Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / include / rdma / ib_verbs.h
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/kref.h>
46 #include <linux/list.h>
47 #include <linux/rwsem.h>
48 #include <linux/workqueue.h>
49 #include <linux/irq_poll.h>
50 #include <uapi/linux/if_ether.h>
51 #include <net/ipv6.h>
52 #include <net/ip.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/netdevice.h>
56 #include <linux/refcount.h>
57 #include <linux/if_link.h>
58 #include <linux/atomic.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/uaccess.h>
61 #include <linux/cgroup_rdma.h>
62 #include <linux/irqflags.h>
63 #include <linux/preempt.h>
64 #include <linux/dim.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/rdma_counter.h>
67 #include <rdma/restrack.h>
68 #include <rdma/signature.h>
69 #include <uapi/rdma/rdma_user_ioctl.h>
70 #include <uapi/rdma/ib_user_ioctl_verbs.h>
71
72 #define IB_FW_VERSION_NAME_MAX  ETHTOOL_FWVERS_LEN
73
74 struct ib_umem_odp;
75
76 extern struct workqueue_struct *ib_wq;
77 extern struct workqueue_struct *ib_comp_wq;
78 extern struct workqueue_struct *ib_comp_unbound_wq;
79
80 __printf(3, 4) __cold
81 void ibdev_printk(const char *level, const struct ib_device *ibdev,
82                   const char *format, ...);
83 __printf(2, 3) __cold
84 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
85 __printf(2, 3) __cold
86 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
87 __printf(2, 3) __cold
88 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
89 __printf(2, 3) __cold
90 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
91 __printf(2, 3) __cold
92 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
93 __printf(2, 3) __cold
94 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
95 __printf(2, 3) __cold
96 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
97
98 #if defined(CONFIG_DYNAMIC_DEBUG)
99 #define ibdev_dbg(__dev, format, args...)                       \
100         dynamic_ibdev_dbg(__dev, format, ##args)
101 #else
102 __printf(2, 3) __cold
103 static inline
104 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
105 #endif
106
107 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
108 do {                                                                    \
109         static DEFINE_RATELIMIT_STATE(_rs,                              \
110                                       DEFAULT_RATELIMIT_INTERVAL,       \
111                                       DEFAULT_RATELIMIT_BURST);         \
112         if (__ratelimit(&_rs))                                          \
113                 ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
114 } while (0)
115
116 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
117         ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
118 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
119         ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
120 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
121         ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
122 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
123         ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
124 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
125         ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
126 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
127         ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
128 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
129         ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
130
131 #if defined(CONFIG_DYNAMIC_DEBUG)
132 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
133 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
134 do {                                                                    \
135         static DEFINE_RATELIMIT_STATE(_rs,                              \
136                                       DEFAULT_RATELIMIT_INTERVAL,       \
137                                       DEFAULT_RATELIMIT_BURST);         \
138         DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
139         if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
140                 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
141                                     ##__VA_ARGS__);                     \
142 } while (0)
143 #else
144 __printf(2, 3) __cold
145 static inline
146 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
147 #endif
148
149 union ib_gid {
150         u8      raw[16];
151         struct {
152                 __be64  subnet_prefix;
153                 __be64  interface_id;
154         } global;
155 };
156
157 extern union ib_gid zgid;
158
159 enum ib_gid_type {
160         /* If link layer is Ethernet, this is RoCE V1 */
161         IB_GID_TYPE_IB        = 0,
162         IB_GID_TYPE_ROCE      = 0,
163         IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
164         IB_GID_TYPE_SIZE
165 };
166
167 #define ROCE_V2_UDP_DPORT      4791
168 struct ib_gid_attr {
169         struct net_device __rcu *ndev;
170         struct ib_device        *device;
171         union ib_gid            gid;
172         enum ib_gid_type        gid_type;
173         u16                     index;
174         u8                      port_num;
175 };
176
177 enum {
178         /* set the local administered indication */
179         IB_SA_WELL_KNOWN_GUID   = BIT_ULL(57) | 2,
180 };
181
182 enum rdma_transport_type {
183         RDMA_TRANSPORT_IB,
184         RDMA_TRANSPORT_IWARP,
185         RDMA_TRANSPORT_USNIC,
186         RDMA_TRANSPORT_USNIC_UDP,
187         RDMA_TRANSPORT_UNSPECIFIED,
188 };
189
190 enum rdma_protocol_type {
191         RDMA_PROTOCOL_IB,
192         RDMA_PROTOCOL_IBOE,
193         RDMA_PROTOCOL_IWARP,
194         RDMA_PROTOCOL_USNIC_UDP
195 };
196
197 __attribute_const__ enum rdma_transport_type
198 rdma_node_get_transport(unsigned int node_type);
199
200 enum rdma_network_type {
201         RDMA_NETWORK_IB,
202         RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
203         RDMA_NETWORK_IPV4,
204         RDMA_NETWORK_IPV6
205 };
206
207 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
208 {
209         if (network_type == RDMA_NETWORK_IPV4 ||
210             network_type == RDMA_NETWORK_IPV6)
211                 return IB_GID_TYPE_ROCE_UDP_ENCAP;
212
213         /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
214         return IB_GID_TYPE_IB;
215 }
216
217 static inline enum rdma_network_type
218 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
219 {
220         if (attr->gid_type == IB_GID_TYPE_IB)
221                 return RDMA_NETWORK_IB;
222
223         if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
224                 return RDMA_NETWORK_IPV4;
225         else
226                 return RDMA_NETWORK_IPV6;
227 }
228
229 enum rdma_link_layer {
230         IB_LINK_LAYER_UNSPECIFIED,
231         IB_LINK_LAYER_INFINIBAND,
232         IB_LINK_LAYER_ETHERNET,
233 };
234
235 enum ib_device_cap_flags {
236         IB_DEVICE_RESIZE_MAX_WR                 = (1 << 0),
237         IB_DEVICE_BAD_PKEY_CNTR                 = (1 << 1),
238         IB_DEVICE_BAD_QKEY_CNTR                 = (1 << 2),
239         IB_DEVICE_RAW_MULTI                     = (1 << 3),
240         IB_DEVICE_AUTO_PATH_MIG                 = (1 << 4),
241         IB_DEVICE_CHANGE_PHY_PORT               = (1 << 5),
242         IB_DEVICE_UD_AV_PORT_ENFORCE            = (1 << 6),
243         IB_DEVICE_CURR_QP_STATE_MOD             = (1 << 7),
244         IB_DEVICE_SHUTDOWN_PORT                 = (1 << 8),
245         /* Not in use, former INIT_TYPE         = (1 << 9),*/
246         IB_DEVICE_PORT_ACTIVE_EVENT             = (1 << 10),
247         IB_DEVICE_SYS_IMAGE_GUID                = (1 << 11),
248         IB_DEVICE_RC_RNR_NAK_GEN                = (1 << 12),
249         IB_DEVICE_SRQ_RESIZE                    = (1 << 13),
250         IB_DEVICE_N_NOTIFY_CQ                   = (1 << 14),
251
252         /*
253          * This device supports a per-device lkey or stag that can be
254          * used without performing a memory registration for the local
255          * memory.  Note that ULPs should never check this flag, but
256          * instead of use the local_dma_lkey flag in the ib_pd structure,
257          * which will always contain a usable lkey.
258          */
259         IB_DEVICE_LOCAL_DMA_LKEY                = (1 << 15),
260         /* Reserved, old SEND_W_INV             = (1 << 16),*/
261         IB_DEVICE_MEM_WINDOW                    = (1 << 17),
262         /*
263          * Devices should set IB_DEVICE_UD_IP_SUM if they support
264          * insertion of UDP and TCP checksum on outgoing UD IPoIB
265          * messages and can verify the validity of checksum for
266          * incoming messages.  Setting this flag implies that the
267          * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
268          */
269         IB_DEVICE_UD_IP_CSUM                    = (1 << 18),
270         IB_DEVICE_UD_TSO                        = (1 << 19),
271         IB_DEVICE_XRC                           = (1 << 20),
272
273         /*
274          * This device supports the IB "base memory management extension",
275          * which includes support for fast registrations (IB_WR_REG_MR,
276          * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
277          * also be set by any iWarp device which must support FRs to comply
278          * to the iWarp verbs spec.  iWarp devices also support the
279          * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
280          * stag.
281          */
282         IB_DEVICE_MEM_MGT_EXTENSIONS            = (1 << 21),
283         IB_DEVICE_BLOCK_MULTICAST_LOOPBACK      = (1 << 22),
284         IB_DEVICE_MEM_WINDOW_TYPE_2A            = (1 << 23),
285         IB_DEVICE_MEM_WINDOW_TYPE_2B            = (1 << 24),
286         IB_DEVICE_RC_IP_CSUM                    = (1 << 25),
287         /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
288         IB_DEVICE_RAW_IP_CSUM                   = (1 << 26),
289         /*
290          * Devices should set IB_DEVICE_CROSS_CHANNEL if they
291          * support execution of WQEs that involve synchronization
292          * of I/O operations with single completion queue managed
293          * by hardware.
294          */
295         IB_DEVICE_CROSS_CHANNEL                 = (1 << 27),
296         IB_DEVICE_MANAGED_FLOW_STEERING         = (1 << 29),
297         IB_DEVICE_INTEGRITY_HANDOVER            = (1 << 30),
298         IB_DEVICE_ON_DEMAND_PAGING              = (1ULL << 31),
299         IB_DEVICE_SG_GAPS_REG                   = (1ULL << 32),
300         IB_DEVICE_VIRTUAL_FUNCTION              = (1ULL << 33),
301         /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
302         IB_DEVICE_RAW_SCATTER_FCS               = (1ULL << 34),
303         IB_DEVICE_RDMA_NETDEV_OPA_VNIC          = (1ULL << 35),
304         /* The device supports padding incoming writes to cacheline. */
305         IB_DEVICE_PCI_WRITE_END_PADDING         = (1ULL << 36),
306         IB_DEVICE_ALLOW_USER_UNREG              = (1ULL << 37),
307 };
308
309 enum ib_atomic_cap {
310         IB_ATOMIC_NONE,
311         IB_ATOMIC_HCA,
312         IB_ATOMIC_GLOB
313 };
314
315 enum ib_odp_general_cap_bits {
316         IB_ODP_SUPPORT          = 1 << 0,
317         IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
318 };
319
320 enum ib_odp_transport_cap_bits {
321         IB_ODP_SUPPORT_SEND     = 1 << 0,
322         IB_ODP_SUPPORT_RECV     = 1 << 1,
323         IB_ODP_SUPPORT_WRITE    = 1 << 2,
324         IB_ODP_SUPPORT_READ     = 1 << 3,
325         IB_ODP_SUPPORT_ATOMIC   = 1 << 4,
326         IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
327 };
328
329 struct ib_odp_caps {
330         uint64_t general_caps;
331         struct {
332                 uint32_t  rc_odp_caps;
333                 uint32_t  uc_odp_caps;
334                 uint32_t  ud_odp_caps;
335                 uint32_t  xrc_odp_caps;
336         } per_transport_caps;
337 };
338
339 struct ib_rss_caps {
340         /* Corresponding bit will be set if qp type from
341          * 'enum ib_qp_type' is supported, e.g.
342          * supported_qpts |= 1 << IB_QPT_UD
343          */
344         u32 supported_qpts;
345         u32 max_rwq_indirection_tables;
346         u32 max_rwq_indirection_table_size;
347 };
348
349 enum ib_tm_cap_flags {
350         /*  Support tag matching with rendezvous offload for RC transport */
351         IB_TM_CAP_RNDV_RC = 1 << 0,
352 };
353
354 struct ib_tm_caps {
355         /* Max size of RNDV header */
356         u32 max_rndv_hdr_size;
357         /* Max number of entries in tag matching list */
358         u32 max_num_tags;
359         /* From enum ib_tm_cap_flags */
360         u32 flags;
361         /* Max number of outstanding list operations */
362         u32 max_ops;
363         /* Max number of SGE in tag matching entry */
364         u32 max_sge;
365 };
366
367 struct ib_cq_init_attr {
368         unsigned int    cqe;
369         u32             comp_vector;
370         u32             flags;
371 };
372
373 enum ib_cq_attr_mask {
374         IB_CQ_MODERATE = 1 << 0,
375 };
376
377 struct ib_cq_caps {
378         u16     max_cq_moderation_count;
379         u16     max_cq_moderation_period;
380 };
381
382 struct ib_dm_mr_attr {
383         u64             length;
384         u64             offset;
385         u32             access_flags;
386 };
387
388 struct ib_dm_alloc_attr {
389         u64     length;
390         u32     alignment;
391         u32     flags;
392 };
393
394 struct ib_device_attr {
395         u64                     fw_ver;
396         __be64                  sys_image_guid;
397         u64                     max_mr_size;
398         u64                     page_size_cap;
399         u32                     vendor_id;
400         u32                     vendor_part_id;
401         u32                     hw_ver;
402         int                     max_qp;
403         int                     max_qp_wr;
404         u64                     device_cap_flags;
405         int                     max_send_sge;
406         int                     max_recv_sge;
407         int                     max_sge_rd;
408         int                     max_cq;
409         int                     max_cqe;
410         int                     max_mr;
411         int                     max_pd;
412         int                     max_qp_rd_atom;
413         int                     max_ee_rd_atom;
414         int                     max_res_rd_atom;
415         int                     max_qp_init_rd_atom;
416         int                     max_ee_init_rd_atom;
417         enum ib_atomic_cap      atomic_cap;
418         enum ib_atomic_cap      masked_atomic_cap;
419         int                     max_ee;
420         int                     max_rdd;
421         int                     max_mw;
422         int                     max_raw_ipv6_qp;
423         int                     max_raw_ethy_qp;
424         int                     max_mcast_grp;
425         int                     max_mcast_qp_attach;
426         int                     max_total_mcast_qp_attach;
427         int                     max_ah;
428         int                     max_fmr;
429         int                     max_map_per_fmr;
430         int                     max_srq;
431         int                     max_srq_wr;
432         int                     max_srq_sge;
433         unsigned int            max_fast_reg_page_list_len;
434         unsigned int            max_pi_fast_reg_page_list_len;
435         u16                     max_pkeys;
436         u8                      local_ca_ack_delay;
437         int                     sig_prot_cap;
438         int                     sig_guard_cap;
439         struct ib_odp_caps      odp_caps;
440         uint64_t                timestamp_mask;
441         uint64_t                hca_core_clock; /* in KHZ */
442         struct ib_rss_caps      rss_caps;
443         u32                     max_wq_type_rq;
444         u32                     raw_packet_caps; /* Use ib_raw_packet_caps enum */
445         struct ib_tm_caps       tm_caps;
446         struct ib_cq_caps       cq_caps;
447         u64                     max_dm_size;
448 };
449
450 enum ib_mtu {
451         IB_MTU_256  = 1,
452         IB_MTU_512  = 2,
453         IB_MTU_1024 = 3,
454         IB_MTU_2048 = 4,
455         IB_MTU_4096 = 5
456 };
457
458 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
459 {
460         switch (mtu) {
461         case IB_MTU_256:  return  256;
462         case IB_MTU_512:  return  512;
463         case IB_MTU_1024: return 1024;
464         case IB_MTU_2048: return 2048;
465         case IB_MTU_4096: return 4096;
466         default:          return -1;
467         }
468 }
469
470 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
471 {
472         if (mtu >= 4096)
473                 return IB_MTU_4096;
474         else if (mtu >= 2048)
475                 return IB_MTU_2048;
476         else if (mtu >= 1024)
477                 return IB_MTU_1024;
478         else if (mtu >= 512)
479                 return IB_MTU_512;
480         else
481                 return IB_MTU_256;
482 }
483
484 enum ib_port_state {
485         IB_PORT_NOP             = 0,
486         IB_PORT_DOWN            = 1,
487         IB_PORT_INIT            = 2,
488         IB_PORT_ARMED           = 3,
489         IB_PORT_ACTIVE          = 4,
490         IB_PORT_ACTIVE_DEFER    = 5
491 };
492
493 enum ib_port_phys_state {
494         IB_PORT_PHYS_STATE_SLEEP = 1,
495         IB_PORT_PHYS_STATE_POLLING = 2,
496         IB_PORT_PHYS_STATE_DISABLED = 3,
497         IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
498         IB_PORT_PHYS_STATE_LINK_UP = 5,
499         IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
500         IB_PORT_PHYS_STATE_PHY_TEST = 7,
501 };
502
503 enum ib_port_width {
504         IB_WIDTH_1X     = 1,
505         IB_WIDTH_2X     = 16,
506         IB_WIDTH_4X     = 2,
507         IB_WIDTH_8X     = 4,
508         IB_WIDTH_12X    = 8
509 };
510
511 static inline int ib_width_enum_to_int(enum ib_port_width width)
512 {
513         switch (width) {
514         case IB_WIDTH_1X:  return  1;
515         case IB_WIDTH_2X:  return  2;
516         case IB_WIDTH_4X:  return  4;
517         case IB_WIDTH_8X:  return  8;
518         case IB_WIDTH_12X: return 12;
519         default:          return -1;
520         }
521 }
522
523 enum ib_port_speed {
524         IB_SPEED_SDR    = 1,
525         IB_SPEED_DDR    = 2,
526         IB_SPEED_QDR    = 4,
527         IB_SPEED_FDR10  = 8,
528         IB_SPEED_FDR    = 16,
529         IB_SPEED_EDR    = 32,
530         IB_SPEED_HDR    = 64
531 };
532
533 /**
534  * struct rdma_hw_stats
535  * @lock - Mutex to protect parallel write access to lifespan and values
536  *    of counters, which are 64bits and not guaranteeed to be written
537  *    atomicaly on 32bits systems.
538  * @timestamp - Used by the core code to track when the last update was
539  * @lifespan - Used by the core code to determine how old the counters
540  *   should be before being updated again.  Stored in jiffies, defaults
541  *   to 10 milliseconds, drivers can override the default be specifying
542  *   their own value during their allocation routine.
543  * @name - Array of pointers to static names used for the counters in
544  *   directory.
545  * @num_counters - How many hardware counters there are.  If name is
546  *   shorter than this number, a kernel oops will result.  Driver authors
547  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
548  *   in their code to prevent this.
549  * @value - Array of u64 counters that are accessed by the sysfs code and
550  *   filled in by the drivers get_stats routine
551  */
552 struct rdma_hw_stats {
553         struct mutex    lock; /* Protect lifespan and values[] */
554         unsigned long   timestamp;
555         unsigned long   lifespan;
556         const char * const *names;
557         int             num_counters;
558         u64             value[];
559 };
560
561 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
562 /**
563  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
564  *   for drivers.
565  * @names - Array of static const char *
566  * @num_counters - How many elements in array
567  * @lifespan - How many milliseconds between updates
568  */
569 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
570                 const char * const *names, int num_counters,
571                 unsigned long lifespan)
572 {
573         struct rdma_hw_stats *stats;
574
575         stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
576                         GFP_KERNEL);
577         if (!stats)
578                 return NULL;
579         stats->names = names;
580         stats->num_counters = num_counters;
581         stats->lifespan = msecs_to_jiffies(lifespan);
582
583         return stats;
584 }
585
586
587 /* Define bits for the various functionality this port needs to be supported by
588  * the core.
