(ts->sys_monoraw, history->raw));
1009         ret = scale64_check_overflow(partial_history_cycles,
1010                                      total_history_cycles, &corr_raw);
1011         if (ret)
1012                 return ret;
1013
1014         /*
1015          * If there is a discontinuity in the history, scale monotonic raw
1016          *      correction by:
1017          *      mult(real)/mult(raw) yielding the realtime correction
1018          * Otherwise, calculate the realtime correction similar to monotonic
1019          *      raw calculation
1020          */
1021         if (discontinuity) {
1022                 corr_real = mul_u64_u32_div
1023                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1024         } else {
1025                 corr_real = (u64)ktime_to_ns(
1026                         ktime_sub(ts->sys_realtime, history->real));
1027                 ret = scale64_check_overflow(partial_history_cycles,
1028                                              total_history_cycles, &corr_real);
1029                 if (ret)
1030                         return ret;
1031         }
1032
1033         /* Fixup monotonic raw and real time time values */
1034         if (interp_forward) {
1035                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1036                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1037         } else {
1038                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1039                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1040         }
1041
1042         return 0;
1043 }
1044
1045 /*
1046  * cycle_between - true if test occurs chronologically between before and after
1047  */
1048 static bool cycle_between(u64 before, u64 test, u64 after)
1049 {
1050         if (test > before && test < after)
1051                 return true;
1052         if (test < before && before > after)
1053                 return true;
1054         return false;
1055 }
1056
1057 /**
1058  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1059  * @get_time_fn:        Callback to get simultaneous device time and
1060  *      system counter from the device driver
1061  * @ctx:                Context passed to get_time_fn()
1062  * @history_begin:      Historical reference point used to interpolate system
1063  *      time when counter provided by the driver is before the current interval
1064  * @xtstamp:            Receives simultaneously captured system and device time
1065  *
1066  * Reads a timestamp from a device and correlates it to system time
1067  */
1068 int get_device_system_crosststamp(int (*get_time_fn)
1069                                   (ktime_t *device_time,
1070                                    struct system_counterval_t *sys_counterval,
1071                                    void *ctx),
1072                                   void *ctx,
1073                                   struct system_time_snapshot *history_begin,
1074                                   struct system_device_crosststamp *xtstamp)
1075 {
1076         struct system_counterval_t system_counterval;
1077         struct timekeeper *tk = &tk_core.timekeeper;
1078         u64 cycles, now, interval_start;
1079         unsigned int clock_was_set_seq = 0;
1080         ktime_t base_real, base_raw;
1081         u64 nsec_real, nsec_raw;
1082         u8 cs_was_changed_seq;
1083         unsigned long seq;
1084         bool do_interp;
1085         int ret;
1086
1087         do {
1088                 seq = read_seqcount_begin(&tk_core.seq);
1089                 /*
1090                  * Try to synchronously capture device time and a system
1091                  * counter value calling back into the device driver
1092                  */
1093                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1094                 if (ret)
1095                         return ret;
1096
1097                 /*
1098                  * Verify that the clocksource associated with the captured
1099                  * system counter value is the same as the currently installed
1100                  * timekeeper clocksource
1101                  */
1102                 if (tk->tkr_mono.clock != system_counterval.cs)
1103                         return -ENODEV;
1104                 cycles = system_counterval.cycles;
1105
1106                 /*
1107                  * Check whether the system counter value provided by the
1108                  * device driver is on the current timekeeping interval.
1109                  */
1110                 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1111                 interval_start = tk->tkr_mono.cycle_last;
1112                 if (!cycle_between(interval_start, cycles, now)) {
1113                         clock_was_set_seq = tk->clock_was_set_seq;
1114                         cs_was_changed_seq = tk->cs_was_changed_seq;
1115                         cycles = interval_start;
1116                         do_interp = true;
1117                 } else {
1118                         do_interp = false;
1119                 }
1120
1121                 base_real = ktime_add(tk->tkr_mono.base,
1122                                       tk_core.timekeeper.offs_real);
1123                 base_raw = tk->tkr_raw.base;
1124
1125                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1126                                                      system_counterval.cycles);
1127                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1128                                                     system_counterval.cycles);
1129         } while (read_seqcount_retry(&tk_core.seq, seq));
1130
1131         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1132         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1133
1134         /*
1135          * Interpolate if necessary, adjusting back from the start of the
1136          * current interval
1137          */
1138         if (do_interp) {
1139                 u64 partial_history_cycles, total_history_cycles;
1140                 bool discontinuity;
1141
1142                 /*
1143                  * Check that the counter value occurs after the provided
1144                  * history reference and that the history doesn't cross a
1145                  * clocksource change
1146                  */
1147                 if (!history_begin ||
1148                     !cycle_between(history_begin->cycles,
1149                                    system_counterval.cycles, cycles) ||
1150                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1151                         return -EINVAL;
1152                 partial_history_cycles = cycles - system_counterval.cycles;
1153                 total_history_cycles = cycles - history_begin->cycles;
1154                 discontinuity =
1155                         history_begin->clock_was_set_seq != clock_was_set_seq;
1156
1157                 ret = adjust_historical_crosststamp(history_begin,
1158                                                     partial_history_cycles,
1159                                                     total_history_cycles,
1160                                                     discontinuity, xtstamp);
1161                 if (ret)
1162                         return ret;
1163         }
1164
1165         return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1168
1169 /**
1170  * do_gettimeofday - Returns the time of day in a timeval
1171  * @tv:         pointer to the timeval to be set
1172  *
1173  * NOTE: Users should be converted to using getnstimeofday()
1174  */
1175 void do_gettimeofday(struct timeval *tv)
1176 {
1177         struct timespec64 now;
1178
1179         getnstimeofday64(&now);
1180         tv->tv_sec = now.tv_sec;
1181         tv->tv_usec = now.tv_nsec/1000;
1182 }
1183 EXPORT_SYMBOL(do_gettimeofday);
1184
1185 /**
1186  * do_settimeofday64 - Sets the time of day.
