Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / kernel / power / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48  *      The swap map is a data structure used for keeping track of each page
49  *      written to a swap partition.  It consists of many swap_map_page
50  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *      These structures are stored on the swap and linked together with the
52  *      help of the .next_swap member.
53  *
54  *      The swap map is created during suspend.  The swap map pages are
55  *      allocated and populated one at a time, so we only need one memory
56  *      page to set up the entire structure.
57  *
58  *      During resume we pick up all swap_map_page structures into a list.
59  */
60
61 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68         return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77         return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81         sector_t entries[MAP_PAGE_ENTRIES];
82         sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86         struct swap_map_page *map;
87         struct swap_map_page_list *next;
88 };
89
90 /**
91  *      The swap_map_handle structure is used for handling swap in
92  *      a file-alike way
93  */
94
95 struct swap_map_handle {
96         struct swap_map_page *cur;
97         struct swap_map_page_list *maps;
98         sector_t cur_swap;
99         sector_t first_sector;
100         unsigned int k;
101         unsigned long reqd_free_pages;
102         u32 crc32;
103 };
104
105 struct swsusp_header {
106         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107                       sizeof(u32)];
108         u32     crc32;
109         sector_t image;
110         unsigned int flags;     /* Flags to pass to the "boot" kernel */
111         char    orig_sig[10];
112         char    sig[10];
113 } __packed;
114
115 static struct swsusp_header *swsusp_header;
116
117 /**
118  *      The following functions are used for tracing the allocated
119  *      swap pages, so that they can be freed in case of an error.
120  */
121
122 struct swsusp_extent {
123         struct rb_node node;
124         unsigned long start;
125         unsigned long end;
126 };
127
128 static struct rb_root swsusp_extents = RB_ROOT;
129
130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132         struct rb_node **new = &(swsusp_extents.rb_node);
133         struct rb_node *parent = NULL;
134         struct swsusp_extent *ext;
135
136         /* Figure out where to put the new node */
137         while (*new) {
138                 ext = rb_entry(*new, struct swsusp_extent, node);
139                 parent = *new;
140                 if (swap_offset < ext->start) {
141                         /* Try to merge */
142                         if (swap_offset == ext->start - 1) {
143                                 ext->start--;
144                                 return 0;
145                         }
146                         new = &((*new)->rb_left);
147                 } else if (swap_offset > ext->end) {
148                         /* Try to merge */
149                         if (swap_offset == ext->end + 1) {
150                                 ext->end++;
151                                 return 0;
152                         }
153                         new = &((*new)->rb_right);
154                 } else {
155                         /* It already is in the tree */
156                         return -EINVAL;
157                 }
158         }
159         /* Add the new node and rebalance the tree. */
160         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161         if (!ext)
162                 return -ENOMEM;
163
164         ext->start = swap_offset;
165         ext->end = swap_offset;
166         rb_link_node(&ext->node, parent, new);
167         rb_insert_color(&ext->node, &swsusp_extents);
168         return 0;
169 }
170
171 /**
172  *      alloc_swapdev_block - allocate a swap page and register that it has
173  *      been allocated, so that it can be freed in case of an error.
174  */
175
176 sector_t alloc_swapdev_block(int swap)
177 {
178         unsigned long offset;
179
180         offset = swp_offset(get_swap_page_of_type(swap));
181         if (offset) {
182                 if (swsusp_extents_insert(offset))
183                         swap_free(swp_entry(swap, offset));
184                 else
185                         return swapdev_block(swap, offset);
186         }
187         return 0;
188 }
189
190 /**
191  *      free_all_swap_pages - free swap pages allocated for saving image data.
192  *      It also frees the extents used to register which swap entries had been
193  *      allocated.
194  */
195
196 void free_all_swap_pages(int swap)
197 {
198         struct rb_node *node;
199
200         while ((node = swsusp_extents.rb_node)) {
201                 struct swsusp_extent *ext;
202                 unsigned long offset;
203
204                 ext = rb_entry(node, struct swsusp_extent, node);
205                 rb_erase(node, &swsusp_extents);
206                 for (offset = ext->start; offset <= ext->end; offset++)
207                         swap_free(swp_entry(swap, offset));
208
209                 kfree(ext);
210         }
211 }
212
213 int swsusp_swap_in_use(void)
214 {
215         return (swsusp_extents.rb_node != NULL);
216 }
217
218 /*
219  * General things
220  */
221
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224
225 struct hib_bio_batch {
226         atomic_t                count;
227         wait_queue_head_t       wait;
228         blk_status_t            error;
229 };
230
231 static void hib_init_batch(struct hib_bio_batch *hb)
232 {
233         atomic_set(&hb->count, 0);
234         init_waitqueue_head(&hb->wait);
235         hb->error = BLK_STS_OK;
236 }
237
238 static void hib_end_io(struct bio *bio)
239 {
240         struct hib_bio_batch *hb = bio->bi_private;
241         struct page *page = bio_first_page_all(bio);
242
243         if (bio->bi_status) {
244                 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
245                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
246                          (unsigned long long)bio->bi_iter.bi_sector);
247         }
248
249         if (bio_data_dir(bio) == WRITE)
250                 put_page(page);
251         else if (clean_pages_on_read)
252                 flush_icache_range((unsigned long)page_address(page),
253                                    (unsigned long)page_address(page) + PAGE_SIZE);
254
255         if (bio->bi_status && !hb->error)
256                 hb->error = bio->bi_status;
257         if (atomic_dec_and_test(&hb->count))
258                 wake_up(&hb->wait);
259
260         bio_put(bio);
261 }
262
263 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
264                 struct hib_bio_batch *hb)
265 {
266         struct page *page = virt_to_page(addr);
267         struct bio *bio;
268         int error = 0;
269
270         bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
271         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
272         bio_set_dev(bio, hib_resume_bdev);