589  */
590 /* Management                           0x00000FFF */
591 #define RDMA_CORE_CAP_IB_MAD            0x00000001
592 #define RDMA_CORE_CAP_IB_SMI            0x00000002
593 #define RDMA_CORE_CAP_IB_CM             0x00000004
594 #define RDMA_CORE_CAP_IW_CM             0x00000008
595 #define RDMA_CORE_CAP_IB_SA             0x00000010
596 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
597
598 /* Address format                       0x000FF000 */
599 #define RDMA_CORE_CAP_AF_IB             0x00001000
600 #define RDMA_CORE_CAP_ETH_AH            0x00002000
601 #define RDMA_CORE_CAP_OPA_AH            0x00004000
602 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
603
604 /* Protocol                             0xFFF00000 */
605 #define RDMA_CORE_CAP_PROT_IB           0x00100000
606 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
607 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
608 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
609 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
610 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
611
612 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
613                                         | RDMA_CORE_CAP_PROT_ROCE     \
614                                         | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
615
616 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
617                                         | RDMA_CORE_CAP_IB_MAD \
618                                         | RDMA_CORE_CAP_IB_SMI \
619                                         | RDMA_CORE_CAP_IB_CM  \
620                                         | RDMA_CORE_CAP_IB_SA  \
621                                         | RDMA_CORE_CAP_AF_IB)
622 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
623                                         | RDMA_CORE_CAP_IB_MAD  \
624                                         | RDMA_CORE_CAP_IB_CM   \
625                                         | RDMA_CORE_CAP_AF_IB   \
626                                         | RDMA_CORE_CAP_ETH_AH)
627 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP                       \
628                                         (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
629                                         | RDMA_CORE_CAP_IB_MAD  \
630                                         | RDMA_CORE_CAP_IB_CM   \
631                                         | RDMA_CORE_CAP_AF_IB   \
632                                         | RDMA_CORE_CAP_ETH_AH)
633 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
634                                         | RDMA_CORE_CAP_IW_CM)
635 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
636                                         | RDMA_CORE_CAP_OPA_MAD)
637
638 #define RDMA_CORE_PORT_RAW_PACKET       (RDMA_CORE_CAP_PROT_RAW_PACKET)
639
640 #define RDMA_CORE_PORT_USNIC            (RDMA_CORE_CAP_PROT_USNIC)
641
642 struct ib_port_attr {
643         u64                     subnet_prefix;
644         enum ib_port_state      state;
645         enum ib_mtu             max_mtu;
646         enum ib_mtu             active_mtu;
647         int                     gid_tbl_len;
648         unsigned int            ip_gids:1;
649         /* This is the value from PortInfo CapabilityMask, defined by IBA */
650         u32                     port_cap_flags;
651         u32                     max_msg_sz;
652         u32                     bad_pkey_cntr;
653         u32                     qkey_viol_cntr;
654         u16                     pkey_tbl_len;
655         u32                     sm_lid;
656         u32                     lid;
657         u8                      lmc;
658         u8                      max_vl_num;
659         u8                      sm_sl;
660         u8                      subnet_timeout;
661         u8                      init_type_reply;
662         u8                      active_width;
663         u8                      active_speed;
664         u8                      phys_state;
665         u16                     port_cap_flags2;
666 };
667
668 enum ib_device_modify_flags {
669         IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
670         IB_DEVICE_MODIFY_NODE_DESC      = 1 << 1
671 };
672
673 #define IB_DEVICE_NODE_DESC_MAX 64
674
675 struct ib_device_modify {
676         u64     sys_image_guid;
677         char    node_desc[IB_DEVICE_NODE_DESC_MAX];
678 };
679
680 enum ib_port_modify_flags {
681         IB_PORT_SHUTDOWN                = 1,
682         IB_PORT_INIT_TYPE               = (1<<2),
683         IB_PORT_RESET_QKEY_CNTR         = (1<<3),
684         IB_PORT_OPA_MASK_CHG            = (1<<4)
685 };
686
687 struct ib_port_modify {
688         u32     set_port_cap_mask;
689         u32     clr_port_cap_mask;
690         u8      init_type;
691 };
692
693 enum ib_event_type {
694         IB_EVENT_CQ_ERR,
695         IB_EVENT_QP_FATAL,
696         IB_EVENT_QP_REQ_ERR,
697         IB_EVENT_QP_ACCESS_ERR,
698         IB_EVENT_COMM_EST,
699         IB_EVENT_SQ_DRAINED,
700         IB_EVENT_PATH_MIG,
701         IB_EVENT_PATH_MIG_ERR,
702         IB_EVENT_DEVICE_FATAL,
703         IB_EVENT_PORT_ACTIVE,
704         IB_EVENT_PORT_ERR,
705         IB_EVENT_LID_CHANGE,
706         IB_EVENT_PKEY_CHANGE,
707         IB_EVENT_SM_CHANGE,
708         IB_EVENT_SRQ_ERR,
709         IB_EVENT_SRQ_LIMIT_REACHED,
710         IB_EVENT_QP_LAST_WQE_REACHED,
711         IB_EVENT_CLIENT_REREGISTER,
712         IB_EVENT_GID_CHANGE,
713         IB_EVENT_WQ_FATAL,
714 };
715
716 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
717
718 struct ib_event {
719         struct ib_device        *device;
720         union {
721                 struct ib_cq    *cq;
722                 struct ib_qp    *qp;
723                 struct ib_srq   *srq;
724                 struct ib_wq    *wq;
725                 u8              port_num;
726         } element;
727         enum ib_event_type      event;
728 };
729
730 struct ib_event_handler {
731         struct ib_device *device;
732         void            (*handler)(struct ib_event_handler *, struct ib_event *);
733         struct list_head  list;
734 };
735
736 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)          \
737         do {                                                    \
738                 (_ptr)->device  = _device;                      \
739                 (_ptr)->handler = _handler;                     \
740                 INIT_LIST_HEAD(&(_ptr)->list);                  \
741         } while (0)
742
743 struct ib_global_route {
744         const struct ib_gid_attr *sgid_attr;
745         union ib_gid    dgid;
746         u32             flow_label;
747         u8              sgid_index;
748         u8              hop_limit;
749         u8              traffic_class;
750 };
751
752 struct ib_grh {
753         __be32          version_tclass_flow;
754         __be16          paylen;
755         u8              next_hdr;
756         u8              hop_limit;
757         union ib_gid    sgid;
758         union ib_gid    dgid;
759 };
760
761 union rdma_network_hdr {
762         struct ib_grh ibgrh;
763         struct {
764                 /* The IB spec states that if it's IPv4, the header
765                  * is located in the last 20 bytes of the header.
766                  */
767                 u8              reserved[20];
768                 struct iphdr    roce4grh;
769         };
770 };
771
772 #define IB_QPN_MASK             0xFFFFFF
773
774 enum {
775         IB_MULTICAST_QPN = 0xffffff
776 };
777
778 #define IB_LID_PERMISSIVE       cpu_to_be16(0xFFFF)
779 #define IB_MULTICAST_LID_BASE   cpu_to_be16(0xC000)
780
781 enum ib_ah_flags {
782         IB_AH_GRH       = 1
783 };
784
785 enum ib_rate {
786         IB_RATE_PORT_CURRENT = 0,
787         IB_RATE_2_5_GBPS = 2,
788         IB_RATE_5_GBPS   = 5,
789         IB_RATE_10_GBPS  = 3,
790         IB_RATE_20_GBPS  = 6,
791         IB_RATE_30_GBPS  = 4,
792         IB_RATE_40_GBPS  = 7,
793         IB_RATE_60_GBPS  = 8,
794         IB_RATE_80_GBPS  = 9,
795         IB_RATE_120_GBPS = 10,
796         IB_RATE_14_GBPS  = 11,
797         IB_RATE_56_GBPS  = 12,
798         IB_RATE_112_GBPS = 13,
799         IB_RATE_168_GBPS = 14,
800         IB_RATE_25_GBPS  = 15,
801         IB_RATE_100_GBPS = 16,
802         IB_RATE_200_GBPS = 17,
803         IB_RATE_300_GBPS = 18,
804         IB_RATE_28_GBPS  = 19,
805         IB_RATE_50_GBPS  = 20,
806         IB_RATE_400_GBPS = 21,
807         IB_RATE_600_GBPS = 22,
808 };
809
810 /**
811  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
812  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
813  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
814  * @rate: rate to convert.
815  */
816 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
817
818 /**
819  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
820  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
821  * @rate: rate to convert.
822  */
823 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
824
825
826 /**
827  * enum ib_mr_type - memory region type
828  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
829  *                            normal registration
830  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
831  *                            register any arbitrary sg lists (without
832  *                            the normal mr constraints - see
833  *                            ib_map_mr_sg)
834  * @IB_MR_TYPE_DM:            memory region that is used for device
835  *                            memory registration
836  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
837  *                            application
838  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
839  *                            without address translations (VA=PA)
840  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
841  *                            data integrity operations
842  */
843 enum ib_mr_type {
844         IB_MR_TYPE_MEM_REG,
845         IB_MR_TYPE_SG_GAPS,
846         IB_MR_TYPE_DM,
847         IB_MR_TYPE_USER,
848         IB_MR_TYPE_DMA,
849         IB_MR_TYPE_INTEGRITY,
850 };
851
852 enum ib_mr_status_check {
853         IB_MR_CHECK_SIG_STATUS = 1,
854 };
855
856 /**
857  * struct ib_mr_status - Memory region status container
858  *
859  * @fail_status: Bitmask of MR checks status. For each
860  *     failed check a corresponding status bit is set.
861  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
862  *     failure.
863  */
864 struct ib_mr_status {
865         u32                 fail_status;
866         struct ib_sig_err   sig_err;
867 };
868
869 /**
870  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
871  * enum.
872  * @mult: multiple to convert.
873  */
874 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
875
876 enum rdma_ah_attr_type {
877         RDMA_AH_ATTR_TYPE_UNDEFINED,
878         RDMA_AH_ATTR_TYPE_IB,
879         RDMA_AH_ATTR_TYPE_ROCE,
880         RDMA_AH_ATTR_TYPE_OPA,
881 };
882
883 struct ib_ah_attr {
884         u16                     dlid;
885         u8                      src_path_bits;
886 };
887
888 struct roce_ah_attr {
889         u8                      dmac[ETH_ALEN];
890 };
891
892 struct opa_ah_attr {
893         u32                     dlid;
894         u8                      src_path_bits;
895         bool                    make_grd;
896 };
897
898 struct rdma_ah_attr {
899         struct ib_global_route  grh;
900         u8                      sl;
901         u8                      static_rate;
902         u8                      port_num;
903         u8                      ah_flags;
904         enum rdma_ah_attr_type type;
905         union {
906                 struct ib_ah_attr ib;
907                 struct roce_ah_attr roce;
908                 struct opa_ah_attr opa;
909         };
910 };
911
912 enum ib_wc_status {
913         IB_WC_SUCCESS,
914         IB_WC_LOC_LEN_ERR,
915         IB_WC_LOC_QP_OP_ERR,
916         IB_WC_LOC_EEC_OP_ERR,
917         IB_WC_LOC_PROT_ERR,
918         IB_WC_WR_FLUSH_ERR,
919         IB_WC_MW_BIND_ERR,
920         IB_WC_BAD_RESP_ERR,
921         IB_WC_LOC_ACCESS_ERR,
922         IB_WC_REM_INV_REQ_ERR,
923         IB_WC_REM_ACCESS_ERR,
924         IB_WC_REM_OP_ERR,
925         IB_WC_RETRY_EXC_ERR,
926         IB_WC_RNR_RETRY_EXC_ERR,
927         IB_WC_LOC_RDD_VIOL_ERR,
928         IB_WC_REM_INV_RD_REQ_ERR,
929         IB_WC_REM_ABORT_ERR,
930         IB_WC_INV_EECN_ERR,
931         IB_WC_INV_EEC_STATE_ERR,
932         IB_WC_FATAL_ERR,
933         IB_WC_RESP_TIMEOUT_ERR,
934         IB_WC_GENERAL_ERR
935 };
936
937 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
938
939 enum ib_wc_opcode {
940         IB_WC_SEND,
941         IB_WC_RDMA_WRITE,
942         IB_WC_RDMA_READ,
943         IB_WC_COMP_SWAP,
944         IB_WC_FETCH_ADD,
945         IB_WC_LSO,
946         IB_WC_LOCAL_INV,
947         IB_WC_REG_MR,
948         IB_WC_MASKED_COMP_SWAP,
949         IB_WC_MASKED_FETCH_ADD,
950 /*
951  * Set value of IB_WC_RECV so consumers can test if a completion is a
952  * receive by testing (opcode & IB_WC_RECV).
953  */
954         IB_WC_RECV                      = 1 << 7,
955         IB_WC_RECV_RDMA_WITH_IMM
956 };
957
958 enum ib_wc_flags {
959         IB_WC_GRH               = 1,
960         IB_WC_WITH_IMM          = (1<<1),
961         IB_WC_WITH_INVALIDATE   = (1<<2),
962         IB_WC_IP_CSUM_OK        = (1<<3),
963         IB_WC_WITH_SMAC         = (1<<4),
964         IB_WC_WITH_VLAN         = (1<<5),
965         IB_WC_WITH_NETWORK_HDR_TYPE     = (1<<6),
966 };
967
968 struct ib_wc {
969         union {
970                 u64             wr_id;
971                 struct ib_cqe   *wr_cqe;
972         };
973         enum ib_wc_status       status;
974         enum ib_wc_opcode       opcode;
975         u32                     vendor_err;
976         u32                     byte_len;
977         struct ib_qp           *qp;
978         union {
979                 __be32          imm_data;
980                 u32             invalidate_rkey;
981         } ex;
982         u32                     src_qp;
983         u32                     slid;
984         int                     wc_flags;
985         u16                     pkey_index;
986         u8                      sl;
987         u8                      dlid_path_bits;
988         u8                      port_num;       /* valid only for DR SMPs on switches */
989         u8                      smac[ETH_ALEN];
990         u16                     vlan_id;
991         u8                      network_hdr_type;
992 };
993
994 enum ib_cq_notify_flags {
995         IB_CQ_SOLICITED                 = 1 << 0,
996         IB_CQ_NEXT_COMP                 = 1 << 1,
997         IB_CQ_SOLICITED_MASK            = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
998         IB_CQ_REPORT_MISSED_EVENTS      = 1 << 2,
999 };
1000
1001 enum ib_srq_type {
1002         IB_SRQT_BASIC,
1003         IB_SRQT_XRC,
1004         IB_SRQT_TM,
1005 };
1006
1007 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1008 {
1009         return srq_type == IB_SRQT_XRC ||
1010                srq_type == IB_SRQT_TM;
1011 }
1012
1013 enum ib_srq_attr_mask {
1014         IB_SRQ_MAX_WR   = 1 << 0,
1015         IB_SRQ_LIMIT    = 1 << 1,
1016 };
1017
1018 struct ib_srq_attr {
1019         u32     max_wr;
1020         u32     max_sge;
1021         u32     srq_limit;
1022 };
1023
1024 struct ib_srq_init_attr {
1025         void                  (*event_handler)(struct ib_event *, void *);
1026         void                   *srq_context;
1027         struct ib_srq_attr      attr;
1028         enum ib_srq_type        srq_type;
1029
1030         struct {
1031                 struct ib_cq   *cq;
1032                 union {
1033                         struct {
1034                                 struct ib_xrcd *xrcd;
1035                         } xrc;
1036
1037                         struct {
1038                                 u32             max_num_tags;
1039                         } tag_matching;
1040                 };
1041         } ext;
1042 };
1043
1044 struct ib_qp_cap {
1045         u32     max_send_wr;
1046         u32     max_recv_wr;
1047         u32     max_send_sge;
1048         u32     max_recv_sge;
1049         u32     max_inline_data;
1050
1051         /*
1052          * Maximum number of rdma_rw_ctx structures in flight at a time.
1053          * ib_create_qp() will calculate the right amount of neededed WRs
1054          * and MRs based on this.
1055          */
1056         u32     max_rdma_ctxs;
1057 };
1058
1059 enum ib_sig_type {
1060         IB_SIGNAL_ALL_WR,
1061         IB_SIGNAL_REQ_WR
1062 };
1063
1064 enum ib_qp_type {
1065         /*
1066          * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1067          * here (and in that order) since the MAD layer uses them as
1068          * indices into a 2-entry table.
1069          */
1070         IB_QPT_SMI,
1071         IB_QPT_GSI,
1072
1073         IB_QPT_RC,
1074         IB_QPT_UC,
1075         IB_QPT_UD,
1076         IB_QPT_RAW_IPV6,
1077         IB_QPT_RAW_ETHERTYPE,
1078         IB_QPT_RAW_PACKET = 8,
1079         IB_QPT_XRC_INI = 9,
1080         IB_QPT_XRC_TGT,
1081         IB_QPT_MAX,
1082         IB_QPT_DRIVER = 0xFF,
1083         /* Reserve a range for qp types internal to the low level driver.
1084          * These qp types will not be visible at the IB core layer, so the
1085          * IB_QPT_MAX usages should not be affected in the core layer
1086          */
1087         IB_QPT_RESERVED1 = 0x1000,
1088         IB_QPT_RESERVED2,
1089         IB_QPT_RESERVED3,
1090         IB_QPT_RESERVED4,
1091         IB_QPT_RESERVED5,
1092         IB_QPT_RESERVED6,
1093         IB_QPT_RESERVED7,
1094         IB_QPT_RESERVED8,
1095         IB_QPT_RESERVED9,
1096         IB_QPT_RESERVED10,
1097 };
1098
1099 enum ib_qp_create_flags {
1100         IB_QP_CREATE_IPOIB_UD_LSO               = 1 << 0,
1101         IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK   = 1 << 1,
1102         IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1103         IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1104         IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1105         IB_QP_CREATE_NETIF_QP                   = 1 << 5,
1106         IB_QP_CREATE_INTEGRITY_EN               = 1 << 6,
1107         /* FREE                                 = 1 << 7, */
1108         IB_QP_CREATE_SCATTER_FCS                = 1 << 8,
1109         IB_QP_CREATE_CVLAN_STRIPPING            = 1 << 9,
1110         IB_QP_CREATE_SOURCE_QPN                 = 1 << 10,
1111         IB_QP_CREATE_PCI_WRITE_END_PADDING      = 1 << 11,
1112         /* reserve bits 26-31 for low level drivers' internal use */
1113         IB_QP_CREATE_RESERVED_START             = 1 << 26,
1114         IB_QP_CREATE_RESERVED_END               = 1 << 31,
1115 };
1116
1117 /*
1118  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1119  * callback to destroy the passed in QP.
1120  */
1121
1122 struct ib_qp_init_attr {
1123         /* Consumer's event_handler callback must not block */
1124         void                  (*event_handler)(struct ib_event *, void *);
1125
1126         void                   *qp_context;
1127         struct ib_cq           *send_cq;
1128         struct ib_cq           *recv_cq;
1129         struct ib_srq          *srq;
1130         struct ib_xrcd         *xrcd;     /* XRC TGT QPs only */
1131         struct ib_qp_cap        cap;
1132         enum ib_sig_type        sq_sig_type;
1133         enum ib_qp_type         qp_type;
1134         u32                     create_flags;
1135
1136         /*
1137          * Only needed for special QP types, or when using the RW API.