1187  * @ts:     pointer to the timespec64 variable containing the new time
1188  *
1189  * Sets the time of day to the new time and update NTP and notify hrtimers
1190  */
1191 int do_settimeofday64(const struct timespec64 *ts)
1192 {
1193         struct timekeeper *tk = &tk_core.timekeeper;
1194         struct timespec64 ts_delta, xt;
1195         unsigned long flags;
1196         int ret = 0;
1197
1198         if (!timespec64_valid_strict(ts))
1199                 return -EINVAL;
1200
1201         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1202         write_seqcount_begin(&tk_core.seq);
1203
1204         timekeeping_forward_now(tk);
1205
1206         xt = tk_xtime(tk);
1207         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1208         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1209
1210         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1211                 ret = -EINVAL;
1212                 goto out;
1213         }
1214
1215         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1216
1217         tk_set_xtime(tk, ts);
1218 out:
1219         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1220
1221         write_seqcount_end(&tk_core.seq);
1222         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1223
1224         /* signal hrtimers about time change */
1225         clock_was_set();
1226
1227         return ret;
1228 }
1229 EXPORT_SYMBOL(do_settimeofday64);
1230
1231 /**
1232  * timekeeping_inject_offset - Adds or subtracts from the current time.
1233  * @tv:         pointer to the timespec variable containing the offset
1234  *
1235  * Adds or subtracts an offset value from the current time.
1236  */
1237 int timekeeping_inject_offset(struct timespec *ts)
1238 {
1239         struct timekeeper *tk = &tk_core.timekeeper;
1240         unsigned long flags;
1241         struct timespec64 ts64, tmp;
1242         int ret = 0;
1243
1244         if (!timespec_inject_offset_valid(ts))
1245                 return -EINVAL;
1246
1247         ts64 = timespec_to_timespec64(*ts);
1248
1249         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1250         write_seqcount_begin(&tk_core.seq);
1251
1252         timekeeping_forward_now(tk);
1253
1254         /* Make sure the proposed value is valid */
1255         tmp = timespec64_add(tk_xtime(tk),  ts64);
1256         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1257             !timespec64_valid_strict(&tmp)) {
1258                 ret = -EINVAL;
1259                 goto error;
1260         }
1261
1262         tk_xtime_add(tk, &ts64);
1263         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1264
1265 error: /* even if we error out, we forwarded the time, so call update */
1266         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1267
1268         write_seqcount_end(&tk_core.seq);
1269         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270
1271         /* signal hrtimers about time change */
1272         clock_was_set();
1273
1274         return ret;
1275 }
1276 EXPORT_SYMBOL(timekeeping_inject_offset);
1277
1278
1279 /**
1280  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1281  *
1282  */
1283 s32 timekeeping_get_tai_offset(void)
1284 {
1285         struct timekeeper *tk = &tk_core.timekeeper;
1286         unsigned int seq;
1287         s32 ret;
1288
1289         do {
1290                 seq = read_seqcount_begin(&tk_core.seq);
1291                 ret = tk->tai_offset;
1292         } while (read_seqcount_retry(&tk_core.seq, seq));
1293
1294         return ret;
1295 }
1296
1297 /**
1298  * __timekeeping_set_tai_offset - Lock free worker function
1299  *
1300  */
1301 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1302 {
1303         tk->tai_offset = tai_offset;
1304         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1305 }
1306
1307 /**
1308  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1309  *
1310  */
1311 void timekeeping_set_tai_offset(s32 tai_offset)
1312 {
1313         struct timekeeper *tk = &tk_core.timekeeper;
1314         unsigned long flags;
1315
1316         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1317         write_seqcount_begin(&tk_core.seq);
1318         __timekeeping_set_tai_offset(tk, tai_offset);
1319         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1320         write_seqcount_end(&tk_core.seq);
1321         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1322         clock_was_set();
1323 }
1324
1325 /**
1326  * change_clocksource - Swaps clocksources if a new one is available
1327  *
1328  * Accumulates current time interval and initializes new clocksource
1329  */
1330 static int change_clocksource(void *data)
1331 {
1332         struct timekeeper *tk = &tk_core.timekeeper;
1333         struct clocksource *new, *old;
1334         unsigned long flags;
1335
1336         new = (struct clocksource *) data;
1337
1338         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339         write_seqcount_begin(&tk_core.seq);
1340
1341         timekeeping_forward_now(tk);
1342         /*
1343          * If the cs is in module, get a module reference. Succeeds
1344          * for built-in code (owner == NULL) as well.