273         bio_set_op_attrs(bio, op, op_flags);
274
275         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
276                 pr_err("Adding page to bio failed at %llu\n",
277                        (unsigned long long)bio->bi_iter.bi_sector);
278                 bio_put(bio);
279                 return -EFAULT;
280         }
281
282         if (hb) {
283                 bio->bi_end_io = hib_end_io;
284                 bio->bi_private = hb;
285                 atomic_inc(&hb->count);
286                 submit_bio(bio);
287         } else {
288                 error = submit_bio_wait(bio);
289                 bio_put(bio);
290         }
291
292         return error;
293 }
294
295 static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
296 {
297         wait_event(hb->wait, atomic_read(&hb->count) == 0);
298         return blk_status_to_errno(hb->error);
299 }
300
301 /*
302  * Saving part
303  */
304
305 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
306 {
307         int error;
308
309         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
310                       swsusp_header, NULL);
311         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
312             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
313                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
314                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
315                 swsusp_header->image = handle->first_sector;
316                 swsusp_header->flags = flags;
317                 if (flags & SF_CRC32_MODE)
318                         swsusp_header->crc32 = handle->crc32;
319                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
320                                       swsusp_resume_block, swsusp_header, NULL);
321         } else {
322                 pr_err("Swap header not found!\n");
323                 error = -ENODEV;
324         }
325         return error;
326 }
327
328 /**
329  *      swsusp_swap_check - check if the resume device is a swap device
330  *      and get its index (if so)
331  *
332  *      This is called before saving image
333  */
334 static int swsusp_swap_check(void)
335 {
336         int res;
337
338         res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
339                         &hib_resume_bdev);
340         if (res < 0)
341                 return res;
342
343         root_swap = res;
344         res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
345         if (res)
346                 return res;
347
348         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
349         if (res < 0)
350                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
351
352         /*
353          * Update the resume device to the one actually used,
354          * so the test_resume mode can use it in case it is
355          * invoked from hibernate() to test the snapshot.
356          */
357         swsusp_resume_device = hib_resume_bdev->bd_dev;
358         return res;
359 }
360
361 /**
362  *      write_page - Write one page to given swap location.
363  *      @buf:           Address we're writing.
364  *      @offset:        Offset of the swap page we're writing to.
365  *      @hb:            bio completion batch
366  */
367
368 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
369 {
370         void *src;
371         int ret;
372
373         if (!offset)
374                 return -ENOSPC;
375
376         if (hb) {
377                 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
378                                               __GFP_NORETRY);
379                 if (src) {
380                         copy_page(src, buf);
381                 } else {
382                         ret = hib_wait_io(hb); /* Free pages */
383                         if (ret)
384                                 return ret;
385                         src = (void *)__get_free_page(GFP_NOIO |
386                                                       __GFP_NOWARN |
387                                                       __GFP_NORETRY);
388                         if (src) {
389                                 copy_page(src, buf);
390                         } else {
391                                 WARN_ON_ONCE(1);
392                                 hb = NULL;      /* Go synchronous */
393                                 src = buf;
394                         }
395                 }
396         } else {
397                 src = buf;
398         }
399         return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
400 }
401
402 static void release_swap_writer(struct swap_map_handle *handle)
403 {
404         if (handle->cur)
405                 free_page((unsigned long)handle->cur);
406         handle->cur = NULL;
407 }
408
409 static int get_swap_writer(struct swap_map_handle *handle)
410 {
411         int ret;
412
413         ret = swsusp_swap_check();
414         if (ret) {
415                 if (ret != -ENOSPC)
416                         pr_err("Cannot find swap device, try swapon -a\n");
417                 return ret;
418         }
419         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
420         if (!handle->cur) {
421                 ret = -ENOMEM;
422                 goto err_close;
423         }
424         handle->cur_swap = alloc_swapdev_block(root_swap);
425         if (!handle->cur_swap) {
426                 ret = -ENOSPC;
427                 goto err_rel;
428         }
429         handle->k = 0;
430         handle->reqd_free_pages = reqd_free_pages();
431         handle->first_sector = handle->cur_swap;
432         return 0;
433 err_rel:
434         release_swap_writer(handle);
435 err_close:
436         swsusp_close(FMODE_WRITE);
437         return ret;
438 }
439
440 static int swap_write_page(struct swap_map_handle *handle, void *buf,
441                 struct hib_bio_batch *hb)
442 {
443         int error = 0;
444         sector_t offset;
445
446         if (!handle->cur)
447                 return -EINVAL;
448         offset = alloc_swapdev_block(root_swap);
449         error = write_page(buf, offset, hb);
450         if (error)
451                 return error;
452         handle->cur->entries[handle->k++] = offset;
453         if (handle->k >= MAP_PAGE_ENTRIES) {
454                 offset = alloc_swapdev_block(root_swap);
455                 if (!offset)
456                         return -ENOSPC;
457                 handle->cur->next_swap = offset;
458                 error = write_page(handle->cur, handle->cur_swap, hb);
459                 if (error)
460                         goto out;
461                 clear_page(handle->cur);
462                 handle->cur_swap = offset;
463                 handle->k = 0;
464
465                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
466                         error = hib_wait_io(hb);
467                         if (error)
468                                 goto out;
469                         /*
470                          * Recalculate the number of required free pages, to
471                          * make sure we never take more than half.
