Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23
24 #include "internals.h"
25
26 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
27 __read_mostly bool force_irqthreads;
28 EXPORT_SYMBOL_GPL(force_irqthreads);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         force_irqthreads = true;
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40         struct irq_data *irqd = irq_desc_get_irq_data(desc);
41         bool inprogress;
42
43         do {
44                 unsigned long flags;
45
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 raw_spin_lock_irqsave(&desc->lock, flags);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72                 /* Oops, that failed? */
73         } while (inprogress);
74 }
75
76 /**
77  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *      @irq: interrupt number to wait for
79  *
80  *      This function waits for any pending hard IRQ handlers for this
81  *      interrupt to complete before returning. If you use this
82  *      function while holding a resource the IRQ handler may need you
83  *      will deadlock. It does not take associated threaded handlers
84  *      into account.
85  *
86  *      Do not use this for shutdown scenarios where you must be sure
87  *      that all parts (hardirq and threaded handler) have completed.
88  *
89  *      Returns: false if a threaded handler is active.
90  *
91  *      This function may be called - with care - from IRQ context.
92  *
93  *      It does not check whether there is an interrupt in flight at the
94  *      hardware level, but not serviced yet, as this might deadlock when
95  *      called with interrupts disabled and the target CPU of the interrupt
96  *      is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc, false);
104                 return !atomic_read(&desc->threads_active);
105         }
106
107         return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *      @irq: interrupt number to wait for
114  *
115  *      This function waits for any pending IRQ handlers for this interrupt
116  *      to complete before returning. If you use this function while
117  *      holding a resource the IRQ handler may need you will deadlock.
118  *
119  *      Can only be called from preemptible code as it might sleep when
120  *      an interrupt thread is associated to @irq.
121  *
122  *      It optionally makes sure (when the irq chip supports that method)
123  *      that the interrupt is not pending in any CPU and waiting for
124  *      service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128         struct irq_desc *desc = irq_to_desc(irq);
129
130         if (desc) {
131                 __synchronize_hardirq(desc, true);
132                 /*
133                  * We made sure that no hardirq handler is
134                  * running. Now verify that no threaded handlers are
135                  * active.
136                  */
137                 wait_event(desc->wait_for_threads,
138                            !atomic_read(&desc->threads_active));
139         }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148         if (!desc || !irqd_can_balance(&desc->irq_data) ||
149             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150                 return false;
151         return true;
152 }
153
154 /**
155  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *      @irq:           Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161         return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:        Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173         struct irq_desc *desc = irq_to_desc(irq);
174
175         return __irq_can_set_affinity(desc) &&
176                 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *      @desc:          irq descriptor which has affitnity changed
182  *
183  *      We just set IRQTF_AFFINITY and delegate the affinity setting
184  *      to the interrupt thread itself. We can not call
185  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *      code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190         struct irqaction *action;
191
192         for_each_action_of_desc(desc, action)
193                 if (action->thread)
194                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 static void irq_validate_effective_affinity(struct irq_data *data)
198 {
199 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
200         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201         struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203         if (!cpumask_empty(m))
204                 return;
205         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206                      chip->name, data->irq);
207 #endif
208 }
209
210 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
211                         bool force)
212 {
213         struct irq_desc *desc = irq_data_to_desc(data);
214         struct irq_chip *chip = irq_data_get_irq_chip(data);
215         int ret;
216
217         if (!chip || !chip->irq_set_affinity)
218                 return -EINVAL;
219
220         ret = chip->irq_set_affinity(data, mask, force);
221         switch (ret) {
222         case IRQ_SET_MASK_OK:
223         case IRQ_SET_MASK_OK_DONE:
224                 cpumask_copy(desc->irq_common_data.affinity, mask);
225                 /* fall through */
226         case IRQ_SET_MASK_OK_NOCOPY:
227                 irq_validate_effective_affinity(data);
228                 irq_set_thread_affinity(desc);
229                 ret = 0;
230         }
231
232         return ret;
233 }
234
235 #ifdef CONFIG_GENERIC_PENDING_IRQ
236 static inline int irq_set_affinity_pending(struct irq_data *data,
237                                            const struct cpumask *dest)
238 {
239         struct irq_desc *desc = irq_data_to_desc(data);
240
241         irqd_set_move_pending(data);
242         irq_copy_pending(desc, dest);
243         return 0;
244 }
245 #else
246 static inline int irq_set_affinity_pending(struct irq_data *data,
247                                            const struct cpumask *dest)
248 {
249         return -EBUSY;
250 }
251 #endif
252
253 static int irq_try_set_affinity(struct irq_data *data,
254                                 const struct cpumask *dest, bool force)
255 {
256         int ret = irq_do_set_affinity(data, dest, force);
257
258         /*
259          * In case that the underlying vector management is busy and the
260          * architecture supports the generic pending mechanism then utilize
261          * this to avoid returning an error to user space.
262          */
263         if (ret == -EBUSY && !force)
264                 ret = irq_set_affinity_pending(data, dest);
265         return ret;
266 }
267
268 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
269                             bool force)
270 {
271         struct irq_chip *chip = irq_data_get_irq_chip(data);
272         struct irq_desc *desc = irq_data_to_desc(data);
273         int ret = 0;
274
275         if (!chip || !chip->irq_set_affinity)
276                 return -EINVAL;
277
278         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
279                 ret = irq_try_set_affinity(data, mask, force);
280         } else {
281                 irqd_set_move_pending(data);
282                 irq_copy_pending(desc, mask);
283         }
284
285         if (desc->affinity_notify) {
286                 kref_get(&desc->affinity_notify->kref);
287                 if (!schedule_work(&desc->affinity_notify->work)) {
288                         /* Work was already scheduled, drop our extra ref */
289                         kref_put(&desc->affinity_notify->kref,
290                                  desc->affinity_notify->release);
291                 }
292         }
293         irqd_set(data, IRQD_AFFINITY_SET);
294
295         return ret;
296 }
297
298 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
299 {
300         struct irq_desc *desc = irq_to_desc(irq);
301         unsigned long flags;
302         int ret;
303
304         if (!desc)
305                 return -EINVAL;
306
307         raw_spin_lock_irqsave(&desc->lock, flags);
308         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
309         raw_spin_unlock_irqrestore(&desc->lock, flags);
310         return ret;
311 }
312
313 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
314 {
315         unsigned long flags;
316         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
317
318         if (!desc)
319                 return -EINVAL;
320         desc->affinity_hint = m;
321         irq_put_desc_unlock(desc, flags);
322         /* set the initial affinity to prevent every interrupt being on CPU0 */
323         if (m)
324                 __irq_set_affinity(irq, m, false);
325         return 0;
326 }
327 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
328
329 static void irq_affinity_notify(struct work_struct *work)
330 {
331         struct irq_affinity_notify *notify =
332                 container_of(work, struct irq_affinity_notify, work);
333         struct irq_desc *desc = irq_to_desc(notify->irq);
334         cpumask_var_t cpumask;
335         unsigned long flags;
336
337         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
338                 goto out;
339
340         raw_spin_lock_irqsave(&desc->lock, flags);
341         if (irq_move_pending(&desc->irq_data))
342                 irq_get_pending(cpumask, desc);
343         else
344                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
345         raw_spin_unlock_irqrestore(&desc->lock, flags);
346
347         notify->notify(notify, cpumask);
348
349         free_cpumask_var(cpumask);
350 out:
351         kref_put(&notify->kref, notify->release);
352 }
353
354 /**
355  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
356  *      @irq:           Interrupt for which to enable/disable notification
357  *      @notify:        Context for notification, or %NULL to disable
358  *                      notification.  Function pointers must be initialised;
359  *                      the other fields will be initialised by this function.
360  *
361  *      Must be called in process context.  Notification may only be enabled
362  *      after the IRQ is allocated and must be disabled before the IRQ is
363  *      freed using free_irq().
364  */
365 int
366 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
367 {
368         struct irq_desc *desc = irq_to_desc(irq);
369         struct irq_affinity_notify *old_notify;
370         unsigned long flags;
371
372         /* The release function is promised process context */
373         might_sleep();
374
375         if (!desc || desc->istate & IRQS_NMI)
376                 return -EINVAL;
377
378         /* Complete initialisation of *notify */
379         if (notify) {
380                 notify->irq = irq;
381                 kref_init(&notify->kref);
382                 INIT_WORK(&notify->work, irq_affinity_notify);
383         }
384
385         raw_spin_lock_irqsave(&desc->lock, flags);
386         old_notify = desc->affinity_notify;
387         desc->affinity_notify = notify;
388         raw_spin_unlock_irqrestore(&desc->lock, flags);
389
390         if (old_notify) {
391                 if (cancel_work_sync(&old_notify->work)) {
392                         /* Pending work had a ref, put that one too */
393                         kref_put(&old_notify->kref, old_notify->release);
394                 }
395                 kref_put(&old_notify->kref, old_notify->release);
396         }
397
398         return 0;
399 }
400 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
401
402 #ifndef CONFIG_AUTO_IRQ_AFFINITY
403 /*
404  * Generic version of the affinity autoselector.
405  */
406 int irq_setup_affinity(struct irq_desc *desc)
407 {
408         struct cpumask *set = irq_default_affinity;
409         int ret, node = irq_desc_get_node(desc);
410         static DEFINE_RAW_SPINLOCK(mask_lock);
411         static struct cpumask mask;
412
413         /* Excludes PER_CPU and NO_BALANCE interrupts */
414         if (!__irq_can_set_affinity(desc))
415                 return 0;
416
417         raw_spin_lock(&mask_lock);
418         /*
419          * Preserve the managed affinity setting and a userspace affinity
420          * setup, but make sure that one of the targets is online.
