Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / kernel / irq / timings.c
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org>
3 #define pr_fmt(fmt) "irq_timings: " fmt
4
5 #include <linux/kernel.h>
6 #include <linux/percpu.h>
7 #include <linux/slab.h>
8 #include <linux/static_key.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/idr.h>
12 #include <linux/irq.h>
13 #include <linux/math64.h>
14 #include <linux/log2.h>
15
16 #include <trace/events/irq.h>
17
18 #include "internals.h"
19
20 DEFINE_STATIC_KEY_FALSE(irq_timing_enabled);
21
22 DEFINE_PER_CPU(struct irq_timings, irq_timings);
23
24 static DEFINE_IDR(irqt_stats);
25
26 void irq_timings_enable(void)
27 {
28         static_branch_enable(&irq_timing_enabled);
29 }
30
31 void irq_timings_disable(void)
32 {
33         static_branch_disable(&irq_timing_enabled);
34 }
35
36 /*
37  * The main goal of this algorithm is to predict the next interrupt
38  * occurrence on the current CPU.
39  *
40  * Currently, the interrupt timings are stored in a circular array
41  * buffer every time there is an interrupt, as a tuple: the interrupt
42  * number and the associated timestamp when the event occurred <irq,
43  * timestamp>.
44  *
45  * For every interrupt occurring in a short period of time, we can
46  * measure the elapsed time between the occurrences for the same
47  * interrupt and we end up with a suite of intervals. The experience
48  * showed the interrupts are often coming following a periodic
49  * pattern.
50  *
51  * The objective of the algorithm is to find out this periodic pattern
52  * in a fastest way and use its period to predict the next irq event.
53  *
54  * When the next interrupt event is requested, we are in the situation
55  * where the interrupts are disabled and the circular buffer
56  * containing the timings is filled with the events which happened
57  * after the previous next-interrupt-event request.
58  *
59  * At this point, we read the circular buffer and we fill the irq
60  * related statistics structure. After this step, the circular array
61  * containing the timings is empty because all the values are
62  * dispatched in their corresponding buffers.
63  *
64  * Now for each interrupt, we can predict the next event by using the
65  * suffix array, log interval and exponential moving average
66  *
67  * 1. Suffix array
68  *
69  * Suffix array is an array of all the suffixes of a string. It is
70  * widely used as a data structure for compression, text search, ...
71  * For instance for the word 'banana', the suffixes will be: 'banana'
72  * 'anana' 'nana' 'ana' 'na' 'a'
73  *
74  * Usually, the suffix array is sorted but for our purpose it is
75  * not necessary and won't provide any improvement in the context of
76  * the solved problem where we clearly define the boundaries of the
77  * search by a max period and min period.
78  *
79  * The suffix array will build a suite of intervals of different
80  * length and will look for the repetition of each suite. If the suite
81  * is repeating then we have the period because it is the length of
82  * the suite whatever its position in the buffer.
83  *
84  * 2. Log interval
85  *
86  * We saw the irq timings allow to compute the interval of the
87  * occurrences for a specific interrupt. We can reasonibly assume the
88  * longer is the interval, the higher is the error for the next event
89  * and we can consider storing those interval values into an array
90  * where each slot in the array correspond to an interval at the power
91  * of 2 of the index. For example, index 12 will contain values
92  * between 2^11 and 2^12.
93  *
94  * At the end we have an array of values where at each index defines a
95  * [2^index - 1, 2 ^ index] interval values allowing to store a large
96  * number of values inside a small array.
97  *
98  * For example, if we have the value 1123, then we store it at
99  * ilog2(1123) = 10 index value.
100  *
101  * Storing those value at the specific index is done by computing an
102  * exponential moving average for this specific slot. For instance,
103  * for values 1800, 1123, 1453, ... fall under the same slot (10) and
104  * the exponential moving average is computed every time a new value
105  * is stored at this slot.
106  *
107  * 3. Exponential Moving Average
108  *
109  * The EMA is largely used to track a signal for stocks or as a low
110  * pass filter. The magic of the formula, is it is very simple and the
111  * reactivity of the average can be tuned with the factors called
112  * alpha.