1345          */
1346         if (try_module_get(new->owner)) {
1347                 if (!new->enable || new->enable(new) == 0) {
1348                         old = tk->tkr_mono.clock;
1349                         tk_setup_internals(tk, new);
1350                         if (old->disable)
1351                                 old->disable(old);
1352                         module_put(old->owner);
1353                 } else {
1354                         module_put(new->owner);
1355                 }
1356         }
1357         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1358
1359         write_seqcount_end(&tk_core.seq);
1360         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1361
1362         return 0;
1363 }
1364
1365 /**
1366  * timekeeping_notify - Install a new clock source
1367  * @clock:              pointer to the clock source
1368  *
1369  * This function is called from clocksource.c after a new, better clock
1370  * source has been registered. The caller holds the clocksource_mutex.
1371  */
1372 int timekeeping_notify(struct clocksource *clock)
1373 {
1374         struct timekeeper *tk = &tk_core.timekeeper;
1375
1376         if (tk->tkr_mono.clock == clock)
1377                 return 0;
1378         stop_machine(change_clocksource, clock, NULL);
1379         tick_clock_notify();
1380         return tk->tkr_mono.clock == clock ? 0 : -1;
1381 }
1382
1383 /**
1384  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1385  * @ts:         pointer to the timespec64 to be set
1386  *
1387  * Returns the raw monotonic time (completely un-modified by ntp)
1388  */
1389 void getrawmonotonic64(struct timespec64 *ts)
1390 {
1391         struct timekeeper *tk = &tk_core.timekeeper;
1392         struct timespec64 ts64;
1393         unsigned long seq;
1394         u64 nsecs;
1395
1396         do {
1397                 seq = read_seqcount_begin(&tk_core.seq);
1398                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1399                 ts64 = tk->raw_time;
1400
1401         } while (read_seqcount_retry(&tk_core.seq, seq));
1402
1403         timespec64_add_ns(&ts64, nsecs);
1404         *ts = ts64;
1405 }
1406 EXPORT_SYMBOL(getrawmonotonic64);
1407
1408
1409 /**
1410  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1411  */
1412 int timekeeping_valid_for_hres(void)
1413 {
1414         struct timekeeper *tk = &tk_core.timekeeper;
1415         unsigned long seq;
1416         int ret;
1417
1418         do {
1419                 seq = read_seqcount_begin(&tk_core.seq);
1420
1421                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1422
1423         } while (read_seqcount_retry(&tk_core.seq, seq));
1424
1425         return ret;
1426 }
1427
1428 /**
1429  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1430  */
1431 u64 timekeeping_max_deferment(void)
1432 {
1433         struct timekeeper *tk = &tk_core.timekeeper;
1434         unsigned long seq;
1435         u64 ret;
1436
1437         do {
1438                 seq = read_seqcount_begin(&tk_core.seq);
1439
1440                 ret = tk->tkr_mono.clock->max_idle_ns;
1441
1442         } while (read_seqcount_retry(&tk_core.seq, seq));
1443
1444         return ret;
1445 }
1446
1447 /**
1448  * read_persistent_clock -  Return time from the persistent clock.
1449  *
1450  * Weak dummy function for arches that do not yet support it.
1451  * Reads the time from the battery backed persistent clock.
1452  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1453  *
1454  *  XXX - Do be sure to remove it once all arches implement it.
1455  */
1456 void __weak read_persistent_clock(struct timespec *ts)
1457 {
1458         ts->tv_sec = 0;
1459         ts->tv_nsec = 0;
1460 }
1461
1462 void __weak read_persistent_clock64(struct timespec64 *ts64)
1463 {
1464         struct timespec ts;
1465
1466         read_persistent_clock(&ts);
1467         *ts64 = timespec_to_timespec64(ts);
1468 }
1469
1470 /**
1471  * read_boot_clock64 -  Return time of the system start.
1472  *
1473  * Weak dummy function for arches that do not yet support it.
1474  * Function to read the exact time the system has been started.
1475  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1476  *
1477  *  XXX - Do be sure to remove it once all arches implement it.
1478  */
1479 void __weak read_boot_clock64(struct timespec64 *ts)
1480 {
1481         ts->tv_sec = 0;
1482         ts->tv_nsec = 0;
1483 }
1484
1485 /* Flag for if timekeeping_resume() has injected sleeptime */
1486 static bool sleeptime_injected;
1487
1488 /* Flag for if there is a persistent clock on this platform */
1489 static bool persistent_clock_exists;
1490
1491 /*
1492  * timekeeping_init - Initializes the clocksource and common timekeeping values
1493  */
1494 void __init timekeeping_init(void)
1495 {
1496         struct timekeeper *tk = &tk_core.timekeeper;
1497         struct clocksource *clock;
1498         unsigned long flags;
1499         struct timespec64 now, boot, tmp;
1500
1501         read_persistent_clock64(&now);
1502         if (!timespec64_valid_strict(&now)) {
1503                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1504                         "         Check your CMOS/BIOS settings.\n");
1505                 now.tv_sec = 0;
1506                 now.tv_nsec = 0;
1507         } else if (now.tv_sec || now.tv_nsec)
1508                 persistent_clock_exists = true;
1509
1510         read_boot_clock64(&boot);
1511         if (!timespec64_valid_strict(&boot)) {
1512                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1513                         "         Check your CMOS/BIOS settings.\n");
1514                 boot.tv_sec = 0;
1515                 boot.tv_nsec = 0;
1516         }
1517
1518         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1519         write_seqcount_begin(&tk_core.seq);
1520         ntp_init();
1521
1522         clock = clocksource_default_clock();
1523         if (clock->enable)
1524                 clock->enable(clock);
1525         tk_setup_internals(tk, clock);
1526
1527         tk_set_xtime(tk, &now);
1528         tk->raw_time.tv_sec = 0;
1529         tk->raw_time.tv_nsec = 0;
1530         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1531                 boot = tk_xtime(tk);
1532
1533         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1534         tk_set_wall_to_mono(tk, tmp);
1535
1536         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1537
1538         write_seqcount_end(&tk_core.seq);
1539         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1540 }
1541
1542 /* time in seconds when suspend began for persistent clock */
1543 static struct timespec64 timekeeping_suspend_time;
1544
1545 /**
1546  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1547  * @delta: pointer to a timespec delta value
1548  *
1549  * Takes a timespec offset measuring a suspend interval and properly
1550  * adds the sleep offset to the timekeeping variables.