421          */
422         if (irqd_affinity_is_managed(&desc->irq_data) ||
423             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
424                 if (cpumask_intersects(desc->irq_common_data.affinity,
425                                        cpu_online_mask))
426                         set = desc->irq_common_data.affinity;
427                 else
428                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
429         }
430
431         cpumask_and(&mask, cpu_online_mask, set);
432         if (cpumask_empty(&mask))
433                 cpumask_copy(&mask, cpu_online_mask);
434
435         if (node != NUMA_NO_NODE) {
436                 const struct cpumask *nodemask = cpumask_of_node(node);
437
438                 /* make sure at least one of the cpus in nodemask is online */
439                 if (cpumask_intersects(&mask, nodemask))
440                         cpumask_and(&mask, &mask, nodemask);
441         }
442         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
443         raw_spin_unlock(&mask_lock);
444         return ret;
445 }
446 #else
447 /* Wrapper for ALPHA specific affinity selector magic */
448 int irq_setup_affinity(struct irq_desc *desc)
449 {
450         return irq_select_affinity(irq_desc_get_irq(desc));
451 }
452 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
453 #endif /* CONFIG_SMP */
454
455
456 /**
457  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
458  *      @irq: interrupt number to set affinity
459  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
460  *                  specific data for percpu_devid interrupts
461  *
462  *      This function uses the vCPU specific data to set the vCPU
463  *      affinity for an irq. The vCPU specific data is passed from
464  *      outside, such as KVM. One example code path is as below:
465  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
466  */
467 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
468 {
469         unsigned long flags;
470         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
471         struct irq_data *data;
472         struct irq_chip *chip;
473         int ret = -ENOSYS;
474
475         if (!desc)
476                 return -EINVAL;
477
478         data = irq_desc_get_irq_data(desc);
479         do {
480                 chip = irq_data_get_irq_chip(data);
481                 if (chip && chip->irq_set_vcpu_affinity)
482                         break;
483 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
484                 data = data->parent_data;
485 #else
486                 data = NULL;
487 #endif
488         } while (data);
489
490         if (data)
491                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
492         irq_put_desc_unlock(desc, flags);
493
494         return ret;
495 }
496 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
497
498 void __disable_irq(struct irq_desc *desc)
499 {
500         if (!desc->depth++)
501                 irq_disable(desc);
502 }
503
504 static int __disable_irq_nosync(unsigned int irq)
505 {
506         unsigned long flags;
507         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
508
509         if (!desc)
510                 return -EINVAL;
511         __disable_irq(desc);
512         irq_put_desc_busunlock(desc, flags);
513         return 0;
514 }
515
516 /**
517  *      disable_irq_nosync - disable an irq without waiting
518  *      @irq: Interrupt to disable
519  *
520  *      Disable the selected interrupt line.  Disables and Enables are
521  *      nested.
522  *      Unlike disable_irq(), this function does not ensure existing
523  *      instances of the IRQ handler have completed before returning.
524  *
525  *      This function may be called from IRQ context.
526  */
527 void disable_irq_nosync(unsigned int irq)
528 {
529         __disable_irq_nosync(irq);
530 }
531 EXPORT_SYMBOL(disable_irq_nosync);
532
533 /**
534  *      disable_irq - disable an irq and wait for completion
535  *      @irq: Interrupt to disable
536  *
537  *      Disable the selected interrupt line.  Enables and Disables are
538  *      nested.
539  *      This function waits for any pending IRQ handlers for this interrupt
540  *      to complete before returning. If you use this function while
541  *      holding a resource the IRQ handler may need you will deadlock.
542  *
543  *      This function may be called - with care - from IRQ context.
544  */
545 void disable_irq(unsigned int irq)
546 {
547         if (!__disable_irq_nosync(irq))
548                 synchronize_irq(irq);
549 }
550 EXPORT_SYMBOL(disable_irq);
551
552 /**
553  *      disable_hardirq - disables an irq and waits for hardirq completion
554  *      @irq: Interrupt to disable
555  *
556  *      Disable the selected interrupt line.  Enables and Disables are
557  *      nested.
558  *      This function waits for any pending hard IRQ handlers for this
559  *      interrupt to complete before returning. If you use this function while
560  *      holding a resource the hard IRQ handler may need you will deadlock.
561  *
562  *      When used to optimistically disable an interrupt from atomic context
563  *      the return value must be checked.
564  *
565  *      Returns: false if a threaded handler is active.
566  *
567  *      This function may be called - with care - from IRQ context.
568  */
569 bool disable_hardirq(unsigned int irq)
570 {
571         if (!__disable_irq_nosync(irq))
572                 return synchronize_hardirq(irq);
573
574         return false;
575 }
576 EXPORT_SYMBOL_GPL(disable_hardirq);
577
578 /**
579  *      disable_nmi_nosync - disable an nmi without waiting
580  *      @irq: Interrupt to disable
581  *
582  *      Disable the selected interrupt line. Disables and enables are
583  *      nested.
584  *      The interrupt to disable must have been requested through request_nmi.
585  *      Unlike disable_nmi(), this function does not ensure existing
586  *      instances of the IRQ handler have completed before returning.
587  */
588 void disable_nmi_nosync(unsigned int irq)
589 {
590         disable_irq_nosync(irq);
591 }
592
593 void __enable_irq(struct irq_desc *desc)
594 {
595         switch (desc->depth) {
596         case 0:
597  err_out:
598                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
599                      irq_desc_get_irq(desc));
600                 break;
601         case 1: {
602                 if (desc->istate & IRQS_SUSPENDED)
603                         goto err_out;
604                 /* Prevent probing on this irq: */
605                 irq_settings_set_noprobe(desc);
606                 /*
607                  * Call irq_startup() not irq_enable() here because the
608                  * interrupt might be marked NOAUTOEN. So irq_startup()
609                  * needs to be invoked when it gets enabled the first
610                  * time. If it was already started up, then irq_startup()
611                  * will invoke irq_enable() under the hood.
612                  */
613                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
614                 break;
615         }
616         default:
617                 desc->depth--;
618         }
619 }
620
621 /**
622  *      enable_irq - enable handling of an irq
623  *      @irq: Interrupt to enable
624  *
625  *      Undoes the effect of one call to disable_irq().  If this
626  *      matches the last disable, processing of interrupts on this
627  *      IRQ line is re-enabled.
628  *
629  *      This function may be called from IRQ context only when
630  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
631  */
632 void enable_irq(unsigned int irq)
633 {
634         unsigned long flags;
635         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
636
637         if (!desc)
638                 return;
639         if (WARN(!desc->irq_data.chip,
640                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
641                 goto out;
642
643         __enable_irq(desc);
644 out:
645         irq_put_desc_busunlock(desc, flags);
646 }
647 EXPORT_SYMBOL(enable_irq);
648
649 /**
650  *      enable_nmi - enable handling of an nmi
651  *      @irq: Interrupt to enable
652  *
653  *      The interrupt to enable must have been requested through request_nmi.
654  *      Undoes the effect of one call to disable_nmi(). If this
655  *      matches the last disable, processing of interrupts on this
656  *      IRQ line is re-enabled.
657  */
658 void enable_nmi(unsigned int irq)
659 {
660         enable_irq(irq);
661 }
662
663 static int set_irq_wake_real(unsigned int irq, unsigned int on)
664 {
665         struct irq_desc *desc = irq_to_desc(irq);
666         int ret = -ENXIO;
667
668         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
669                 return 0;
670
671         if (desc->irq_data.chip->irq_set_wake)
672                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
673
674         return ret;
675 }
676
677 /**
678  *      irq_set_irq_wake - control irq power management wakeup
679  *      @irq:   interrupt to control
680  *      @on:    enable/disable power management wakeup
681  *
682  *      Enable/disable power management wakeup mode, which is
683  *      disabled by default.  Enables and disables must match,
684  *      just as they match for non-wakeup mode support.
685  *
686  *      Wakeup mode lets this IRQ wake the system from sleep
687  *      states like "suspend to RAM".
688  */
689 int irq_set_irq_wake(unsigned int irq, unsigned int on)
690 {
691         unsigned long flags;
692         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
693         int ret = 0;
694
695         if (!desc)
696                 return -EINVAL;
697
698         /* Don't use NMIs as wake up interrupts please */
699         if (desc->istate & IRQS_NMI) {
700                 ret = -EINVAL;
701                 goto out_unlock;
702         }
703
704         /* wakeup-capable irqs can be shared between drivers that
705          * don't need to have the same sleep mode behaviors.
706          */
707         if (on) {
708                 if (desc->wake_depth++ == 0) {
709                         ret = set_irq_wake_real(irq, on);
710                         if (ret)
711                                 desc->wake_depth = 0;
712                         else
713                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
714                 }
715         } else {
716                 if (desc->wake_depth == 0) {
717                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
718                 } else if (--desc->wake_depth == 0) {
719                         ret = set_irq_wake_real(irq, on);
720                         if (ret)
721                                 desc->wake_depth = 1;
722                         else
723                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
724                 }
725         }
726
727 out_unlock:
728         irq_put_desc_busunlock(desc, flags);
729         return ret;
730 }
731 EXPORT_SYMBOL(irq_set_irq_wake);
732
733 /*
734  * Internal function that tells the architecture code whether a
735  * particular irq has been exclusively allocated or is available
736  * for driver use.
737  */
738 int can_request_irq(unsigned int irq, unsigned long irqflags)
739 {
740         unsigned long flags;
741         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
742         int canrequest = 0;
743
744         if (!desc)
745                 return 0;
746
747         if (irq_settings_can_request(desc)) {
748                 if (!desc->action ||
749                     irqflags & desc->action->flags & IRQF_SHARED)
750                         canrequest = 1;
751         }
752         irq_put_desc_unlock(desc, flags);
753         return canrequest;
754 }
755
756 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
757 {
758         struct irq_chip *chip = desc->irq_data.chip;
759         int ret, unmask = 0;
760
761         if (!chip || !chip->irq_set_type) {
762                 /*
763                  * IRQF_TRIGGER_* but the PIC does not support multiple
764                  * flow-types?