472                          */
473                         handle->reqd_free_pages = reqd_free_pages();
474                 }
475         }
476  out:
477         return error;
478 }
479
480 static int flush_swap_writer(struct swap_map_handle *handle)
481 {
482         if (handle->cur && handle->cur_swap)
483                 return write_page(handle->cur, handle->cur_swap, NULL);
484         else
485                 return -EINVAL;
486 }
487
488 static int swap_writer_finish(struct swap_map_handle *handle,
489                 unsigned int flags, int error)
490 {
491         if (!error) {
492                 flush_swap_writer(handle);
493                 pr_info("S");
494                 error = mark_swapfiles(handle, flags);
495                 pr_cont("|\n");
496         }
497
498         if (error)
499                 free_all_swap_pages(root_swap);
500         release_swap_writer(handle);
501         swsusp_close(FMODE_WRITE);
502
503         return error;
504 }
505
506 /* We need to remember how much compressed data we need to read. */
507 #define LZO_HEADER      sizeof(size_t)
508
509 /* Number of pages/bytes we'll compress at one time. */
510 #define LZO_UNC_PAGES   32
511 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
512
513 /* Number of pages/bytes we need for compressed data (worst case). */
514 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
515                                      LZO_HEADER, PAGE_SIZE)
516 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
517
518 /* Maximum number of threads for compression/decompression. */
519 #define LZO_THREADS     3
520
521 /* Minimum/maximum number of pages for read buffering. */
522 #define LZO_MIN_RD_PAGES        1024
523 #define LZO_MAX_RD_PAGES        8192
524
525
526 /**
527  *      save_image - save the suspend image data
528  */
529
530 static int save_image(struct swap_map_handle *handle,
531                       struct snapshot_handle *snapshot,
532                       unsigned int nr_to_write)
533 {
534         unsigned int m;
535         int ret;
536         int nr_pages;
537         int err2;
538         struct hib_bio_batch hb;
539         ktime_t start;
540         ktime_t stop;
541
542         hib_init_batch(&hb);
543
544         pr_info("Saving image data pages (%u pages)...\n",
545                 nr_to_write);
546         m = nr_to_write / 10;
547         if (!m)
548                 m = 1;
549         nr_pages = 0;
550         start = ktime_get();
551         while (1) {
552                 ret = snapshot_read_next(snapshot);
553                 if (ret <= 0)
554                         break;
555                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
556                 if (ret)
557                         break;
558                 if (!(nr_pages % m))
559                         pr_info("Image saving progress: %3d%%\n",
560                                 nr_pages / m * 10);
561                 nr_pages++;
562         }
563         err2 = hib_wait_io(&hb);
564         stop = ktime_get();
565         if (!ret)
566                 ret = err2;
567         if (!ret)
568                 pr_info("Image saving done\n");
569         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
570         return ret;
571 }
572
573 /**
574  * Structure used for CRC32.
575  */
576 struct crc_data {
577         struct task_struct *thr;                  /* thread */
578         atomic_t ready;                           /* ready to start flag */
579         atomic_t stop;                            /* ready to stop flag */
580         unsigned run_threads;                     /* nr current threads */
581         wait_queue_head_t go;                     /* start crc update */
582         wait_queue_head_t done;                   /* crc update done */
583         u32 *crc32;                               /* points to handle's crc32 */
584         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
585         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
586 };
587
588 /**
589  * CRC32 update function that runs in its own thread.
590  */
591 static int crc32_threadfn(void *data)
592 {
593         struct crc_data *d = data;
594         unsigned i;
595
596         while (1) {
597                 wait_event(d->go, atomic_read(&d->ready) ||
598                                   kthread_should_stop());
599                 if (kthread_should_stop()) {
600                         d->thr = NULL;
601                         atomic_set(&d->stop, 1);
602                         wake_up(&d->done);
603                         break;
604                 }
605                 atomic_set(&d->ready, 0);
606
607                 for (i = 0; i < d->run_threads; i++)
608                         *d->crc32 = crc32_le(*d->crc32,
609                                              d->unc[i], *d->unc_len[i]);
610                 atomic_set(&d->stop, 1);
611                 wake_up(&d->done);
612         }
613         return 0;
614 }
615 /**
616  * Structure used for LZO data compression.
617  */
618 struct cmp_data {
619         struct task_struct *thr;                  /* thread */
620         atomic_t ready;                           /* ready to start flag */
621         atomic_t stop;                            /* ready to stop flag */
622         int ret;                                  /* return code */
623         wait_queue_head_t go;                     /* start compression */
624         wait_queue_head_t done;                   /* compression done */
625         size_t unc_len;                           /* uncompressed length */
626         size_t cmp_len;                           /* compressed length */
627         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
628         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
629         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
630 };
631
632 /**
633  * Compression function that runs in its own thread.
634  */
635 static int lzo_compress_threadfn(void *data)
636 {
637         struct cmp_data *d = data;
638
639         while (1) {
640                 wait_event(d->go, atomic_read(&d->ready) ||
641                                   kthread_should_stop());
642                 if (kthread_should_stop()) {
643                         d->thr = NULL;
644                         d->ret = -1;
645                         atomic_set(&d->stop, 1);
646                         wake_up(&d->done);
647                         break;
648                 }
649                 atomic_set(&d->ready, 0);
650
651                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
652                                           d->cmp + LZO_HEADER, &d->cmp_len,
653                                           d->wrk);
654                 atomic_set(&d->stop, 1);
655                 wake_up(&d->done);
656         }
657         return 0;
658 }
659
660 /**
661  * save_image_lzo - Save the suspend image data compressed with LZO.
662  * @handle: Swap map handle to use for saving the image.
663  * @snapshot: Image to read data from.
664  * @nr_to_write: Number of pages to save.
665  */
666 static int save_image_lzo(struct swap_map_handle *handle,
667                           struct snapshot_handle *snapshot,
668                           unsigned int nr_to_write)
669 {
670         unsigned int m;
671         int ret = 0;
672         int nr_pages;
673         int err2;
674         struct hib_bio_batch hb;
675         ktime_t start;
676         ktime_t stop;
677         size_t off;
678         unsigned thr, run_threads, nr_threads;
679         unsigned char *page = NULL;
680         struct cmp_data *data = NULL;
681         struct crc_data *crc = NULL;
682
683         hib_init_batch(&hb);
684
685         /*
686          * We'll limit the number of threads for compression to limit memory
687          * footprint.
