Linux-libre 4.9.135-gnu
[librecmc/linux-libre.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51         return &tick_broadcast_device;
52 }
53
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56         return tick_broadcast_mask;
57 }
58
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64         if (bc)
65                 tick_setup_periodic(bc, 1);
66 }
67
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72                                         struct clock_event_device *newdev)
73 {
74         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77                 return false;
78
79         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81                 return false;
82
83         return !curdev || newdev->rating > curdev->rating;
84 }
85
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91         struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93         if (!tick_check_broadcast_device(cur, dev))
94                 return;
95
96         if (!try_module_get(dev->owner))
97                 return;
98
99         clockevents_exchange_device(cur, dev);
100         if (cur)
101                 cur->event_handler = clockevents_handle_noop;
102         tick_broadcast_device.evtdev = dev;
103         if (!cpumask_empty(tick_broadcast_mask))
104                 tick_broadcast_start_periodic(dev);
105         /*
106          * Inform all cpus about this. We might be in a situation
107          * where we did not switch to oneshot mode because the per cpu
108          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109          * of a oneshot capable broadcast device. Without that
110          * notification the systems stays stuck in periodic mode
111          * forever.
112          */
113         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114                 tick_clock_notify();
115 }
116
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122         return (dev && tick_broadcast_device.evtdev == dev);
123 }
124
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127         int ret = -ENODEV;
128
129         if (tick_is_broadcast_device(dev)) {
130                 raw_spin_lock(&tick_broadcast_lock);
131                 ret = __clockevents_update_freq(dev, freq);
132                 raw_spin_unlock(&tick_broadcast_lock);
133         }
134         return ret;
135 }
136
137
138 static void err_broadcast(const struct cpumask *mask)
139 {
140         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145         if (!dev->broadcast)
146                 dev->broadcast = tick_broadcast;
147         if (!dev->broadcast) {
148                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149                              dev->name);
150                 dev->broadcast = err_broadcast;
151         }
152 }
153
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160         struct clock_event_device *bc = tick_broadcast_device.evtdev;
161         unsigned long flags;
162         int ret = 0;
163
164         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166         /*
167          * Devices might be registered with both periodic and oneshot
168          * mode disabled. This signals, that the device needs to be
169          * operated from the broadcast device and is a placeholder for
170          * the cpu local device.
171          */
172         if (!tick_device_is_functional(dev)) {
173                 dev->event_handler = tick_handle_periodic;
174                 tick_device_setup_broadcast_func(dev);
175                 cpumask_set_cpu(cpu, tick_broadcast_mask);
176                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177                         tick_broadcast_start_periodic(bc);
178                 else
179                         tick_broadcast_setup_oneshot(bc);
180                 ret = 1;
181         } else {
182                 /*
183                  * Clear the broadcast bit for this cpu if the
184                  * device is not power state affected.
185                  */
186                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
188                 else
189                         tick_device_setup_broadcast_func(dev);
190
191                 /*
192                  * Clear the broadcast bit if the CPU is not in
193                  * periodic broadcast on state.
194                  */
195                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198                 switch (tick_broadcast_device.mode) {
199                 case TICKDEV_MODE_ONESHOT:
200                         /*
201                          * If the system is in oneshot mode we can
202                          * unconditionally clear the oneshot mask bit,
203                          * because the CPU is running and therefore
204                          * not in an idle state which causes the power
205                          * state affected device to stop. Let the
206                          * caller initialize the device.
207                          */
208                         tick_broadcast_clear_oneshot(cpu);
209                         ret = 0;
210                         break;
211
212                 case TICKDEV_MODE_PERIODIC:
213                         /*
214                          * If the system is in periodic mode, check
215                          * whether the broadcast device can be
216                          * switched off now.
217                          */
218                         if (cpumask_empty(tick_broadcast_mask) && bc)
219                                 clockevents_shutdown(bc);
220                         /*
221                          * If we kept the cpu in the broadcast mask,
222                          * tell the caller to leave the per cpu device
223                          * in shutdown state. The periodic interrupt
224                          * is delivered by the broadcast device, if
225                          * the broadcast device exists and is not
226                          * hrtimer based.