765                  */
766                 pr_debug("No set_type function for IRQ %d (%s)\n",
767                          irq_desc_get_irq(desc),
768                          chip ? (chip->name ? : "unknown") : "unknown");
769                 return 0;
770         }
771
772         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
773                 if (!irqd_irq_masked(&desc->irq_data))
774                         mask_irq(desc);
775                 if (!irqd_irq_disabled(&desc->irq_data))
776                         unmask = 1;
777         }
778
779         /* Mask all flags except trigger mode */
780         flags &= IRQ_TYPE_SENSE_MASK;
781         ret = chip->irq_set_type(&desc->irq_data, flags);
782
783         switch (ret) {
784         case IRQ_SET_MASK_OK:
785         case IRQ_SET_MASK_OK_DONE:
786                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
787                 irqd_set(&desc->irq_data, flags);
788                 /* fall through */
789
790         case IRQ_SET_MASK_OK_NOCOPY:
791                 flags = irqd_get_trigger_type(&desc->irq_data);
792                 irq_settings_set_trigger_mask(desc, flags);
793                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
794                 irq_settings_clr_level(desc);
795                 if (flags & IRQ_TYPE_LEVEL_MASK) {
796                         irq_settings_set_level(desc);
797                         irqd_set(&desc->irq_data, IRQD_LEVEL);
798                 }
799
800                 ret = 0;
801                 break;
802         default:
803                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
804                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
805         }
806         if (unmask)
807                 unmask_irq(desc);
808         return ret;
809 }
810
811 #ifdef CONFIG_HARDIRQS_SW_RESEND
812 int irq_set_parent(int irq, int parent_irq)
813 {
814         unsigned long flags;
815         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
816
817         if (!desc)
818                 return -EINVAL;
819
820         desc->parent_irq = parent_irq;
821
822         irq_put_desc_unlock(desc, flags);
823         return 0;
824 }
825 EXPORT_SYMBOL_GPL(irq_set_parent);
826 #endif
827
828 /*
829  * Default primary interrupt handler for threaded interrupts. Is
830  * assigned as primary handler when request_threaded_irq is called
831  * with handler == NULL. Useful for oneshot interrupts.
832  */
833 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
834 {
835         return IRQ_WAKE_THREAD;
836 }
837
838 /*
839  * Primary handler for nested threaded interrupts. Should never be
840  * called.
841  */
842 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
843 {
844         WARN(1, "Primary handler called for nested irq %d\n", irq);
845         return IRQ_NONE;
846 }
847
848 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
849 {
850         WARN(1, "Secondary action handler called for irq %d\n", irq);
851         return IRQ_NONE;
852 }
853
854 static int irq_wait_for_interrupt(struct irqaction *action)
855 {
856         for (;;) {
857                 set_current_state(TASK_INTERRUPTIBLE);
858
859                 if (kthread_should_stop()) {
860                         /* may need to run one last time */
861                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
862                                                &action->thread_flags)) {
863                                 __set_current_state(TASK_RUNNING);
864                                 return 0;
865                         }
866                         __set_current_state(TASK_RUNNING);
867                         return -1;
868                 }
869
870                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
871                                        &action->thread_flags)) {
872                         __set_current_state(TASK_RUNNING);
873                         return 0;
874                 }
875                 schedule();
876         }
877 }
878
879 /*
880  * Oneshot interrupts keep the irq line masked until the threaded
881  * handler finished. unmask if the interrupt has not been disabled and
882  * is marked MASKED.
883  */
884 static void irq_finalize_oneshot(struct irq_desc *desc,
885                                  struct irqaction *action)
886 {
887         if (!(desc->istate & IRQS_ONESHOT) ||
888             action->handler == irq_forced_secondary_handler)
889                 return;
890 again:
891         chip_bus_lock(desc);
892         raw_spin_lock_irq(&desc->lock);
893
894         /*
895          * Implausible though it may be we need to protect us against
896          * the following scenario:
897          *
898          * The thread is faster done than the hard interrupt handler
899          * on the other CPU. If we unmask the irq line then the
900          * interrupt can come in again and masks the line, leaves due
901          * to IRQS_INPROGRESS and the irq line is masked forever.
902          *
903          * This also serializes the state of shared oneshot handlers
904          * versus "desc->threads_onehsot |= action->thread_mask;" in
905          * irq_wake_thread(). See the comment there which explains the
906          * serialization.
907          */
908         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
909                 raw_spin_unlock_irq(&desc->lock);
910                 chip_bus_sync_unlock(desc);
911                 cpu_relax();
912                 goto again;
913         }
914
915         /*
916          * Now check again, whether the thread should run. Otherwise
917          * we would clear the threads_oneshot bit of this thread which
918          * was just set.
919          */
920         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
921                 goto out_unlock;
922
923         desc->threads_oneshot &= ~action->thread_mask;
924
925         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
926             irqd_irq_masked(&desc->irq_data))
927                 unmask_threaded_irq(desc);
928
929 out_unlock:
930         raw_spin_unlock_irq(&desc->lock);
931         chip_bus_sync_unlock(desc);
932 }
933
934 #ifdef CONFIG_SMP
935 /*
936  * Check whether we need to change the affinity of the interrupt thread.
937  */
938 static void
939 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
940 {
941         cpumask_var_t mask;
942         bool valid = true;
943
944         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
945                 return;
946
947         /*
948          * In case we are out of memory we set IRQTF_AFFINITY again and
949          * try again next time
950          */
951         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
952                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
953                 return;
954         }
955
956         raw_spin_lock_irq(&desc->lock);
957         /*
958          * This code is triggered unconditionally. Check the affinity
959          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
960          */
961         if (cpumask_available(desc->irq_common_data.affinity)) {
962                 const struct cpumask *m;
963
964                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
965                 cpumask_copy(mask, m);
966         } else {
967                 valid = false;
968         }
969         raw_spin_unlock_irq(&desc->lock);
970
971         if (valid)
972                 set_cpus_allowed_ptr(current, mask);
973         free_cpumask_var(mask);
974 }
975 #else
976 static inline void
977 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
978 #endif
979
980 /*
981  * Interrupts which are not explicitly requested as threaded
982  * interrupts rely on the implicit bh/preempt disable of the hard irq
983  * context. So we need to disable bh here to avoid deadlocks and other
984  * side effects.
985  */
986 static irqreturn_t
987 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
988 {
989         irqreturn_t ret;
990
991         local_bh_disable();
992         ret = action->thread_fn(action->irq, action->dev_id);
993         if (ret == IRQ_HANDLED)
994                 atomic_inc(&desc->threads_handled);
995
996         irq_finalize_oneshot(desc, action);
997         local_bh_enable();
998         return ret;
999 }
1000
1001 /*
1002  * Interrupts explicitly requested as threaded interrupts want to be
1003  * preemtible - many of them need to sleep and wait for slow busses to
1004  * complete.
1005  */
1006 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1007                 struct irqaction *action)
1008 {
1009         irqreturn_t ret;
1010
1011         ret = action->thread_fn(action->irq, action->dev_id);
1012         if (ret == IRQ_HANDLED)
1013                 atomic_inc(&desc->threads_handled);
1014
1015         irq_finalize_oneshot(desc, action);
1016         return ret;
1017 }
1018
1019 static void wake_threads_waitq(struct irq_desc *desc)
1020 {
1021         if (atomic_dec_and_test(&desc->threads_active))
1022                 wake_up(&desc->wait_for_threads);
1023 }
1024
1025 static void irq_thread_dtor(struct callback_head *unused)
1026 {
1027         struct task_struct *tsk = current;
1028         struct irq_desc *desc;
1029         struct irqaction *action;
1030
1031         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1032                 return;
1033
1034         action = kthread_data(tsk);
1035
1036         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1037                tsk->comm, tsk->pid, action->irq);
1038
1039
1040         desc = irq_to_desc(action->irq);
1041         /*
1042          * If IRQTF_RUNTHREAD is set, we need to decrement
1043          * desc->threads_active and wake possible waiters.
1044          */
1045         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1046                 wake_threads_waitq(desc);
1047
1048         /* Prevent a stale desc->threads_oneshot */
1049         irq_finalize_oneshot(desc, action);
1050 }
1051
1052 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1053 {
1054         struct irqaction *secondary = action->secondary;
1055
1056         if (WARN_ON_ONCE(!secondary))
1057                 return;
1058
1059         raw_spin_lock_irq(&desc->lock);
1060         __irq_wake_thread(desc, secondary);
1061         raw_spin_unlock_irq(&desc->lock);
1062 }
1063
1064 /*
1065  * Interrupt handler thread
1066  */
1067 static int irq_thread(void *data)
1068 {
1069         struct callback_head on_exit_work;
1070         struct irqaction *action = data;
1071         struct irq_desc *desc = irq_to_desc(action->irq);
1072         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1073                         struct irqaction *action);
1074
1075         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1076                                         &action->thread_flags))
1077                 handler_fn = irq_forced_thread_fn;
1078         else
1079                 handler_fn = irq_thread_fn;
1080
1081         init_task_work(&on_exit_work, irq_thread_dtor);
1082         task_work_add(current, &on_exit_work, false);
1083
1084         irq_thread_check_affinity(desc, action);
1085
1086         while (!irq_wait_for_interrupt(action)) {
1087                 irqreturn_t action_ret;
1088
1089                 irq_thread_check_affinity(desc, action);
1090
1091                 action_ret = handler_fn(desc, action);
1092                 if (action_ret == IRQ_WAKE_THREAD)
1093                         irq_wake_secondary(desc, action);
1094
1095                 wake_threads_waitq(desc);
1096         }
1097
1098         /*
1099          * This is the regular exit path. __free_irq() is stopping the
1100          * thread via kthread_stop() after calling
1101          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1102          * oneshot mask bit can be set.