1138          */
1139         u8                      port_num;
1140         struct ib_rwq_ind_table *rwq_ind_tbl;
1141         u32                     source_qpn;
1142 };
1143
1144 struct ib_qp_open_attr {
1145         void                  (*event_handler)(struct ib_event *, void *);
1146         void                   *qp_context;
1147         u32                     qp_num;
1148         enum ib_qp_type         qp_type;
1149 };
1150
1151 enum ib_rnr_timeout {
1152         IB_RNR_TIMER_655_36 =  0,
1153         IB_RNR_TIMER_000_01 =  1,
1154         IB_RNR_TIMER_000_02 =  2,
1155         IB_RNR_TIMER_000_03 =  3,
1156         IB_RNR_TIMER_000_04 =  4,
1157         IB_RNR_TIMER_000_06 =  5,
1158         IB_RNR_TIMER_000_08 =  6,
1159         IB_RNR_TIMER_000_12 =  7,
1160         IB_RNR_TIMER_000_16 =  8,
1161         IB_RNR_TIMER_000_24 =  9,
1162         IB_RNR_TIMER_000_32 = 10,
1163         IB_RNR_TIMER_000_48 = 11,
1164         IB_RNR_TIMER_000_64 = 12,
1165         IB_RNR_TIMER_000_96 = 13,
1166         IB_RNR_TIMER_001_28 = 14,
1167         IB_RNR_TIMER_001_92 = 15,
1168         IB_RNR_TIMER_002_56 = 16,
1169         IB_RNR_TIMER_003_84 = 17,
1170         IB_RNR_TIMER_005_12 = 18,
1171         IB_RNR_TIMER_007_68 = 19,
1172         IB_RNR_TIMER_010_24 = 20,
1173         IB_RNR_TIMER_015_36 = 21,
1174         IB_RNR_TIMER_020_48 = 22,
1175         IB_RNR_TIMER_030_72 = 23,
1176         IB_RNR_TIMER_040_96 = 24,
1177         IB_RNR_TIMER_061_44 = 25,
1178         IB_RNR_TIMER_081_92 = 26,
1179         IB_RNR_TIMER_122_88 = 27,
1180         IB_RNR_TIMER_163_84 = 28,
1181         IB_RNR_TIMER_245_76 = 29,
1182         IB_RNR_TIMER_327_68 = 30,
1183         IB_RNR_TIMER_491_52 = 31
1184 };
1185
1186 enum ib_qp_attr_mask {
1187         IB_QP_STATE                     = 1,
1188         IB_QP_CUR_STATE                 = (1<<1),
1189         IB_QP_EN_SQD_ASYNC_NOTIFY       = (1<<2),
1190         IB_QP_ACCESS_FLAGS              = (1<<3),
1191         IB_QP_PKEY_INDEX                = (1<<4),
1192         IB_QP_PORT                      = (1<<5),
1193         IB_QP_QKEY                      = (1<<6),
1194         IB_QP_AV                        = (1<<7),
1195         IB_QP_PATH_MTU                  = (1<<8),
1196         IB_QP_TIMEOUT                   = (1<<9),
1197         IB_QP_RETRY_CNT                 = (1<<10),
1198         IB_QP_RNR_RETRY                 = (1<<11),
1199         IB_QP_RQ_PSN                    = (1<<12),
1200         IB_QP_MAX_QP_RD_ATOMIC          = (1<<13),
1201         IB_QP_ALT_PATH                  = (1<<14),
1202         IB_QP_MIN_RNR_TIMER             = (1<<15),
1203         IB_QP_SQ_PSN                    = (1<<16),
1204         IB_QP_MAX_DEST_RD_ATOMIC        = (1<<17),
1205         IB_QP_PATH_MIG_STATE            = (1<<18),
1206         IB_QP_CAP                       = (1<<19),
1207         IB_QP_DEST_QPN                  = (1<<20),
1208         IB_QP_RESERVED1                 = (1<<21),
1209         IB_QP_RESERVED2                 = (1<<22),
1210         IB_QP_RESERVED3                 = (1<<23),
1211         IB_QP_RESERVED4                 = (1<<24),
1212         IB_QP_RATE_LIMIT                = (1<<25),
1213 };
1214
1215 enum ib_qp_state {
1216         IB_QPS_RESET,
1217         IB_QPS_INIT,
1218         IB_QPS_RTR,
1219         IB_QPS_RTS,
1220         IB_QPS_SQD,
1221         IB_QPS_SQE,
1222         IB_QPS_ERR
1223 };
1224
1225 enum ib_mig_state {
1226         IB_MIG_MIGRATED,
1227         IB_MIG_REARM,
1228         IB_MIG_ARMED
1229 };
1230
1231 enum ib_mw_type {
1232         IB_MW_TYPE_1 = 1,
1233         IB_MW_TYPE_2 = 2
1234 };
1235
1236 struct ib_qp_attr {
1237         enum ib_qp_state        qp_state;
1238         enum ib_qp_state        cur_qp_state;
1239         enum ib_mtu             path_mtu;
1240         enum ib_mig_state       path_mig_state;
1241         u32                     qkey;
1242         u32                     rq_psn;
1243         u32                     sq_psn;
1244         u32                     dest_qp_num;
1245         int                     qp_access_flags;
1246         struct ib_qp_cap        cap;
1247         struct rdma_ah_attr     ah_attr;
1248         struct rdma_ah_attr     alt_ah_attr;
1249         u16                     pkey_index;
1250         u16                     alt_pkey_index;
1251         u8                      en_sqd_async_notify;
1252         u8                      sq_draining;
1253         u8                      max_rd_atomic;
1254         u8                      max_dest_rd_atomic;
1255         u8                      min_rnr_timer;
1256         u8                      port_num;
1257         u8                      timeout;
1258         u8                      retry_cnt;
1259         u8                      rnr_retry;
1260         u8                      alt_port_num;
1261         u8                      alt_timeout;
1262         u32                     rate_limit;
1263 };
1264
1265 enum ib_wr_opcode {
1266         /* These are shared with userspace */
1267         IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1268         IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1269         IB_WR_SEND = IB_UVERBS_WR_SEND,
1270         IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1271         IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1272         IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1273         IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1274         IB_WR_LSO = IB_UVERBS_WR_TSO,
1275         IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1276         IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1277         IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1278         IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1279                 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1280         IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1281                 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1282
1283         /* These are kernel only and can not be issued by userspace */
1284         IB_WR_REG_MR = 0x20,
1285         IB_WR_REG_MR_INTEGRITY,
1286
1287         /* reserve values for low level drivers' internal use.
1288          * These values will not be used at all in the ib core layer.
1289          */
1290         IB_WR_RESERVED1 = 0xf0,
1291         IB_WR_RESERVED2,
1292         IB_WR_RESERVED3,
1293         IB_WR_RESERVED4,
1294         IB_WR_RESERVED5,
1295         IB_WR_RESERVED6,
1296         IB_WR_RESERVED7,
1297         IB_WR_RESERVED8,
1298         IB_WR_RESERVED9,
1299         IB_WR_RESERVED10,
1300 };
1301
1302 enum ib_send_flags {
1303         IB_SEND_FENCE           = 1,
1304         IB_SEND_SIGNALED        = (1<<1),
1305         IB_SEND_SOLICITED       = (1<<2),
1306         IB_SEND_INLINE          = (1<<3),
1307         IB_SEND_IP_CSUM         = (1<<4),
1308
1309         /* reserve bits 26-31 for low level drivers' internal use */
1310         IB_SEND_RESERVED_START  = (1 << 26),
1311         IB_SEND_RESERVED_END    = (1 << 31),
1312 };
1313
1314 struct ib_sge {
1315         u64     addr;
1316         u32     length;
1317         u32     lkey;
1318 };
1319
1320 struct ib_cqe {
1321         void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1322 };
1323
1324 struct ib_send_wr {
1325         struct ib_send_wr      *next;
1326         union {
1327                 u64             wr_id;
1328                 struct ib_cqe   *wr_cqe;
1329         };
1330         struct ib_sge          *sg_list;
1331         int                     num_sge;
1332         enum ib_wr_opcode       opcode;
1333         int                     send_flags;
1334         union {
1335                 __be32          imm_data;
1336                 u32             invalidate_rkey;
1337         } ex;
1338 };
1339
1340 struct ib_rdma_wr {
1341         struct ib_send_wr       wr;
1342         u64                     remote_addr;
1343         u32                     rkey;
1344 };
1345
1346 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1347 {
1348         return container_of(wr, struct ib_rdma_wr, wr);
1349 }
1350
1351 struct ib_atomic_wr {
1352         struct ib_send_wr       wr;
1353         u64                     remote_addr;
1354         u64                     compare_add;
1355         u64                     swap;
1356         u64                     compare_add_mask;
1357         u64                     swap_mask;
1358         u32                     rkey;
1359 };
1360
1361 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1362 {
1363         return container_of(wr, struct ib_atomic_wr, wr);
1364 }
1365
1366 struct ib_ud_wr {
1367         struct ib_send_wr       wr;
1368         struct ib_ah            *ah;
1369         void                    *header;
1370         int                     hlen;
1371         int                     mss;
1372         u32                     remote_qpn;
1373         u32                     remote_qkey;
1374         u16                     pkey_index; /* valid for GSI only */
1375         u8                      port_num;   /* valid for DR SMPs on switch only */
1376 };
1377
1378 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1379 {
1380         return container_of(wr, struct ib_ud_wr, wr);
1381 }
1382
1383 struct ib_reg_wr {
1384         struct ib_send_wr       wr;
1385         struct ib_mr            *mr;
1386         u32                     key;
1387         int                     access;
1388 };
1389
1390 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1391 {
1392         return container_of(wr, struct ib_reg_wr, wr);
1393 }
1394
1395 struct ib_recv_wr {
1396         struct ib_recv_wr      *next;
1397         union {
1398                 u64             wr_id;
1399                 struct ib_cqe   *wr_cqe;
1400         };
1401         struct ib_sge          *sg_list;
1402         int                     num_sge;
1403 };
1404
1405 enum ib_access_flags {
1406         IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1407         IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1408         IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1409         IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1410         IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1411         IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1412         IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1413         IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1414
1415         IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1416 };
1417
1418 /*
1419  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1420  * are hidden here instead of a uapi header!
1421  */
1422 enum ib_mr_rereg_flags {
1423         IB_MR_REREG_TRANS       = 1,
1424         IB_MR_REREG_PD          = (1<<1),
1425         IB_MR_REREG_ACCESS      = (1<<2),
1426         IB_MR_REREG_SUPPORTED   = ((IB_MR_REREG_ACCESS << 1) - 1)
1427 };
1428
1429 struct ib_fmr_attr {
1430         int     max_pages;
1431         int     max_maps;
1432         u8      page_shift;
1433 };
1434
1435 struct ib_umem;
1436
1437 enum rdma_remove_reason {
1438         /*
1439          * Userspace requested uobject deletion or initial try
1440          * to remove uobject via cleanup. Call could fail
1441          */
1442         RDMA_REMOVE_DESTROY,
1443         /* Context deletion. This call should delete the actual object itself */
1444         RDMA_REMOVE_CLOSE,
1445         /* Driver is being hot-unplugged. This call should delete the actual object itself */
1446         RDMA_REMOVE_DRIVER_REMOVE,
1447         /* uobj is being cleaned-up before being committed */
1448         RDMA_REMOVE_ABORT,
1449 };
1450
1451 struct ib_rdmacg_object {
1452 #ifdef CONFIG_CGROUP_RDMA
1453         struct rdma_cgroup      *cg;            /* owner rdma cgroup */
1454 #endif
1455 };
1456
1457 struct ib_ucontext {
1458         struct ib_device       *device;
1459         struct ib_uverbs_file  *ufile;
1460         /*
1461          * 'closing' can be read by the driver only during a destroy callback,
1462          * it is set when we are closing the file descriptor and indicates
1463          * that mm_sem may be locked.
1464          */
1465         bool closing;
1466
1467         bool cleanup_retryable;
1468
1469         struct ib_rdmacg_object cg_obj;
1470         /*
1471          * Implementation details of the RDMA core, don't use in drivers:
1472          */
1473         struct rdma_restrack_entry res;
1474 };
1475
1476 struct ib_uobject {
1477         u64                     user_handle;    /* handle given to us by userspace */
1478         /* ufile & ucontext owning this object */
1479         struct ib_uverbs_file  *ufile;
1480         /* FIXME, save memory: ufile->context == context */
1481         struct ib_ucontext     *context;        /* associated user context */
1482         void                   *object;         /* containing object */
1483         struct list_head        list;           /* link to context's list */
1484         struct ib_rdmacg_object cg_obj;         /* rdmacg object */
1485         int                     id;             /* index into kernel idr */
1486         struct kref             ref;
1487         atomic_t                usecnt;         /* protects exclusive access */
1488         struct rcu_head         rcu;            /* kfree_rcu() overhead */
1489
1490         const struct uverbs_api_object *uapi_object;
1491 };
1492
1493 struct ib_udata {
1494         const void __user *inbuf;
1495         void __user *outbuf;
1496         size_t       inlen;
1497         size_t       outlen;
1498 };
1499
1500 struct ib_pd {
1501         u32                     local_dma_lkey;
1502         u32                     flags;
1503         struct ib_device       *device;
1504         struct ib_uobject      *uobject;
1505         atomic_t                usecnt; /* count all resources */
1506
1507         u32                     unsafe_global_rkey;
1508
1509         /*
1510          * Implementation details of the RDMA core, don't use in drivers:
1511          */
1512         struct ib_mr           *__internal_mr;
1513         struct rdma_restrack_entry res;
1514 };
1515
1516 struct ib_xrcd {
1517         struct ib_device       *device;
1518         atomic_t                usecnt; /* count all exposed resources */
1519         struct inode           *inode;
1520
1521         struct mutex            tgt_qp_mutex;
1522         struct list_head        tgt_qp_list;
1523 };
1524
1525 struct ib_ah {
1526         struct ib_device        *device;
1527         struct ib_pd            *pd;
1528         struct ib_uobject       *uobject;
1529         const struct ib_gid_attr *sgid_attr;
1530         enum rdma_ah_attr_type  type;
1531 };
1532
1533 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1534
1535 enum ib_poll_context {
1536         IB_POLL_DIRECT,            /* caller context, no hw completions */
1537         IB_POLL_SOFTIRQ,           /* poll from softirq context */
1538         IB_POLL_WORKQUEUE,         /* poll from workqueue */
1539         IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1540 };
1541
1542 struct ib_cq {
1543         struct ib_device       *device;
1544         struct ib_uobject      *uobject;
1545         ib_comp_handler         comp_handler;
1546         void                  (*event_handler)(struct ib_event *, void *);
1547         void                   *cq_context;
1548         int                     cqe;
1549         atomic_t                usecnt; /* count number of work queues */
1550         enum ib_poll_context    poll_ctx;
1551         struct ib_wc            *wc;
1552         union {
1553                 struct irq_poll         iop;
1554                 struct work_struct      work;
1555         };
1556         struct workqueue_struct *comp_wq;
1557         struct dim *dim;
1558         /*
1559          * Implementation details of the RDMA core, don't use in drivers:
1560          */
1561         struct rdma_restrack_entry res;
1562 };
1563
1564 struct ib_srq {
1565         struct ib_device       *device;
1566         struct ib_pd           *pd;
1567         struct ib_uobject      *uobject;
1568         void                  (*event_handler)(struct ib_event *, void *);
1569         void                   *srq_context;
1570         enum ib_srq_type        srq_type;
1571         atomic_t                usecnt;
1572
1573         struct {
1574                 struct ib_cq   *cq;
1575                 union {
1576                         struct {
1577                                 struct ib_xrcd *xrcd;
1578                                 u32             srq_num;
1579                         } xrc;
1580                 };
1581         } ext;
1582 };
1583
1584 enum ib_raw_packet_caps {
1585         /* Strip cvlan from incoming packet and report it in the matching work
1586          * completion is supported.
1587          */
1588         IB_RAW_PACKET_CAP_CVLAN_STRIPPING       = (1 << 0),
1589         /* Scatter FCS field of an incoming packet to host memory is supported.
1590          */
1591         IB_RAW_PACKET_CAP_SCATTER_FCS           = (1 << 1),
1592         /* Checksum offloads are supported (for both send and receive). */
1593         IB_RAW_PACKET_CAP_IP_CSUM               = (1 << 2),
1594         /* When a packet is received for an RQ with no receive WQEs, the
1595          * packet processing is delayed.
1596          */
1597         IB_RAW_PACKET_CAP_DELAY_DROP            = (1 << 3),
1598 };
1599
1600 enum ib_wq_type {
1601         IB_WQT_RQ
1602 };
1603
1604 enum ib_wq_state {
1605         IB_WQS_RESET,
1606         IB_WQS_RDY,
1607         IB_WQS_ERR
1608 };
1609
1610 struct ib_wq {
1611         struct ib_device       *device;
1612         struct ib_uobject      *uobject;
1613         void                *wq_context;
1614         void                (*event_handler)(struct ib_event *, void *);
1615         struct ib_pd           *pd;
1616         struct ib_cq           *cq;
1617         u32             wq_num;
1618         enum ib_wq_state       state;
1619         enum ib_wq_type wq_type;
1620         atomic_t                usecnt;
1621 };
1622
1623 enum ib_wq_flags {
1624         IB_WQ_FLAGS_CVLAN_STRIPPING     = 1 << 0,
1625         IB_WQ_FLAGS_SCATTER_FCS         = 1 << 1,
1626         IB_WQ_FLAGS_DELAY_DROP          = 1 << 2,
1627         IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1628 };
1629
1630 struct ib_wq_init_attr {
1631         void                   *wq_context;
1632         enum ib_wq_type wq_type;
1633         u32             max_wr;
1634         u32             max_sge;
1635         struct  ib_cq          *cq;
1636         void                (*event_handler)(struct ib_event *, void *);
1637         u32             create_flags; /* Use enum ib_wq_flags */
1638 };
1639
1640 enum ib_wq_attr_mask {
1641         IB_WQ_STATE             = 1 << 0,
1642         IB_WQ_CUR_STATE         = 1 << 1,
1643         IB_WQ_FLAGS             = 1 << 2,
1644 };
1645
1646 struct ib_wq_attr {
1647         enum    ib_wq_state     wq_state;
1648         enum    ib_wq_state     curr_wq_state;
1649         u32                     flags; /* Use enum ib_wq_flags */
1650         u32                     flags_mask; /* Use enum ib_wq_flags */
1651 };
1652
1653 struct ib_rwq_ind_table {
1654         struct ib_device        *device;
1655         struct ib_uobject      *uobject;
1656         atomic_t                usecnt;
1657         u32             ind_tbl_num;
1658         u32             log_ind_tbl_size;
1659         struct ib_wq    **ind_tbl;
1660 };
1661
1662 struct ib_rwq_ind_table_init_attr {
1663         u32             log_ind_tbl_size;
1664         /* Each entry is a pointer to Receive Work Queue */
1665         struct ib_wq    **ind_tbl;
1666 };
1667
1668 enum port_pkey_state {
1669         IB_PORT_PKEY_NOT_VALID = 0,
1670         IB_PORT_PKEY_VALID = 1,
1671         IB_PORT_PKEY_LISTED = 2,
1672 };
1673
1674 struct ib_qp_security;
1675
1676 struct ib_port_pkey {
1677         enum port_pkey_state    state;
1678         u16                     pkey_index;
1679         u8                      port_num;
1680         struct list_head        qp_list;
1681         struct list_head        to_error_list;
1682         struct ib_qp_security  *sec;
1683 };
1684
1685 struct ib_ports_pkeys {
1686         struct ib_port_pkey     main;
1687         struct ib_port_pkey     alt;
1688 };
1689
1690 struct ib_qp_security {
1691         struct ib_qp           *qp;
1692         struct ib_device       *dev;
1693         /* Hold this mutex when changing port and pkey settings. */
1694         struct mutex            mutex;
1695         struct ib_ports_pkeys  *ports_pkeys;
1696         /* A list of all open shared QP handles.  Required to enforce security
1697          * properly for all users of a shared QP.