113  *
114  * The higher the alphas are, the faster the average respond to the
115  * signal change. In our case, if a slot in the array is a big
116  * interval, we can have numbers with a big difference between
117  * them. The impact of those differences in the average computation
118  * can be tuned by changing the alpha value.
119  *
120  *
121  *  -- The algorithm --
122  *
123  * We saw the different processing above, now let's see how they are
124  * used together.
125  *
126  * For each interrupt:
127  *      For each interval:
128  *              Compute the index = ilog2(interval)
129  *              Compute a new_ema(buffer[index], interval)
130  *              Store the index in a circular buffer
131  *
132  *      Compute the suffix array of the indexes
133  *
134  *      For each suffix:
135  *              If the suffix is reverse-found 3 times
136  *                      Return suffix
137  *
138  *      Return Not found
139  *
140  * However we can not have endless suffix array to be build, it won't
141  * make sense and it will add an extra overhead, so we can restrict
142  * this to a maximum suffix length of 5 and a minimum suffix length of
143  * 2. The experience showed 5 is the majority of the maximum pattern
144  * period found for different devices.
145  *
146  * The result is a pattern finding less than 1us for an interrupt.
147  *
148  * Example based on real values:
149  *
150  * Example 1 : MMC write/read interrupt interval:
151  *
152  *      223947, 1240, 1384, 1386, 1386,
153  *      217416, 1236, 1384, 1386, 1387,
154  *      214719, 1241, 1386, 1387, 1384,
155  *      213696, 1234, 1384, 1386, 1388,
156  *      219904, 1240, 1385, 1389, 1385,
157  *      212240, 1240, 1386, 1386, 1386,
158  *      214415, 1236, 1384, 1386, 1387,
159  *      214276, 1234, 1384, 1388, ?
160  *
161  * For each element, apply ilog2(value)
162  *
163  *      15, 8, 8, 8, 8,
164  *      15, 8, 8, 8, 8,
165  *      15, 8, 8, 8, 8,
166  *      15, 8, 8, 8, 8,
167  *      15, 8, 8, 8, 8,
168  *      15, 8, 8, 8, 8,
169  *      15, 8, 8, 8, 8,
170  *      15, 8, 8, 8, ?
171  *
172  * Max period of 5, we take the last (max_period * 3) 15 elements as
173  * we can be confident if the pattern repeats itself three times it is
174  * a repeating pattern.
175  *
176  *                   8,
177  *      15, 8, 8, 8, 8,
178  *      15, 8, 8, 8, 8,
179  *      15, 8, 8, 8, ?
180  *
181  * Suffixes are:
182  *
183  *  1) 8, 15, 8, 8, 8  <- max period
184  *  2) 8, 15, 8, 8
185  *  3) 8, 15, 8
186  *  4) 8, 15           <- min period
187  *
188  * From there we search the repeating pattern for each suffix.
189  *
190  * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8
191  *         |   |  |  |  |  |   |  |  |  |  |   |  |  |  |
192  *         8, 15, 8, 8, 8  |   |  |  |  |  |   |  |  |  |
193  *                         8, 15, 8, 8, 8  |   |  |  |  |
194  *                                         8, 15, 8, 8, 8
195  *
196  * When moving the suffix, we found exactly 3 matches.
197  *
198  * The first suffix with period 5 is repeating.