1103          */
1104         task_work_cancel(current, irq_thread_dtor);
1105         return 0;
1106 }
1107
1108 /**
1109  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1110  *      @irq:           Interrupt line
1111  *      @dev_id:        Device identity for which the thread should be woken
1112  *
1113  */
1114 void irq_wake_thread(unsigned int irq, void *dev_id)
1115 {
1116         struct irq_desc *desc = irq_to_desc(irq);
1117         struct irqaction *action;
1118         unsigned long flags;
1119
1120         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1121                 return;
1122
1123         raw_spin_lock_irqsave(&desc->lock, flags);
1124         for_each_action_of_desc(desc, action) {
1125                 if (action->dev_id == dev_id) {
1126                         if (action->thread)
1127                                 __irq_wake_thread(desc, action);
1128                         break;
1129                 }
1130         }
1131         raw_spin_unlock_irqrestore(&desc->lock, flags);
1132 }
1133 EXPORT_SYMBOL_GPL(irq_wake_thread);
1134
1135 static int irq_setup_forced_threading(struct irqaction *new)
1136 {
1137         if (!force_irqthreads)
1138                 return 0;
1139         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1140                 return 0;
1141
1142         /*
1143          * No further action required for interrupts which are requested as
1144          * threaded interrupts already
1145          */
1146         if (new->handler == irq_default_primary_handler)
1147                 return 0;
1148
1149         new->flags |= IRQF_ONESHOT;
1150
1151         /*
1152          * Handle the case where we have a real primary handler and a
1153          * thread handler. We force thread them as well by creating a
1154          * secondary action.
1155          */
1156         if (new->handler && new->thread_fn) {
1157                 /* Allocate the secondary action */
1158                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1159                 if (!new->secondary)
1160                         return -ENOMEM;
1161                 new->secondary->handler = irq_forced_secondary_handler;
1162                 new->secondary->thread_fn = new->thread_fn;
1163                 new->secondary->dev_id = new->dev_id;
1164                 new->secondary->irq = new->irq;
1165                 new->secondary->name = new->name;
1166         }
1167         /* Deal with the primary handler */
1168         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1169         new->thread_fn = new->handler;
1170         new->handler = irq_default_primary_handler;
1171         return 0;
1172 }
1173
1174 static int irq_request_resources(struct irq_desc *desc)
1175 {
1176         struct irq_data *d = &desc->irq_data;
1177         struct irq_chip *c = d->chip;
1178
1179         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1180 }
1181
1182 static void irq_release_resources(struct irq_desc *desc)
1183 {
1184         struct irq_data *d = &desc->irq_data;
1185         struct irq_chip *c = d->chip;
1186
1187         if (c->irq_release_resources)
1188                 c->irq_release_resources(d);
1189 }
1190
1191 static bool irq_supports_nmi(struct irq_desc *desc)
1192 {
1193         struct irq_data *d = irq_desc_get_irq_data(desc);
1194
1195 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1196         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1197         if (d->parent_data)
1198                 return false;
1199 #endif
1200         /* Don't support NMIs for chips behind a slow bus */
1201         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1202                 return false;
1203
1204         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1205 }
1206
1207 static int irq_nmi_setup(struct irq_desc *desc)
1208 {
1209         struct irq_data *d = irq_desc_get_irq_data(desc);
1210         struct irq_chip *c = d->chip;
1211
1212         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1213 }
1214
1215 static void irq_nmi_teardown(struct irq_desc *desc)
1216 {
1217         struct irq_data *d = irq_desc_get_irq_data(desc);
1218         struct irq_chip *c = d->chip;
1219
1220         if (c->irq_nmi_teardown)
1221                 c->irq_nmi_teardown(d);
1222 }
1223
1224 static int
1225 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1226 {
1227         struct task_struct *t;
1228         struct sched_param param = {
1229                 .sched_priority = MAX_USER_RT_PRIO/2,
1230         };
1231
1232         if (!secondary) {
1233                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1234                                    new->name);
1235         } else {
1236                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1237                                    new->name);
1238                 param.sched_priority -= 1;
1239         }
1240
1241         if (IS_ERR(t))
1242                 return PTR_ERR(t);
1243
1244         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1245
1246         /*
1247          * We keep the reference to the task struct even if
1248          * the thread dies to avoid that the interrupt code
1249          * references an already freed task_struct.
1250          */
1251         new->thread = get_task_struct(t);
1252         /*
1253          * Tell the thread to set its affinity. This is
1254          * important for shared interrupt handlers as we do
1255          * not invoke setup_affinity() for the secondary
1256          * handlers as everything is already set up. Even for
1257          * interrupts marked with IRQF_NO_BALANCE this is
1258          * correct as we want the thread to move to the cpu(s)
1259          * on which the requesting code placed the interrupt.
1260          */
1261         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1262         return 0;
1263 }
1264
1265 /*
1266  * Internal function to register an irqaction - typically used to
1267  * allocate special interrupts that are part of the architecture.
1268  *
1269  * Locking rules:
1270  *
1271  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1272  *   chip_bus_lock      Provides serialization for slow bus operations
1273  *     desc->lock       Provides serialization against hard interrupts
1274  *
1275  * chip_bus_lock and desc->lock are sufficient for all other management and
1276  * interrupt related functions. desc->request_mutex solely serializes
1277  * request/free_irq().
1278  */
1279 static int
1280 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1281 {
1282         struct irqaction *old, **old_ptr;
1283         unsigned long flags, thread_mask = 0;
1284         int ret, nested, shared = 0;
1285
1286         if (!desc)
1287                 return -EINVAL;
1288
1289         if (desc->irq_data.chip == &no_irq_chip)
1290                 return -ENOSYS;
1291         if (!try_module_get(desc->owner))
1292                 return -ENODEV;
1293
1294         new->irq = irq;
1295
1296         /*
1297          * If the trigger type is not specified by the caller,
1298          * then use the default for this interrupt.
1299          */
1300         if (!(new->flags & IRQF_TRIGGER_MASK))
1301                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1302
1303         /*
1304          * Check whether the interrupt nests into another interrupt
1305          * thread.
1306          */
1307         nested = irq_settings_is_nested_thread(desc);
1308         if (nested) {
1309                 if (!new->thread_fn) {
1310                         ret = -EINVAL;
1311                         goto out_mput;
1312                 }
1313                 /*
1314                  * Replace the primary handler which was provided from
1315                  * the driver for non nested interrupt handling by the
1316                  * dummy function which warns when called.
1317                  */
1318                 new->handler = irq_nested_primary_handler;
1319         } else {
1320                 if (irq_settings_can_thread(desc)) {
1321                         ret = irq_setup_forced_threading(new);
1322                         if (ret)
1323                                 goto out_mput;
1324                 }
1325         }
1326
1327         /*
1328          * Create a handler thread when a thread function is supplied
1329          * and the interrupt does not nest into another interrupt
1330          * thread.
1331          */
1332         if (new->thread_fn && !nested) {
1333                 ret = setup_irq_thread(new, irq, false);
1334                 if (ret)
1335                         goto out_mput;
1336                 if (new->secondary) {
1337                         ret = setup_irq_thread(new->secondary, irq, true);
1338                         if (ret)
1339                                 goto out_thread;
1340                 }
1341         }
1342
1343         /*
1344          * Drivers are often written to work w/o knowledge about the
1345          * underlying irq chip implementation, so a request for a
1346          * threaded irq without a primary hard irq context handler
1347          * requires the ONESHOT flag to be set. Some irq chips like
1348          * MSI based interrupts are per se one shot safe. Check the
1349          * chip flags, so we can avoid the unmask dance at the end of
1350          * the threaded handler for those.
1351          */
1352         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1353                 new->flags &= ~IRQF_ONESHOT;
1354
1355         /*
1356          * Protects against a concurrent __free_irq() call which might wait
1357          * for synchronize_hardirq() to complete without holding the optional
1358          * chip bus lock and desc->lock. Also protects against handing out
1359          * a recycled oneshot thread_mask bit while it's still in use by
1360          * its previous owner.
1361          */
1362         mutex_lock(&desc->request_mutex);
1363
1364         /*
1365          * Acquire bus lock as the irq_request_resources() callback below
1366          * might rely on the serialization or the magic power management
1367          * functions which are abusing the irq_bus_lock() callback,
1368          */
1369         chip_bus_lock(desc);
1370
1371         /* First installed action requests resources. */
1372         if (!desc->action) {
1373                 ret = irq_request_resources(desc);
1374                 if (ret) {
1375                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1376                                new->name, irq, desc->irq_data.chip->name);
1377                         goto out_bus_unlock;
1378                 }
1379         }
1380
1381         /*
1382          * The following block of code has to be executed atomically
1383          * protected against a concurrent interrupt and any of the other
1384          * management calls which are not serialized via
1385          * desc->request_mutex or the optional bus lock.
1386          */
1387         raw_spin_lock_irqsave(&desc->lock, flags);
1388         old_ptr = &desc->action;
1389         old = *old_ptr;
1390         if (old) {
1391                 /*
1392                  * Can't share interrupts unless both agree to and are
1393                  * the same type (level, edge, polarity). So both flag
1394                  * fields must have IRQF_SHARED set and the bits which
1395                  * set the trigger type must match. Also all must
1396                  * agree on ONESHOT.
1397                  * Interrupt lines used for NMIs cannot be shared.
1398                  */
1399                 unsigned int oldtype;
1400
1401                 if (desc->istate & IRQS_NMI) {
1402                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1403                                 new->name, irq, desc->irq_data.chip->name);
1404                         ret = -EINVAL;
1405                         goto out_unlock;
1406                 }
1407
1408                 /*
1409                  * If nobody did set the configuration before, inherit
1410                  * the one provided by the requester.
1411                  */
1412                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1413                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1414                 } else {
1415                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1416                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1417                 }
1418
1419                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1420                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1421                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1422                         goto mismatch;
1423
1424                 /* All handlers must agree on per-cpuness */
1425                 if ((old->flags & IRQF_PERCPU) !=
1426                     (new->flags & IRQF_PERCPU))
1427                         goto mismatch;
1428
1429                 /* add new interrupt at end of irq queue */
1430                 do {
1431                         /*
1432                          * Or all existing action->thread_mask bits,
1433                          * so we can find the next zero bit for this
1434                          * new action.