1551  */
1552 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1553                                            struct timespec64 *delta)
1554 {
1555         if (!timespec64_valid_strict(delta)) {
1556                 printk_deferred(KERN_WARNING
1557                                 "__timekeeping_inject_sleeptime: Invalid "
1558                                 "sleep delta value!\n");
1559                 return;
1560         }
1561         tk_xtime_add(tk, delta);
1562         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1563         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1564         tk_debug_account_sleep_time(delta);
1565 }
1566
1567 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1568 /**
1569  * We have three kinds of time sources to use for sleep time
1570  * injection, the preference order is:
1571  * 1) non-stop clocksource
1572  * 2) persistent clock (ie: RTC accessible when irqs are off)
1573  * 3) RTC
1574  *
1575  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1576  * If system has neither 1) nor 2), 3) will be used finally.
1577  *
1578  *
1579  * If timekeeping has injected sleeptime via either 1) or 2),
1580  * 3) becomes needless, so in this case we don't need to call
1581  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1582  * means.
1583  */
1584 bool timekeeping_rtc_skipresume(void)
1585 {
1586         return sleeptime_injected;
1587 }
1588
1589 /**
1590  * 1) can be determined whether to use or not only when doing
1591  * timekeeping_resume() which is invoked after rtc_suspend(),
1592  * so we can't skip rtc_suspend() surely if system has 1).
1593  *
1594  * But if system has 2), 2) will definitely be used, so in this
1595  * case we don't need to call rtc_suspend(), and this is what
1596  * timekeeping_rtc_skipsuspend() means.
1597  */
1598 bool timekeeping_rtc_skipsuspend(void)
1599 {
1600         return persistent_clock_exists;
1601 }
1602
1603 /**
1604  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1605  * @delta: pointer to a timespec64 delta value
1606  *
1607  * This hook is for architectures that cannot support read_persistent_clock64
1608  * because their RTC/persistent clock is only accessible when irqs are enabled.
1609  * and also don't have an effective nonstop clocksource.
1610  *
1611  * This function should only be called by rtc_resume(), and allows
1612  * a suspend offset to be injected into the timekeeping values.
1613  */
1614 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1615 {
1616         struct timekeeper *tk = &tk_core.timekeeper;
1617         unsigned long flags;
1618
1619         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620         write_seqcount_begin(&tk_core.seq);
1621
1622         timekeeping_forward_now(tk);
1623
1624         __timekeeping_inject_sleeptime(tk, delta);
1625
1626         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1627
1628         write_seqcount_end(&tk_core.seq);
1629         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1630
1631         /* signal hrtimers about time change */
1632         clock_was_set();
1633 }
1634 #endif
1635
1636 /**
1637  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1638  */
1639 void timekeeping_resume(void)
1640 {
1641         struct timekeeper *tk = &tk_core.timekeeper;
1642         struct clocksource *clock = tk->tkr_mono.clock;
1643         unsigned long flags;
1644         struct timespec64 ts_new, ts_delta;
1645         u64 cycle_now;
1646
1647         sleeptime_injected = false;
1648         read_persistent_clock64(&ts_new);
1649
1650         clockevents_resume();
1651         clocksource_resume();
1652
1653         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1654         write_seqcount_begin(&tk_core.seq);
1655
1656         /*
1657          * After system resumes, we need to calculate the suspended time and
1658          * compensate it for the OS time. There are 3 sources that could be
1659          * used: Nonstop clocksource during suspend, persistent clock and rtc
1660          * device.
1661          *
1662          * One specific platform may have 1 or 2 or all of them, and the
1663          * preference will be:
1664          *      suspend-nonstop clocksource -> persistent clock -> rtc
1665          * The less preferred source will only be tried if there is no better
1666          * usable source. The rtc part is handled separately in rtc core code.
1667          */
1668         cycle_now = tk->tkr_mono.read(clock);
1669         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1670                 cycle_now > tk->tkr_mono.cycle_last) {
1671                 u64 nsec, cyc_delta;
1672
1673                 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1674                                               tk->tkr_mono.mask);
1675                 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1676                 ts_delta = ns_to_timespec64(nsec);
1677                 sleeptime_injected = true;
1678         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1679                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1680                 sleeptime_injected = true;
1681         }
1682
1683         if (sleeptime_injected)
1684                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1685
1686         /* Re-base the last cycle value */
1687         tk->tkr_mono.cycle_last = cycle_now;
1688         tk->tkr_raw.cycle_last  = cycle_now;
1689
1690         tk->ntp_error = 0;
1691         timekeeping_suspended = 0;
1692         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1693         write_seqcount_end(&tk_core.seq);
1694         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1695
1696         touch_softlockup_watchdog();
1697
1698         tick_resume();
1699         hrtimers_resume();
1700 }
1701
1702 int timekeeping_suspend(void)
1703 {
1704         struct timekeeper *tk = &tk_core.timekeeper;
1705         unsigned long flags;
1706         struct timespec64               delta, delta_delta;
1707         static struct timespec64        old_delta;
1708
1709         read_persistent_clock64(&timekeeping_suspend_time);
1710
1711         /*
1712          * On some systems the persistent_clock can not be detected at
1713          * timekeeping_init by its return value, so if we see a valid
1714          * value returned, update the persistent_clock_exists flag.