227                          */
228                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
229                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
230                         break;
231                 default:
232                         break;
233                 }
234         }
235         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236         return ret;
237 }
238
239 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
240 int tick_receive_broadcast(void)
241 {
242         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
243         struct clock_event_device *evt = td->evtdev;
244
245         if (!evt)
246                 return -ENODEV;
247
248         if (!evt->event_handler)
249                 return -EINVAL;
250
251         evt->event_handler(evt);
252         return 0;
253 }
254 #endif
255
256 /*
257  * Broadcast the event to the cpus, which are set in the mask (mangled).
258  */
259 static bool tick_do_broadcast(struct cpumask *mask)
260 {
261         int cpu = smp_processor_id();
262         struct tick_device *td;
263         bool local = false;
264
265         /*
266          * Check, if the current cpu is in the mask
267          */
268         if (cpumask_test_cpu(cpu, mask)) {
269                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
270
271                 cpumask_clear_cpu(cpu, mask);
272                 /*
273                  * We only run the local handler, if the broadcast
274                  * device is not hrtimer based. Otherwise we run into
275                  * a hrtimer recursion.
276                  *
277                  * local timer_interrupt()
278                  *   local_handler()
279                  *     expire_hrtimers()
280                  *       bc_handler()
281                  *         local_handler()
282                  *           expire_hrtimers()
283                  */
284                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
285         }
286
287         if (!cpumask_empty(mask)) {
288                 /*
289                  * It might be necessary to actually check whether the devices
290                  * have different broadcast functions. For now, just use the
291                  * one of the first device. This works as long as we have this
292                  * misfeature only on x86 (lapic)
293                  */
294                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
295                 td->evtdev->broadcast(mask);
296         }
297         return local;
298 }
299
300 /*
301  * Periodic broadcast:
302  * - invoke the broadcast handlers
303  */
304 static bool tick_do_periodic_broadcast(void)
305 {
306         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
307         return tick_do_broadcast(tmpmask);
308 }
309
310 /*
311  * Event handler for periodic broadcast ticks
312  */
313 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
314 {
315         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
316         bool bc_local;
317
318         raw_spin_lock(&tick_broadcast_lock);
319
320         /* Handle spurious interrupts gracefully */
321         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
322                 raw_spin_unlock(&tick_broadcast_lock);
323                 return;
324         }
325
326         bc_local = tick_do_periodic_broadcast();
327
328         if (clockevent_state_oneshot(dev)) {
329                 ktime_t next = ktime_add(dev->next_event, tick_period);
330
331                 clockevents_program_event(dev, next, true);
332         }
333         raw_spin_unlock(&tick_broadcast_lock);
334
335         /*
336          * We run the handler of the local cpu after dropping
337          * tick_broadcast_lock because the handler might deadlock when
338          * trying to switch to oneshot mode.
339          */
340         if (bc_local)
341                 td->evtdev->event_handler(td->evtdev);
342 }
343
344 /**
345  * tick_broadcast_control - Enable/disable or force broadcast mode
346  * @mode:       The selected broadcast mode
347  *
348  * Called when the system enters a state where affected tick devices
349  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
350  *
351  * Called with interrupts disabled, so clockevents_lock is not
352  * required here because the local clock event device cannot go away
353  * under us.
354  */
355 void tick_broadcast_control(enum tick_broadcast_mode mode)
356 {
357         struct clock_event_device *bc, *dev;
358         struct tick_device *td;
359         int cpu, bc_stopped;
360
361         td = this_cpu_ptr(&tick_cpu_device);
362         dev = td->evtdev;
363
364         /*
365          * Is the device not affected by the powerstate ?