1435                          */
1436                         thread_mask |= old->thread_mask;
1437                         old_ptr = &old->next;
1438                         old = *old_ptr;
1439                 } while (old);
1440                 shared = 1;
1441         }
1442
1443         /*
1444          * Setup the thread mask for this irqaction for ONESHOT. For
1445          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1446          * conditional in irq_wake_thread().
1447          */
1448         if (new->flags & IRQF_ONESHOT) {
1449                 /*
1450                  * Unlikely to have 32 resp 64 irqs sharing one line,
1451                  * but who knows.
1452                  */
1453                 if (thread_mask == ~0UL) {
1454                         ret = -EBUSY;
1455                         goto out_unlock;
1456                 }
1457                 /*
1458                  * The thread_mask for the action is or'ed to
1459                  * desc->thread_active to indicate that the
1460                  * IRQF_ONESHOT thread handler has been woken, but not
1461                  * yet finished. The bit is cleared when a thread
1462                  * completes. When all threads of a shared interrupt
1463                  * line have completed desc->threads_active becomes
1464                  * zero and the interrupt line is unmasked. See
1465                  * handle.c:irq_wake_thread() for further information.
1466                  *
1467                  * If no thread is woken by primary (hard irq context)
1468                  * interrupt handlers, then desc->threads_active is
1469                  * also checked for zero to unmask the irq line in the
1470                  * affected hard irq flow handlers
1471                  * (handle_[fasteoi|level]_irq).
1472                  *
1473                  * The new action gets the first zero bit of
1474                  * thread_mask assigned. See the loop above which or's
1475                  * all existing action->thread_mask bits.
1476                  */
1477                 new->thread_mask = 1UL << ffz(thread_mask);
1478
1479         } else if (new->handler == irq_default_primary_handler &&
1480                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1481                 /*
1482                  * The interrupt was requested with handler = NULL, so
1483                  * we use the default primary handler for it. But it
1484                  * does not have the oneshot flag set. In combination
1485                  * with level interrupts this is deadly, because the
1486                  * default primary handler just wakes the thread, then
1487                  * the irq lines is reenabled, but the device still
1488                  * has the level irq asserted. Rinse and repeat....
1489                  *
1490                  * While this works for edge type interrupts, we play
1491                  * it safe and reject unconditionally because we can't
1492                  * say for sure which type this interrupt really
1493                  * has. The type flags are unreliable as the
1494                  * underlying chip implementation can override them.
1495                  */
1496                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1497                        irq);
1498                 ret = -EINVAL;
1499                 goto out_unlock;
1500         }
1501
1502         if (!shared) {
1503                 init_waitqueue_head(&desc->wait_for_threads);
1504
1505                 /* Setup the type (level, edge polarity) if configured: */
1506                 if (new->flags & IRQF_TRIGGER_MASK) {
1507                         ret = __irq_set_trigger(desc,
1508                                                 new->flags & IRQF_TRIGGER_MASK);
1509
1510                         if (ret)
1511                                 goto out_unlock;
1512                 }
1513
1514                 /*
1515                  * Activate the interrupt. That activation must happen
1516                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1517                  * and the callers are supposed to handle
1518                  * that. enable_irq() of an interrupt requested with
1519                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1520                  * keeps it in shutdown mode, it merily associates
1521                  * resources if necessary and if that's not possible it
1522                  * fails. Interrupts which are in managed shutdown mode
1523                  * will simply ignore that activation request.
1524                  */
1525                 ret = irq_activate(desc);
1526                 if (ret)
1527                         goto out_unlock;
1528
1529                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1530                                   IRQS_ONESHOT | IRQS_WAITING);
1531                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1532
1533                 if (new->flags & IRQF_PERCPU) {
1534                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1535                         irq_settings_set_per_cpu(desc);
1536                 }
1537
1538                 if (new->flags & IRQF_ONESHOT)
1539                         desc->istate |= IRQS_ONESHOT;
1540
1541                 /* Exclude IRQ from balancing if requested */
1542                 if (new->flags & IRQF_NOBALANCING) {
1543                         irq_settings_set_no_balancing(desc);
1544                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1545                 }
1546
1547                 if (irq_settings_can_autoenable(desc)) {
1548                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1549                 } else {
1550                         /*
1551                          * Shared interrupts do not go well with disabling
1552                          * auto enable. The sharing interrupt might request
1553                          * it while it's still disabled and then wait for
1554                          * interrupts forever.
1555                          */
1556                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1557                         /* Undo nested disables: */
1558                         desc->depth = 1;
1559                 }
1560
1561         } else if (new->flags & IRQF_TRIGGER_MASK) {
1562                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1563                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1564
1565                 if (nmsk != omsk)
1566                         /* hope the handler works with current  trigger mode */
1567                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1568                                 irq, omsk, nmsk);
1569         }
1570
1571         *old_ptr = new;
1572
1573         irq_pm_install_action(desc, new);
1574
1575         /* Reset broken irq detection when installing new handler */
1576         desc->irq_count = 0;
1577         desc->irqs_unhandled = 0;
1578
1579         /*
1580          * Check whether we disabled the irq via the spurious handler
1581          * before. Reenable it and give it another chance.
1582          */
1583         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1584                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1585                 __enable_irq(desc);
1586         }
1587
1588         raw_spin_unlock_irqrestore(&desc->lock, flags);
1589         chip_bus_sync_unlock(desc);
1590         mutex_unlock(&desc->request_mutex);
1591
1592         irq_setup_timings(desc, new);
1593
1594         /*
1595          * Strictly no need to wake it up, but hung_task complains
1596          * when no hard interrupt wakes the thread up.
1597          */
1598         if (new->thread)
1599                 wake_up_process(new->thread);
1600         if (new->secondary)
1601                 wake_up_process(new->secondary->thread);
1602
1603         register_irq_proc(irq, desc);
1604         new->dir = NULL;
1605         register_handler_proc(irq, new);
1606         return 0;
1607
1608 mismatch:
1609         if (!(new->flags & IRQF_PROBE_SHARED)) {
1610                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1611                        irq, new->flags, new->name, old->flags, old->name);
1612 #ifdef CONFIG_DEBUG_SHIRQ
1613                 dump_stack();
1614 #endif
1615         }
1616         ret = -EBUSY;
1617
1618 out_unlock:
1619         raw_spin_unlock_irqrestore(&desc->lock, flags);
1620
1621         if (!desc->action)
1622                 irq_release_resources(desc);
1623 out_bus_unlock:
1624         chip_bus_sync_unlock(desc);
1625         mutex_unlock(&desc->request_mutex);
1626
1627 out_thread:
1628         if (new->thread) {
1629                 struct task_struct *t = new->thread;
1630
1631                 new->thread = NULL;
1632                 kthread_stop(t);
1633                 put_task_struct(t);
1634         }
1635         if (new->secondary && new->secondary->thread) {
1636                 struct task_struct *t = new->secondary->thread;
1637
1638                 new->secondary->thread = NULL;
1639                 kthread_stop(t);
1640                 put_task_struct(t);
1641         }
1642 out_mput:
1643         module_put(desc->owner);
1644         return ret;
1645 }
1646
1647 /**
1648  *      setup_irq - setup an interrupt
1649  *      @irq: Interrupt line to setup
1650  *      @act: irqaction for the interrupt
1651  *
1652  * Used to statically setup interrupts in the early boot process.
1653  */
1654 int setup_irq(unsigned int irq, struct irqaction *act)
1655 {
1656         int retval;
1657         struct irq_desc *desc = irq_to_desc(irq);
1658
1659         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1660                 return -EINVAL;
1661
1662         retval = irq_chip_pm_get(&desc->irq_data);
1663         if (retval < 0)
1664                 return retval;
1665
1666         retval = __setup_irq(irq, desc, act);
1667
1668         if (retval)
1669                 irq_chip_pm_put(&desc->irq_data);
1670
1671         return retval;
1672 }
1673 EXPORT_SYMBOL_GPL(setup_irq);
1674
1675 /*
1676  * Internal function to unregister an irqaction - used to free
1677  * regular and special interrupts that are part of the architecture.
1678  */
1679 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1680 {
1681         unsigned irq = desc->irq_data.irq;
1682         struct irqaction *action, **action_ptr;
1683         unsigned long flags;
1684
1685         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1686
1687         mutex_lock(&desc->request_mutex);
1688         chip_bus_lock(desc);
1689         raw_spin_lock_irqsave(&desc->lock, flags);
1690
1691         /*
1692          * There can be multiple actions per IRQ descriptor, find the right
1693          * one based on the dev_id:
1694          */
1695         action_ptr = &desc->action;
1696         for (;;) {
1697                 action = *action_ptr;
1698
1699                 if (!action) {
1700                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1701                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1702                         chip_bus_sync_unlock(desc);
1703                         mutex_unlock(&desc->request_mutex);
1704                         return NULL;
1705                 }
1706
1707                 if (action->dev_id == dev_id)
1708                         break;
1709                 action_ptr = &action->next;
1710         }
1711
1712         /* Found it - now remove it from the list of entries: */
1713         *action_ptr = action->next;
1714
1715         irq_pm_remove_action(desc, action);
1716
1717         /* If this was the last handler, shut down the IRQ line: */
1718         if (!desc->action) {
1719                 irq_settings_clr_disable_unlazy(desc);
1720                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1721                 irq_shutdown(desc);
1722         }
1723
1724 #ifdef CONFIG_SMP
1725         /* make sure affinity_hint is cleaned up */
1726         if (WARN_ON_ONCE(desc->affinity_hint))
1727                 desc->affinity_hint = NULL;
1728 #endif
1729
1730         raw_spin_unlock_irqrestore(&desc->lock, flags);
1731         /*
1732          * Drop bus_lock here so the changes which were done in the chip
1733          * callbacks above are synced out to the irq chips which hang
1734          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1735          *
1736          * Aside of that the bus_lock can also be taken from the threaded
1737          * handler in irq_finalize_oneshot() which results in a deadlock
1738          * because kthread_stop() would wait forever for the thread to
1739          * complete, which is blocked on the bus lock.