199  *
200  * The next event is (3 * max_period) % suffix_period
201  *
202  * In this example, the result 0, so the next event is suffix[0] => 8
203  *
204  * However, 8 is the index in the array of exponential moving average
205  * which was calculated on the fly when storing the values, so the
206  * interval is ema[8] = 1366
207  *
208  *
209  * Example 2:
210  *
211  *      4, 3, 5, 100,
212  *      3, 3, 5, 117,
213  *      4, 4, 5, 112,
214  *      4, 3, 4, 110,
215  *      3, 5, 3, 117,
216  *      4, 4, 5, 112,
217  *      4, 3, 4, 110,
218  *      3, 4, 5, 112,
219  *      4, 3, 4, 110
220  *
221  * ilog2
222  *
223  *      0, 0, 0, 4,
224  *      0, 0, 0, 4,
225  *      0, 0, 0, 4,
226  *      0, 0, 0, 4,
227  *      0, 0, 0, 4,
228  *      0, 0, 0, 4,
229  *      0, 0, 0, 4,
230  *      0, 0, 0, 4,
231  *      0, 0, 0, 4
232  *
233  * Max period 5:
234  *         0, 0, 4,
235  *      0, 0, 0, 4,
236  *      0, 0, 0, 4,
237  *      0, 0, 0, 4
238  *
239  * Suffixes:
240  *
241  *  1) 0, 0, 4, 0, 0
242  *  2) 0, 0, 4, 0
243  *  3) 0, 0, 4
244  *  4) 0, 0
245  *
246  * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
247  *         |  |  |  |  |  |  X
248  *         0, 0, 4, 0, 0, |  X
249  *                        0, 0
250  *
251  * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
252  *         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
253  *         0, 0, 4, 0, |  |  |  |  |  |  |  |  |  |  |
254  *                     0, 0, 4, 0, |  |  |  |  |  |  |
255  *                                 0, 0, 4, 0, |  |  |
256  *                                             0  0  4
257  *
258  * Pattern is found 3 times, the remaining is 1 which results from
259  * (max_period * 3) % suffix_period. This value is the index in the
260  * suffix arrays. The suffix array for a period 4 has the value 4
261  * at index 1.
262  */
263 #define EMA_ALPHA_VAL           64
264 #define EMA_ALPHA_SHIFT         7
265
266 #define PREDICTION_PERIOD_MIN   3
267 #define PREDICTION_PERIOD_MAX   5
268 #define PREDICTION_FACTOR       4
269 #define PREDICTION_MAX          10 /* 2 ^ PREDICTION_MAX useconds */
270 #define PREDICTION_BUFFER_SIZE  16 /* slots for EMAs, hardly more than 16 */
271
272 /*
273  * Number of elements in the circular buffer: If it happens it was
274  * flushed before, then the number of elements could be smaller than
275  * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is
276  * used as we wrapped. The index begins from zero when we did not
277  * wrap. That could be done in a nicer way with the proper circular
278  * array structure type but with the cost of extra computation in the
279  * interrupt handler hot path. We choose efficiency.
280  */
281 #define for_each_irqts(i, irqts)                                        \
282         for (i = irqts->count < IRQ_TIMINGS_SIZE ?                      \
283                      0 : irqts->count & IRQ_TIMINGS_MASK,               \
284                      irqts->count = min(IRQ_TIMINGS_SIZE,               \
285                                         irqts->count);                  \
286              irqts->count > 0; irqts->count--,                          \
287                      i = (i + 1) & IRQ_TIMINGS_MASK)
288
289 struct irqt_stat {
290         u64     last_ts;
291         u64     ema_time[PREDICTION_BUFFER_SIZE];
292         int     timings[IRQ_TIMINGS_SIZE];
293         int     circ_timings[IRQ_TIMINGS_SIZE];
294         int     count;
295 };
296
297 /*
298  * Exponential moving average computation
299  */
300 static u64 irq_timings_ema_new(u64 value, u64 ema_old)
301 {
302         s64 diff;
303
304         if (unlikely(!ema_old))
305                 return value;
306
307         diff = (value - ema_old) * EMA_ALPHA_VAL;
308         /*
309          * We can use a s64 type variable to be added with the u64
310          * ema_old variable as this one will never have its topmost
311          * bit set, it will be always smaller than 2^63 nanosec
312          * interrupt interval (292 years).
313          */
314         return ema_old + (diff >> EMA_ALPHA_SHIFT);
315 }
316
317 static int irq_timings_next_event_index(int *buffer, size_t len, int period_max)
318 {
319         int period;
320
321         /*
322          * Move the beginning pointer to the end minus the max period x 3.