688          */
689         nr_threads = num_online_cpus() - 1;
690         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
691
692         page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
693         if (!page) {
694                 pr_err("Failed to allocate LZO page\n");
695                 ret = -ENOMEM;
696                 goto out_clean;
697         }
698
699         data = vmalloc(array_size(nr_threads, sizeof(*data)));
700         if (!data) {
701                 pr_err("Failed to allocate LZO data\n");
702                 ret = -ENOMEM;
703                 goto out_clean;
704         }
705         for (thr = 0; thr < nr_threads; thr++)
706                 memset(&data[thr], 0, offsetof(struct cmp_data, go));
707
708         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
709         if (!crc) {
710                 pr_err("Failed to allocate crc\n");
711                 ret = -ENOMEM;
712                 goto out_clean;
713         }
714         memset(crc, 0, offsetof(struct crc_data, go));
715
716         /*
717          * Start the compression threads.
718          */
719         for (thr = 0; thr < nr_threads; thr++) {
720                 init_waitqueue_head(&data[thr].go);
721                 init_waitqueue_head(&data[thr].done);
722
723                 data[thr].thr = kthread_run(lzo_compress_threadfn,
724                                             &data[thr],
725                                             "image_compress/%u", thr);
726                 if (IS_ERR(data[thr].thr)) {
727                         data[thr].thr = NULL;
728                         pr_err("Cannot start compression threads\n");
729                         ret = -ENOMEM;
730                         goto out_clean;
731                 }
732         }
733
734         /*
735          * Start the CRC32 thread.
736          */
737         init_waitqueue_head(&crc->go);
738         init_waitqueue_head(&crc->done);
739
740         handle->crc32 = 0;
741         crc->crc32 = &handle->crc32;
742         for (thr = 0; thr < nr_threads; thr++) {
743                 crc->unc[thr] = data[thr].unc;
744                 crc->unc_len[thr] = &data[thr].unc_len;
745         }
746
747         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
748         if (IS_ERR(crc->thr)) {
749                 crc->thr = NULL;
750                 pr_err("Cannot start CRC32 thread\n");
751                 ret = -ENOMEM;
752                 goto out_clean;
753         }
754
755         /*
756          * Adjust the number of required free pages after all allocations have
757          * been done. We don't want to run out of pages when writing.
758          */
759         handle->reqd_free_pages = reqd_free_pages();
760
761         pr_info("Using %u thread(s) for compression\n", nr_threads);
762         pr_info("Compressing and saving image data (%u pages)...\n",
763                 nr_to_write);
764         m = nr_to_write / 10;
765         if (!m)
766                 m = 1;
767         nr_pages = 0;
768         start = ktime_get();
769         for (;;) {
770                 for (thr = 0; thr < nr_threads; thr++) {
771                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
772                                 ret = snapshot_read_next(snapshot);
773                                 if (ret < 0)
774                                         goto out_finish;
775
776                                 if (!ret)
777                                         break;
778
779                                 memcpy(data[thr].unc + off,
780                                        data_of(*snapshot), PAGE_SIZE);
781
782                                 if (!(nr_pages % m))
783                                         pr_info("Image saving progress: %3d%%\n",
784                                                 nr_pages / m * 10);
785                                 nr_pages++;
786                         }
787                         if (!off)
788                                 break;
789
790                         data[thr].unc_len = off;
791
792                         atomic_set(&data[thr].ready, 1);
793                         wake_up(&data[thr].go);
794                 }
795
796                 if (!thr)
797                         break;
798
799                 crc->run_threads = thr;
800                 atomic_set(&crc->ready, 1);
801                 wake_up(&crc->go);
802
803                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
804                         wait_event(data[thr].done,
805                                    atomic_read(&data[thr].stop));
806                         atomic_set(&data[thr].stop, 0);
807
808                         ret = data[thr].ret;
809
810                         if (ret < 0) {
811                                 pr_err("LZO compression failed\n");
812                                 goto out_finish;
813                         }
814
815                         if (unlikely(!data[thr].cmp_len ||
816                                      data[thr].cmp_len >
817                                      lzo1x_worst_compress(data[thr].unc_len))) {
818                                 pr_err("Invalid LZO compressed length\n");
819                                 ret = -1;
820                                 goto out_finish;
821                         }
822
823                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
824
825                         /*
826                          * Given we are writing one page at a time to disk, we
827                          * copy that much from the buffer, although the last
828                          * bit will likely be smaller than full page. This is
829                          * OK - we saved the length of the compressed data, so
830                          * any garbage at the end will be discarded when we
831                          * read it.
832                          */
833                         for (off = 0;
834                              off < LZO_HEADER + data[thr].cmp_len;
835                              off += PAGE_SIZE) {
836                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
837
838                                 ret = swap_write_page(handle, page, &hb);
839                                 if (ret)
840                                         goto out_finish;
841                         }
842                 }
843
844                 wait_event(crc->done, atomic_read(&crc->stop));
845                 atomic_set(&crc->stop, 0);
846         }
847
848 out_finish:
849         err2 = hib_wait_io(&hb);
850         stop = ktime_get();
851         if (!ret)
852                 ret = err2;
853         if (!ret)
854                 pr_info("Image saving done\n");
855         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
856 out_clean:
857         if (crc) {
858                 if (crc->thr)
859                         kthread_stop(crc->thr);
860                 kfree(crc);
861         }
862         if (data) {
863                 for (thr = 0; thr < nr_threads; thr++)
864                         if (data[thr].thr)
865                                 kthread_stop(data[thr].thr);
866                 vfree(data);
867         }
868         if (page) free_page((unsigned long)page);
869
870         return ret;
871 }
872
873 /**
874  *      enough_swap - Make sure we have enough swap to save the image.