366          */
367         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
368                 return;
369
370         if (!tick_device_is_functional(dev))
371                 return;
372
373         raw_spin_lock(&tick_broadcast_lock);
374         cpu = smp_processor_id();
375         bc = tick_broadcast_device.evtdev;
376         bc_stopped = cpumask_empty(tick_broadcast_mask);
377
378         switch (mode) {
379         case TICK_BROADCAST_FORCE:
380                 tick_broadcast_forced = 1;
381         case TICK_BROADCAST_ON:
382                 cpumask_set_cpu(cpu, tick_broadcast_on);
383                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
384                         /*
385                          * Only shutdown the cpu local device, if:
386                          *
387                          * - the broadcast device exists
388                          * - the broadcast device is not a hrtimer based one
389                          * - the broadcast device is in periodic mode to
390                          *   avoid a hickup during switch to oneshot mode
391                          */
392                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
393                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
394                                 clockevents_shutdown(dev);
395                 }
396                 break;
397
398         case TICK_BROADCAST_OFF:
399                 if (tick_broadcast_forced)
400                         break;
401                 cpumask_clear_cpu(cpu, tick_broadcast_on);
402                 if (!tick_device_is_functional(dev))
403                         break;
404                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
405                         if (tick_broadcast_device.mode ==
406                             TICKDEV_MODE_PERIODIC)
407                                 tick_setup_periodic(dev, 0);
408                 }
409                 break;
410         }
411
412         if (bc) {
413                 if (cpumask_empty(tick_broadcast_mask)) {
414                         if (!bc_stopped)
415                                 clockevents_shutdown(bc);
416                 } else if (bc_stopped) {
417                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
418                                 tick_broadcast_start_periodic(bc);
419                         else
420                                 tick_broadcast_setup_oneshot(bc);
421                 }
422         }
423         raw_spin_unlock(&tick_broadcast_lock);
424 }
425 EXPORT_SYMBOL_GPL(tick_broadcast_control);
426
427 /*
428  * Set the periodic handler depending on broadcast on/off
429  */
430 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
431 {
432         if (!broadcast)
433                 dev->event_handler = tick_handle_periodic;
434         else
435                 dev->event_handler = tick_handle_periodic_broadcast;
436 }
437
438 #ifdef CONFIG_HOTPLUG_CPU
439 /*
440  * Remove a CPU from broadcasting
441  */
442 void tick_shutdown_broadcast(unsigned int cpu)
443 {
444         struct clock_event_device *bc;
445         unsigned long flags;
446
447         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
448
449         bc = tick_broadcast_device.evtdev;
450         cpumask_clear_cpu(cpu, tick_broadcast_mask);
451         cpumask_clear_cpu(cpu, tick_broadcast_on);
452
453         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
454                 if (bc && cpumask_empty(tick_broadcast_mask))
455                         clockevents_shutdown(bc);
456         }
457
458         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
459 }
460 #endif
461
462 void tick_suspend_broadcast(void)
463 {
464         struct clock_event_device *bc;
465         unsigned long flags;
466
467         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
468
469         bc = tick_broadcast_device.evtdev;
470         if (bc)
471                 clockevents_shutdown(bc);
472
473         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
474 }
475
476 /*
477  * This is called from tick_resume_local() on a resuming CPU. That's
478  * called from the core resume function, tick_unfreeze() and the magic XEN
479  * resume hackery.
480  *
481  * In none of these cases the broadcast device mode can change and the
482  * bit of the resuming CPU in the broadcast mask is safe as well.
483  */
484 bool tick_resume_check_broadcast(void)
485 {
486         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
487                 return false;
488         else
489                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
490 }
491
492 void tick_resume_broadcast(void)
493 {
494         struct clock_event_device *bc;
495         unsigned long flags;
496
497         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
498
499         bc = tick_broadcast_device.evtdev;
500
501         if (bc) {
502                 clockevents_tick_resume(bc);
503
504                 switch (tick_broadcast_device.mode) {
505                 case TICKDEV_MODE_PERIODIC:
506                         if (!cpumask_empty(tick_broadcast_mask))
507                                 tick_broadcast_start_periodic(bc);
508                         break;
509                 case TICKDEV_MODE_ONESHOT:
510                         if (!cpumask_empty(tick_broadcast_mask))
511                                 tick_resume_broadcast_oneshot(bc);
512                         break;
513                 }
514         }
515         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
516 }
517
518 #ifdef CONFIG_TICK_ONESHOT
519
520 static cpumask_var_t tick_broadcast_oneshot_mask;
521 static cpumask_var_t tick_broadcast_pending_mask;
522 static cpumask_var_t tick_broadcast_force_mask;
523
524 /*
525  * Exposed for debugging: see timer_list.c
526  */
527 struct cpumask *tick_get_broadcast_oneshot_mask(void)
528 {
529         return tick_broadcast_oneshot_mask;
530 }
531
532 /*
533  * Called before going idle with interrupts disabled. Checks whether a
534  * broadcast event from the other core is about to happen. We detected
535  * that in tick_broadcast_oneshot_control(). The callsite can use this
536  * to avoid a deep idle transition as we are about to get the
537  * broadcast IPI right away.