323          * We are at the point we can begin searching the pattern
324          */
325         buffer = &buffer[len - (period_max * 3)];
326
327         /* Adjust the length to the maximum allowed period x 3 */
328         len = period_max * 3;
329
330         /*
331          * The buffer contains the suite of intervals, in a ilog2
332          * basis, we are looking for a repetition. We point the
333          * beginning of the search three times the length of the
334          * period beginning at the end of the buffer. We do that for
335          * each suffix.
336          */
337         for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) {
338
339                 /*
340                  * The first comparison always succeed because the
341                  * suffix is deduced from the first n-period bytes of
342                  * the buffer and we compare the initial suffix with
343                  * itself, so we can skip the first iteration.
344                  */
345                 int idx = period;
346                 size_t size = period;
347
348                 /*
349                  * We look if the suite with period 'i' repeat
350                  * itself. If it is truncated at the end, as it
351                  * repeats we can use the period to find out the next
352                  * element with the modulo.
353                  */
354                 while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) {
355
356                         /*
357                          * Move the index in a period basis
358                          */
359                         idx += size;
360
361                         /*
362                          * If this condition is reached, all previous
363                          * memcmp were successful, so the period is
364                          * found.
365                          */
366                         if (idx == len)
367                                 return buffer[len % period];
368
369                         /*
370                          * If the remaining elements to compare are
371                          * smaller than the period, readjust the size
372                          * of the comparison for the last iteration.
373                          */
374                         if (len - idx < period)
375                                 size = len - idx;
376                 }
377         }
378
379         return -1;
380 }
381
382 static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now)
383 {
384         int index, i, period_max, count, start, min = INT_MAX;
385
386         if ((now - irqs->last_ts) >= NSEC_PER_SEC) {
387                 irqs->count = irqs->last_ts = 0;
388                 return U64_MAX;
389         }
390
391         /*
392          * As we want to find three times the repetition, we need a
393          * number of intervals greater or equal to three times the
394          * maximum period, otherwise we truncate the max period.
395          */
396         period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ?
397                 PREDICTION_PERIOD_MAX : irqs->count / 3;
398
399         /*
400          * If we don't have enough irq timings for this prediction,
401          * just bail out.
402          */
403         if (period_max <= PREDICTION_PERIOD_MIN)
404                 return U64_MAX;
405
406         /*
407          * 'count' will depends if the circular buffer wrapped or not
408          */
409         count = irqs->count < IRQ_TIMINGS_SIZE ?
410                 irqs->count : IRQ_TIMINGS_SIZE;
411
412         start = irqs->count < IRQ_TIMINGS_SIZE ?
413                 0 : (irqs->count & IRQ_TIMINGS_MASK);
414
415         /*
416          * Copy the content of the circular buffer into another buffer
417          * in order to linearize the buffer instead of dealing with
418          * wrapping indexes and shifted array which will be prone to
419          * error and extremelly difficult to debug.
420          */
421         for (i = 0; i < count; i++) {
422                 int index = (start + i) & IRQ_TIMINGS_MASK;
423
424                 irqs->timings[i] = irqs->circ_timings[index];
425                 min = min_t(int, irqs->timings[i], min);
426         }
427
428         index = irq_timings_next_event_index(irqs->timings, count, period_max);
429         if (index < 0)
430                 return irqs->last_ts + irqs->ema_time[min];
431
432         return irqs->last_ts + irqs->ema_time[index];
433 }
434
435 static __always_inline int irq_timings_interval_index(u64 interval)
436 {
437         /*
438          * The PREDICTION_FACTOR increase the interval size for the
439          * array of exponential average.
440          */
441         u64 interval_us = (interval >> 10) / PREDICTION_FACTOR;
442
443         return likely(interval_us) ? ilog2(interval_us) : 0;
444 }
445
446 static __always_inline void __irq_timings_store(int irq, struct irqt_stat *irqs,
447                                                 u64 interval)
448 {
449         int index;
450
451         /*
452          * Get the index in the ema table for this interrupt.