875  *
876  *      Returns TRUE or FALSE after checking the total amount of swap
877  *      space avaiable from the resume partition.
878  */
879
880 static int enough_swap(unsigned int nr_pages)
881 {
882         unsigned int free_swap = count_swap_pages(root_swap, 1);
883         unsigned int required;
884
885         pr_debug("Free swap pages: %u\n", free_swap);
886
887         required = PAGES_FOR_IO + nr_pages;
888         return free_swap > required;
889 }
890
891 /**
892  *      swsusp_write - Write entire image and metadata.
893  *      @flags: flags to pass to the "boot" kernel in the image header
894  *
895  *      It is important _NOT_ to umount filesystems at this point. We want
896  *      them synced (in case something goes wrong) but we DO not want to mark
897  *      filesystem clean: it is not. (And it does not matter, if we resume
898  *      correctly, we'll mark system clean, anyway.)
899  */
900
901 int swsusp_write(unsigned int flags)
902 {
903         struct swap_map_handle handle;
904         struct snapshot_handle snapshot;
905         struct swsusp_info *header;
906         unsigned long pages;
907         int error;
908
909         pages = snapshot_get_image_size();
910         error = get_swap_writer(&handle);
911         if (error) {
912                 pr_err("Cannot get swap writer\n");
913                 return error;
914         }
915         if (flags & SF_NOCOMPRESS_MODE) {
916                 if (!enough_swap(pages)) {
917                         pr_err("Not enough free swap\n");
918                         error = -ENOSPC;
919                         goto out_finish;
920                 }
921         }
922         memset(&snapshot, 0, sizeof(struct snapshot_handle));
923         error = snapshot_read_next(&snapshot);
924         if (error < (int)PAGE_SIZE) {
925                 if (error >= 0)
926                         error = -EFAULT;
927
928                 goto out_finish;
929         }
930         header = (struct swsusp_info *)data_of(snapshot);
931         error = swap_write_page(&handle, header, NULL);
932         if (!error) {
933                 error = (flags & SF_NOCOMPRESS_MODE) ?
934                         save_image(&handle, &snapshot, pages - 1) :
935                         save_image_lzo(&handle, &snapshot, pages - 1);
936         }
937 out_finish:
938         error = swap_writer_finish(&handle, flags, error);
939         return error;
940 }
941
942 /**
943  *      The following functions allow us to read data using a swap map
944  *      in a file-alike way
945  */
946
947 static void release_swap_reader(struct swap_map_handle *handle)
948 {
949         struct swap_map_page_list *tmp;
950
951         while (handle->maps) {
952                 if (handle->maps->map)
953                         free_page((unsigned long)handle->maps->map);
954                 tmp = handle->maps;
955                 handle->maps = handle->maps->next;
956                 kfree(tmp);
957         }
958         handle->cur = NULL;
959 }
960
961 static int get_swap_reader(struct swap_map_handle *handle,
962                 unsigned int *flags_p)
963 {
964         int error;
965         struct swap_map_page_list *tmp, *last;
966         sector_t offset;
967
968         *flags_p = swsusp_header->flags;
969
970         if (!swsusp_header->image) /* how can this happen? */
971                 return -EINVAL;
972
973         handle->cur = NULL;
974         last = handle->maps = NULL;
975         offset = swsusp_header->image;
976         while (offset) {
977                 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
978                 if (!tmp) {
979                         release_swap_reader(handle);
980                         return -ENOMEM;
981                 }
982                 if (!handle->maps)
983                         handle->maps = tmp;
984                 if (last)
985                         last->next = tmp;
986                 last = tmp;
987
988                 tmp->map = (struct swap_map_page *)
989                            __get_free_page(GFP_NOIO | __GFP_HIGH);
990                 if (!tmp->map) {
991                         release_swap_reader(handle);
992                         return -ENOMEM;
993                 }
994
995                 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
996                 if (error) {
997                         release_swap_reader(handle);
998                         return error;
999                 }
1000                 offset = tmp->map->next_swap;
1001         }
1002         handle->k = 0;
1003         handle->cur = handle->maps->map;
1004         return 0;
1005 }
1006
1007 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1008                 struct hib_bio_batch *hb)
1009 {
1010         sector_t offset;
1011         int error;
1012         struct swap_map_page_list *tmp;
1013
1014         if (!handle->cur)
1015                 return -EINVAL;
1016         offset = handle->cur->entries[handle->k];
1017         if (!offset)
1018                 return -EFAULT;
1019         error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1020         if (error)
1021                 return error;
1022         if (++handle->k >= MAP_PAGE_ENTRIES) {
1023                 handle->k = 0;
1024                 free_page((unsigned long)handle->maps->map);
1025                 tmp = handle->maps;
1026                 handle->maps = handle->maps->next;
1027                 kfree(tmp);
1028                 if (!handle->maps)
1029                         release_swap_reader(handle);
1030                 else
1031                         handle->cur = handle->maps->map;
1032         }
1033         return error;
1034 }
1035
1036 static int swap_reader_finish(struct swap_map_handle *handle)
1037 {
1038         release_swap_reader(handle);
1039
1040         return 0;
1041 }
1042
1043 /**
1044  *      load_image - load the image using the swap map handle
1045  *      @handle and the snapshot handle @snapshot
1046  *      (assume there are @nr_pages pages to load)
1047  */
1048
1049 static int load_image(struct swap_map_handle *handle,
1050                       struct snapshot_handle *snapshot,
1051                       unsigned int nr_to_read)
1052 {
1053         unsigned int m;
1054         int ret = 0;
1055         ktime_t start;
1056         ktime_t stop;
1057         struct hib_bio_batch hb;
1058         int err2;
1059         unsigned nr_pages;
1060
1061         hib_init_batch(&hb);
1062
1063         clean_pages_on_read = true;
1064         pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1065         m = nr_to_read / 10;
1066         if (!m)
1067                 m = 1;
1068         nr_pages = 0;
1069         start = ktime_get();
1070         for ( ; ; ) {
1071                 ret = snapshot_write_next(snapshot);
1072                 if (ret <= 0)
1073                         break;
1074                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1075                 if (ret)
1076                         break;
1077                 if (snapshot->sync_read)
1078                         ret = hib_wait_io(&hb);
1079                 if (ret)
1080                         break;
1081                 if (!(nr_pages % m))
1082                         pr_info("Image loading progress: %3d%%\n",
1083                                 nr_pages / m * 10);
1084                 nr_pages++;
1085         }
1086         err2 = hib_wait_io(&hb);
1087         stop = ktime_get();
1088         if (!ret)
1089                 ret = err2;
1090         if (!ret) {
1091                 pr_info("Image loading done\n");
1092                 snapshot_write_finalize(snapshot);
1093                 if (!snapshot_image_loaded(snapshot))
1094                         ret = -ENODATA;
1095         }
1096         swsusp_show_speed(start, stop, nr_to_read, "Read");
1097         return ret;
1098 }
1099
1100 /**
1101  * Structure used for LZO data decompression.