1740          *
1741          * The still held desc->request_mutex() protects against a
1742          * concurrent request_irq() of this irq so the release of resources
1743          * and timing data is properly serialized.
1744          */
1745         chip_bus_sync_unlock(desc);
1746
1747         unregister_handler_proc(irq, action);
1748
1749         /*
1750          * Make sure it's not being used on another CPU and if the chip
1751          * supports it also make sure that there is no (not yet serviced)
1752          * interrupt in flight at the hardware level.
1753          */
1754         __synchronize_hardirq(desc, true);
1755
1756 #ifdef CONFIG_DEBUG_SHIRQ
1757         /*
1758          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1759          * event to happen even now it's being freed, so let's make sure that
1760          * is so by doing an extra call to the handler ....
1761          *
1762          * ( We do this after actually deregistering it, to make sure that a
1763          *   'real' IRQ doesn't run in parallel with our fake. )
1764          */
1765         if (action->flags & IRQF_SHARED) {
1766                 local_irq_save(flags);
1767                 action->handler(irq, dev_id);
1768                 local_irq_restore(flags);
1769         }
1770 #endif
1771
1772         /*
1773          * The action has already been removed above, but the thread writes
1774          * its oneshot mask bit when it completes. Though request_mutex is
1775          * held across this which prevents __setup_irq() from handing out
1776          * the same bit to a newly requested action.
1777          */
1778         if (action->thread) {
1779                 kthread_stop(action->thread);
1780                 put_task_struct(action->thread);
1781                 if (action->secondary && action->secondary->thread) {
1782                         kthread_stop(action->secondary->thread);
1783                         put_task_struct(action->secondary->thread);
1784                 }
1785         }
1786
1787         /* Last action releases resources */
1788         if (!desc->action) {
1789                 /*
1790                  * Reaquire bus lock as irq_release_resources() might
1791                  * require it to deallocate resources over the slow bus.
1792                  */
1793                 chip_bus_lock(desc);
1794                 /*
1795                  * There is no interrupt on the fly anymore. Deactivate it
1796                  * completely.
1797                  */
1798                 raw_spin_lock_irqsave(&desc->lock, flags);
1799                 irq_domain_deactivate_irq(&desc->irq_data);
1800                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1801
1802                 irq_release_resources(desc);
1803                 chip_bus_sync_unlock(desc);
1804                 irq_remove_timings(desc);
1805         }
1806
1807         mutex_unlock(&desc->request_mutex);
1808
1809         irq_chip_pm_put(&desc->irq_data);
1810         module_put(desc->owner);
1811         kfree(action->secondary);
1812         return action;
1813 }
1814
1815 /**
1816  *      remove_irq - free an interrupt
1817  *      @irq: Interrupt line to free
1818  *      @act: irqaction for the interrupt
1819  *
1820  * Used to remove interrupts statically setup by the early boot process.
1821  */
1822 void remove_irq(unsigned int irq, struct irqaction *act)
1823 {
1824         struct irq_desc *desc = irq_to_desc(irq);
1825
1826         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1827                 __free_irq(desc, act->dev_id);
1828 }
1829 EXPORT_SYMBOL_GPL(remove_irq);
1830
1831 /**
1832  *      free_irq - free an interrupt allocated with request_irq
1833  *      @irq: Interrupt line to free
1834  *      @dev_id: Device identity to free
1835  *
1836  *      Remove an interrupt handler. The handler is removed and if the
1837  *      interrupt line is no longer in use by any driver it is disabled.
1838  *      On a shared IRQ the caller must ensure the interrupt is disabled
1839  *      on the card it drives before calling this function. The function
1840  *      does not return until any executing interrupts for this IRQ
1841  *      have completed.
1842  *
1843  *      This function must not be called from interrupt context.
1844  *
1845  *      Returns the devname argument passed to request_irq.
1846  */
1847 const void *free_irq(unsigned int irq, void *dev_id)
1848 {
1849         struct irq_desc *desc = irq_to_desc(irq);
1850         struct irqaction *action;
1851         const char *devname;
1852
1853         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1854                 return NULL;
1855
1856 #ifdef CONFIG_SMP
1857         if (WARN_ON(desc->affinity_notify))
1858                 desc->affinity_notify = NULL;
1859 #endif
1860
1861         action = __free_irq(desc, dev_id);
1862
1863         if (!action)
1864                 return NULL;
1865
1866         devname = action->name;
1867         kfree(action);
1868         return devname;
1869 }
1870 EXPORT_SYMBOL(free_irq);
1871
1872 /* This function must be called with desc->lock held */
1873 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1874 {
1875         const char *devname = NULL;
1876
1877         desc->istate &= ~IRQS_NMI;
1878
1879         if (!WARN_ON(desc->action == NULL)) {
1880                 irq_pm_remove_action(desc, desc->action);
1881                 devname = desc->action->name;
1882                 unregister_handler_proc(irq, desc->action);
1883
1884                 kfree(desc->action);
1885                 desc->action = NULL;
1886         }
1887
1888         irq_settings_clr_disable_unlazy(desc);
1889         irq_shutdown_and_deactivate(desc);
1890
1891         irq_release_resources(desc);
1892
1893         irq_chip_pm_put(&desc->irq_data);
1894         module_put(desc->owner);
1895
1896         return devname;
1897 }
1898
1899 const void *free_nmi(unsigned int irq, void *dev_id)
1900 {
1901         struct irq_desc *desc = irq_to_desc(irq);
1902         unsigned long flags;
1903         const void *devname;
1904
1905         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1906                 return NULL;
1907
1908         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1909                 return NULL;
1910
1911         /* NMI still enabled */
1912         if (WARN_ON(desc->depth == 0))
1913                 disable_nmi_nosync(irq);
1914
1915         raw_spin_lock_irqsave(&desc->lock, flags);
1916
1917         irq_nmi_teardown(desc);
1918         devname = __cleanup_nmi(irq, desc);
1919
1920         raw_spin_unlock_irqrestore(&desc->lock, flags);
1921
1922         return devname;
1923 }
1924
1925 /**
1926  *      request_threaded_irq - allocate an interrupt line
1927  *      @irq: Interrupt line to allocate
1928  *      @handler: Function to be called when the IRQ occurs.
1929  *                Primary handler for threaded interrupts
1930  *                If NULL and thread_fn != NULL the default
1931  *                primary handler is installed
1932  *      @thread_fn: Function called from the irq handler thread
1933  *                  If NULL, no irq thread is created
1934  *      @irqflags: Interrupt type flags
1935  *      @devname: An ascii name for the claiming device
1936  *      @dev_id: A cookie passed back to the handler function
1937  *
1938  *      This call allocates interrupt resources and enables the
1939  *      interrupt line and IRQ handling. From the point this
1940  *      call is made your handler function may be invoked. Since
1941  *      your handler function must clear any interrupt the board
1942  *      raises, you must take care both to initialise your hardware
1943  *      and to set up the interrupt handler in the right order.
1944  *
1945  *      If you want to set up a threaded irq handler for your device
1946  *      then you need to supply @handler and @thread_fn. @handler is
1947  *      still called in hard interrupt context and has to check
1948  *      whether the interrupt originates from the device. If yes it
1949  *      needs to disable the interrupt on the device and return
1950  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1951  *      @thread_fn. This split handler design is necessary to support
1952  *      shared interrupts.
1953  *
1954  *      Dev_id must be globally unique. Normally the address of the
1955  *      device data structure is used as the cookie. Since the handler
1956  *      receives this value it makes sense to use it.
1957  *
1958  *      If your interrupt is shared you must pass a non NULL dev_id
1959  *      as this is required when freeing the interrupt.
1960  *
1961  *      Flags:
1962  *
1963  *      IRQF_SHARED             Interrupt is shared
1964  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1965  *
1966  */
1967 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1968                          irq_handler_t thread_fn, unsigned long irqflags,
1969                          const char *devname, void *dev_id)
1970 {
1971         struct irqaction *action;
1972         struct irq_desc *desc;
1973         int retval;
1974
1975         if (irq == IRQ_NOTCONNECTED)
1976                 return -ENOTCONN;
1977
1978         /*
1979          * Sanity-check: shared interrupts must pass in a real dev-ID,
1980          * otherwise we'll have trouble later trying to figure out
1981          * which interrupt is which (messes up the interrupt freeing
1982          * logic etc).
1983          *
1984          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1985          * it cannot be set along with IRQF_NO_SUSPEND.
1986          */
1987         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1988             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1989             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1990                 return -EINVAL;
1991
1992         desc = irq_to_desc(irq);
1993         if (!desc)
1994                 return -EINVAL;
1995
1996         if (!irq_settings_can_request(desc) ||
1997             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1998                 return -EINVAL;
1999
2000         if (!handler) {
2001                 if (!thread_fn)
2002                         return -EINVAL;
2003                 handler = irq_default_primary_handler;
2004         }
2005
2006         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2007         if (!action)
2008                 return -ENOMEM;
2009
2010         action->handler = handler;
2011         action->thread_fn = thread_fn;
2012         action->flags = irqflags;
2013         action->name = devname;
2014         action->dev_id = dev_id;
2015
2016         retval = irq_chip_pm_get(&desc->irq_data);
2017         if (retval < 0) {
2018                 kfree(action);
2019                 return retval;
2020         }
2021
2022         retval = __setup_irq(irq, desc, action);
2023
2024         if (retval) {
2025                 irq_chip_pm_put(&desc->irq_data);
2026                 kfree(action->secondary);
2027                 kfree(action);
2028         }
2029
2030 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2031         if (!retval && (irqflags & IRQF_SHARED)) {
2032                 /*
2033                  * It's a shared IRQ -- the driver ought to be prepared for it
2034                  * to happen immediately, so let's make sure....
2035                  * We disable the irq to make sure that a 'real' IRQ doesn't
2036                  * run in parallel with our fake.