453          */
454         index = irq_timings_interval_index(interval);
455
456         /*
457          * Store the index as an element of the pattern in another
458          * circular array.
459          */
460         irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index;
461
462         irqs->ema_time[index] = irq_timings_ema_new(interval,
463                                                     irqs->ema_time[index]);
464
465         irqs->count++;
466 }
467
468 static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts)
469 {
470         u64 old_ts = irqs->last_ts;
471         u64 interval;
472
473         /*
474          * The timestamps are absolute time values, we need to compute
475          * the timing interval between two interrupts.
476          */
477         irqs->last_ts = ts;
478
479         /*
480          * The interval type is u64 in order to deal with the same
481          * type in our computation, that prevent mindfuck issues with
482          * overflow, sign and division.
483          */
484         interval = ts - old_ts;
485
486         /*
487          * The interrupt triggered more than one second apart, that
488          * ends the sequence as predictible for our purpose. In this
489          * case, assume we have the beginning of a sequence and the
490          * timestamp is the first value. As it is impossible to
491          * predict anything at this point, return.
492          *
493          * Note the first timestamp of the sequence will always fall
494          * in this test because the old_ts is zero. That is what we
495          * want as we need another timestamp to compute an interval.
496          */
497         if (interval >= NSEC_PER_SEC) {
498                 irqs->count = 0;
499                 return;
500         }
501
502         __irq_timings_store(irq, irqs, interval);
503 }
504
505 /**
506  * irq_timings_next_event - Return when the next event is supposed to arrive
507  *
508  * During the last busy cycle, the number of interrupts is incremented
509  * and stored in the irq_timings structure. This information is
510  * necessary to:
511  *
512  * - know if the index in the table wrapped up:
513  *
514  *      If more than the array size interrupts happened during the
515  *      last busy/idle cycle, the index wrapped up and we have to
516  *      begin with the next element in the array which is the last one
517  *      in the sequence, otherwise it is a the index 0.
518  *
519  * - have an indication of the interrupts activity on this CPU
520  *   (eg. irq/sec)
521  *
522  * The values are 'consumed' after inserting in the statistical model,
523  * thus the count is reinitialized.
524  *
525  * The array of values **must** be browsed in the time direction, the
526  * timestamp must increase between an element and the next one.
527  *
528  * Returns a nanosec time based estimation of the earliest interrupt,
529  * U64_MAX otherwise.
530  */
531 u64 irq_timings_next_event(u64 now)
532 {
533         struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
534         struct irqt_stat *irqs;
535         struct irqt_stat __percpu *s;
536         u64 ts, next_evt = U64_MAX;
537         int i, irq = 0;
538
539         /*
540          * This function must be called with the local irq disabled in
541          * order to prevent the timings circular buffer to be updated
542          * while we are reading it.
543          */
544         lockdep_assert_irqs_disabled();
545
546         if (!irqts->count)
547                 return next_evt;
548
549         /*
550          * Number of elements in the circular buffer: If it happens it
551          * was flushed before, then the number of elements could be
552          * smaller than IRQ_TIMINGS_SIZE, so the count is used,
553          * otherwise the array size is used as we wrapped. The index
554          * begins from zero when we did not wrap. That could be done
555          * in a nicer way with the proper circular array structure
556          * type but with the cost of extra computation in the
557          * interrupt handler hot path. We choose efficiency.
558          *
559          * Inject measured irq/timestamp to the pattern prediction
560          * model while decrementing the counter because we consume the
561          * data from our circular buffer.
562          */
563         for_each_irqts(i, irqts) {
564                 irq = irq_timing_decode(irqts->values[i], &ts);
565                 s = idr_find(&irqt_stats, irq);
566                 if (s)
567                         irq_timings_store(irq, this_cpu_ptr(s), ts);
568         }
569
570         /*
571          * Look in the list of interrupts' statistics, the earliest
572          * next event.