1102  */
1103 struct dec_data {
1104         struct task_struct *thr;                  /* thread */
1105         atomic_t ready;                           /* ready to start flag */
1106         atomic_t stop;                            /* ready to stop flag */
1107         int ret;                                  /* return code */
1108         wait_queue_head_t go;                     /* start decompression */
1109         wait_queue_head_t done;                   /* decompression done */
1110         size_t unc_len;                           /* uncompressed length */
1111         size_t cmp_len;                           /* compressed length */
1112         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1113         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1114 };
1115
1116 /**
1117  * Deompression function that runs in its own thread.
1118  */
1119 static int lzo_decompress_threadfn(void *data)
1120 {
1121         struct dec_data *d = data;
1122
1123         while (1) {
1124                 wait_event(d->go, atomic_read(&d->ready) ||
1125                                   kthread_should_stop());
1126                 if (kthread_should_stop()) {
1127                         d->thr = NULL;
1128                         d->ret = -1;
1129                         atomic_set(&d->stop, 1);
1130                         wake_up(&d->done);
1131                         break;
1132                 }
1133                 atomic_set(&d->ready, 0);
1134
1135                 d->unc_len = LZO_UNC_SIZE;
1136                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1137                                                d->unc, &d->unc_len);
1138                 if (clean_pages_on_decompress)
1139                         flush_icache_range((unsigned long)d->unc,
1140                                            (unsigned long)d->unc + d->unc_len);
1141
1142                 atomic_set(&d->stop, 1);
1143                 wake_up(&d->done);
1144         }
1145         return 0;
1146 }
1147
1148 /**
1149  * load_image_lzo - Load compressed image data and decompress them with LZO.
1150  * @handle: Swap map handle to use for loading data.
1151  * @snapshot: Image to copy uncompressed data into.
1152  * @nr_to_read: Number of pages to load.
1153  */
1154 static int load_image_lzo(struct swap_map_handle *handle,
1155                           struct snapshot_handle *snapshot,
1156                           unsigned int nr_to_read)
1157 {
1158         unsigned int m;
1159         int ret = 0;
1160         int eof = 0;
1161         struct hib_bio_batch hb;
1162         ktime_t start;
1163         ktime_t stop;
1164         unsigned nr_pages;
1165         size_t off;
1166         unsigned i, thr, run_threads, nr_threads;
1167         unsigned ring = 0, pg = 0, ring_size = 0,
1168                  have = 0, want, need, asked = 0;
1169         unsigned long read_pages = 0;
1170         unsigned char **page = NULL;
1171         struct dec_data *data = NULL;
1172         struct crc_data *crc = NULL;
1173
1174         hib_init_batch(&hb);
1175
1176         /*
1177          * We'll limit the number of threads for decompression to limit memory
1178          * footprint.
1179          */
1180         nr_threads = num_online_cpus() - 1;
1181         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1182
1183         page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1184         if (!page) {
1185                 pr_err("Failed to allocate LZO page\n");
1186                 ret = -ENOMEM;
1187                 goto out_clean;
1188         }
1189
1190         data = vmalloc(array_size(nr_threads, sizeof(*data)));
1191         if (!data) {
1192                 pr_err("Failed to allocate LZO data\n");
1193                 ret = -ENOMEM;
1194                 goto out_clean;
1195         }
1196         for (thr = 0; thr < nr_threads; thr++)
1197                 memset(&data[thr], 0, offsetof(struct dec_data, go));
1198
1199         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1200         if (!crc) {
1201                 pr_err("Failed to allocate crc\n");
1202                 ret = -ENOMEM;
1203                 goto out_clean;
1204         }
1205         memset(crc, 0, offsetof(struct crc_data, go));
1206
1207         clean_pages_on_decompress = true;
1208
1209         /*
1210          * Start the decompression threads.
1211          */
1212         for (thr = 0; thr < nr_threads; thr++) {
1213                 init_waitqueue_head(&data[thr].go);
1214                 init_waitqueue_head(&data[thr].done);
1215
1216                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1217                                             &data[thr],
1218                                             "image_decompress/%u", thr);
1219                 if (IS_ERR(data[thr].thr)) {
1220                         data[thr].thr = NULL;
1221                         pr_err("Cannot start decompression threads\n");
1222                         ret = -ENOMEM;
1223                         goto out_clean;
1224                 }
1225         }
1226
1227         /*
1228          * Start the CRC32 thread.