1698          */
1699         struct list_head        shared_qp_list;
1700         void                   *security;
1701         bool                    destroying;
1702         atomic_t                error_list_count;
1703         struct completion       error_complete;
1704         int                     error_comps_pending;
1705 };
1706
1707 /*
1708  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1709  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1710  */
1711 struct ib_qp {
1712         struct ib_device       *device;
1713         struct ib_pd           *pd;
1714         struct ib_cq           *send_cq;
1715         struct ib_cq           *recv_cq;
1716         spinlock_t              mr_lock;
1717         int                     mrs_used;
1718         struct list_head        rdma_mrs;
1719         struct list_head        sig_mrs;
1720         struct ib_srq          *srq;
1721         struct ib_xrcd         *xrcd; /* XRC TGT QPs only */
1722         struct list_head        xrcd_list;
1723
1724         /* count times opened, mcast attaches, flow attaches */
1725         atomic_t                usecnt;
1726         struct list_head        open_list;
1727         struct ib_qp           *real_qp;
1728         struct ib_uobject      *uobject;
1729         void                  (*event_handler)(struct ib_event *, void *);
1730         void                   *qp_context;
1731         /* sgid_attrs associated with the AV's */
1732         const struct ib_gid_attr *av_sgid_attr;
1733         const struct ib_gid_attr *alt_path_sgid_attr;
1734         u32                     qp_num;
1735         u32                     max_write_sge;
1736         u32                     max_read_sge;
1737         enum ib_qp_type         qp_type;
1738         struct ib_rwq_ind_table *rwq_ind_tbl;
1739         struct ib_qp_security  *qp_sec;
1740         u8                      port;
1741
1742         bool                    integrity_en;
1743         /*
1744          * Implementation details of the RDMA core, don't use in drivers:
1745          */
1746         struct rdma_restrack_entry     res;
1747
1748         /* The counter the qp is bind to */
1749         struct rdma_counter    *counter;
1750 };
1751
1752 struct ib_dm {
1753         struct ib_device  *device;
1754         u32                length;
1755         u32                flags;
1756         struct ib_uobject *uobject;
1757         atomic_t           usecnt;
1758 };
1759
1760 struct ib_mr {
1761         struct ib_device  *device;
1762         struct ib_pd      *pd;
1763         u32                lkey;
1764         u32                rkey;
1765         u64                iova;
1766         u64                length;
1767         unsigned int       page_size;
1768         enum ib_mr_type    type;
1769         bool               need_inval;
1770         union {
1771                 struct ib_uobject       *uobject;       /* user */
1772                 struct list_head        qp_entry;       /* FR */
1773         };
1774
1775         struct ib_dm      *dm;
1776         struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1777         /*
1778          * Implementation details of the RDMA core, don't use in drivers:
1779          */
1780         struct rdma_restrack_entry res;
1781 };
1782
1783 struct ib_mw {
1784         struct ib_device        *device;
1785         struct ib_pd            *pd;
1786         struct ib_uobject       *uobject;
1787         u32                     rkey;
1788         enum ib_mw_type         type;
1789 };
1790
1791 struct ib_fmr {
1792         struct ib_device        *device;
1793         struct ib_pd            *pd;
1794         struct list_head        list;
1795         u32                     lkey;
1796         u32                     rkey;
1797 };
1798
1799 /* Supported steering options */
1800 enum ib_flow_attr_type {
1801         /* steering according to rule specifications */
1802         IB_FLOW_ATTR_NORMAL             = 0x0,
1803         /* default unicast and multicast rule -
1804          * receive all Eth traffic which isn't steered to any QP
1805          */
1806         IB_FLOW_ATTR_ALL_DEFAULT        = 0x1,
1807         /* default multicast rule -
1808          * receive all Eth multicast traffic which isn't steered to any QP
1809          */
1810         IB_FLOW_ATTR_MC_DEFAULT         = 0x2,
1811         /* sniffer rule - receive all port traffic */
1812         IB_FLOW_ATTR_SNIFFER            = 0x3
1813 };
1814
1815 /* Supported steering header types */
1816 enum ib_flow_spec_type {
1817         /* L2 headers*/
1818         IB_FLOW_SPEC_ETH                = 0x20,
1819         IB_FLOW_SPEC_IB                 = 0x22,
1820         /* L3 header*/
1821         IB_FLOW_SPEC_IPV4               = 0x30,
1822         IB_FLOW_SPEC_IPV6               = 0x31,
1823         IB_FLOW_SPEC_ESP                = 0x34,
1824         /* L4 headers*/
1825         IB_FLOW_SPEC_TCP                = 0x40,
1826         IB_FLOW_SPEC_UDP                = 0x41,
1827         IB_FLOW_SPEC_VXLAN_TUNNEL       = 0x50,
1828         IB_FLOW_SPEC_GRE                = 0x51,
1829         IB_FLOW_SPEC_MPLS               = 0x60,
1830         IB_FLOW_SPEC_INNER              = 0x100,
1831         /* Actions */
1832         IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1833         IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1834         IB_FLOW_SPEC_ACTION_HANDLE      = 0x1002,
1835         IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1836 };
1837 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1838 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1839
1840 /* Flow steering rule priority is set according to it's domain.
1841  * Lower domain value means higher priority.
1842  */
1843 enum ib_flow_domain {
1844         IB_FLOW_DOMAIN_USER,
1845         IB_FLOW_DOMAIN_ETHTOOL,
1846         IB_FLOW_DOMAIN_RFS,
1847         IB_FLOW_DOMAIN_NIC,
1848         IB_FLOW_DOMAIN_NUM /* Must be last */
1849 };
1850
1851 enum ib_flow_flags {
1852         IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1853         IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1854         IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1855 };
1856
1857 struct ib_flow_eth_filter {
1858         u8      dst_mac[6];
1859         u8      src_mac[6];
1860         __be16  ether_type;
1861         __be16  vlan_tag;
1862         /* Must be last */
1863         u8      real_sz[0];
1864 };
1865
1866 struct ib_flow_spec_eth {
1867         u32                       type;
1868         u16                       size;
1869         struct ib_flow_eth_filter val;
1870         struct ib_flow_eth_filter mask;
1871 };
1872
1873 struct ib_flow_ib_filter {
1874         __be16 dlid;
1875         __u8   sl;
1876         /* Must be last */
1877         u8      real_sz[0];
1878 };
1879
1880 struct ib_flow_spec_ib {
1881         u32                      type;
1882         u16                      size;
1883         struct ib_flow_ib_filter val;
1884         struct ib_flow_ib_filter mask;
1885 };
1886
1887 /* IPv4 header flags */
1888 enum ib_ipv4_flags {
1889         IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1890         IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1891                                     last have this flag set */
1892 };
1893
1894 struct ib_flow_ipv4_filter {
1895         __be32  src_ip;
1896         __be32  dst_ip;
1897         u8      proto;
1898         u8      tos;
1899         u8      ttl;
1900         u8      flags;
1901         /* Must be last */
1902         u8      real_sz[0];
1903 };
1904
1905 struct ib_flow_spec_ipv4 {
1906         u32                        type;
1907         u16                        size;
1908         struct ib_flow_ipv4_filter val;
1909         struct ib_flow_ipv4_filter mask;
1910 };
1911
1912 struct ib_flow_ipv6_filter {
1913         u8      src_ip[16];
1914         u8      dst_ip[16];
1915         __be32  flow_label;
1916         u8      next_hdr;
1917         u8      traffic_class;
1918         u8      hop_limit;
1919         /* Must be last */
1920         u8      real_sz[0];
1921 };
1922
1923 struct ib_flow_spec_ipv6 {
1924         u32                        type;
1925         u16                        size;
1926         struct ib_flow_ipv6_filter val;
1927         struct ib_flow_ipv6_filter mask;
1928 };
1929
1930 struct ib_flow_tcp_udp_filter {
1931         __be16  dst_port;
1932         __be16  src_port;
1933         /* Must be last */
1934         u8      real_sz[0];
1935 };
1936
1937 struct ib_flow_spec_tcp_udp {
1938         u32                           type;
1939         u16                           size;
1940         struct ib_flow_tcp_udp_filter val;
1941         struct ib_flow_tcp_udp_filter mask;
1942 };
1943
1944 struct ib_flow_tunnel_filter {
1945         __be32  tunnel_id;
1946         u8      real_sz[0];
1947 };
1948
1949 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1950  * the tunnel_id from val has the vni value
1951  */
1952 struct ib_flow_spec_tunnel {
1953         u32                           type;
1954         u16                           size;
1955         struct ib_flow_tunnel_filter  val;
1956         struct ib_flow_tunnel_filter  mask;
1957 };
1958
1959 struct ib_flow_esp_filter {
1960         __be32  spi;
1961         __be32  seq;
1962         /* Must be last */
1963         u8      real_sz[0];
1964 };
1965
1966 struct ib_flow_spec_esp {
1967         u32                           type;
1968         u16                           size;
1969         struct ib_flow_esp_filter     val;
1970         struct ib_flow_esp_filter     mask;
1971 };
1972
1973 struct ib_flow_gre_filter {
1974         __be16 c_ks_res0_ver;
1975         __be16 protocol;
1976         __be32 key;
1977         /* Must be last */
1978         u8      real_sz[0];
1979 };
1980
1981 struct ib_flow_spec_gre {
1982         u32                           type;
1983         u16                           size;
1984         struct ib_flow_gre_filter     val;
1985         struct ib_flow_gre_filter     mask;
1986 };
1987
1988 struct ib_flow_mpls_filter {
1989         __be32 tag;
1990         /* Must be last */
1991         u8      real_sz[0];
1992 };
1993
1994 struct ib_flow_spec_mpls {
1995         u32                           type;
1996         u16                           size;
1997         struct ib_flow_mpls_filter     val;
1998         struct ib_flow_mpls_filter     mask;
1999 };
2000
2001 struct ib_flow_spec_action_tag {
2002         enum ib_flow_spec_type        type;
2003         u16                           size;
2004         u32                           tag_id;
2005 };
2006
2007 struct ib_flow_spec_action_drop {
2008         enum ib_flow_spec_type        type;
2009         u16                           size;
2010 };
2011
2012 struct ib_flow_spec_action_handle {
2013         enum ib_flow_spec_type        type;
2014         u16                           size;
2015         struct ib_flow_action        *act;
2016 };
2017
2018 enum ib_counters_description {
2019         IB_COUNTER_PACKETS,
2020         IB_COUNTER_BYTES,
2021 };
2022
2023 struct ib_flow_spec_action_count {
2024         enum ib_flow_spec_type type;
2025         u16 size;
2026         struct ib_counters *counters;
2027 };
2028
2029 union ib_flow_spec {
2030         struct {
2031                 u32                     type;
2032                 u16                     size;
2033         };
2034         struct ib_flow_spec_eth         eth;
2035         struct ib_flow_spec_ib          ib;
2036         struct ib_flow_spec_ipv4        ipv4;
2037         struct ib_flow_spec_tcp_udp     tcp_udp;
2038         struct ib_flow_spec_ipv6        ipv6;
2039         struct ib_flow_spec_tunnel      tunnel;
2040         struct ib_flow_spec_esp         esp;
2041         struct ib_flow_spec_gre         gre;
2042         struct ib_flow_spec_mpls        mpls;
2043         struct ib_flow_spec_action_tag  flow_tag;
2044         struct ib_flow_spec_action_drop drop;
2045         struct ib_flow_spec_action_handle action;
2046         struct ib_flow_spec_action_count flow_count;
2047 };
2048
2049 struct ib_flow_attr {
2050         enum ib_flow_attr_type type;
2051         u16          size;
2052         u16          priority;
2053         u32          flags;
2054         u8           num_of_specs;
2055         u8           port;
2056         union ib_flow_spec flows[];
2057 };
2058
2059 struct ib_flow {
2060         struct ib_qp            *qp;
2061         struct ib_device        *device;
2062         struct ib_uobject       *uobject;
2063 };
2064
2065 enum ib_flow_action_type {
2066         IB_FLOW_ACTION_UNSPECIFIED,
2067         IB_FLOW_ACTION_ESP = 1,
2068 };
2069
2070 struct ib_flow_action_attrs_esp_keymats {
2071         enum ib_uverbs_flow_action_esp_keymat                   protocol;
2072         union {
2073                 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2074         } keymat;
2075 };
2076
2077 struct ib_flow_action_attrs_esp_replays {
2078         enum ib_uverbs_flow_action_esp_replay                   protocol;
2079         union {
2080                 struct ib_uverbs_flow_action_esp_replay_bmp     bmp;
2081         } replay;
2082 };
2083
2084 enum ib_flow_action_attrs_esp_flags {
2085         /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2086          * This is done in order to share the same flags between user-space and
2087          * kernel and spare an unnecessary translation.
2088          */
2089
2090         /* Kernel flags */
2091         IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED  = 1ULL << 32,
2092         IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS  = 1ULL << 33,
2093 };
2094
2095 struct ib_flow_spec_list {
2096         struct ib_flow_spec_list        *next;
2097         union ib_flow_spec              spec;
2098 };
2099
2100 struct ib_flow_action_attrs_esp {
2101         struct ib_flow_action_attrs_esp_keymats         *keymat;
2102         struct ib_flow_action_attrs_esp_replays         *replay;
2103         struct ib_flow_spec_list                        *encap;
2104         /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2105          * Value of 0 is a valid value.
2106          */
2107         u32                                             esn;
2108         u32                                             spi;
2109         u32                                             seq;
2110         u32                                             tfc_pad;
2111         /* Use enum ib_flow_action_attrs_esp_flags */
2112         u64                                             flags;
2113         u64                                             hard_limit_pkts;
2114 };
2115
2116 struct ib_flow_action {
2117         struct ib_device                *device;
2118         struct ib_uobject               *uobject;
2119         enum ib_flow_action_type        type;
2120         atomic_t                        usecnt;
2121 };
2122
2123 struct ib_mad_hdr;
2124 struct ib_grh;
2125
2126 enum ib_process_mad_flags {
2127         IB_MAD_IGNORE_MKEY      = 1,
2128         IB_MAD_IGNORE_BKEY      = 2,
2129         IB_MAD_IGNORE_ALL       = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2130 };
2131
2132 enum ib_mad_result {
2133         IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2134         IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2135         IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2136         IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2137 };
2138
2139 struct ib_port_cache {
2140         u64                   subnet_prefix;
2141         struct ib_pkey_cache  *pkey;
2142         struct ib_gid_table   *gid;
2143         u8                     lmc;
2144         enum ib_port_state     port_state;
2145 };
2146
2147 struct ib_cache {
2148         rwlock_t                lock;
2149 };
2150
2151 struct ib_port_immutable {
2152         int                           pkey_tbl_len;
2153         int                           gid_tbl_len;
2154         u32                           core_cap_flags;
2155         u32                           max_mad_size;
2156 };
2157
2158 struct ib_port_data {
2159         struct ib_device *ib_dev;
2160
2161         struct ib_port_immutable immutable;
2162
2163         spinlock_t pkey_list_lock;
2164         struct list_head pkey_list;
2165
2166         struct ib_port_cache cache;
2167
2168         spinlock_t netdev_lock;
2169         struct net_device __rcu *netdev;
2170         struct hlist_node ndev_hash_link;
2171         struct rdma_port_counter port_counter;
2172         struct rdma_hw_stats *hw_stats;
2173 };
2174
2175 /* rdma netdev type - specifies protocol type */
2176 enum rdma_netdev_t {
2177         RDMA_NETDEV_OPA_VNIC,
2178         RDMA_NETDEV_IPOIB,
2179 };
2180
2181 /**
2182  * struct rdma_netdev - rdma netdev
2183  * For cases where netstack interfacing is required.
2184  */
2185 struct rdma_netdev {
2186         void              *clnt_priv;
2187         struct ib_device  *hca;
2188         u8                 port_num;
2189
2190         /*
2191          * cleanup function must be specified.
2192          * FIXME: This is only used for OPA_VNIC and that usage should be
2193          * removed too.
2194          */
2195         void (*free_rdma_netdev)(struct net_device *netdev);
2196
2197         /* control functions */
2198         void (*set_id)(struct net_device *netdev, int id);
2199         /* send packet */
2200         int (*send)(struct net_device *dev, struct sk_buff *skb,
2201                     struct ib_ah *address, u32 dqpn);
2202         /* multicast */
2203         int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2204                             union ib_gid *gid, u16 mlid,
2205                             int set_qkey, u32 qkey);
2206         int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2207                             union ib_gid *gid, u16 mlid);
2208 };
2209
2210 struct rdma_netdev_alloc_params {
2211         size_t sizeof_priv;
2212         unsigned int txqs;
2213         unsigned int rxqs;
2214         void *param;
2215
2216         int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2217                                       struct net_device *netdev, void *param);
2218 };
2219
2220 struct ib_counters {
2221         struct ib_device        *device;
2222         struct ib_uobject       *uobject;
2223         /* num of objects attached */
2224         atomic_t        usecnt;
2225 };
2226
2227 struct ib_counters_read_attr {
2228         u64     *counters_buff;
2229         u32     ncounters;
2230         u32     flags; /* use enum ib_read_counters_flags */
2231 };
2232
2233 struct uverbs_attr_bundle;
2234 struct iw_cm_id;
2235 struct iw_cm_conn_param;
2236
2237 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2238         .size_##ib_struct =                                                    \
2239                 (sizeof(struct drv_struct) +                                   \
2240                  BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2241                  BUILD_BUG_ON_ZERO(                                            \
2242                          !__same_type(((struct drv_struct *)NULL)->member,     \
2243                                       struct ib_struct)))
2244
2245 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2246         ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2247
2248 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2249         rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2250
2251 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2252
2253 /**
2254  * struct ib_device_ops - InfiniBand device operations
2255  * This structure defines all the InfiniBand device operations, providers will
2256  * need to define the supported operations, otherwise they will be set to null.