573          */
574         idr_for_each_entry(&irqt_stats, s, i) {
575
576                 irqs = this_cpu_ptr(s);
577
578                 ts = __irq_timings_next_event(irqs, i, now);
579                 if (ts <= now)
580                         return now;
581
582                 if (ts < next_evt)
583                         next_evt = ts;
584         }
585
586         return next_evt;
587 }
588
589 void irq_timings_free(int irq)
590 {
591         struct irqt_stat __percpu *s;
592
593         s = idr_find(&irqt_stats, irq);
594         if (s) {
595                 free_percpu(s);
596                 idr_remove(&irqt_stats, irq);
597         }
598 }
599
600 int irq_timings_alloc(int irq)
601 {
602         struct irqt_stat __percpu *s;
603         int id;
604
605         /*
606          * Some platforms can have the same private interrupt per cpu,
607          * so this function may be be called several times with the
608          * same interrupt number. Just bail out in case the per cpu
609          * stat structure is already allocated.
610          */
611         s = idr_find(&irqt_stats, irq);
612         if (s)
613                 return 0;
614
615         s = alloc_percpu(*s);
616         if (!s)
617                 return -ENOMEM;
618
619         idr_preload(GFP_KERNEL);
620         id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT);
621         idr_preload_end();
622
623         if (id < 0) {
624                 free_percpu(s);
625                 return id;
626         }
627
628         return 0;
629 }
630
631 #ifdef CONFIG_TEST_IRQ_TIMINGS
632 struct timings_intervals {
633         u64 *intervals;
634         size_t count;
635 };
636
637 /*
638  * Intervals are given in nanosecond base
639  */
640 static u64 intervals0[] __initdata = {
641         10000, 50000, 200000, 500000,
642         10000, 50000, 200000, 500000,
643         10000, 50000, 200000, 500000,
644         10000, 50000, 200000, 500000,
645         10000, 50000, 200000, 500000,
646         10000, 50000, 200000, 500000,
647         10000, 50000, 200000, 500000,
648         10000, 50000, 200000, 500000,
649         10000, 50000, 200000,
650 };
651
652 static u64 intervals1[] __initdata = {
653         223947000, 1240000, 1384000, 1386000, 1386000,
654         217416000, 1236000, 1384000, 1386000, 1387000,
655         214719000, 1241000, 1386000, 1387000, 1384000,
656         213696000, 1234000, 1384000, 1386000, 1388000,
657         219904000, 1240000, 1385000, 1389000, 1385000,
658         212240000, 1240000, 1386000, 1386000, 1386000,
659         214415000, 1236000, 1384000, 1386000, 1387000,
660         214276000, 1234000,
661 };
662
663 static u64 intervals2[] __initdata = {
664         4000, 3000, 5000, 100000,
665         3000, 3000, 5000, 117000,
666         4000, 4000, 5000, 112000,
667         4000, 3000, 4000, 110000,
668         3000, 5000, 3000, 117000,
669         4000, 4000, 5000, 112000,
670         4000, 3000, 4000, 110000,
671         3000, 4000, 5000, 112000,
672         4000,
673 };
674
675 static u64 intervals3[] __initdata = {
676         1385000, 212240000, 1240000,
677         1386000, 214415000, 1236000,
678         1384000, 214276000, 1234000,
679         1386000, 214415000, 1236000,
680         1385000, 212240000, 1240000,
681         1386000, 214415000, 1236000,
682         1384000, 214276000, 1234000,
683         1386000, 214415000, 1236000,
684         1385000, 212240000, 1240000,
685 };
686
687 static u64 intervals4[] __initdata = {
688         10000, 50000, 10000, 50000,
689         10000, 50000, 10000, 50000,
690         10000, 50000, 10000, 50000,
691         10000, 50000, 10000, 50000,
692         10000, 50000, 10000, 50000,
693         10000, 50000, 10000, 50000,
694         10000, 50000, 10000, 50000,
695         10000, 50000, 10000, 50000,
696         10000,
697 };
698
699 static struct timings_intervals tis[] __initdata = {
700         { intervals0, ARRAY_SIZE(intervals0) },
701         { intervals1, ARRAY_SIZE(intervals1) },
702         { intervals2, ARRAY_SIZE(intervals2) },
703         { intervals3, ARRAY_SIZE(intervals3) },
704         { intervals4, ARRAY_SIZE(intervals4) },
705 };
706
707 static int __init irq_timings_test_next_index(struct timings_intervals *ti)
708 {
709         int _buffer[IRQ_TIMINGS_SIZE];
710         int buffer[IRQ_TIMINGS_SIZE];
711         int index, start, i, count, period_max;
712
713         count = ti->count - 1;
714
715         period_max = count > (3 * PREDICTION_PERIOD_MAX) ?