1229          */
1230         init_waitqueue_head(&crc->go);
1231         init_waitqueue_head(&crc->done);
1232
1233         handle->crc32 = 0;
1234         crc->crc32 = &handle->crc32;
1235         for (thr = 0; thr < nr_threads; thr++) {
1236                 crc->unc[thr] = data[thr].unc;
1237                 crc->unc_len[thr] = &data[thr].unc_len;
1238         }
1239
1240         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1241         if (IS_ERR(crc->thr)) {
1242                 crc->thr = NULL;
1243                 pr_err("Cannot start CRC32 thread\n");
1244                 ret = -ENOMEM;
1245                 goto out_clean;
1246         }
1247
1248         /*
1249          * Set the number of pages for read buffering.
1250          * This is complete guesswork, because we'll only know the real
1251          * picture once prepare_image() is called, which is much later on
1252          * during the image load phase. We'll assume the worst case and
1253          * say that none of the image pages are from high memory.
1254          */
1255         if (low_free_pages() > snapshot_get_image_size())
1256                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1257         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1258
1259         for (i = 0; i < read_pages; i++) {
1260                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1261                                                   GFP_NOIO | __GFP_HIGH :
1262                                                   GFP_NOIO | __GFP_NOWARN |
1263                                                   __GFP_NORETRY);
1264
1265                 if (!page[i]) {
1266                         if (i < LZO_CMP_PAGES) {
1267                                 ring_size = i;
1268                                 pr_err("Failed to allocate LZO pages\n");
1269                                 ret = -ENOMEM;
1270                                 goto out_clean;
1271                         } else {
1272                                 break;
1273                         }
1274                 }
1275         }
1276         want = ring_size = i;
1277
1278         pr_info("Using %u thread(s) for decompression\n", nr_threads);
1279         pr_info("Loading and decompressing image data (%u pages)...\n",
1280                 nr_to_read);
1281         m = nr_to_read / 10;
1282         if (!m)
1283                 m = 1;
1284         nr_pages = 0;
1285         start = ktime_get();
1286
1287         ret = snapshot_write_next(snapshot);
1288         if (ret <= 0)
1289                 goto out_finish;
1290
1291         for(;;) {
1292                 for (i = 0; !eof && i < want; i++) {
1293                         ret = swap_read_page(handle, page[ring], &hb);
1294                         if (ret) {
1295                                 /*
1296                                  * On real read error, finish. On end of data,
1297                                  * set EOF flag and just exit the read loop.
1298                                  */
1299                                 if (handle->cur &&
1300                                     handle->cur->entries[handle->k]) {
1301                                         goto out_finish;
1302                                 } else {
1303                                         eof = 1;
1304                                         break;
1305                                 }
1306                         }
1307                         if (++ring >= ring_size)
1308                                 ring = 0;
1309                 }
1310                 asked += i;
1311                 want -= i;
1312
1313                 /*
1314                  * We are out of data, wait for some more.
1315                  */
1316                 if (!have) {
1317                         if (!asked)
1318                                 break;
1319
1320                         ret = hib_wait_io(&hb);
1321                         if (ret)
1322                                 goto out_finish;
1323                         have += asked;
1324                         asked = 0;
1325                         if (eof)
1326                                 eof = 2;
1327                 }
1328
1329                 if (crc->run_threads) {
1330                         wait_event(crc->done, atomic_read(&crc->stop));
1331                         atomic_set(&crc->stop, 0);
1332                         crc->run_threads = 0;
1333                 }
1334
1335                 for (thr = 0; have && thr < nr_threads; thr++) {
1336                         data[thr].cmp_len = *(size_t *)page[pg];
1337                         if (unlikely(!data[thr].cmp_len ||
1338                                      data[thr].cmp_len >
1339                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1340                                 pr_err("Invalid LZO compressed length\n");
1341                                 ret = -1;
1342                                 goto out_finish;
1343                         }
1344
1345                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1346                                             PAGE_SIZE);
1347                         if (need > have) {
1348                                 if (eof > 1) {
1349                                         ret = -1;
1350                                         goto out_finish;
1351                                 }
1352                                 break;
1353                         }
1354
1355                         for (off = 0;
1356                              off < LZO_HEADER + data[thr].cmp_len;
1357                              off += PAGE_SIZE) {
1358                                 memcpy(data[thr].cmp + off,
1359                                        page[pg], PAGE_SIZE);
1360                                 have--;
1361                                 want++;
1362                                 if (++pg >= ring_size)
1363                                         pg = 0;
1364                         }
1365
1366                         atomic_set(&data[thr].ready, 1);
1367                         wake_up(&data[thr].go);
1368                 }
1369
1370                 /*
1371                  * Wait for more data while we are decompressing.