2257  */
2258 struct ib_device_ops {
2259         struct module *owner;
2260         enum rdma_driver_id driver_id;
2261         u32 uverbs_abi_ver;
2262         unsigned int uverbs_no_driver_id_binding:1;
2263
2264         int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2265                          const struct ib_send_wr **bad_send_wr);
2266         int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2267                          const struct ib_recv_wr **bad_recv_wr);
2268         void (*drain_rq)(struct ib_qp *qp);
2269         void (*drain_sq)(struct ib_qp *qp);
2270         int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2271         int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2272         int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2273         int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2274         int (*post_srq_recv)(struct ib_srq *srq,
2275                              const struct ib_recv_wr *recv_wr,
2276                              const struct ib_recv_wr **bad_recv_wr);
2277         int (*process_mad)(struct ib_device *device, int process_mad_flags,
2278                            u8 port_num, const struct ib_wc *in_wc,
2279                            const struct ib_grh *in_grh,
2280                            const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2281                            struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2282                            u16 *out_mad_pkey_index);
2283         int (*query_device)(struct ib_device *device,
2284                             struct ib_device_attr *device_attr,
2285                             struct ib_udata *udata);
2286         int (*modify_device)(struct ib_device *device, int device_modify_mask,
2287                              struct ib_device_modify *device_modify);
2288         void (*get_dev_fw_str)(struct ib_device *device, char *str);
2289         const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2290                                                      int comp_vector);
2291         int (*query_port)(struct ib_device *device, u8 port_num,
2292                           struct ib_port_attr *port_attr);
2293         int (*modify_port)(struct ib_device *device, u8 port_num,
2294                            int port_modify_mask,
2295                            struct ib_port_modify *port_modify);
2296         /**
2297          * The following mandatory functions are used only at device
2298          * registration.  Keep functions such as these at the end of this
2299          * structure to avoid cache line misses when accessing struct ib_device
2300          * in fast paths.
2301          */
2302         int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2303                                   struct ib_port_immutable *immutable);
2304         enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2305                                                u8 port_num);
2306         /**
2307          * When calling get_netdev, the HW vendor's driver should return the
2308          * net device of device @device at port @port_num or NULL if such
2309          * a net device doesn't exist. The vendor driver should call dev_hold
2310          * on this net device. The HW vendor's device driver must guarantee
2311          * that this function returns NULL before the net device has finished
2312          * NETDEV_UNREGISTER state.
2313          */
2314         struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2315         /**
2316          * rdma netdev operation
2317          *
2318          * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2319          * must return -EOPNOTSUPP if it doesn't support the specified type.
2320          */
2321         struct net_device *(*alloc_rdma_netdev)(
2322                 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2323                 const char *name, unsigned char name_assign_type,
2324                 void (*setup)(struct net_device *));
2325
2326         int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2327                                       enum rdma_netdev_t type,
2328                                       struct rdma_netdev_alloc_params *params);
2329         /**
2330          * query_gid should be return GID value for @device, when @port_num
2331          * link layer is either IB or iWarp. It is no-op if @port_num port
2332          * is RoCE link layer.
2333          */
2334         int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2335                          union ib_gid *gid);
2336         /**
2337          * When calling add_gid, the HW vendor's driver should add the gid
2338          * of device of port at gid index available at @attr. Meta-info of
2339          * that gid (for example, the network device related to this gid) is
2340          * available at @attr. @context allows the HW vendor driver to store
2341          * extra information together with a GID entry. The HW vendor driver may
2342          * allocate memory to contain this information and store it in @context
2343          * when a new GID entry is written to. Params are consistent until the
2344          * next call of add_gid or delete_gid. The function should return 0 on
2345          * success or error otherwise. The function could be called
2346          * concurrently for different ports. This function is only called when
2347          * roce_gid_table is used.
2348          */
2349         int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2350         /**
2351          * When calling del_gid, the HW vendor's driver should delete the
2352          * gid of device @device at gid index gid_index of port port_num
2353          * available in @attr.
2354          * Upon the deletion of a GID entry, the HW vendor must free any
2355          * allocated memory. The caller will clear @context afterwards.
2356          * This function is only called when roce_gid_table is used.
2357          */
2358         int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2359         int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2360                           u16 *pkey);
2361         int (*alloc_ucontext)(struct ib_ucontext *context,
2362                               struct ib_udata *udata);
2363         void (*dealloc_ucontext)(struct ib_ucontext *context);
2364         int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2365         void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2366         int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2367         void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2368         int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
2369                          u32 flags, struct ib_udata *udata);
2370         int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2371         int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2372         void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2373         int (*create_srq)(struct ib_srq *srq,
2374                           struct ib_srq_init_attr *srq_init_attr,
2375                           struct ib_udata *udata);
2376         int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2377                           enum ib_srq_attr_mask srq_attr_mask,
2378                           struct ib_udata *udata);
2379         int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2380         void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2381         struct ib_qp *(*create_qp)(struct ib_pd *pd,
2382                                    struct ib_qp_init_attr *qp_init_attr,
2383                                    struct ib_udata *udata);
2384         int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2385                          int qp_attr_mask, struct ib_udata *udata);
2386         int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2387                         int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2388         int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2389         int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2390                          struct ib_udata *udata);
2391         int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2392         void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2393         int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2394         struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2395         struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2396                                      u64 virt_addr, int mr_access_flags,
2397                                      struct ib_udata *udata);
2398         int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2399                              u64 virt_addr, int mr_access_flags,
2400                              struct ib_pd *pd, struct ib_udata *udata);
2401         int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2402         struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2403                                   u32 max_num_sg, struct ib_udata *udata);
2404         struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2405                                             u32 max_num_data_sg,
2406                                             u32 max_num_meta_sg);
2407         int (*advise_mr)(struct ib_pd *pd,
2408                          enum ib_uverbs_advise_mr_advice advice, u32 flags,
2409                          struct ib_sge *sg_list, u32 num_sge,
2410                          struct uverbs_attr_bundle *attrs);
2411         int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2412                          unsigned int *sg_offset);
2413         int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2414                                struct ib_mr_status *mr_status);
2415         struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2416                                   struct ib_udata *udata);
2417         int (*dealloc_mw)(struct ib_mw *mw);
2418         struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2419                                     struct ib_fmr_attr *fmr_attr);
2420         int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2421                             u64 iova);
2422         int (*unmap_fmr)(struct list_head *fmr_list);
2423         int (*dealloc_fmr)(struct ib_fmr *fmr);
2424         void (*invalidate_range)(struct ib_umem_odp *umem_odp,
2425                                  unsigned long start, unsigned long end);
2426         int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2427         int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2428         struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2429                                       struct ib_udata *udata);
2430         int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2431         struct ib_flow *(*create_flow)(struct ib_qp *qp,
2432                                        struct ib_flow_attr *flow_attr,
2433                                        int domain, struct ib_udata *udata);
2434         int (*destroy_flow)(struct ib_flow *flow_id);
2435         struct ib_flow_action *(*create_flow_action_esp)(
2436                 struct ib_device *device,
2437                 const struct ib_flow_action_attrs_esp *attr,
2438                 struct uverbs_attr_bundle *attrs);
2439         int (*destroy_flow_action)(struct ib_flow_action *action);
2440         int (*modify_flow_action_esp)(
2441                 struct ib_flow_action *action,
2442                 const struct ib_flow_action_attrs_esp *attr,
2443                 struct uverbs_attr_bundle *attrs);
2444         int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2445                                  int state);
2446         int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2447                              struct ifla_vf_info *ivf);
2448         int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2449                             struct ifla_vf_stats *stats);
2450         int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2451                            int type);
2452         struct ib_wq *(*create_wq)(struct ib_pd *pd,
2453                                    struct ib_wq_init_attr *init_attr,
2454                                    struct ib_udata *udata);
2455         void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2456         int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2457                          u32 wq_attr_mask, struct ib_udata *udata);
2458         struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2459                 struct ib_device *device,
2460                 struct ib_rwq_ind_table_init_attr *init_attr,
2461                 struct ib_udata *udata);
2462         int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2463         struct ib_dm *(*alloc_dm)(struct ib_device *device,
2464                                   struct ib_ucontext *context,
2465                                   struct ib_dm_alloc_attr *attr,
2466                                   struct uverbs_attr_bundle *attrs);
2467         int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2468         struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2469                                    struct ib_dm_mr_attr *attr,
2470                                    struct uverbs_attr_bundle *attrs);
2471         struct ib_counters *(*create_counters)(
2472                 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2473         int (*destroy_counters)(struct ib_counters *counters);
2474         int (*read_counters)(struct ib_counters *counters,
2475                              struct ib_counters_read_attr *counters_read_attr,
2476                              struct uverbs_attr_bundle *attrs);
2477         int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2478                             int data_sg_nents, unsigned int *data_sg_offset,
2479                             struct scatterlist *meta_sg, int meta_sg_nents,
2480                             unsigned int *meta_sg_offset);
2481
2482         /**
2483          * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2484          *   driver initialized data.  The struct is kfree()'ed by the sysfs
2485          *   core when the device is removed.  A lifespan of -1 in the return
2486          *   struct tells the core to set a default lifespan.
2487          */
2488         struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2489                                                 u8 port_num);
2490         /**
2491          * get_hw_stats - Fill in the counter value(s) in the stats struct.
2492          * @index - The index in the value array we wish to have updated, or
2493          *   num_counters if we want all stats updated
2494          * Return codes -
2495          *   < 0 - Error, no counters updated
2496          *   index - Updated the single counter pointed to by index
2497          *   num_counters - Updated all counters (will reset the timestamp
2498          *     and prevent further calls for lifespan milliseconds)
2499          * Drivers are allowed to update all counters in leiu of just the
2500          *   one given in index at their option
2501          */
2502         int (*get_hw_stats)(struct ib_device *device,
2503                             struct rdma_hw_stats *stats, u8 port, int index);
2504         /*
2505          * This function is called once for each port when a ib device is
2506          * registered.
2507          */
2508         int (*init_port)(struct ib_device *device, u8 port_num,
2509                          struct kobject *port_sysfs);
2510         /**
2511          * Allows rdma drivers to add their own restrack attributes.
2512          */
2513         int (*fill_res_entry)(struct sk_buff *msg,
2514                               struct rdma_restrack_entry *entry);
2515
2516         /* Device lifecycle callbacks */
2517         /*
2518          * Called after the device becomes registered, before clients are
2519          * attached
2520          */
2521         int (*enable_driver)(struct ib_device *dev);
2522         /*
2523          * This is called as part of ib_dealloc_device().
2524          */
2525         void (*dealloc_driver)(struct ib_device *dev);
2526
2527         /* iWarp CM callbacks */
2528         void (*iw_add_ref)(struct ib_qp *qp);
2529         void (*iw_rem_ref)(struct ib_qp *qp);
2530         struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2531         int (*iw_connect)(struct iw_cm_id *cm_id,
2532                           struct iw_cm_conn_param *conn_param);
2533         int (*iw_accept)(struct iw_cm_id *cm_id,
2534                          struct iw_cm_conn_param *conn_param);
2535         int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2536                          u8 pdata_len);
2537         int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2538         int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2539         /**
2540          * counter_bind_qp - Bind a QP to a counter.
2541          * @counter - The counter to be bound. If counter->id is zero then
2542          *   the driver needs to allocate a new counter and set counter->id
2543          */
2544         int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2545         /**
2546          * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2547          *   counter and bind it onto the default one
2548          */
2549         int (*counter_unbind_qp)(struct ib_qp *qp);
2550         /**
2551          * counter_dealloc -De-allocate the hw counter
2552          */
2553         int (*counter_dealloc)(struct rdma_counter *counter);
2554         /**
2555          * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2556          * the driver initialized data.
2557          */
2558         struct rdma_hw_stats *(*counter_alloc_stats)(
2559                 struct rdma_counter *counter);
2560         /**
2561          * counter_update_stats - Query the stats value of this counter
2562          */
2563         int (*counter_update_stats)(struct rdma_counter *counter);
2564
2565         DECLARE_RDMA_OBJ_SIZE(ib_ah);
2566         DECLARE_RDMA_OBJ_SIZE(ib_cq);
2567         DECLARE_RDMA_OBJ_SIZE(ib_pd);
2568         DECLARE_RDMA_OBJ_SIZE(ib_srq);
2569         DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2570 };
2571
2572 struct ib_core_device {
2573         /* device must be the first element in structure until,
2574          * union of ib_core_device and device exists in ib_device.
2575          */
2576         struct device dev;
2577         possible_net_t rdma_net;
2578         struct kobject *ports_kobj;
2579         struct list_head port_list;
2580         struct ib_device *owner; /* reach back to owner ib_device */
2581 };
2582
2583 struct rdma_restrack_root;
2584 struct ib_device {
2585         /* Do not access @dma_device directly from ULP nor from HW drivers. */
2586         struct device                *dma_device;
2587         struct ib_device_ops         ops;
2588         char                          name[IB_DEVICE_NAME_MAX];
2589         struct rcu_head rcu_head;
2590
2591         struct list_head              event_handler_list;
2592         /* Protects event_handler_list */
2593         struct rw_semaphore event_handler_rwsem;
2594
2595         /* Protects QP's event_handler calls and open_qp list */
2596         spinlock_t event_handler_lock;
2597
2598         struct rw_semaphore           client_data_rwsem;
2599         struct xarray                 client_data;
2600         struct mutex                  unregistration_lock;
2601
2602         struct ib_cache               cache;
2603         /**
2604          * port_data is indexed by port number
2605          */
2606         struct ib_port_data *port_data;
2607
2608         int                           num_comp_vectors;
2609
2610         union {
2611                 struct device           dev;
2612                 struct ib_core_device   coredev;
2613         };
2614
2615         /* First group for device attributes,
2616          * Second group for driver provided attributes (optional).
2617          * It is NULL terminated array.
2618          */
2619         const struct attribute_group    *groups[3];
2620
2621         u64                          uverbs_cmd_mask;
2622         u64                          uverbs_ex_cmd_mask;
2623
2624         char                         node_desc[IB_DEVICE_NODE_DESC_MAX];
2625         __be64                       node_guid;
2626         u32                          local_dma_lkey;
2627         u16                          is_switch:1;
2628         /* Indicates kernel verbs support, should not be used in drivers */
2629         u16                          kverbs_provider:1;
2630         /* CQ adaptive moderation (RDMA DIM) */
2631         u16                          use_cq_dim:1;
2632         u8                           node_type;
2633         u8                           phys_port_cnt;
2634         struct ib_device_attr        attrs;
2635         struct attribute_group       *hw_stats_ag;
2636         struct rdma_hw_stats         *hw_stats;
2637
2638 #ifdef CONFIG_CGROUP_RDMA
2639         struct rdmacg_device         cg_device;
2640 #endif
2641
2642         u32                          index;
2643         struct rdma_restrack_root *res;
2644
2645         const struct uapi_definition   *driver_def;
2646
2647         /*
2648          * Positive refcount indicates that the device is currently
2649          * registered and cannot be unregistered.
2650          */
2651         refcount_t refcount;
2652         struct completion unreg_completion;
2653         struct work_struct unregistration_work;
2654
2655         const struct rdma_link_ops *link_ops;
2656
2657         /* Protects compat_devs xarray modifications */
2658         struct mutex compat_devs_mutex;
2659         /* Maintains compat devices for each net namespace */
2660         struct xarray compat_devs;
2661
2662         /* Used by iWarp CM */
2663         char iw_ifname[IFNAMSIZ];
2664         u32 iw_driver_flags;
2665 };
2666
2667 struct ib_client_nl_info;
2668 struct ib_client {
2669         const char *name;
2670         void (*add)   (struct ib_device *);
2671         void (*remove)(struct ib_device *, void *client_data);
2672         void (*rename)(struct ib_device *dev, void *client_data);
2673         int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2674                            struct ib_client_nl_info *res);
2675         int (*get_global_nl_info)(struct ib_client_nl_info *res);
2676
2677         /* Returns the net_dev belonging to this ib_client and matching the
2678          * given parameters.
2679          * @dev:         An RDMA device that the net_dev use for communication.
2680          * @port:        A physical port number on the RDMA device.
2681          * @pkey:        P_Key that the net_dev uses if applicable.
2682          * @gid:         A GID that the net_dev uses to communicate.
2683          * @addr:        An IP address the net_dev is configured with.
2684          * @client_data: The device's client data set by ib_set_client_data().
2685          *
2686          * An ib_client that implements a net_dev on top of RDMA devices
2687          * (such as IP over IB) should implement this callback, allowing the
2688          * rdma_cm module to find the right net_dev for a given request.
2689          *
2690          * The caller is responsible for calling dev_put on the returned
2691          * netdev. */
2692         struct net_device *(*get_net_dev_by_params)(
2693                         struct ib_device *dev,
2694                         u8 port,
2695                         u16 pkey,
2696                         const union ib_gid *gid,
2697                         const struct sockaddr *addr,
2698                         void *client_data);
2699
2700         refcount_t uses;
2701         struct completion uses_zero;
2702         u32 client_id;
2703
2704         /* kverbs are not required by the client */
2705         u8 no_kverbs_req:1;
2706 };
2707
2708 /*
2709  * IB block DMA iterator
2710  *
2711  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2712  * to a HW supported page size.
2713  */
2714 struct ib_block_iter {
2715         /* internal states */
2716         struct scatterlist *__sg;       /* sg holding the current aligned block */
2717         dma_addr_t __dma_addr;          /* unaligned DMA address of this block */
2718         unsigned int __sg_nents;        /* number of SG entries */
2719         unsigned int __sg_advance;      /* number of bytes to advance in sg in next step */
2720         unsigned int __pg_bit;          /* alignment of current block */
2721 };
2722
2723 struct ib_device *_ib_alloc_device(size_t size);
2724 #define ib_alloc_device(drv_struct, member)                                    \
2725         container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2726                                       BUILD_BUG_ON_ZERO(offsetof(              \
2727                                               struct drv_struct, member))),    \
2728                      struct drv_struct, member)
2729
2730 void ib_dealloc_device(struct ib_device *device);
2731
2732 void ib_get_device_fw_str(struct ib_device *device, char *str);
2733
2734 int ib_register_device(struct ib_device *device, const char *name);
2735 void ib_unregister_device(struct ib_device *device);
2736 void ib_unregister_driver(enum rdma_driver_id driver_id);
2737 void ib_unregister_device_and_put(struct ib_device *device);
2738 void ib_unregister_device_queued(struct ib_device *ib_dev);
2739
2740 int ib_register_client   (struct ib_client *client);
2741 void ib_unregister_client(struct ib_client *client);
2742
2743 void __rdma_block_iter_start(struct ib_block_iter *biter,
2744                              struct scatterlist *sglist,
2745                              unsigned int nents,
2746                              unsigned long pgsz);
2747 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2748
2749 /**
2750  * rdma_block_iter_dma_address - get the aligned dma address of the current
2751  * block held by the block iterator.
2752  * @biter: block iterator holding the memory block
2753  */
2754 static inline dma_addr_t
2755 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2756 {
2757         return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2758 }
2759
2760 /**
2761  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2762  * @sglist: sglist to iterate over
2763  * @biter: block iterator holding the memory block
2764  * @nents: maximum number of sg entries to iterate over
2765  * @pgsz: best HW supported page size to use
2766  *
2767  * Callers may use rdma_block_iter_dma_address() to get each
2768  * blocks aligned DMA address.