1715          */
1716         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1717                 persistent_clock_exists = true;
1718
1719         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1720         write_seqcount_begin(&tk_core.seq);
1721         timekeeping_forward_now(tk);
1722         timekeeping_suspended = 1;
1723
1724         if (persistent_clock_exists) {
1725                 /*
1726                  * To avoid drift caused by repeated suspend/resumes,
1727                  * which each can add ~1 second drift error,
1728                  * try to compensate so the difference in system time
1729                  * and persistent_clock time stays close to constant.
1730                  */
1731                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1732                 delta_delta = timespec64_sub(delta, old_delta);
1733                 if (abs(delta_delta.tv_sec) >= 2) {
1734                         /*
1735                          * if delta_delta is too large, assume time correction
1736                          * has occurred and set old_delta to the current delta.
1737                          */
1738                         old_delta = delta;
1739                 } else {
1740                         /* Otherwise try to adjust old_system to compensate */
1741                         timekeeping_suspend_time =
1742                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1743                 }
1744         }
1745
1746         timekeeping_update(tk, TK_MIRROR);
1747         halt_fast_timekeeper(tk);
1748         write_seqcount_end(&tk_core.seq);
1749         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1750
1751         tick_suspend();
1752         clocksource_suspend();
1753         clockevents_suspend();
1754
1755         return 0;
1756 }
1757
1758 /* sysfs resume/suspend bits for timekeeping */
1759 static struct syscore_ops timekeeping_syscore_ops = {
1760         .resume         = timekeeping_resume,
1761         .suspend        = timekeeping_suspend,
1762 };
1763
1764 static int __init timekeeping_init_ops(void)
1765 {
1766         register_syscore_ops(&timekeeping_syscore_ops);
1767         return 0;
1768 }
1769 device_initcall(timekeeping_init_ops);
1770
1771 /*
1772  * Apply a multiplier adjustment to the timekeeper
1773  */
1774 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1775                                                          s64 offset,
1776                                                          bool negative,
1777                                                          int adj_scale)
1778 {
1779         s64 interval = tk->cycle_interval;
1780         s32 mult_adj = 1;
1781
1782         if (negative) {
1783                 mult_adj = -mult_adj;
1784                 interval = -interval;
1785                 offset  = -offset;
1786         }
1787         mult_adj <<= adj_scale;
1788         interval <<= adj_scale;
1789         offset <<= adj_scale;
1790
1791         /*
1792          * So the following can be confusing.
1793          *
1794          * To keep things simple, lets assume mult_adj == 1 for now.
1795          *
1796          * When mult_adj != 1, remember that the interval and offset values
1797          * have been appropriately scaled so the math is the same.
1798          *
1799          * The basic idea here is that we're increasing the multiplier
1800          * by one, this causes the xtime_interval to be incremented by
1801          * one cycle_interval. This is because:
1802          *      xtime_interval = cycle_interval * mult
1803          * So if mult is being incremented by one:
1804          *      xtime_interval = cycle_interval * (mult + 1)
1805          * Its the same as:
1806          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1807          * Which can be shortened to:
1808          *      xtime_interval += cycle_interval
1809          *
1810          * So offset stores the non-accumulated cycles. Thus the current
1811          * time (in shifted nanoseconds) is:
1812          *      now = (offset * adj) + xtime_nsec
1813          * Now, even though we're adjusting the clock frequency, we have
1814          * to keep time consistent. In other words, we can't jump back
1815          * in time, and we also want to avoid jumping forward in time.
1816          *
1817          * So given the same offset value, we need the time to be the same
1818          * both before and after the freq adjustment.
1819          *      now = (offset * adj_1) + xtime_nsec_1
1820          *      now = (offset * adj_2) + xtime_nsec_2
1821          * So:
1822          *      (offset * adj_1) + xtime_nsec_1 =
1823          *              (offset * adj_2) + xtime_nsec_2
1824          * And we know:
1825          *      adj_2 = adj_1 + 1
1826          * So:
1827          *      (offset * adj_1) + xtime_nsec_1 =
1828          *              (offset * (adj_1+1)) + xtime_nsec_2
1829          *      (offset * adj_1) + xtime_nsec_1 =
1830          *              (offset * adj_1) + offset + xtime_nsec_2
1831          * Canceling the sides:
1832          *      xtime_nsec_1 = offset + xtime_nsec_2
1833          * Which gives us:
1834          *      xtime_nsec_2 = xtime_nsec_1 - offset
1835          * Which simplfies to:
1836          *      xtime_nsec -= offset
1837          *
1838          * XXX - TODO: Doc ntp_error calculation.