1372                  */
1373                 if (have < LZO_CMP_PAGES && asked) {
1374                         ret = hib_wait_io(&hb);
1375                         if (ret)
1376                                 goto out_finish;
1377                         have += asked;
1378                         asked = 0;
1379                         if (eof)
1380                                 eof = 2;
1381                 }
1382
1383                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1384                         wait_event(data[thr].done,
1385                                    atomic_read(&data[thr].stop));
1386                         atomic_set(&data[thr].stop, 0);
1387
1388                         ret = data[thr].ret;
1389
1390                         if (ret < 0) {
1391                                 pr_err("LZO decompression failed\n");
1392                                 goto out_finish;
1393                         }
1394
1395                         if (unlikely(!data[thr].unc_len ||
1396                                      data[thr].unc_len > LZO_UNC_SIZE ||
1397                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1398                                 pr_err("Invalid LZO uncompressed length\n");
1399                                 ret = -1;
1400                                 goto out_finish;
1401                         }
1402
1403                         for (off = 0;
1404                              off < data[thr].unc_len; off += PAGE_SIZE) {
1405                                 memcpy(data_of(*snapshot),
1406                                        data[thr].unc + off, PAGE_SIZE);
1407
1408                                 if (!(nr_pages % m))
1409                                         pr_info("Image loading progress: %3d%%\n",
1410                                                 nr_pages / m * 10);
1411                                 nr_pages++;
1412
1413                                 ret = snapshot_write_next(snapshot);
1414                                 if (ret <= 0) {
1415                                         crc->run_threads = thr + 1;
1416                                         atomic_set(&crc->ready, 1);
1417                                         wake_up(&crc->go);
1418                                         goto out_finish;
1419                                 }
1420                         }
1421                 }
1422
1423                 crc->run_threads = thr;
1424                 atomic_set(&crc->ready, 1);
1425                 wake_up(&crc->go);
1426         }
1427
1428 out_finish:
1429         if (crc->run_threads) {
1430                 wait_event(crc->done, atomic_read(&crc->stop));
1431                 atomic_set(&crc->stop, 0);
1432         }
1433         stop = ktime_get();
1434         if (!ret) {
1435                 pr_info("Image loading done\n");
1436                 snapshot_write_finalize(snapshot);
1437                 if (!snapshot_image_loaded(snapshot))
1438                         ret = -ENODATA;
1439                 if (!ret) {
1440                         if (swsusp_header->flags & SF_CRC32_MODE) {
1441                                 if(handle->crc32 != swsusp_header->crc32) {
1442                                         pr_err("Invalid image CRC32!\n");
1443                                         ret = -ENODATA;
1444                                 }
1445                         }
1446                 }
1447         }
1448         swsusp_show_speed(start, stop, nr_to_read, "Read");
1449 out_clean:
1450         for (i = 0; i < ring_size; i++)
1451                 free_page((unsigned long)page[i]);
1452         if (crc) {
1453                 if (crc->thr)
1454                         kthread_stop(crc->thr);
1455                 kfree(crc);
1456         }
1457         if (data) {
1458                 for (thr = 0; thr < nr_threads; thr++)
1459                         if (data[thr].thr)
1460                                 kthread_stop(data[thr].thr);
1461                 vfree(data);
1462         }
1463         vfree(page);
1464
1465         return ret;
1466 }
1467
1468 /**
1469  *      swsusp_read - read the hibernation image.
1470  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1471  *                be written into this memory location
1472  */
1473
1474 int swsusp_read(unsigned int *flags_p)
1475 {
1476         int error;
1477         struct swap_map_handle handle;
1478         struct snapshot_handle snapshot;
1479         struct swsusp_info *header;
1480
1481         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1482         error = snapshot_write_next(&snapshot);
1483         if (error < (int)PAGE_SIZE)
1484                 return error < 0 ? error : -EFAULT;
1485         header = (struct swsusp_info *)data_of(snapshot);
1486         error = get_swap_reader(&handle, flags_p);
1487         if (error)
1488                 goto end;
1489         if (!error)
1490                 error = swap_read_page(&handle, header, NULL);
1491         if (!error) {
1492                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1493                         load_image(&handle, &snapshot, header->pages - 1) :
1494                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1495         }
1496         swap_reader_finish(&handle);
1497 end:
1498         if (!error)
1499                 pr_debug("Image successfully loaded\n");
1500         else
1501                 pr_debug("Error %d resuming\n", error);
1502         return error;
1503 }
1504
1505 /**
1506  *      swsusp_check - Check for swsusp signature in the resume device
1507  */
1508
1509 int swsusp_check(void)
1510 {
1511         int error;
1512
1513         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1514                                             FMODE_READ, NULL);
1515         if (!IS_ERR(hib_resume_bdev)) {
1516                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1517                 clear_page(swsusp_header);
1518                 error = hib_submit_io(REQ_OP_READ, 0,
1519                                         swsusp_resume_block,
1520                                         swsusp_header, NULL);
1521                 if (error)
1522                         goto put;
1523
1524                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1525                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1526                         /* Reset swap signature now */
1527                         error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1528                                                 swsusp_resume_block,
1529                                                 swsusp_header, NULL);
1530                 } else {
1531                         error = -EINVAL;
1532                 }
1533
1534 put:
1535                 if (error)
1536                         blkdev_put(hib_resume_bdev, FMODE_READ);
1537                 else
1538                         pr_debug("Image signature found, resuming\n");
1539         } else {
1540                 error = PTR_ERR(hib_resume_bdev);
1541         }
1542
1543         if (error)
1544                 pr_debug("Image not found (code %d)\n", error);
1545
1546         return error;
1547 }
1548
1549 /**
1550  *      swsusp_close - close swap device.
1551  */
1552
1553 void swsusp_close(fmode_t mode)
1554 {
1555         if (IS_ERR(hib_resume_bdev)) {
1556                 pr_debug("Image device not initialised\n");
1557                 return;
1558         }
1559
1560         blkdev_put(hib_resume_bdev, mode);
1561 }
1562
1563 /**
1564  *      swsusp_unmark - Unmark swsusp signature in the resume device
1565  */
1566
1567 #ifdef CONFIG_SUSPEND
1568 int swsusp_unmark(void)
1569 {
1570         int error;
1571
1572         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1573                       swsusp_header, NULL);
1574         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1575                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1576                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1577                                         swsusp_resume_block,
1578                                         swsusp_header, NULL);
1579         } else {
1580                 pr_err("Cannot find swsusp signature!\n");
1581                 error = -ENODEV;
1582         }
1583
1584         /*
1585          * We just returned from suspend, we don't need the image any more.
1586          */
1587         free_all_swap_pages(root_swap);
1588
1589         return error;
1590 }
1591 #endif
1592
1593 static int swsusp_header_init(void)
1594 {
1595         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1596         if (!swsusp_header)
1597                 panic("Could not allocate memory for swsusp_header\n");
1598         return 0;
1599 }
1600
1601 core_initcall(swsusp_header_init);