2769  */
2770 #define rdma_for_each_block(sglist, biter, nents, pgsz)         \
2771         for (__rdma_block_iter_start(biter, sglist, nents,      \
2772                                      pgsz);                     \
2773              __rdma_block_iter_next(biter);)
2774
2775 /**
2776  * ib_get_client_data - Get IB client context
2777  * @device:Device to get context for
2778  * @client:Client to get context for
2779  *
2780  * ib_get_client_data() returns the client context data set with
2781  * ib_set_client_data(). This can only be called while the client is
2782  * registered to the device, once the ib_client remove() callback returns this
2783  * cannot be called.
2784  */
2785 static inline void *ib_get_client_data(struct ib_device *device,
2786                                        struct ib_client *client)
2787 {
2788         return xa_load(&device->client_data, client->client_id);
2789 }
2790 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2791                          void *data);
2792 void ib_set_device_ops(struct ib_device *device,
2793                        const struct ib_device_ops *ops);
2794
2795 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2796 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2797                       unsigned long pfn, unsigned long size, pgprot_t prot);
2798 #else
2799 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2800                                     struct vm_area_struct *vma,
2801                                     unsigned long pfn, unsigned long size,
2802                                     pgprot_t prot)
2803 {
2804         return -EINVAL;
2805 }
2806 #endif
2807
2808 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2809 {
2810         return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2811 }
2812
2813 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2814 {
2815         return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2816 }
2817
2818 static inline bool ib_is_buffer_cleared(const void __user *p,
2819                                         size_t len)
2820 {
2821         bool ret;
2822         u8 *buf;
2823
2824         if (len > USHRT_MAX)
2825                 return false;
2826
2827         buf = memdup_user(p, len);
2828         if (IS_ERR(buf))
2829                 return false;
2830
2831         ret = !memchr_inv(buf, 0, len);
2832         kfree(buf);
2833         return ret;
2834 }
2835
2836 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2837                                        size_t offset,
2838                                        size_t len)
2839 {
2840         return ib_is_buffer_cleared(udata->inbuf + offset, len);
2841 }
2842
2843 /**
2844  * ib_is_destroy_retryable - Check whether the uobject destruction
2845  * is retryable.
2846  * @ret: The initial destruction return code
2847  * @why: remove reason
2848  * @uobj: The uobject that is destroyed
2849  *
2850  * This function is a helper function that IB layer and low-level drivers
2851  * can use to consider whether the destruction of the given uobject is
2852  * retry-able.
2853  * It checks the original return code, if it wasn't success the destruction
2854  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2855  * the remove reason. (i.e. why).
2856  * Must be called with the object locked for destroy.
2857  */
2858 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2859                                            struct ib_uobject *uobj)
2860 {
2861         return ret && (why == RDMA_REMOVE_DESTROY ||
2862                        uobj->context->cleanup_retryable);
2863 }
2864
2865 /**
2866  * ib_destroy_usecnt - Called during destruction to check the usecnt
2867  * @usecnt: The usecnt atomic
2868  * @why: remove reason
2869  * @uobj: The uobject that is destroyed
2870  *
2871  * Non-zero usecnts will block destruction unless destruction was triggered by
2872  * a ucontext cleanup.
2873  */
2874 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2875                                     enum rdma_remove_reason why,
2876                                     struct ib_uobject *uobj)
2877 {
2878         if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2879                 return -EBUSY;
2880         return 0;
2881 }
2882
2883 /**
2884  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2885  * contains all required attributes and no attributes not allowed for
2886  * the given QP state transition.
2887  * @cur_state: Current QP state
2888  * @next_state: Next QP state
2889  * @type: QP type
2890  * @mask: Mask of supplied QP attributes
2891  *
2892  * This function is a helper function that a low-level driver's
2893  * modify_qp method can use to validate the consumer's input.  It
2894  * checks that cur_state and next_state are valid QP states, that a
2895  * transition from cur_state to next_state is allowed by the IB spec,
2896  * and that the attribute mask supplied is allowed for the transition.
2897  */
2898 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2899                         enum ib_qp_type type, enum ib_qp_attr_mask mask);
2900
2901 void ib_register_event_handler(struct ib_event_handler *event_handler);
2902 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2903 void ib_dispatch_event(const struct ib_event *event);
2904
2905 int ib_query_port(struct ib_device *device,
2906                   u8 port_num, struct ib_port_attr *port_attr);
2907
2908 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2909                                                u8 port_num);
2910
2911 /**
2912  * rdma_cap_ib_switch - Check if the device is IB switch
2913  * @device: Device to check
2914  *
2915  * Device driver is responsible for setting is_switch bit on
2916  * in ib_device structure at init time.
2917  *
2918  * Return: true if the device is IB switch.
2919  */
2920 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2921 {
2922         return device->is_switch;
2923 }
2924
2925 /**
2926  * rdma_start_port - Return the first valid port number for the device
2927  * specified
2928  *
2929  * @device: Device to be checked
2930  *
2931  * Return start port number
2932  */
2933 static inline u8 rdma_start_port(const struct ib_device *device)
2934 {
2935         return rdma_cap_ib_switch(device) ? 0 : 1;
2936 }
2937
2938 /**
2939  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2940  * @device - The struct ib_device * to iterate over
2941  * @iter - The unsigned int to store the port number
2942  */
2943 #define rdma_for_each_port(device, iter)                                       \
2944         for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
2945                                                      unsigned int, iter)));    \
2946              iter <= rdma_end_port(device); (iter)++)
2947
2948 /**
2949  * rdma_end_port - Return the last valid port number for the device
2950  * specified
2951  *
2952  * @device: Device to be checked
2953  *
2954  * Return last port number
2955  */
2956 static inline u8 rdma_end_port(const struct ib_device *device)
2957 {
2958         return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2959 }
2960
2961 static inline int rdma_is_port_valid(const struct ib_device *device,
2962                                      unsigned int port)
2963 {
2964         return (port >= rdma_start_port(device) &&
2965                 port <= rdma_end_port(device));
2966 }
2967
2968 static inline bool rdma_is_grh_required(const struct ib_device *device,
2969                                         u8 port_num)
2970 {
2971         return device->port_data[port_num].immutable.core_cap_flags &
2972                RDMA_CORE_PORT_IB_GRH_REQUIRED;
2973 }
2974
2975 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2976 {
2977         return device->port_data[port_num].immutable.core_cap_flags &
2978                RDMA_CORE_CAP_PROT_IB;
2979 }
2980
2981 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2982 {
2983         return device->port_data[port_num].immutable.core_cap_flags &
2984                (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2985 }
2986
2987 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2988 {
2989         return device->port_data[port_num].immutable.core_cap_flags &
2990                RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2991 }
2992
2993 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2994 {
2995         return device->port_data[port_num].immutable.core_cap_flags &
2996                RDMA_CORE_CAP_PROT_ROCE;
2997 }
2998
2999 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3000 {
3001         return device->port_data[port_num].immutable.core_cap_flags &
3002                RDMA_CORE_CAP_PROT_IWARP;
3003 }
3004
3005 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3006 {
3007         return rdma_protocol_ib(device, port_num) ||
3008                 rdma_protocol_roce(device, port_num);
3009 }
3010
3011 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3012 {
3013         return device->port_data[port_num].immutable.core_cap_flags &
3014                RDMA_CORE_CAP_PROT_RAW_PACKET;
3015 }
3016
3017 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3018 {
3019         return device->port_data[port_num].immutable.core_cap_flags &
3020                RDMA_CORE_CAP_PROT_USNIC;
3021 }
3022
3023 /**
3024  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3025  * Management Datagrams.
3026  * @device: Device to check
3027  * @port_num: Port number to check
3028  *
3029  * Management Datagrams (MAD) are a required part of the InfiniBand
3030  * specification and are supported on all InfiniBand devices.  A slightly
3031  * extended version are also supported on OPA interfaces.
3032  *
3033  * Return: true if the port supports sending/receiving of MAD packets.
3034  */
3035 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3036 {
3037         return device->port_data[port_num].immutable.core_cap_flags &
3038                RDMA_CORE_CAP_IB_MAD;
3039 }
3040
3041 /**
3042  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3043  * Management Datagrams.
3044  * @device: Device to check
3045  * @port_num: Port number to check
3046  *
3047  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3048  * datagrams with their own versions.  These OPA MADs share many but not all of
3049  * the characteristics of InfiniBand MADs.
3050  *
3051  * OPA MADs differ in the following ways:
3052  *
3053  *    1) MADs are variable size up to 2K
3054  *       IBTA defined MADs remain fixed at 256 bytes
3055  *    2) OPA SMPs must carry valid PKeys
3056  *    3) OPA SMP packets are a different format
3057  *
3058  * Return: true if the port supports OPA MAD packet formats.
3059  */
3060 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3061 {
3062         return device->port_data[port_num].immutable.core_cap_flags &
3063                 RDMA_CORE_CAP_OPA_MAD;
3064 }
3065
3066 /**
3067  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3068  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3069  * @device: Device to check
3070  * @port_num: Port number to check
3071  *
3072  * Each InfiniBand node is required to provide a Subnet Management Agent
3073  * that the subnet manager can access.  Prior to the fabric being fully
3074  * configured by the subnet manager, the SMA is accessed via a well known
3075  * interface called the Subnet Management Interface (SMI).  This interface
3076  * uses directed route packets to communicate with the SM to get around the
3077  * chicken and egg problem of the SM needing to know what's on the fabric
3078  * in order to configure the fabric, and needing to configure the fabric in
3079  * order to send packets to the devices on the fabric.  These directed
3080  * route packets do not need the fabric fully configured in order to reach
3081  * their destination.  The SMI is the only method allowed to send
3082  * directed route packets on an InfiniBand fabric.
3083  *
3084  * Return: true if the port provides an SMI.
3085  */
3086 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3087 {
3088         return device->port_data[port_num].immutable.core_cap_flags &
3089                RDMA_CORE_CAP_IB_SMI;
3090 }
3091
3092 /**
3093  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3094  * Communication Manager.
3095  * @device: Device to check
3096  * @port_num: Port number to check
3097  *
3098  * The InfiniBand Communication Manager is one of many pre-defined General
3099  * Service Agents (GSA) that are accessed via the General Service
3100  * Interface (GSI).  It's role is to facilitate establishment of connections
3101  * between nodes as well as other management related tasks for established
3102  * connections.
3103  *
3104  * Return: true if the port supports an IB CM (this does not guarantee that
3105  * a CM is actually running however).
3106  */
3107 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3108 {
3109         return device->port_data[port_num].immutable.core_cap_flags &
3110                RDMA_CORE_CAP_IB_CM;
3111 }
3112
3113 /**
3114  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3115  * Communication Manager.
3116  * @device: Device to check
3117  * @port_num: Port number to check
3118  *
3119  * Similar to above, but specific to iWARP connections which have a different
3120  * managment protocol than InfiniBand.
3121  *
3122  * Return: true if the port supports an iWARP CM (this does not guarantee that
3123  * a CM is actually running however).
3124  */
3125 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3126 {
3127         return device->port_data[port_num].immutable.core_cap_flags &
3128                RDMA_CORE_CAP_IW_CM;
3129 }
3130
3131 /**
3132  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3133  * Subnet Administration.
3134  * @device: Device to check
3135  * @port_num: Port number to check
3136  *
3137  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3138  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3139  * fabrics, devices should resolve routes to other hosts by contacting the
3140  * SA to query the proper route.
3141  *
3142  * Return: true if the port should act as a client to the fabric Subnet
3143  * Administration interface.  This does not imply that the SA service is
3144  * running locally.
3145  */
3146 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3147 {
3148         return device->port_data[port_num].immutable.core_cap_flags &
3149                RDMA_CORE_CAP_IB_SA;
3150 }
3151
3152 /**
3153  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3154  * Multicast.
3155  * @device: Device to check
3156  * @port_num: Port number to check
3157  *
3158  * InfiniBand multicast registration is more complex than normal IPv4 or
3159  * IPv6 multicast registration.  Each Host Channel Adapter must register
3160  * with the Subnet Manager when it wishes to join a multicast group.  It
3161  * should do so only once regardless of how many queue pairs it subscribes
3162  * to this group.  And it should leave the group only after all queue pairs
3163  * attached to the group have been detached.
3164  *
3165  * Return: true if the port must undertake the additional adminstrative
3166  * overhead of registering/unregistering with the SM and tracking of the
3167  * total number of queue pairs attached to the multicast group.
3168  */
3169 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3170 {
3171         return rdma_cap_ib_sa(device, port_num);
3172 }
3173
3174 /**
3175  * rdma_cap_af_ib - Check if the port of device has the capability
3176  * Native Infiniband Address.
3177  * @device: Device to check
3178  * @port_num: Port number to check
3179  *
3180  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3181  * GID.  RoCE uses a different mechanism, but still generates a GID via
3182  * a prescribed mechanism and port specific data.
3183  *
3184  * Return: true if the port uses a GID address to identify devices on the
3185  * network.
3186  */
3187 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3188 {
3189         return device->port_data[port_num].immutable.core_cap_flags &
3190                RDMA_CORE_CAP_AF_IB;
3191 }
3192
3193 /**
3194  * rdma_cap_eth_ah - Check if the port of device has the capability
3195  * Ethernet Address Handle.
3196  * @device: Device to check
3197  * @port_num: Port number to check
3198  *
3199  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3200  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3201  * port.  Normally, packet headers are generated by the sending host
3202  * adapter, but when sending connectionless datagrams, we must manually
3203  * inject the proper headers for the fabric we are communicating over.
3204  *
3205  * Return: true if we are running as a RoCE port and must force the
3206  * addition of a Global Route Header built from our Ethernet Address
3207  * Handle into our header list for connectionless packets.
3208  */
3209 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3210 {
3211         return device->port_data[port_num].immutable.core_cap_flags &
3212                RDMA_CORE_CAP_ETH_AH;
3213 }
3214
3215 /**
3216  * rdma_cap_opa_ah - Check if the port of device supports
3217  * OPA Address handles
3218  * @device: Device to check
3219  * @port_num: Port number to check
3220  *
3221  * Return: true if we are running on an OPA device which supports
3222  * the extended OPA addressing.
3223  */
3224 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3225 {
3226         return (device->port_data[port_num].immutable.core_cap_flags &
3227                 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3228 }
3229
3230 /**
3231  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3232  *
3233  * @device: Device
3234  * @port_num: Port number
3235  *
3236  * This MAD size includes the MAD headers and MAD payload.  No other headers
3237  * are included.
3238  *
3239  * Return the max MAD size required by the Port.  Will return 0 if the port
3240  * does not support MADs
3241  */
3242 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3243 {
3244         return device->port_data[port_num].immutable.max_mad_size;
3245 }
3246
3247 /**
3248  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3249  * @device: Device to check
3250  * @port_num: Port number to check
3251  *
3252  * RoCE GID table mechanism manages the various GIDs for a device.
3253  *
3254  * NOTE: if allocating the port's GID table has failed, this call will still
3255  * return true, but any RoCE GID table API will fail.
3256  *
3257  * Return: true if the port uses RoCE GID table mechanism in order to manage
3258  * its GIDs.
3259  */
3260 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3261                                            u8 port_num)
3262 {
3263         return rdma_protocol_roce(device, port_num) &&
3264                 device->ops.add_gid && device->ops.del_gid;
3265 }
3266
3267 /*
3268  * Check if the device supports READ W/ INVALIDATE.
3269  */
3270 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3271 {
3272         /*
3273          * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3274          * has support for it yet.
3275          */
3276         return rdma_protocol_iwarp(dev, port_num);
3277 }
3278
3279 /**
3280  * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3281  *
3282  * @addr: address
3283  * @pgsz_bitmap: bitmap of HW supported page sizes
3284  */
3285 static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3286                                             unsigned long pgsz_bitmap)
3287 {
3288         unsigned long align;
3289         unsigned long pgsz;
3290
3291         align = addr & -addr;
3292
3293         /* Find page bit such that addr is aligned to the highest supported
3294          * HW page size
3295          */
3296         pgsz = pgsz_bitmap & ~(-align << 1);
3297         if (!pgsz)
3298                 return __ffs(pgsz_bitmap);
3299
3300         return __fls(pgsz);
3301 }
3302
3303 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3304                          int state);
3305 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3306                      struct ifla_vf_info *info);
3307 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3308                     struct ifla_vf_stats *stats);
3309 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3310                    int type);
3311
3312 int ib_query_pkey(struct ib_device *device,
3313                   u8 port_num, u16 index, u16 *pkey);
3314
3315 int ib_modify_device(struct ib_device *device,
3316                      int device_modify_mask,
3317                      struct ib_device_modify *device_modify);
3318
3319 int ib_modify_port(struct ib_device *device,
3320                    u8 port_num, int port_modify_mask,
3321                    struct ib_port_modify *port_modify);
3322
3323 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3324                 u8 *port_num, u16 *index);
3325
3326 int ib_find_pkey(struct ib_device *device,
3327                  u8 port_num, u16 pkey, u16 *index);
3328
3329 enum ib_pd_flags {
3330         /*
3331          * Create a memory registration for all memory in the system and place
3332          * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3333          * ULPs to avoid the overhead of dynamic MRs.
3334          *
3335          * This flag is generally considered unsafe and must only be used in
3336          * extremly trusted environments.  Every use of it will log a warning
3337          * in the kernel log.
3338          */
3339         IB_PD_UNSAFE_GLOBAL_RKEY        = 0x01,
3340 };
3341
3342 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3343                 const char *caller);
3344
3345 #define ib_alloc_pd(device, flags) \
3346         __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3347
3348 /**
3349  * ib_dealloc_pd_user - Deallocate kernel/user PD
3350  * @pd: The protection domain
3351  * @udata: Valid user data or NULL for kernel objects
3352  */
3353 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3354
3355 /**
3356  * ib_dealloc_pd - Deallocate kernel PD
3357  * @pd: The protection domain
3358  *
3359  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3360  */
3361 static inline void ib_dealloc_pd(struct ib_pd *pd)
3362 {
3363         ib_dealloc_pd_user(pd, NULL);
3364 }
3365
3366 enum rdma_create_ah_flags {
3367         /* In a sleepable context */
3368         RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3369 };
3370
3371 /**
3372  * rdma_create_ah - Creates an address handle for the given address vector.
3373  * @pd: The protection domain associated with the address handle.
3374  * @ah_attr: The attributes of the address vector.
3375  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3376  *
3377  * The address handle is used to reference a local or global destination
3378  * in all UD QP post sends.
3379  */
3380 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3381                              u32 flags);
3382
3383 /**
3384  * rdma_create_user_ah - Creates an address handle for the given address vector.
3385  * It resolves destination mac address for ah attribute of RoCE type.
3386  * @pd: The protection domain associated with the address handle.
3387  * @ah_attr: The attributes of the address vector.
3388  * @udata: pointer to user's input output buffer information need by
3389  *         provider driver.
3390  *
3391  * It returns 0 on success and returns appropriate error code on error.
3392  * The address handle is used to reference a local or global destination
3393  * in all UD QP post sends.
3394  */
3395 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3396                                   struct rdma_ah_attr *ah_attr,
3397                                   struct ib_udata *udata);
3398 /**
3399  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3400  *   work completion.
3401  * @hdr: the L3 header to parse
3402  * @net_type: type of header to parse
3403  * @sgid: place to store source gid
3404  * @dgid: place to store destination gid
3405  */
3406 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3407                               enum rdma_network_type net_type,
3408                               union ib_gid *sgid, union ib_gid *dgid);
3409
3410 /**
3411  * ib_get_rdma_header_version - Get the header version
3412  * @hdr: the L3 header to parse
3413  */
3414 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3415
3416 /**
3417  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3418  *   work completion.