2037                  */
2038                 unsigned long flags;
2039
2040                 disable_irq(irq);
2041                 local_irq_save(flags);
2042
2043                 handler(irq, dev_id);
2044
2045                 local_irq_restore(flags);
2046                 enable_irq(irq);
2047         }
2048 #endif
2049         return retval;
2050 }
2051 EXPORT_SYMBOL(request_threaded_irq);
2052
2053 /**
2054  *      request_any_context_irq - allocate an interrupt line
2055  *      @irq: Interrupt line to allocate
2056  *      @handler: Function to be called when the IRQ occurs.
2057  *                Threaded handler for threaded interrupts.
2058  *      @flags: Interrupt type flags
2059  *      @name: An ascii name for the claiming device
2060  *      @dev_id: A cookie passed back to the handler function
2061  *
2062  *      This call allocates interrupt resources and enables the
2063  *      interrupt line and IRQ handling. It selects either a
2064  *      hardirq or threaded handling method depending on the
2065  *      context.
2066  *
2067  *      On failure, it returns a negative value. On success,
2068  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2069  */
2070 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2071                             unsigned long flags, const char *name, void *dev_id)
2072 {
2073         struct irq_desc *desc;
2074         int ret;
2075
2076         if (irq == IRQ_NOTCONNECTED)
2077                 return -ENOTCONN;
2078
2079         desc = irq_to_desc(irq);
2080         if (!desc)
2081                 return -EINVAL;
2082
2083         if (irq_settings_is_nested_thread(desc)) {
2084                 ret = request_threaded_irq(irq, NULL, handler,
2085                                            flags, name, dev_id);
2086                 return !ret ? IRQC_IS_NESTED : ret;
2087         }
2088
2089         ret = request_irq(irq, handler, flags, name, dev_id);
2090         return !ret ? IRQC_IS_HARDIRQ : ret;
2091 }
2092 EXPORT_SYMBOL_GPL(request_any_context_irq);
2093
2094 /**
2095  *      request_nmi - allocate an interrupt line for NMI delivery
2096  *      @irq: Interrupt line to allocate
2097  *      @handler: Function to be called when the IRQ occurs.
2098  *                Threaded handler for threaded interrupts.
2099  *      @irqflags: Interrupt type flags
2100  *      @name: An ascii name for the claiming device
2101  *      @dev_id: A cookie passed back to the handler function
2102  *
2103  *      This call allocates interrupt resources and enables the
2104  *      interrupt line and IRQ handling. It sets up the IRQ line
2105  *      to be handled as an NMI.
2106  *
2107  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2108  *      cannot be threaded.
2109  *
2110  *      Interrupt lines requested for NMI delivering must produce per cpu
2111  *      interrupts and have auto enabling setting disabled.
2112  *
2113  *      Dev_id must be globally unique. Normally the address of the
2114  *      device data structure is used as the cookie. Since the handler
2115  *      receives this value it makes sense to use it.
2116  *
2117  *      If the interrupt line cannot be used to deliver NMIs, function
2118  *      will fail and return a negative value.
2119  */
2120 int request_nmi(unsigned int irq, irq_handler_t handler,
2121                 unsigned long irqflags, const char *name, void *dev_id)
2122 {
2123         struct irqaction *action;
2124         struct irq_desc *desc;
2125         unsigned long flags;
2126         int retval;
2127
2128         if (irq == IRQ_NOTCONNECTED)
2129                 return -ENOTCONN;
2130
2131         /* NMI cannot be shared, used for Polling */
2132         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2133                 return -EINVAL;
2134
2135         if (!(irqflags & IRQF_PERCPU))
2136                 return -EINVAL;
2137
2138         if (!handler)
2139                 return -EINVAL;
2140
2141         desc = irq_to_desc(irq);
2142
2143         if (!desc || irq_settings_can_autoenable(desc) ||
2144             !irq_settings_can_request(desc) ||
2145             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2146             !irq_supports_nmi(desc))
2147                 return -EINVAL;
2148
2149         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2150         if (!action)
2151                 return -ENOMEM;
2152
2153         action->handler = handler;
2154         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2155         action->name = name;
2156         action->dev_id = dev_id;
2157
2158         retval = irq_chip_pm_get(&desc->irq_data);
2159         if (retval < 0)
2160                 goto err_out;
2161
2162         retval = __setup_irq(irq, desc, action);
2163         if (retval)
2164                 goto err_irq_setup;
2165
2166         raw_spin_lock_irqsave(&desc->lock, flags);
2167
2168         /* Setup NMI state */
2169         desc->istate |= IRQS_NMI;
2170         retval = irq_nmi_setup(desc);
2171         if (retval) {
2172                 __cleanup_nmi(irq, desc);
2173                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2174                 return -EINVAL;
2175         }
2176
2177         raw_spin_unlock_irqrestore(&desc->lock, flags);
2178
2179         return 0;
2180
2181 err_irq_setup:
2182         irq_chip_pm_put(&desc->irq_data);
2183 err_out:
2184         kfree(action);
2185
2186         return retval;
2187 }
2188
2189 void enable_percpu_irq(unsigned int irq, unsigned int type)
2190 {
2191         unsigned int cpu = smp_processor_id();
2192         unsigned long flags;
2193         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2194
2195         if (!desc)
2196                 return;
2197
2198         /*
2199          * If the trigger type is not specified by the caller, then
2200          * use the default for this interrupt.
2201          */
2202         type &= IRQ_TYPE_SENSE_MASK;
2203         if (type == IRQ_TYPE_NONE)
2204                 type = irqd_get_trigger_type(&desc->irq_data);
2205
2206         if (type != IRQ_TYPE_NONE) {
2207                 int ret;
2208
2209                 ret = __irq_set_trigger(desc, type);
2210
2211                 if (ret) {
2212                         WARN(1, "failed to set type for IRQ%d\n", irq);
2213                         goto out;
2214                 }
2215         }
2216
2217         irq_percpu_enable(desc, cpu);
2218 out:
2219         irq_put_desc_unlock(desc, flags);
2220 }
2221 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2222
2223 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2224 {
2225         enable_percpu_irq(irq, type);
2226 }
2227
2228 /**
2229  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2230  * @irq:        Linux irq number to check for
2231  *
2232  * Must be called from a non migratable context. Returns the enable
2233  * state of a per cpu interrupt on the current cpu.
2234  */
2235 bool irq_percpu_is_enabled(unsigned int irq)
2236 {
2237         unsigned int cpu = smp_processor_id();
2238         struct irq_desc *desc;
2239         unsigned long flags;
2240         bool is_enabled;
2241
2242         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2243         if (!desc)
2244                 return false;
2245
2246         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2247         irq_put_desc_unlock(desc, flags);
2248
2249         return is_enabled;
2250 }
2251 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2252
2253 void disable_percpu_irq(unsigned int irq)
2254 {
2255         unsigned int cpu = smp_processor_id();
2256         unsigned long flags;
2257         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2258
2259         if (!desc)
2260                 return;
2261
2262         irq_percpu_disable(desc, cpu);
2263         irq_put_desc_unlock(desc, flags);
2264 }
2265 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2266
2267 void disable_percpu_nmi(unsigned int irq)
2268 {
2269         disable_percpu_irq(irq);
2270 }
2271
2272 /*
2273  * Internal function to unregister a percpu irqaction.
2274  */
2275 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2276 {
2277         struct irq_desc *desc = irq_to_desc(irq);
2278         struct irqaction *action;
2279         unsigned long flags;
2280
2281         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2282
2283         if (!desc)
2284                 return NULL;
2285
2286         raw_spin_lock_irqsave(&desc->lock, flags);
2287
2288         action = desc->action;
2289         if (!action || action->percpu_dev_id != dev_id) {
2290                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2291                 goto bad;
2292         }
2293
2294         if (!cpumask_empty(desc->percpu_enabled)) {
2295                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2296                      irq, cpumask_first(desc->percpu_enabled));
2297                 goto bad;
2298         }
2299
2300         /* Found it - now remove it from the list of entries: */
2301         desc->action = NULL;
2302
2303         desc->istate &= ~IRQS_NMI;
2304
2305         raw_spin_unlock_irqrestore(&desc->lock, flags);
2306
2307         unregister_handler_proc(irq, action);
2308
2309         irq_chip_pm_put(&desc->irq_data);
2310         module_put(desc->owner);
2311         return action;
2312
2313 bad:
2314         raw_spin_unlock_irqrestore(&desc->lock, flags);
2315         return NULL;
2316 }
2317
2318 /**
2319  *      remove_percpu_irq - free a per-cpu interrupt
2320  *      @irq: Interrupt line to free
2321  *      @act: irqaction for the interrupt
2322  *
2323  * Used to remove interrupts statically setup by the early boot process.
2324  */
2325 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2326 {
2327         struct irq_desc *desc = irq_to_desc(irq);
2328
2329         if (desc && irq_settings_is_per_cpu_devid(desc))
2330             __free_percpu_irq(irq, act->percpu_dev_id);
2331 }
2332
2333 /**
2334  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2335  *      @irq: Interrupt line to free
2336  *      @dev_id: Device identity to free
2337  *
2338  *      Remove a percpu interrupt handler. The handler is removed, but
2339  *      the interrupt line is not disabled. This must be done on each
2340  *      CPU before calling this function. The function does not return
2341  *      until any executing interrupts for this IRQ have completed.
2342  *
2343  *      This function must not be called from interrupt context.
2344  */
2345 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2346 {
2347         struct irq_desc *desc = irq_to_desc(irq);
2348
2349         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2350                 return;
2351
2352         chip_bus_lock(desc);
2353         kfree(__free_percpu_irq(irq, dev_id));
2354         chip_bus_sync_unlock(desc);
2355 }
2356 EXPORT_SYMBOL_GPL(free_percpu_irq);
2357
2358 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2359 {
2360         struct irq_desc *desc = irq_to_desc(irq);
2361
2362         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2363                 return;
2364
2365         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2366                 return;
2367
2368         kfree(__free_percpu_irq(irq, dev_id));
2369 }
2370
2371 /**
2372  *      setup_percpu_irq - setup a per-cpu interrupt
2373  *      @irq: Interrupt line to setup
2374  *      @act: irqaction for the interrupt
2375  *
2376  * Used to statically setup per-cpu interrupts in the early boot process.