1839          */
1840         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1841                 /* NTP adjustment caused clocksource mult overflow */
1842                 WARN_ON_ONCE(1);
1843                 return;
1844         }
1845
1846         tk->tkr_mono.mult += mult_adj;
1847         tk->xtime_interval += interval;
1848         tk->tkr_mono.xtime_nsec -= offset;
1849         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1850 }
1851
1852 /*
1853  * Calculate the multiplier adjustment needed to match the frequency
1854  * specified by NTP
1855  */
1856 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1857                                                         s64 offset)
1858 {
1859         s64 interval = tk->cycle_interval;
1860         s64 xinterval = tk->xtime_interval;
1861         u32 base = tk->tkr_mono.clock->mult;
1862         u32 max = tk->tkr_mono.clock->maxadj;
1863         u32 cur_adj = tk->tkr_mono.mult;
1864         s64 tick_error;
1865         bool negative;
1866         u32 adj_scale;
1867
1868         /* Remove any current error adj from freq calculation */
1869         if (tk->ntp_err_mult)
1870                 xinterval -= tk->cycle_interval;
1871
1872         tk->ntp_tick = ntp_tick_length();
1873
1874         /* Calculate current error per tick */
1875         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1876         tick_error -= (xinterval + tk->xtime_remainder);
1877
1878         /* Don't worry about correcting it if its small */
1879         if (likely((tick_error >= 0) && (tick_error <= interval)))
1880                 return;
1881
1882         /* preserve the direction of correction */
1883         negative = (tick_error < 0);
1884
1885         /* If any adjustment would pass the max, just return */
1886         if (negative && (cur_adj - 1) <= (base - max))
1887                 return;
1888         if (!negative && (cur_adj + 1) >= (base + max))
1889                 return;
1890         /*
1891          * Sort out the magnitude of the correction, but
1892          * avoid making so large a correction that we go
1893          * over the max adjustment.
1894          */
1895         adj_scale = 0;
1896         tick_error = abs(tick_error);
1897         while (tick_error > interval) {
1898                 u32 adj = 1 << (adj_scale + 1);
1899
1900                 /* Check if adjustment gets us within 1 unit from the max */
1901                 if (negative && (cur_adj - adj) <= (base - max))
1902                         break;
1903                 if (!negative && (cur_adj + adj) >= (base + max))
1904                         break;
1905
1906                 adj_scale++;
1907                 tick_error >>= 1;
1908         }
1909
1910         /* scale the corrections */
1911         timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1912 }
1913
1914 /*
1915  * Adjust the timekeeper's multiplier to the correct frequency
1916  * and also to reduce the accumulated error value.
1917  */
1918 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1919 {
1920         /* Correct for the current frequency error */
1921         timekeeping_freqadjust(tk, offset);
1922
1923         /* Next make a small adjustment to fix any cumulative error */
1924         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1925                 tk->ntp_err_mult = 1;
1926                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1927         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1928                 /* Undo any existing error adjustment */
1929                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1930                 tk->ntp_err_mult = 0;
1931         }
1932
1933         if (unlikely(tk->tkr_mono.clock->maxadj &&
1934                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1935                         > tk->tkr_mono.clock->maxadj))) {
1936                 printk_once(KERN_WARNING
1937                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1938                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1939                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1940         }
1941
1942         /*
1943          * It may be possible that when we entered this function, xtime_nsec
1944          * was very small.  Further, if we're slightly speeding the clocksource
1945          * in the code above, its possible the required corrective factor to
1946          * xtime_nsec could cause it to underflow.
1947          *
1948          * Now, since we already accumulated the second, cannot simply roll
1949          * the accumulated second back, since the NTP subsystem has been
1950          * notified via second_overflow. So instead we push xtime_nsec forward
1951          * by the amount we underflowed, and add that amount into the error.
1952          *
1953          * We'll correct this error next time through this function, when
1954          * xtime_nsec is not as small.
1955          */
1956         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1957                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1958                 tk->tkr_mono.xtime_nsec = 0;
1959                 tk->ntp_error += neg << tk->ntp_error_shift;
1960         }
1961 }
1962
1963 /**
1964  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1965  *
1966  * Helper function that accumulates the nsecs greater than a second
1967  * from the xtime_nsec field to the xtime_secs field.
1968  * It also calls into the NTP code to handle leapsecond processing.
1969  *
1970  */
1971 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1972 {
1973         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1974         unsigned int clock_set = 0;
1975
1976         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1977                 int leap;
1978
1979                 tk->tkr_mono.xtime_nsec -= nsecps;
1980                 tk->xtime_sec++;
1981
1982                 /* Figure out if its a leap sec and apply if needed */
1983                 leap = second_overflow(tk->xtime_sec);
1984                 if (unlikely(leap)) {
1985                         struct timespec64 ts;
1986
1987                         tk->xtime_sec += leap;
1988
1989                         ts.tv_sec = leap;
1990                         ts.tv_nsec = 0;
1991                         tk_set_wall_to_mono(tk,
1992                                 timespec64_sub(tk->wall_to_monotonic, ts));
1993
1994                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1995
1996                         clock_set = TK_CLOCK_WAS_SET;
1997                 }
1998         }
1999         return clock_set;
2000 }
2001
2002 /**
2003  * logarithmic_accumulation - shifted accumulation of cycles
2004  *
2005  * This functions accumulates a shifted interval of cycles into
2006  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2007  * loop.
2008  *
2009  * Returns the unconsumed cycles.