3419  * @device: Device on which the received message arrived.
3420  * @port_num: Port on which the received message arrived.
3421  * @wc: Work completion associated with the received message.
3422  * @grh: References the received global route header.  This parameter is
3423  *   ignored unless the work completion indicates that the GRH is valid.
3424  * @ah_attr: Returned attributes that can be used when creating an address
3425  *   handle for replying to the message.
3426  * When ib_init_ah_attr_from_wc() returns success,
3427  * (a) for IB link layer it optionally contains a reference to SGID attribute
3428  * when GRH is present for IB link layer.
3429  * (b) for RoCE link layer it contains a reference to SGID attribute.
3430  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3431  * attributes which are initialized using ib_init_ah_attr_from_wc().
3432  *
3433  */
3434 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3435                             const struct ib_wc *wc, const struct ib_grh *grh,
3436                             struct rdma_ah_attr *ah_attr);
3437
3438 /**
3439  * ib_create_ah_from_wc - Creates an address handle associated with the
3440  *   sender of the specified work completion.
3441  * @pd: The protection domain associated with the address handle.
3442  * @wc: Work completion information associated with a received message.
3443  * @grh: References the received global route header.  This parameter is
3444  *   ignored unless the work completion indicates that the GRH is valid.
3445  * @port_num: The outbound port number to associate with the address.
3446  *
3447  * The address handle is used to reference a local or global destination
3448  * in all UD QP post sends.
3449  */
3450 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3451                                    const struct ib_grh *grh, u8 port_num);
3452
3453 /**
3454  * rdma_modify_ah - Modifies the address vector associated with an address
3455  *   handle.
3456  * @ah: The address handle to modify.
3457  * @ah_attr: The new address vector attributes to associate with the
3458  *   address handle.
3459  */
3460 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3461
3462 /**
3463  * rdma_query_ah - Queries the address vector associated with an address
3464  *   handle.
3465  * @ah: The address handle to query.
3466  * @ah_attr: The address vector attributes associated with the address
3467  *   handle.
3468  */
3469 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3470
3471 enum rdma_destroy_ah_flags {
3472         /* In a sleepable context */
3473         RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3474 };
3475
3476 /**
3477  * rdma_destroy_ah_user - Destroys an address handle.
3478  * @ah: The address handle to destroy.
3479  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3480  * @udata: Valid user data or NULL for kernel objects
3481  */
3482 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3483
3484 /**
3485  * rdma_destroy_ah - Destroys an kernel address handle.
3486  * @ah: The address handle to destroy.
3487  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3488  *
3489  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3490  */
3491 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3492 {
3493         return rdma_destroy_ah_user(ah, flags, NULL);
3494 }
3495
3496 /**
3497  * ib_create_srq - Creates a SRQ associated with the specified protection
3498  *   domain.
3499  * @pd: The protection domain associated with the SRQ.
3500  * @srq_init_attr: A list of initial attributes required to create the
3501  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3502  *   the actual capabilities of the created SRQ.
3503  *
3504  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3505  * requested size of the SRQ, and set to the actual values allocated
3506  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3507  * will always be at least as large as the requested values.
3508  */
3509 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3510                              struct ib_srq_init_attr *srq_init_attr);
3511
3512 /**
3513  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3514  * @srq: The SRQ to modify.
3515  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3516  *   the current values of selected SRQ attributes are returned.
3517  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3518  *   are being modified.
3519  *
3520  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3521  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3522  * the number of receives queued drops below the limit.
3523  */
3524 int ib_modify_srq(struct ib_srq *srq,
3525                   struct ib_srq_attr *srq_attr,
3526                   enum ib_srq_attr_mask srq_attr_mask);
3527
3528 /**
3529  * ib_query_srq - Returns the attribute list and current values for the
3530  *   specified SRQ.
3531  * @srq: The SRQ to query.
3532  * @srq_attr: The attributes of the specified SRQ.
3533  */
3534 int ib_query_srq(struct ib_srq *srq,
3535                  struct ib_srq_attr *srq_attr);
3536
3537 /**
3538  * ib_destroy_srq_user - Destroys the specified SRQ.
3539  * @srq: The SRQ to destroy.
3540  * @udata: Valid user data or NULL for kernel objects
3541  */
3542 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3543
3544 /**
3545  * ib_destroy_srq - Destroys the specified kernel SRQ.
3546  * @srq: The SRQ to destroy.
3547  *
3548  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3549  */
3550 static inline int ib_destroy_srq(struct ib_srq *srq)
3551 {
3552         return ib_destroy_srq_user(srq, NULL);
3553 }
3554
3555 /**
3556  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3557  * @srq: The SRQ to post the work request on.
3558  * @recv_wr: A list of work requests to post on the receive queue.
3559  * @bad_recv_wr: On an immediate failure, this parameter will reference
3560  *   the work request that failed to be posted on the QP.
3561  */
3562 static inline int ib_post_srq_recv(struct ib_srq *srq,
3563                                    const struct ib_recv_wr *recv_wr,
3564                                    const struct ib_recv_wr **bad_recv_wr)
3565 {
3566         const struct ib_recv_wr *dummy;
3567
3568         return srq->device->ops.post_srq_recv(srq, recv_wr,
3569                                               bad_recv_wr ? : &dummy);
3570 }
3571
3572 /**
3573  * ib_create_qp_user - Creates a QP associated with the specified protection
3574  *   domain.
3575  * @pd: The protection domain associated with the QP.
3576  * @qp_init_attr: A list of initial attributes required to create the
3577  *   QP.  If QP creation succeeds, then the attributes are updated to
3578  *   the actual capabilities of the created QP.
3579  * @udata: Valid user data or NULL for kernel objects
3580  */
3581 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
3582                                 struct ib_qp_init_attr *qp_init_attr,
3583                                 struct ib_udata *udata);
3584
3585 /**
3586  * ib_create_qp - Creates a kernel QP associated with the specified protection
3587  *   domain.
3588  * @pd: The protection domain associated with the QP.
3589  * @qp_init_attr: A list of initial attributes required to create the
3590  *   QP.  If QP creation succeeds, then the attributes are updated to
3591  *   the actual capabilities of the created QP.
3592  * @udata: Valid user data or NULL for kernel objects
3593  *
3594  * NOTE: for user qp use ib_create_qp_user with valid udata!
3595  */
3596 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3597                                          struct ib_qp_init_attr *qp_init_attr)
3598 {
3599         return ib_create_qp_user(pd, qp_init_attr, NULL);
3600 }
3601
3602 /**
3603  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3604  * @qp: The QP to modify.
3605  * @attr: On input, specifies the QP attributes to modify.  On output,
3606  *   the current values of selected QP attributes are returned.
3607  * @attr_mask: A bit-mask used to specify which attributes of the QP
3608  *   are being modified.
3609  * @udata: pointer to user's input output buffer information
3610  *   are being modified.
3611  * It returns 0 on success and returns appropriate error code on error.
3612  */
3613 int ib_modify_qp_with_udata(struct ib_qp *qp,
3614                             struct ib_qp_attr *attr,
3615                             int attr_mask,
3616                             struct ib_udata *udata);
3617
3618 /**
3619  * ib_modify_qp - Modifies the attributes for the specified QP and then
3620  *   transitions the QP to the given state.
3621  * @qp: The QP to modify.
3622  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3623  *   the current values of selected QP attributes are returned.
3624  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3625  *   are being modified.
3626  */
3627 int ib_modify_qp(struct ib_qp *qp,
3628                  struct ib_qp_attr *qp_attr,
3629                  int qp_attr_mask);
3630
3631 /**
3632  * ib_query_qp - Returns the attribute list and current values for the
3633  *   specified QP.
3634  * @qp: The QP to query.
3635  * @qp_attr: The attributes of the specified QP.
3636  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3637  * @qp_init_attr: Additional attributes of the selected QP.
3638  *
3639  * The qp_attr_mask may be used to limit the query to gathering only the
3640  * selected attributes.
3641  */
3642 int ib_query_qp(struct ib_qp *qp,
3643                 struct ib_qp_attr *qp_attr,
3644                 int qp_attr_mask,
3645                 struct ib_qp_init_attr *qp_init_attr);
3646
3647 /**
3648  * ib_destroy_qp - Destroys the specified QP.
3649  * @qp: The QP to destroy.
3650  * @udata: Valid udata or NULL for kernel objects
3651  */
3652 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3653
3654 /**
3655  * ib_destroy_qp - Destroys the specified kernel QP.
3656  * @qp: The QP to destroy.
3657  *
3658  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3659  */
3660 static inline int ib_destroy_qp(struct ib_qp *qp)
3661 {
3662         return ib_destroy_qp_user(qp, NULL);
3663 }
3664
3665 /**
3666  * ib_open_qp - Obtain a reference to an existing sharable QP.
3667  * @xrcd - XRC domain
3668  * @qp_open_attr: Attributes identifying the QP to open.
3669  *
3670  * Returns a reference to a sharable QP.
3671  */
3672 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3673                          struct ib_qp_open_attr *qp_open_attr);
3674
3675 /**
3676  * ib_close_qp - Release an external reference to a QP.
3677  * @qp: The QP handle to release
3678  *
3679  * The opened QP handle is released by the caller.  The underlying
3680  * shared QP is not destroyed until all internal references are released.
3681  */
3682 int ib_close_qp(struct ib_qp *qp);
3683
3684 /**
3685  * ib_post_send - Posts a list of work requests to the send queue of
3686  *   the specified QP.
3687  * @qp: The QP to post the work request on.
3688  * @send_wr: A list of work requests to post on the send queue.
3689  * @bad_send_wr: On an immediate failure, this parameter will reference
3690  *   the work request that failed to be posted on the QP.
3691  *
3692  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3693  * error is returned, the QP state shall not be affected,
3694  * ib_post_send() will return an immediate error after queueing any
3695  * earlier work requests in the list.
3696  */
3697 static inline int ib_post_send(struct ib_qp *qp,
3698                                const struct ib_send_wr *send_wr,
3699                                const struct ib_send_wr **bad_send_wr)
3700 {
3701         const struct ib_send_wr *dummy;
3702
3703         return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3704 }
3705
3706 /**
3707  * ib_post_recv - Posts a list of work requests to the receive queue of
3708  *   the specified QP.
3709  * @qp: The QP to post the work request on.
3710  * @recv_wr: A list of work requests to post on the receive queue.
3711  * @bad_recv_wr: On an immediate failure, this parameter will reference
3712  *   the work request that failed to be posted on the QP.
3713  */
3714 static inline int ib_post_recv(struct ib_qp *qp,
3715                                const struct ib_recv_wr *recv_wr,
3716                                const struct ib_recv_wr **bad_recv_wr)
3717 {
3718         const struct ib_recv_wr *dummy;
3719
3720         return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3721 }
3722
3723 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3724                                  int nr_cqe, int comp_vector,
3725                                  enum ib_poll_context poll_ctx,
3726                                  const char *caller, struct ib_udata *udata);
3727
3728 /**
3729  * ib_alloc_cq_user: Allocate kernel/user CQ
3730  * @dev: The IB device
3731  * @private: Private data attached to the CQE
3732  * @nr_cqe: Number of CQEs in the CQ
3733  * @comp_vector: Completion vector used for the IRQs
3734  * @poll_ctx: Context used for polling the CQ
3735  * @udata: Valid user data or NULL for kernel objects
3736  */
3737 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3738                                              void *private, int nr_cqe,
3739                                              int comp_vector,
3740                                              enum ib_poll_context poll_ctx,
3741                                              struct ib_udata *udata)
3742 {
3743         return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3744                                   KBUILD_MODNAME, udata);
3745 }
3746
3747 /**
3748  * ib_alloc_cq: Allocate kernel CQ
3749  * @dev: The IB device
3750  * @private: Private data attached to the CQE
3751  * @nr_cqe: Number of CQEs in the CQ
3752  * @comp_vector: Completion vector used for the IRQs
3753  * @poll_ctx: Context used for polling the CQ
3754  *
3755  * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3756  */
3757 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3758                                         int nr_cqe, int comp_vector,
3759                                         enum ib_poll_context poll_ctx)
3760 {
3761         return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3762                                 NULL);
3763 }
3764
3765 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3766                                 int nr_cqe, enum ib_poll_context poll_ctx,
3767                                 const char *caller);
3768
3769 /**
3770  * ib_alloc_cq_any: Allocate kernel CQ
3771  * @dev: The IB device
3772  * @private: Private data attached to the CQE
3773  * @nr_cqe: Number of CQEs in the CQ
3774  * @poll_ctx: Context used for polling the CQ
3775  */
3776 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3777                                             void *private, int nr_cqe,
3778                                             enum ib_poll_context poll_ctx)
3779 {
3780         return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3781                                  KBUILD_MODNAME);
3782 }
3783
3784 /**
3785  * ib_free_cq_user - Free kernel/user CQ
3786  * @cq: The CQ to free
3787  * @udata: Valid user data or NULL for kernel objects
3788  */
3789 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3790
3791 /**
3792  * ib_free_cq - Free kernel CQ
3793  * @cq: The CQ to free
3794  *
3795  * NOTE: for user cq use ib_free_cq_user with valid udata!
3796  */
3797 static inline void ib_free_cq(struct ib_cq *cq)
3798 {
3799         ib_free_cq_user(cq, NULL);
3800 }
3801
3802 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3803
3804 /**
3805  * ib_create_cq - Creates a CQ on the specified device.
3806  * @device: The device on which to create the CQ.
3807  * @comp_handler: A user-specified callback that is invoked when a
3808  *   completion event occurs on the CQ.
3809  * @event_handler: A user-specified callback that is invoked when an
3810  *   asynchronous event not associated with a completion occurs on the CQ.
3811  * @cq_context: Context associated with the CQ returned to the user via
3812  *   the associated completion and event handlers.
3813  * @cq_attr: The attributes the CQ should be created upon.
3814  *
3815  * Users can examine the cq structure to determine the actual CQ size.
3816  */
3817 struct ib_cq *__ib_create_cq(struct ib_device *device,
3818                              ib_comp_handler comp_handler,
3819                              void (*event_handler)(struct ib_event *, void *),
3820                              void *cq_context,
3821                              const struct ib_cq_init_attr *cq_attr,
3822                              const char *caller);
3823 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3824         __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3825
3826 /**
3827  * ib_resize_cq - Modifies the capacity of the CQ.
3828  * @cq: The CQ to resize.
3829  * @cqe: The minimum size of the CQ.
3830  *
3831  * Users can examine the cq structure to determine the actual CQ size.
3832  */
3833 int ib_resize_cq(struct ib_cq *cq, int cqe);
3834
3835 /**
3836  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3837  * @cq: The CQ to modify.
3838  * @cq_count: number of CQEs that will trigger an event
3839  * @cq_period: max period of time in usec before triggering an event
3840  *
3841  */
3842 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3843
3844 /**
3845  * ib_destroy_cq_user - Destroys the specified CQ.
3846  * @cq: The CQ to destroy.
3847  * @udata: Valid user data or NULL for kernel objects
3848  */
3849 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3850
3851 /**
3852  * ib_destroy_cq - Destroys the specified kernel CQ.
3853  * @cq: The CQ to destroy.
3854  *
3855  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3856  */
3857 static inline void ib_destroy_cq(struct ib_cq *cq)
3858 {
3859         ib_destroy_cq_user(cq, NULL);
3860 }
3861
3862 /**
3863  * ib_poll_cq - poll a CQ for completion(s)
3864  * @cq:the CQ being polled
3865  * @num_entries:maximum number of completions to return
3866  * @wc:array of at least @num_entries &struct ib_wc where completions
3867  *   will be returned
3868  *
3869  * Poll a CQ for (possibly multiple) completions.  If the return value
3870  * is < 0, an error occurred.  If the return value is >= 0, it is the
3871  * number of completions returned.  If the return value is
3872  * non-negative and < num_entries, then the CQ was emptied.
3873  */
3874 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3875                              struct ib_wc *wc)
3876 {
3877         return cq->device->ops.poll_cq(cq, num_entries, wc);
3878 }
3879
3880 /**
3881  * ib_req_notify_cq - Request completion notification on a CQ.
3882  * @cq: The CQ to generate an event for.
3883  * @flags:
3884  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3885  *   to request an event on the next solicited event or next work
3886  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3887  *   may also be |ed in to request a hint about missed events, as
3888  *   described below.
3889  *
3890  * Return Value:
3891  *    < 0 means an error occurred while requesting notification
3892  *   == 0 means notification was requested successfully, and if
3893  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3894  *        were missed and it is safe to wait for another event.  In
3895  *        this case is it guaranteed that any work completions added
3896  *        to the CQ since the last CQ poll will trigger a completion
3897  *        notification event.
3898  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3899  *        in.  It means that the consumer must poll the CQ again to
3900  *        make sure it is empty to avoid missing an event because of a
3901  *        race between requesting notification and an entry being
3902  *        added to the CQ.  This return value means it is possible
3903  *        (but not guaranteed) that a work completion has been added
3904  *        to the CQ since the last poll without triggering a
3905  *        completion notification event.
3906  */
3907 static inline int ib_req_notify_cq(struct ib_cq *cq,
3908                                    enum ib_cq_notify_flags flags)
3909 {
3910         return cq->device->ops.req_notify_cq(cq, flags);
3911 }
3912
3913 /**
3914  * ib_req_ncomp_notif - Request completion notification when there are
3915  *   at least the specified number of unreaped completions on the CQ.
3916  * @cq: The CQ to generate an event for.
3917  * @wc_cnt: The number of unreaped completions that should be on the
3918  *   CQ before an event is generated.
3919  */
3920 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3921 {
3922         return cq->device->ops.req_ncomp_notif ?