538  */
539 int tick_check_broadcast_expired(void)
540 {
541         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
542 }
543
544 /*
545  * Set broadcast interrupt affinity
546  */
547 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
548                                         const struct cpumask *cpumask)
549 {
550         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
551                 return;
552
553         if (cpumask_equal(bc->cpumask, cpumask))
554                 return;
555
556         bc->cpumask = cpumask;
557         irq_set_affinity(bc->irq, bc->cpumask);
558 }
559
560 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
561                                      ktime_t expires)
562 {
563         if (!clockevent_state_oneshot(bc))
564                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
565
566         clockevents_program_event(bc, expires, 1);
567         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
568 }
569
570 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
571 {
572         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
573 }
574
575 /*
576  * Called from irq_enter() when idle was interrupted to reenable the
577  * per cpu device.
578  */
579 void tick_check_oneshot_broadcast_this_cpu(void)
580 {
581         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
582                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
583
584                 /*
585                  * We might be in the middle of switching over from
586                  * periodic to oneshot. If the CPU has not yet
587                  * switched over, leave the device alone.
588                  */
589                 if (td->mode == TICKDEV_MODE_ONESHOT) {
590                         clockevents_switch_state(td->evtdev,
591                                               CLOCK_EVT_STATE_ONESHOT);
592                 }
593         }
594 }
595
596 /*
597  * Handle oneshot mode broadcasting
598  */
599 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
600 {
601         struct tick_device *td;
602         ktime_t now, next_event;
603         int cpu, next_cpu = 0;
604         bool bc_local;
605
606         raw_spin_lock(&tick_broadcast_lock);
607         dev->next_event.tv64 = KTIME_MAX;
608         next_event.tv64 = KTIME_MAX;
609         cpumask_clear(tmpmask);
610         now = ktime_get();
611         /* Find all expired events */
612         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
613                 /*
614                  * Required for !SMP because for_each_cpu() reports
615                  * unconditionally CPU0 as set on UP kernels.
616                  */
617                 if (!IS_ENABLED(CONFIG_SMP) &&
618                     cpumask_empty(tick_broadcast_oneshot_mask))
619                         break;
620
621                 td = &per_cpu(tick_cpu_device, cpu);
622                 if (td->evtdev->next_event.tv64 <= now.tv64) {
623                         cpumask_set_cpu(cpu, tmpmask);
624                         /*
625                          * Mark the remote cpu in the pending mask, so
626                          * it can avoid reprogramming the cpu local
627                          * timer in tick_broadcast_oneshot_control().
628                          */
629                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
630                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
631                         next_event.tv64 = td->evtdev->next_event.tv64;
632                         next_cpu = cpu;
633                 }
634         }
635
636         /*
637          * Remove the current cpu from the pending mask. The event is
638          * delivered immediately in tick_do_broadcast() !
639          */
640         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
641
642         /* Take care of enforced broadcast requests */
643         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
644         cpumask_clear(tick_broadcast_force_mask);
645
646         /*
647          * Sanity check. Catch the case where we try to broadcast to
648          * offline cpus.
649          */
650         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
651                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
652
653         /*
654          * Wakeup the cpus which have an expired event.
655          */
656         bc_local = tick_do_broadcast(tmpmask);
657
658         /*
659          * Two reasons for reprogram:
660          *
661          * - The global event did not expire any CPU local
662          * events. This happens in dyntick mode, as the maximum PIT
663          * delta is quite small.
664          *
665          * - There are pending events on sleeping CPUs which were not
666          * in the event mask
667          */
668         if (next_event.tv64 != KTIME_MAX)
669                 tick_broadcast_set_event(dev, next_cpu, next_event);
670
671         raw_spin_unlock(&tick_broadcast_lock);
672
673         if (bc_local) {
674                 td = this_cpu_ptr(&tick_cpu_device);
675                 td->evtdev->event_handler(td->evtdev);
676         }
677 }
678
679 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
680 {
681         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
682                 return 0;
683         if (bc->next_event.tv64 == KTIME_MAX)
684                 return 0;
685         return bc->bound_on == cpu ? -EBUSY : 0;
686 }
687
688 static void broadcast_shutdown_local(struct clock_event_device *bc,
689                                      struct clock_event_device *dev)
690 {
691         /*
692          * For hrtimer based broadcasting we cannot shutdown the cpu
693          * local device if our own event is the first one to expire or
694          * if we own the broadcast timer.
695          */
696         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
697                 if (broadcast_needs_cpu(bc, smp_processor_id()))
698                         return;
699                 if (dev->next_event.tv64 < bc->next_event.tv64)
700                         return;
701         }
702         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
703 }
704
705 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
706 {
707         struct clock_event_device *bc, *dev;
708         int cpu, ret = 0;
709         ktime_t now;
710
711         /*
712          * If there is no broadcast device, tell the caller not to go
713          * into deep idle.