2010  */
2011 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2012                                     u32 shift, unsigned int *clock_set)
2013 {
2014         u64 interval = tk->cycle_interval << shift;
2015         u64 raw_nsecs;
2016
2017         /* If the offset is smaller than a shifted interval, do nothing */
2018         if (offset < interval)
2019                 return offset;
2020
2021         /* Accumulate one shifted interval */
2022         offset -= interval;
2023         tk->tkr_mono.cycle_last += interval;
2024         tk->tkr_raw.cycle_last  += interval;
2025
2026         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2027         *clock_set |= accumulate_nsecs_to_secs(tk);
2028
2029         /* Accumulate raw time */
2030         raw_nsecs = (u64)tk->raw_interval << shift;
2031         raw_nsecs += tk->raw_time.tv_nsec;
2032         if (raw_nsecs >= NSEC_PER_SEC) {
2033                 u64 raw_secs = raw_nsecs;
2034                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2035                 tk->raw_time.tv_sec += raw_secs;
2036         }
2037         tk->raw_time.tv_nsec = raw_nsecs;
2038
2039         /* Accumulate error between NTP and clock interval */
2040         tk->ntp_error += tk->ntp_tick << shift;
2041         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2042                                                 (tk->ntp_error_shift + shift);
2043
2044         return offset;
2045 }
2046
2047 /**
2048  * update_wall_time - Uses the current clocksource to increment the wall time
2049  *
2050  */
2051 void update_wall_time(void)
2052 {
2053         struct timekeeper *real_tk = &tk_core.timekeeper;
2054         struct timekeeper *tk = &shadow_timekeeper;
2055         u64 offset;
2056         int shift = 0, maxshift;
2057         unsigned int clock_set = 0;
2058         unsigned long flags;
2059
2060         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2061
2062         /* Make sure we're fully resumed: */
2063         if (unlikely(timekeeping_suspended))
2064                 goto out;
2065
2066 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2067         offset = real_tk->cycle_interval;
2068 #else
2069         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2070                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2071 #endif
2072
2073         /* Check if there's really nothing to do */
2074         if (offset < real_tk->cycle_interval)
2075                 goto out;
2076
2077         /* Do some additional sanity checking */
2078         timekeeping_check_update(real_tk, offset);
2079
2080         /*
2081          * With NO_HZ we may have to accumulate many cycle_intervals
2082          * (think "ticks") worth of time at once. To do this efficiently,
2083          * we calculate the largest doubling multiple of cycle_intervals
2084          * that is smaller than the offset.  We then accumulate that
2085          * chunk in one go, and then try to consume the next smaller
2086          * doubled multiple.
2087          */
2088         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2089         shift = max(0, shift);
2090         /* Bound shift to one less than what overflows tick_length */
2091         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092         shift = min(shift, maxshift);
2093         while (offset >= tk->cycle_interval) {
2094                 offset = logarithmic_accumulation(tk, offset, shift,
2095                                                         &clock_set);
2096                 if (offset < tk->cycle_interval<<shift)
2097                         shift--;
2098         }
2099
2100         /* correct the clock when NTP error is too big */
2101         timekeeping_adjust(tk, offset);
2102
2103         /*
2104          * XXX This can be killed once everyone converts
2105          * to the new update_vsyscall.
2106          */
2107         old_vsyscall_fixup(tk);
2108
2109         /*
2110          * Finally, make sure that after the rounding
2111          * xtime_nsec isn't larger than NSEC_PER_SEC
2112          */
2113         clock_set |= accumulate_nsecs_to_secs(tk);
2114
2115         write_seqcount_begin(&tk_core.seq);
2116         /*
2117          * Update the real timekeeper.
2118          *
2119          * We could avoid this memcpy by switching pointers, but that
2120          * requires changes to all other timekeeper usage sites as
2121          * well, i.e. move the timekeeper pointer getter into the
2122          * spinlocked/seqcount protected sections. And we trade this
2123          * memcpy under the tk_core.seq against one before we start
2124          * updating.
2125          */
2126         timekeeping_update(tk, clock_set);
2127         memcpy(real_tk, tk, sizeof(*tk));
2128         /* The memcpy must come last. Do not put anything here! */
2129         write_seqcount_end(&tk_core.seq);
2130 out:
2131         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2132         if (clock_set)
2133                 /* Have to call _delayed version, since in irq context*/
2134                 clock_was_set_delayed();
2135 }
2136
2137 /**
2138  * getboottime64 - Return the real time of system boot.
2139  * @ts:         pointer to the timespec64 to be set
2140  *
2141  * Returns the wall-time of boot in a timespec64.
2142  *
2143  * This is based on the wall_to_monotonic offset and the total suspend
2144  * time. Calls to settimeofday will affect the value returned (which
2145  * basically means that however wrong your real time clock is at boot time,
2146  * you get the right time here).