716                 PREDICTION_PERIOD_MAX : count / 3;
717
718         /*
719          * Inject all values except the last one which will be used
720          * to compare with the next index result.
721          */
722         pr_debug("index suite: ");
723
724         for (i = 0; i < count; i++) {
725                 index = irq_timings_interval_index(ti->intervals[i]);
726                 _buffer[i & IRQ_TIMINGS_MASK] = index;
727                 pr_cont("%d ", index);
728         }
729
730         start = count < IRQ_TIMINGS_SIZE ? 0 :
731                 count & IRQ_TIMINGS_MASK;
732
733         count = min_t(int, count, IRQ_TIMINGS_SIZE);
734
735         for (i = 0; i < count; i++) {
736                 int index = (start + i) & IRQ_TIMINGS_MASK;
737                 buffer[i] = _buffer[index];
738         }
739
740         index = irq_timings_next_event_index(buffer, count, period_max);
741         i = irq_timings_interval_index(ti->intervals[ti->count - 1]);
742
743         if (index != i) {
744                 pr_err("Expected (%d) and computed (%d) next indexes differ\n",
745                        i, index);
746                 return -EINVAL;
747         }
748
749         return 0;
750 }
751
752 static int __init irq_timings_next_index_selftest(void)
753 {
754         int i, ret;
755
756         for (i = 0; i < ARRAY_SIZE(tis); i++) {
757
758                 pr_info("---> Injecting intervals number #%d (count=%zd)\n",
759                         i, tis[i].count);
760
761                 ret = irq_timings_test_next_index(&tis[i]);
762                 if (ret)
763                         break;
764         }
765
766         return ret;
767 }
768
769 static int __init irq_timings_test_irqs(struct timings_intervals *ti)
770 {
771         struct irqt_stat __percpu *s;
772         struct irqt_stat *irqs;
773         int i, index, ret, irq = 0xACE5;
774
775         ret = irq_timings_alloc(irq);
776         if (ret) {
777                 pr_err("Failed to allocate irq timings\n");
778                 return ret;
779         }
780
781         s = idr_find(&irqt_stats, irq);
782         if (!s) {
783                 ret = -EIDRM;
784                 goto out;
785         }
786
787         irqs = this_cpu_ptr(s);
788
789         for (i = 0; i < ti->count; i++) {
790
791                 index = irq_timings_interval_index(ti->intervals[i]);
792                 pr_debug("%d: interval=%llu ema_index=%d\n",
793                          i, ti->intervals[i], index);
794
795                 __irq_timings_store(irq, irqs, ti->intervals[i]);
796                 if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) {
797                         pr_err("Failed to store in the circular buffer\n");
798                         goto out;
799                 }
800         }
801
802         if (irqs->count != ti->count) {
803                 pr_err("Count differs\n");
804                 goto out;
805         }
806
807         ret = 0;
808 out:
809         irq_timings_free(irq);
810
811         return ret;
812 }
813
814 static int __init irq_timings_irqs_selftest(void)
815 {
816         int i, ret;
817
818         for (i = 0; i < ARRAY_SIZE(tis); i++) {
819                 pr_info("---> Injecting intervals number #%d (count=%zd)\n",
820                         i, tis[i].count);
821                 ret = irq_timings_test_irqs(&tis[i]);
822                 if (ret)
823                         break;
824         }
825
826         return ret;
827 }
828
829 static int __init irq_timings_test_irqts(struct irq_timings *irqts,
830                                          unsigned count)
831 {
832         int start = count >= IRQ_TIMINGS_SIZE ? count - IRQ_TIMINGS_SIZE : 0;
833         int i, irq, oirq = 0xBEEF;
834         u64 ots = 0xDEAD, ts;
835
836         /*
837          * Fill the circular buffer by using the dedicated function.