714          */
715         if (!tick_broadcast_device.evtdev)
716                 return -EBUSY;
717
718         dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
719
720         raw_spin_lock(&tick_broadcast_lock);
721         bc = tick_broadcast_device.evtdev;
722         cpu = smp_processor_id();
723
724         if (state == TICK_BROADCAST_ENTER) {
725                 /*
726                  * If the current CPU owns the hrtimer broadcast
727                  * mechanism, it cannot go deep idle and we do not add
728                  * the CPU to the broadcast mask. We don't have to go
729                  * through the EXIT path as the local timer is not
730                  * shutdown.
731                  */
732                 ret = broadcast_needs_cpu(bc, cpu);
733                 if (ret)
734                         goto out;
735
736                 /*
737                  * If the broadcast device is in periodic mode, we
738                  * return.
739                  */
740                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
741                         /* If it is a hrtimer based broadcast, return busy */
742                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
743                                 ret = -EBUSY;
744                         goto out;
745                 }
746
747                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
748                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
749
750                         /* Conditionally shut down the local timer. */
751                         broadcast_shutdown_local(bc, dev);
752
753                         /*
754                          * We only reprogram the broadcast timer if we
755                          * did not mark ourself in the force mask and
756                          * if the cpu local event is earlier than the
757                          * broadcast event. If the current CPU is in
758                          * the force mask, then we are going to be
759                          * woken by the IPI right away; we return
760                          * busy, so the CPU does not try to go deep
761                          * idle.
762                          */
763                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
764                                 ret = -EBUSY;
765                         } else if (dev->next_event.tv64 < bc->next_event.tv64) {
766                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
767                                 /*
768                                  * In case of hrtimer broadcasts the
769                                  * programming might have moved the
770                                  * timer to this cpu. If yes, remove
771                                  * us from the broadcast mask and
772                                  * return busy.
773                                  */
774                                 ret = broadcast_needs_cpu(bc, cpu);
775                                 if (ret) {
776                                         cpumask_clear_cpu(cpu,
777                                                 tick_broadcast_oneshot_mask);
778                                 }
779                         }
780                 }
781         } else {
782                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
783                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
784                         /*
785                          * The cpu which was handling the broadcast
786                          * timer marked this cpu in the broadcast
787                          * pending mask and fired the broadcast
788                          * IPI. So we are going to handle the expired
789                          * event anyway via the broadcast IPI
790                          * handler. No need to reprogram the timer
791                          * with an already expired event.
792                          */
793                         if (cpumask_test_and_clear_cpu(cpu,
794                                        tick_broadcast_pending_mask))
795                                 goto out;
796
797                         /*
798                          * Bail out if there is no next event.
799                          */
800                         if (dev->next_event.tv64 == KTIME_MAX)
801                                 goto out;
802                         /*
803                          * If the pending bit is not set, then we are
804                          * either the CPU handling the broadcast
805                          * interrupt or we got woken by something else.
806                          *
807                          * We are not longer in the broadcast mask, so
808                          * if the cpu local expiry time is already
809                          * reached, we would reprogram the cpu local
810                          * timer with an already expired event.
811                          *
812                          * This can lead to a ping-pong when we return
813                          * to idle and therefor rearm the broadcast
814                          * timer before the cpu local timer was able
815                          * to fire. This happens because the forced
816                          * reprogramming makes sure that the event
817                          * will happen in the future and depending on
818                          * the min_delta setting this might be far
819                          * enough out that the ping-pong starts.
820                          *
821                          * If the cpu local next_event has expired
822                          * then we know that the broadcast timer
823                          * next_event has expired as well and
824                          * broadcast is about to be handled. So we
825                          * avoid reprogramming and enforce that the
826                          * broadcast handler, which did not run yet,
827                          * will invoke the cpu local handler.
828                          *
829                          * We cannot call the handler directly from
830                          * here, because we might be in a NOHZ phase
831                          * and we did not go through the irq_enter()
832                          * nohz fixups.
833                          */
834                         now = ktime_get();
835                         if (dev->next_event.tv64 <= now.tv64) {
836                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
837                                 goto out;
838                         }
839                         /*
840                          * We got woken by something else. Reprogram
841                          * the cpu local timer device.