2147  */
2148 void getboottime64(struct timespec64 *ts)
2149 {
2150         struct timekeeper *tk = &tk_core.timekeeper;
2151         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2152
2153         *ts = ktime_to_timespec64(t);
2154 }
2155 EXPORT_SYMBOL_GPL(getboottime64);
2156
2157 unsigned long get_seconds(void)
2158 {
2159         struct timekeeper *tk = &tk_core.timekeeper;
2160
2161         return tk->xtime_sec;
2162 }
2163 EXPORT_SYMBOL(get_seconds);
2164
2165 struct timespec __current_kernel_time(void)
2166 {
2167         struct timekeeper *tk = &tk_core.timekeeper;
2168
2169         return timespec64_to_timespec(tk_xtime(tk));
2170 }
2171
2172 struct timespec64 current_kernel_time64(void)
2173 {
2174         struct timekeeper *tk = &tk_core.timekeeper;
2175         struct timespec64 now;
2176         unsigned long seq;
2177
2178         do {
2179                 seq = read_seqcount_begin(&tk_core.seq);
2180
2181                 now = tk_xtime(tk);
2182         } while (read_seqcount_retry(&tk_core.seq, seq));
2183
2184         return now;
2185 }
2186 EXPORT_SYMBOL(current_kernel_time64);
2187
2188 struct timespec64 get_monotonic_coarse64(void)
2189 {
2190         struct timekeeper *tk = &tk_core.timekeeper;
2191         struct timespec64 now, mono;
2192         unsigned long seq;
2193
2194         do {
2195                 seq = read_seqcount_begin(&tk_core.seq);
2196
2197                 now = tk_xtime(tk);
2198                 mono = tk->wall_to_monotonic;
2199         } while (read_seqcount_retry(&tk_core.seq, seq));
2200
2201         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2202                                 now.tv_nsec + mono.tv_nsec);
2203
2204         return now;
2205 }
2206 EXPORT_SYMBOL(get_monotonic_coarse64);
2207
2208 /*
2209  * Must hold jiffies_lock
2210  */
2211 void do_timer(unsigned long ticks)
2212 {
2213         jiffies_64 += ticks;
2214         calc_global_load(ticks);
2215 }
2216
2217 /**
2218  * ktime_get_update_offsets_now - hrtimer helper
2219  * @cwsseq:     pointer to check and store the clock was set sequence number
2220  * @offs_real:  pointer to storage for monotonic -> realtime offset
2221  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2222  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2223  *
2224  * Returns current monotonic time and updates the offsets if the
2225  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2226  * different.
2227  *
2228  * Called from hrtimer_interrupt() or retrigger_next_event()
2229  */
2230 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2231                                      ktime_t *offs_boot, ktime_t *offs_tai)
2232 {
2233         struct timekeeper *tk = &tk_core.timekeeper;
2234         unsigned int seq;
2235         ktime_t base;
2236         u64 nsecs;
2237
2238         do {
2239                 seq = read_seqcount_begin(&tk_core.seq);
2240
2241                 base = tk->tkr_mono.base;
2242                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2243                 base = ktime_add_ns(base, nsecs);
2244
2245                 if (*cwsseq != tk->clock_was_set_seq) {
2246                         *cwsseq = tk->clock_was_set_seq;
2247                         *offs_real = tk->offs_real;
2248                         *offs_boot = tk->offs_boot;
2249                         *offs_tai = tk->offs_tai;
2250                 }
2251
2252                 /* Handle leapsecond insertion adjustments */
2253                 if (unlikely(base >= tk->next_leap_ktime))
2254                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2255
2256         } while (read_seqcount_retry(&tk_core.seq, seq));
2257
2258         return base;
2259 }
2260
2261 /**
2262  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2263  */
2264 int do_adjtimex(struct timex *txc)
2265 {
2266         struct timekeeper *tk = &tk_core.timekeeper;
2267         unsigned long flags;
2268         struct timespec64 ts;
2269         s32 orig_tai, tai;
2270         int ret;
2271
2272         /* Validate the data before disabling interrupts */
2273         ret = ntp_validate_timex(txc);
2274         if (ret)
2275                 return ret;
2276
2277         if (txc->modes & ADJ_SETOFFSET) {
2278                 struct timespec delta;
2279                 delta.tv_sec  = txc->time.tv_sec;
2280                 delta.tv_nsec = txc->time.tv_usec;
2281                 if (!(txc->modes & ADJ_NANO))
2282                         delta.tv_nsec *= 1000;
2283                 ret = timekeeping_inject_offset(&delta);
2284                 if (ret)
2285                         return ret;
2286         }
2287
2288         getnstimeofday64(&ts);
2289
2290         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2291         write_seqcount_begin(&tk_core.seq);
2292
2293         orig_tai = tai = tk->tai_offset;
2294         ret = __do_adjtimex(txc, &ts, &tai);
2295
2296         if (tai != orig_tai) {
2297                 __timekeeping_set_tai_offset(tk, tai);
2298                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2299         }
2300         tk_update_leap_state(tk);
2301
2302         write_seqcount_end(&tk_core.seq);
2303         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2304
2305         if (tai != orig_tai)
2306                 clock_was_set();
2307
2308         ntp_notify_cmos_timer();
2309
2310         return ret;
2311 }
2312
2313 #ifdef CONFIG_NTP_PPS
2314 /**
2315  * hardpps() - Accessor function to NTP __hardpps function
2316  */
2317 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2318 {
2319         unsigned long flags;
2320
2321         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2322         write_seqcount_begin(&tk_core.seq);
2323
2324         __hardpps(phase_ts, raw_ts);
2325
2326         write_seqcount_end(&tk_core.seq);
2327         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2328 }
2329 EXPORT_SYMBOL(hardpps);
2330 #endif
2331
2332 /**
2333  * xtime_update() - advances the timekeeping infrastructure
2334  * @ticks:      number of ticks, that have elapsed since the last call.
2335  *
2336  * Must be called with interrupts disabled.
2337  */
2338 void xtime_update(unsigned long ticks)
2339 {
2340         write_seqlock(&jiffies_lock);
2341         do_timer(ticks);
2342         write_sequnlock(&jiffies_lock);
2343         update_wall_time();
2344 }