838          */
839         for (i = 0; i < count; i++) {
840                 pr_debug("%d: index=%d, ts=%llX irq=%X\n",
841                          i, i & IRQ_TIMINGS_MASK, ots + i, oirq + i);
842
843                 irq_timings_push(ots + i, oirq + i);
844         }
845
846         /*
847          * Compute the first elements values after the index wrapped
848          * up or not.
849          */
850         ots += start;
851         oirq += start;
852
853         /*
854          * Test the circular buffer count is correct.
855          */
856         pr_debug("---> Checking timings array count (%d) is right\n", count);
857         if (WARN_ON(irqts->count != count))
858                 return -EINVAL;
859
860         /*
861          * Test the macro allowing to browse all the irqts.
862          */
863         pr_debug("---> Checking the for_each_irqts() macro\n");
864         for_each_irqts(i, irqts) {
865
866                 irq = irq_timing_decode(irqts->values[i], &ts);
867
868                 pr_debug("index=%d, ts=%llX / %llX, irq=%X / %X\n",
869                          i, ts, ots, irq, oirq);
870
871                 if (WARN_ON(ts != ots || irq != oirq))
872                         return -EINVAL;
873
874                 ots++; oirq++;
875         }
876
877         /*
878          * The circular buffer should have be flushed when browsed
879          * with for_each_irqts
880          */
881         pr_debug("---> Checking timings array is empty after browsing it\n");
882         if (WARN_ON(irqts->count))
883                 return -EINVAL;
884
885         return 0;
886 }
887
888 static int __init irq_timings_irqts_selftest(void)
889 {
890         struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
891         int i, ret;
892
893         /*
894          * Test the circular buffer with different number of
895          * elements. The purpose is to test at the limits (empty, half
896          * full, full, wrapped with the cursor at the boundaries,
897          * wrapped several times, etc ...
898          */
899         int count[] = { 0,
900                         IRQ_TIMINGS_SIZE >> 1,
901                         IRQ_TIMINGS_SIZE,
902                         IRQ_TIMINGS_SIZE + (IRQ_TIMINGS_SIZE >> 1),
903                         2 * IRQ_TIMINGS_SIZE,
904                         (2 * IRQ_TIMINGS_SIZE) + 3,
905         };
906
907         for (i = 0; i < ARRAY_SIZE(count); i++) {
908
909                 pr_info("---> Checking the timings with %d/%d values\n",
910                         count[i], IRQ_TIMINGS_SIZE);
911
912                 ret = irq_timings_test_irqts(irqts, count[i]);
913                 if (ret)
914                         break;
915         }
916
917         return ret;
918 }
919
920 static int __init irq_timings_selftest(void)
921 {
922         int ret;
923
924         pr_info("------------------- selftest start -----------------\n");
925
926         /*
927          * At this point, we don't except any subsystem to use the irq
928          * timings but us, so it should not be enabled.
929          */
930         if (static_branch_unlikely(&irq_timing_enabled)) {
931                 pr_warn("irq timings already initialized, skipping selftest\n");
932                 return 0;
933         }
934
935         ret = irq_timings_irqts_selftest();
936         if (ret)
937                 goto out;
938
939         ret = irq_timings_irqs_selftest();
940         if (ret)
941                 goto out;
942
943         ret = irq_timings_next_index_selftest();
944 out:
945         pr_info("---------- selftest end with %s -----------\n",
946                 ret ? "failure" : "success");
947
948         return ret;
949 }
950 early_initcall(irq_timings_selftest);
951 #endif