2377  */
2378 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2379 {
2380         struct irq_desc *desc = irq_to_desc(irq);
2381         int retval;
2382
2383         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2384                 return -EINVAL;
2385
2386         retval = irq_chip_pm_get(&desc->irq_data);
2387         if (retval < 0)
2388                 return retval;
2389
2390         retval = __setup_irq(irq, desc, act);
2391
2392         if (retval)
2393                 irq_chip_pm_put(&desc->irq_data);
2394
2395         return retval;
2396 }
2397
2398 /**
2399  *      __request_percpu_irq - allocate a percpu interrupt line
2400  *      @irq: Interrupt line to allocate
2401  *      @handler: Function to be called when the IRQ occurs.
2402  *      @flags: Interrupt type flags (IRQF_TIMER only)
2403  *      @devname: An ascii name for the claiming device
2404  *      @dev_id: A percpu cookie passed back to the handler function
2405  *
2406  *      This call allocates interrupt resources and enables the
2407  *      interrupt on the local CPU. If the interrupt is supposed to be
2408  *      enabled on other CPUs, it has to be done on each CPU using
2409  *      enable_percpu_irq().
2410  *
2411  *      Dev_id must be globally unique. It is a per-cpu variable, and
2412  *      the handler gets called with the interrupted CPU's instance of
2413  *      that variable.
2414  */
2415 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2416                          unsigned long flags, const char *devname,
2417                          void __percpu *dev_id)
2418 {
2419         struct irqaction *action;
2420         struct irq_desc *desc;
2421         int retval;
2422
2423         if (!dev_id)
2424                 return -EINVAL;
2425
2426         desc = irq_to_desc(irq);
2427         if (!desc || !irq_settings_can_request(desc) ||
2428             !irq_settings_is_per_cpu_devid(desc))
2429                 return -EINVAL;
2430
2431         if (flags && flags != IRQF_TIMER)
2432                 return -EINVAL;
2433
2434         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2435         if (!action)
2436                 return -ENOMEM;
2437
2438         action->handler = handler;
2439         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2440         action->name = devname;
2441         action->percpu_dev_id = dev_id;
2442
2443         retval = irq_chip_pm_get(&desc->irq_data);
2444         if (retval < 0) {
2445                 kfree(action);
2446                 return retval;
2447         }
2448
2449         retval = __setup_irq(irq, desc, action);
2450
2451         if (retval) {
2452                 irq_chip_pm_put(&desc->irq_data);
2453                 kfree(action);
2454         }
2455
2456         return retval;
2457 }
2458 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2459
2460 /**
2461  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2462  *      @irq: Interrupt line to allocate
2463  *      @handler: Function to be called when the IRQ occurs.
2464  *      @name: An ascii name for the claiming device
2465  *      @dev_id: A percpu cookie passed back to the handler function
2466  *
2467  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2468  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2469  *      being enabled on the same CPU by using enable_percpu_nmi().
2470  *
2471  *      Dev_id must be globally unique. It is a per-cpu variable, and
2472  *      the handler gets called with the interrupted CPU's instance of
2473  *      that variable.
2474  *
2475  *      Interrupt lines requested for NMI delivering should have auto enabling
2476  *      setting disabled.
2477  *
2478  *      If the interrupt line cannot be used to deliver NMIs, function
2479  *      will fail returning a negative value.
2480  */
2481 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2482                        const char *name, void __percpu *dev_id)
2483 {
2484         struct irqaction *action;
2485         struct irq_desc *desc;
2486         unsigned long flags;
2487         int retval;
2488
2489         if (!handler)
2490                 return -EINVAL;
2491
2492         desc = irq_to_desc(irq);
2493
2494         if (!desc || !irq_settings_can_request(desc) ||
2495             !irq_settings_is_per_cpu_devid(desc) ||
2496             irq_settings_can_autoenable(desc) ||
2497             !irq_supports_nmi(desc))
2498                 return -EINVAL;
2499
2500         /* The line cannot already be NMI */
2501         if (desc->istate & IRQS_NMI)
2502                 return -EINVAL;
2503
2504         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2505         if (!action)
2506                 return -ENOMEM;
2507
2508         action->handler = handler;
2509         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2510                 | IRQF_NOBALANCING;
2511         action->name = name;
2512         action->percpu_dev_id = dev_id;
2513
2514         retval = irq_chip_pm_get(&desc->irq_data);
2515         if (retval < 0)
2516                 goto err_out;
2517
2518         retval = __setup_irq(irq, desc, action);
2519         if (retval)
2520                 goto err_irq_setup;
2521
2522         raw_spin_lock_irqsave(&desc->lock, flags);
2523         desc->istate |= IRQS_NMI;
2524         raw_spin_unlock_irqrestore(&desc->lock, flags);
2525
2526         return 0;
2527
2528 err_irq_setup:
2529         irq_chip_pm_put(&desc->irq_data);
2530 err_out:
2531         kfree(action);
2532
2533         return retval;
2534 }
2535
2536 /**
2537  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2538  *      @irq: Interrupt line to prepare for NMI delivery
2539  *
2540  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2541  *      before that interrupt line gets enabled with enable_percpu_nmi().
2542  *
2543  *      As a CPU local operation, this should be called from non-preemptible
2544  *      context.
2545  *
2546  *      If the interrupt line cannot be used to deliver NMIs, function
2547  *      will fail returning a negative value.
2548  */
2549 int prepare_percpu_nmi(unsigned int irq)
2550 {
2551         unsigned long flags;
2552         struct irq_desc *desc;
2553         int ret = 0;
2554
2555         WARN_ON(preemptible());
2556
2557         desc = irq_get_desc_lock(irq, &flags,
2558                                  IRQ_GET_DESC_CHECK_PERCPU);
2559         if (!desc)
2560                 return -EINVAL;
2561
2562         if (WARN(!(desc->istate & IRQS_NMI),
2563                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2564                  irq)) {
2565                 ret = -EINVAL;
2566                 goto out;
2567         }
2568
2569         ret = irq_nmi_setup(desc);
2570         if (ret) {
2571                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2572                 goto out;
2573         }
2574
2575 out:
2576         irq_put_desc_unlock(desc, flags);
2577         return ret;
2578 }
2579
2580 /**
2581  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2582  *      @irq: Interrupt line from which CPU local NMI configuration should be
2583  *            removed
2584  *
2585  *      This call undoes the setup done by prepare_percpu_nmi().
2586  *
2587  *      IRQ line should not be enabled for the current CPU.
2588  *
2589  *      As a CPU local operation, this should be called from non-preemptible
2590  *      context.
2591  */
2592 void teardown_percpu_nmi(unsigned int irq)
2593 {
2594         unsigned long flags;
2595         struct irq_desc *desc;
2596
2597         WARN_ON(preemptible());
2598
2599         desc = irq_get_desc_lock(irq, &flags,
2600                                  IRQ_GET_DESC_CHECK_PERCPU);
2601         if (!desc)
2602                 return;
2603
2604         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2605                 goto out;
2606
2607         irq_nmi_teardown(desc);
2608 out:
2609         irq_put_desc_unlock(desc, flags);
2610 }
2611
2612 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2613                             bool *state)
2614 {
2615         struct irq_chip *chip;
2616         int err = -EINVAL;
2617
2618         do {
2619                 chip = irq_data_get_irq_chip(data);
2620                 if (chip->irq_get_irqchip_state)
2621                         break;
2622 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2623                 data = data->parent_data;
2624 #else
2625                 data = NULL;
2626 #endif
2627         } while (data);
2628
2629         if (data)
2630                 err = chip->irq_get_irqchip_state(data, which, state);
2631         return err;
2632 }
2633
2634 /**
2635  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2636  *      @irq: Interrupt line that is forwarded to a VM
2637  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2638  *      @state: a pointer to a boolean where the state is to be storeed
2639  *
2640  *      This call snapshots the internal irqchip state of an
2641  *      interrupt, returning into @state the bit corresponding to
2642  *      stage @which
2643  *
2644  *      This function should be called with preemption disabled if the
2645  *      interrupt controller has per-cpu registers.
2646  */
2647 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2648                           bool *state)
2649 {
2650         struct irq_desc *desc;
2651         struct irq_data *data;
2652         unsigned long flags;
2653         int err = -EINVAL;
2654
2655         desc = irq_get_desc_buslock(irq, &flags, 0);
2656         if (!desc)
2657                 return err;
2658
2659         data = irq_desc_get_irq_data(desc);
2660
2661         err = __irq_get_irqchip_state(data, which, state);
2662
2663         irq_put_desc_busunlock(desc, flags);
2664         return err;
2665 }
2666 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2667
2668 /**
2669  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2670  *      @irq: Interrupt line that is forwarded to a VM
2671  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2672  *      @val: Value corresponding to @which
2673  *
2674  *      This call sets the internal irqchip state of an interrupt,
2675  *      depending on the value of @which.
2676  *
2677  *      This function should be called with preemption disabled if the
2678  *      interrupt controller has per-cpu registers.
2679  */
2680 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2681                           bool val)
2682 {
2683         struct irq_desc *desc;
2684         struct irq_data *data;
2685         struct irq_chip *chip;
2686         unsigned long flags;
2687         int err = -EINVAL;
2688
2689         desc = irq_get_desc_buslock(irq, &flags, 0);
2690         if (!desc)
2691                 return err;
2692
2693         data = irq_desc_get_irq_data(desc);
2694
2695         do {
2696                 chip = irq_data_get_irq_chip(data);
2697                 if (chip->irq_set_irqchip_state)
2698                         break;
2699 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2700                 data = data->parent_data;
2701 #else
2702                 data = NULL;
2703 #endif
2704         } while (data);
2705
2706         if (data)
2707                 err = chip->irq_set_irqchip_state(data, which, val);
2708
2709         irq_put_desc_busunlock(desc, flags);
2710         return err;
2711 }
2712 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);