842                          */
843                         tick_program_event(dev->next_event, 1);
844                 }
845         }
846 out:
847         raw_spin_unlock(&tick_broadcast_lock);
848         return ret;
849 }
850
851 /*
852  * Reset the one shot broadcast for a cpu
853  *
854  * Called with tick_broadcast_lock held
855  */
856 static void tick_broadcast_clear_oneshot(int cpu)
857 {
858         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
859         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
860 }
861
862 static void tick_broadcast_init_next_event(struct cpumask *mask,
863                                            ktime_t expires)
864 {
865         struct tick_device *td;
866         int cpu;
867
868         for_each_cpu(cpu, mask) {
869                 td = &per_cpu(tick_cpu_device, cpu);
870                 if (td->evtdev)
871                         td->evtdev->next_event = expires;
872         }
873 }
874
875 /**
876  * tick_broadcast_setup_oneshot - setup the broadcast device
877  */
878 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
879 {
880         int cpu = smp_processor_id();
881
882         if (!bc)
883                 return;
884
885         /* Set it up only once ! */
886         if (bc->event_handler != tick_handle_oneshot_broadcast) {
887                 int was_periodic = clockevent_state_periodic(bc);
888
889                 bc->event_handler = tick_handle_oneshot_broadcast;
890
891                 /*
892                  * We must be careful here. There might be other CPUs
893                  * waiting for periodic broadcast. We need to set the
894                  * oneshot_mask bits for those and program the
895                  * broadcast device to fire.
896                  */
897                 cpumask_copy(tmpmask, tick_broadcast_mask);
898                 cpumask_clear_cpu(cpu, tmpmask);
899                 cpumask_or(tick_broadcast_oneshot_mask,
900                            tick_broadcast_oneshot_mask, tmpmask);
901
902                 if (was_periodic && !cpumask_empty(tmpmask)) {
903                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
904                         tick_broadcast_init_next_event(tmpmask,
905                                                        tick_next_period);
906                         tick_broadcast_set_event(bc, cpu, tick_next_period);
907                 } else
908                         bc->next_event.tv64 = KTIME_MAX;
909         } else {
910                 /*
911                  * The first cpu which switches to oneshot mode sets
912                  * the bit for all other cpus which are in the general
913                  * (periodic) broadcast mask. So the bit is set and
914                  * would prevent the first broadcast enter after this
915                  * to program the bc device.
916                  */
917                 tick_broadcast_clear_oneshot(cpu);
918         }
919 }
920
921 /*
922  * Select oneshot operating mode for the broadcast device
923  */
924 void tick_broadcast_switch_to_oneshot(void)
925 {
926         struct clock_event_device *bc;
927         unsigned long flags;
928
929         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
930
931         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
932         bc = tick_broadcast_device.evtdev;
933         if (bc)
934                 tick_broadcast_setup_oneshot(bc);
935
936         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
937 }
938
939 #ifdef CONFIG_HOTPLUG_CPU
940 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
941 {
942         struct clock_event_device *bc;
943         unsigned long flags;
944
945         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
946         bc = tick_broadcast_device.evtdev;
947
948         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
949                 /* This moves the broadcast assignment to this CPU: */
950                 clockevents_program_event(bc, bc->next_event, 1);
951         }
952         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
953 }
954
955 /*
956  * Remove a dead CPU from broadcasting
957  */
958 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
959 {
960         unsigned long flags;
961
962         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
963
964         /*
965          * Clear the broadcast masks for the dead cpu, but do not stop
966          * the broadcast device!
967          */
968         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
969         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
970         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
971
972         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
973 }
974 #endif
975
976 /*
977  * Check, whether the broadcast device is in one shot mode
978  */
979 int tick_broadcast_oneshot_active(void)
980 {
981         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
982 }
983
984 /*
985  * Check whether the broadcast device supports oneshot.
986  */
987 bool tick_broadcast_oneshot_available(void)
988 {
989         struct clock_event_device *bc = tick_broadcast_device.evtdev;
990
991         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
992 }
993
994 #else
995 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
996 {
997         struct clock_event_device *bc = tick_broadcast_device.evtdev;
998
999         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
1000                 return -EBUSY;
1001
1002         return 0;
1003 }
1004 #endif
1005
1006 void __init tick_broadcast_init(void)
1007 {
1008         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1009         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1010         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1011 #ifdef CONFIG_TICK_ONESHOT
1012         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1013         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1014         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1015 #endif
1016 }