3923                 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3924                 -ENOSYS;
3925 }
3926
3927 /**
3928  * ib_dma_mapping_error - check a DMA addr for error
3929  * @dev: The device for which the dma_addr was created
3930  * @dma_addr: The DMA address to check
3931  */
3932 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3933 {
3934         return dma_mapping_error(dev->dma_device, dma_addr);
3935 }
3936
3937 /**
3938  * ib_dma_map_single - Map a kernel virtual address to DMA address
3939  * @dev: The device for which the dma_addr is to be created
3940  * @cpu_addr: The kernel virtual address
3941  * @size: The size of the region in bytes
3942  * @direction: The direction of the DMA
3943  */
3944 static inline u64 ib_dma_map_single(struct ib_device *dev,
3945                                     void *cpu_addr, size_t size,
3946                                     enum dma_data_direction direction)
3947 {
3948         return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3949 }
3950
3951 /**
3952  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3953  * @dev: The device for which the DMA address was created
3954  * @addr: The DMA address
3955  * @size: The size of the region in bytes
3956  * @direction: The direction of the DMA
3957  */
3958 static inline void ib_dma_unmap_single(struct ib_device *dev,
3959                                        u64 addr, size_t size,
3960                                        enum dma_data_direction direction)
3961 {
3962         dma_unmap_single(dev->dma_device, addr, size, direction);
3963 }
3964
3965 /**
3966  * ib_dma_map_page - Map a physical page to DMA address
3967  * @dev: The device for which the dma_addr is to be created
3968  * @page: The page to be mapped
3969  * @offset: The offset within the page
3970  * @size: The size of the region in bytes
3971  * @direction: The direction of the DMA
3972  */
3973 static inline u64 ib_dma_map_page(struct ib_device *dev,
3974                                   struct page *page,
3975                                   unsigned long offset,
3976                                   size_t size,
3977                                          enum dma_data_direction direction)
3978 {
3979         return dma_map_page(dev->dma_device, page, offset, size, direction);
3980 }
3981
3982 /**
3983  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3984  * @dev: The device for which the DMA address was created
3985  * @addr: The DMA address
3986  * @size: The size of the region in bytes
3987  * @direction: The direction of the DMA
3988  */
3989 static inline void ib_dma_unmap_page(struct ib_device *dev,
3990                                      u64 addr, size_t size,
3991                                      enum dma_data_direction direction)
3992 {
3993         dma_unmap_page(dev->dma_device, addr, size, direction);
3994 }
3995
3996 /**
3997  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3998  * @dev: The device for which the DMA addresses are to be created
3999  * @sg: The array of scatter/gather entries
4000  * @nents: The number of scatter/gather entries
4001  * @direction: The direction of the DMA
4002  */
4003 static inline int ib_dma_map_sg(struct ib_device *dev,
4004                                 struct scatterlist *sg, int nents,
4005                                 enum dma_data_direction direction)
4006 {
4007         return dma_map_sg(dev->dma_device, sg, nents, direction);
4008 }
4009
4010 /**
4011  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4012  * @dev: The device for which the DMA addresses were created
4013  * @sg: The array of scatter/gather entries
4014  * @nents: The number of scatter/gather entries
4015  * @direction: The direction of the DMA
4016  */
4017 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4018                                    struct scatterlist *sg, int nents,
4019                                    enum dma_data_direction direction)
4020 {
4021         dma_unmap_sg(dev->dma_device, sg, nents, direction);
4022 }
4023
4024 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4025                                       struct scatterlist *sg, int nents,
4026                                       enum dma_data_direction direction,
4027                                       unsigned long dma_attrs)
4028 {
4029         return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4030                                 dma_attrs);
4031 }
4032
4033 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4034                                          struct scatterlist *sg, int nents,
4035                                          enum dma_data_direction direction,
4036                                          unsigned long dma_attrs)
4037 {
4038         dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4039 }
4040
4041 /**
4042  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4043  * @dev: The device to query
4044  *
4045  * The returned value represents a size in bytes.
4046  */
4047 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4048 {
4049         return dma_get_max_seg_size(dev->dma_device);
4050 }
4051
4052 /**
4053  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4054  * @dev: The device for which the DMA address was created
4055  * @addr: The DMA address
4056  * @size: The size of the region in bytes
4057  * @dir: The direction of the DMA
4058  */
4059 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4060                                               u64 addr,
4061                                               size_t size,
4062                                               enum dma_data_direction dir)
4063 {
4064         dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4065 }
4066
4067 /**
4068  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4069  * @dev: The device for which the DMA address was created
4070  * @addr: The DMA address
4071  * @size: The size of the region in bytes
4072  * @dir: The direction of the DMA
4073  */
4074 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4075                                                  u64 addr,
4076                                                  size_t size,
4077                                                  enum dma_data_direction dir)
4078 {
4079         dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4080 }
4081
4082 /**
4083  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4084  * @dev: The device for which the DMA address is requested
4085  * @size: The size of the region to allocate in bytes
4086  * @dma_handle: A pointer for returning the DMA address of the region
4087  * @flag: memory allocator flags
4088  */
4089 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4090                                            size_t size,
4091                                            dma_addr_t *dma_handle,
4092                                            gfp_t flag)
4093 {
4094         return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4095 }
4096
4097 /**
4098  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4099  * @dev: The device for which the DMA addresses were allocated
4100  * @size: The size of the region
4101  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4102  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4103  */
4104 static inline void ib_dma_free_coherent(struct ib_device *dev,
4105                                         size_t size, void *cpu_addr,
4106                                         dma_addr_t dma_handle)
4107 {
4108         dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4109 }
4110
4111 /**
4112  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4113  *   HCA translation table.
4114  * @mr: The memory region to deregister.
4115  * @udata: Valid user data or NULL for kernel object
4116  *
4117  * This function can fail, if the memory region has memory windows bound to it.
4118  */
4119 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4120
4121 /**
4122  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4123  *   HCA translation table.
4124  * @mr: The memory region to deregister.
4125  *
4126  * This function can fail, if the memory region has memory windows bound to it.
4127  *
4128  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4129  */
4130 static inline int ib_dereg_mr(struct ib_mr *mr)
4131 {
4132         return ib_dereg_mr_user(mr, NULL);
4133 }
4134
4135 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4136                                u32 max_num_sg, struct ib_udata *udata);
4137
4138 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4139                                         enum ib_mr_type mr_type, u32 max_num_sg)
4140 {
4141         return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4142 }
4143
4144 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4145                                     u32 max_num_data_sg,
4146                                     u32 max_num_meta_sg);
4147
4148 /**
4149  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4150  *   R_Key and L_Key.
4151  * @mr - struct ib_mr pointer to be updated.
4152  * @newkey - new key to be used.
4153  */
4154 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4155 {
4156         mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4157         mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4158 }
4159
4160 /**
4161  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4162  * for calculating a new rkey for type 2 memory windows.
4163  * @rkey - the rkey to increment.
4164  */
4165 static inline u32 ib_inc_rkey(u32 rkey)
4166 {
4167         const u32 mask = 0x000000ff;
4168         return ((rkey + 1) & mask) | (rkey & ~mask);
4169 }
4170
4171 /**
4172  * ib_alloc_fmr - Allocates a unmapped fast memory region.
4173  * @pd: The protection domain associated with the unmapped region.
4174  * @mr_access_flags: Specifies the memory access rights.
4175  * @fmr_attr: Attributes of the unmapped region.
4176  *
4177  * A fast memory region must be mapped before it can be used as part of
4178  * a work request.
4179  */
4180 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
4181                             int mr_access_flags,
4182                             struct ib_fmr_attr *fmr_attr);
4183
4184 /**
4185  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
4186  * @fmr: The fast memory region to associate with the pages.
4187  * @page_list: An array of physical pages to map to the fast memory region.
4188  * @list_len: The number of pages in page_list.
4189  * @iova: The I/O virtual address to use with the mapped region.
4190  */
4191 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
4192                                   u64 *page_list, int list_len,
4193                                   u64 iova)
4194 {
4195         return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
4196 }
4197
4198 /**
4199  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
4200  * @fmr_list: A linked list of fast memory regions to unmap.
4201  */
4202 int ib_unmap_fmr(struct list_head *fmr_list);
4203
4204 /**
4205  * ib_dealloc_fmr - Deallocates a fast memory region.
4206  * @fmr: The fast memory region to deallocate.
4207  */
4208 int ib_dealloc_fmr(struct ib_fmr *fmr);
4209
4210 /**
4211  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4212  * @qp: QP to attach to the multicast group.  The QP must be type
4213  *   IB_QPT_UD.
4214  * @gid: Multicast group GID.
4215  * @lid: Multicast group LID in host byte order.
4216  *
4217  * In order to send and receive multicast packets, subnet
4218  * administration must have created the multicast group and configured
4219  * the fabric appropriately.  The port associated with the specified
4220  * QP must also be a member of the multicast group.
4221  */
4222 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4223
4224 /**
4225  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4226  * @qp: QP to detach from the multicast group.
4227  * @gid: Multicast group GID.
4228  * @lid: Multicast group LID in host byte order.
4229  */
4230 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4231
4232 /**
4233  * ib_alloc_xrcd - Allocates an XRC domain.
4234  * @device: The device on which to allocate the XRC domain.
4235  * @caller: Module name for kernel consumers
4236  */
4237 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4238 #define ib_alloc_xrcd(device) \
4239         __ib_alloc_xrcd((device), KBUILD_MODNAME)
4240
4241 /**
4242  * ib_dealloc_xrcd - Deallocates an XRC domain.
4243  * @xrcd: The XRC domain to deallocate.
4244  * @udata: Valid user data or NULL for kernel object
4245  */
4246 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
4247
4248 static inline int ib_check_mr_access(int flags)
4249 {
4250         /*
4251          * Local write permission is required if remote write or
4252          * remote atomic permission is also requested.
4253          */
4254         if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4255             !(flags & IB_ACCESS_LOCAL_WRITE))
4256                 return -EINVAL;
4257
4258         if (flags & ~IB_ACCESS_SUPPORTED)
4259                 return -EINVAL;
4260
4261         return 0;
4262 }
4263
4264 static inline bool ib_access_writable(int access_flags)
4265 {
4266         /*
4267          * We have writable memory backing the MR if any of the following
4268          * access flags are set.  "Local write" and "remote write" obviously
4269          * require write access.  "Remote atomic" can do things like fetch and
4270          * add, which will modify memory, and "MW bind" can change permissions
4271          * by binding a window.
4272          */
4273         return access_flags &
4274                 (IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4275                  IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4276 }
4277
4278 /**
4279  * ib_check_mr_status: lightweight check of MR status.
4280  *     This routine may provide status checks on a selected
4281  *     ib_mr. first use is for signature status check.
4282  *
4283  * @mr: A memory region.
4284  * @check_mask: Bitmask of which checks to perform from
4285  *     ib_mr_status_check enumeration.
4286  * @mr_status: The container of relevant status checks.
4287  *     failed checks will be indicated in the status bitmask
4288  *     and the relevant info shall be in the error item.
4289  */
4290 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4291                        struct ib_mr_status *mr_status);
4292
4293 /**
4294  * ib_device_try_get: Hold a registration lock
4295  * device: The device to lock
4296  *
4297  * A device under an active registration lock cannot become unregistered. It
4298  * is only possible to obtain a registration lock on a device that is fully
4299  * registered, otherwise this function returns false.
4300  *
4301  * The registration lock is only necessary for actions which require the
4302  * device to still be registered. Uses that only require the device pointer to
4303  * be valid should use get_device(&ibdev->dev) to hold the memory.
4304  *
4305  */
4306 static inline bool ib_device_try_get(struct ib_device *dev)
4307 {
4308         return refcount_inc_not_zero(&dev->refcount);
4309 }
4310
4311 void ib_device_put(struct ib_device *device);
4312 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4313                                           enum rdma_driver_id driver_id);
4314 struct ib_device *ib_device_get_by_name(const char *name,
4315                                         enum rdma_driver_id driver_id);
4316 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4317                                             u16 pkey, const union ib_gid *gid,
4318                                             const struct sockaddr *addr);
4319 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4320                          unsigned int port);
4321 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4322
4323 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4324                            struct ib_wq_init_attr *init_attr);
4325 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
4326 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4327                  u32 wq_attr_mask);
4328 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4329                                                  struct ib_rwq_ind_table_init_attr*
4330                                                  wq_ind_table_init_attr);
4331 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4332
4333 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4334                  unsigned int *sg_offset, unsigned int page_size);
4335 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4336                     int data_sg_nents, unsigned int *data_sg_offset,
4337                     struct scatterlist *meta_sg, int meta_sg_nents,
4338                     unsigned int *meta_sg_offset, unsigned int page_size);
4339
4340 static inline int
4341 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4342                   unsigned int *sg_offset, unsigned int page_size)
4343 {
4344         int n;
4345
4346         n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4347         mr->iova = 0;
4348
4349         return n;
4350 }
4351
4352 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4353                 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4354
4355 void ib_drain_rq(struct ib_qp *qp);
4356 void ib_drain_sq(struct ib_qp *qp);
4357 void ib_drain_qp(struct ib_qp *qp);
4358
4359 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4360
4361 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4362 {
4363         if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4364                 return attr->roce.dmac;
4365         return NULL;
4366 }
4367
4368 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4369 {
4370         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4371                 attr->ib.dlid = (u16)dlid;
4372         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4373                 attr->opa.dlid = dlid;
4374 }
4375
4376 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4377 {
4378         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4379                 return attr->ib.dlid;
4380         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4381                 return attr->opa.dlid;
4382         return 0;
4383 }
4384
4385 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4386 {
4387         attr->sl = sl;
4388 }
4389
4390 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4391 {
4392         return attr->sl;
4393 }
4394
4395 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4396                                          u8 src_path_bits)
4397 {
4398         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4399                 attr->ib.src_path_bits = src_path_bits;
4400         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4401                 attr->opa.src_path_bits = src_path_bits;
4402 }
4403
4404 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4405 {
4406         if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4407                 return attr->ib.src_path_bits;
4408         else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4409                 return attr->opa.src_path_bits;
4410         return 0;
4411 }
4412
4413 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4414                                         bool make_grd)
4415 {
4416         if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4417                 attr->opa.make_grd = make_grd;
4418 }
4419
4420 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4421 {
4422         if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4423                 return attr->opa.make_grd;
4424         return false;
4425 }
4426
4427 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4428 {
4429         attr->port_num = port_num;
4430 }
4431
4432 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4433 {
4434         return attr->port_num;
4435 }
4436
4437 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4438                                            u8 static_rate)
4439 {
4440         attr->static_rate = static_rate;
4441 }
4442
4443 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4444 {
4445         return attr->static_rate;
4446 }
4447
4448 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4449                                         enum ib_ah_flags flag)
4450 {
4451         attr->ah_flags = flag;
4452 }
4453
4454 static inline enum ib_ah_flags
4455                 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4456 {
4457         return attr->ah_flags;
4458 }
4459
4460 static inline const struct ib_global_route
4461                 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4462 {
4463         return &attr->grh;
4464 }
4465
4466 /*To retrieve and modify the grh */
4467 static inline struct ib_global_route
4468                 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4469 {
4470         return &attr->grh;
4471 }
4472
4473 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4474 {
4475         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4476
4477         memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4478 }
4479
4480 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4481                                              __be64 prefix)
4482 {
4483         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4484
4485         grh->dgid.global.subnet_prefix = prefix;
4486 }
4487
4488 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4489                                             __be64 if_id)
4490 {
4491         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4492
4493         grh->dgid.global.interface_id = if_id;
4494 }
4495
4496 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4497                                    union ib_gid *dgid, u32 flow_label,
4498                                    u8 sgid_index, u8 hop_limit,
4499                                    u8 traffic_class)
4500 {
4501         struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4502
4503         attr->ah_flags = IB_AH_GRH;
4504         if (dgid)
4505                 grh->dgid = *dgid;
4506         grh->flow_label = flow_label;
4507         grh->sgid_index = sgid_index;
4508         grh->hop_limit = hop_limit;
4509         grh->traffic_class = traffic_class;
4510         grh->sgid_attr = NULL;
4511 }
4512
4513 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4514 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4515                              u32 flow_label, u8 hop_limit, u8 traffic_class,
4516                              const struct ib_gid_attr *sgid_attr);
4517 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4518                        const struct rdma_ah_attr *src);
4519 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4520                           const struct rdma_ah_attr *new);
4521 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4522
4523 /**
4524  * rdma_ah_find_type - Return address handle type.
4525  *
4526  * @dev: Device to be checked
4527  * @port_num: Port number
4528  */
4529 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4530                                                        u8 port_num)
4531 {
4532         if (rdma_protocol_roce(dev, port_num))
4533                 return RDMA_AH_ATTR_TYPE_ROCE;
4534         if (rdma_protocol_ib(dev, port_num)) {
4535                 if (rdma_cap_opa_ah(dev, port_num))
4536                         return RDMA_AH_ATTR_TYPE_OPA;
4537                 return RDMA_AH_ATTR_TYPE_IB;
4538         }
4539
4540         return RDMA_AH_ATTR_TYPE_UNDEFINED;
4541 }
4542
4543 /**
4544  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4545  *     In the current implementation the only way to get
4546  *     get the 32bit lid is from other sources for OPA.
4547  *     For IB, lids will always be 16bits so cast the
4548  *     value accordingly.
4549  *
4550  * @lid: A 32bit LID
4551  */
4552 static inline u16 ib_lid_cpu16(u32 lid)
4553 {
4554         WARN_ON_ONCE(lid & 0xFFFF0000);
4555         return (u16)lid;
4556 }
4557
4558 /**
4559  * ib_lid_be16 - Return lid in 16bit BE encoding.
4560  *
4561  * @lid: A 32bit LID
4562  */
4563 static inline __be16 ib_lid_be16(u32 lid)
4564 {
4565         WARN_ON_ONCE(lid & 0xFFFF0000);
4566         return cpu_to_be16((u16)lid);
4567 }
4568
4569 /**
4570  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4571  *   vector
4572  * @device:         the rdma device
4573  * @comp_vector:    index of completion vector
4574  *
4575  * Returns NULL on failure, otherwise a corresponding cpu map of the
4576  * completion vector (returns all-cpus map if the device driver doesn't
4577  * implement get_vector_affinity).
4578  */
4579 static inline const struct cpumask *
4580 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4581 {
4582         if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4583             !device->ops.get_vector_affinity)
4584                 return NULL;
4585
4586         return device->ops.get_vector_affinity(device, comp_vector);
4587
4588 }
4589
4590 /**
4591  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4592  * and add their gids, as needed, to the relevant RoCE devices.
4593  *
4594  * @device:         the rdma device
4595  */
4596 void rdma_roce_rescan_device(struct ib_device *ibdev);
4597
4598 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4599
4600 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4601
4602 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4603                                      enum rdma_netdev_t type, const char *name,
4604                                      unsigned char name_assign_type,
4605                                      void (*setup)(struct net_device *));
4606
4607 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4608                      enum rdma_netdev_t type, const char *name,
4609                      unsigned char name_assign_type,
4610                      void (*setup)(struct net_device *),
4611                      struct net_device *netdev);
4612
4613 /**
4614  * rdma_set_device_sysfs_group - Set device attributes group to have
4615  *                               driver specific sysfs entries at
4616  *                               for infiniband class.
4617  *
4618  * @device:     device pointer for which attributes to be created
4619  * @group:      Pointer to group which should be added when device
4620  *              is registered with sysfs.
4621  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4622  * group per device to have sysfs attributes.
4623  *
4624  * NOTE: New drivers should not make use of this API; instead new device
4625  * parameter should be exposed via netlink command. This API and mechanism
4626  * exist only for existing drivers.
4627  */
4628 static inline void
4629 rdma_set_device_sysfs_group(struct ib_device *dev,
4630                             const struct attribute_group *group)
4631 {
4632         dev->groups[1] = group;
4633 }
4634
4635 /**
4636  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4637  *
4638  * @device:     device pointer for which ib_device pointer to retrieve
4639  *
4640  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4641  *
4642  */
4643 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4644 {
4645         struct ib_core_device *coredev =
4646                 container_of(device, struct ib_core_device, dev);
4647
4648         return coredev->owner;
4649 }
4650
4651 /**
4652  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4653  *                             ib_device holder structure from device pointer.
4654  *
4655  * NOTE: New drivers should not make use of this API; This API is only for
4656  * existing drivers who have exposed sysfs entries using
4657  * rdma_set_device_sysfs_group().
4658  */
4659 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4660         container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4661
4662 bool rdma_dev_access_netns(const struct ib_device *device,
4663                            const struct net *net);
4664 #endif /* IB_VERBS_H */