Linux-libre 4.17.3-gnu
[librecmc/linux-libre.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96                             struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98                              struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116              offsetof(struct logicalVolIntegrityDesc, impUse)) /
117              (2 * sizeof(uint32_t)) < partnum) {
118                 udf_err(sb, "Logical volume integrity descriptor corrupted "
119                         "(numOfPartitions = %u)!\n", partnum);
120                 return NULL;
121         }
122         /* The offset is to skip freeSpaceTable and sizeTable arrays */
123         offset = partnum * 2 * sizeof(uint32_t);
124         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129                       int flags, const char *dev_name, void *data)
130 {
131         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135         .owner          = THIS_MODULE,
136         .name           = "udf",
137         .mount          = udf_mount,
138         .kill_sb        = kill_block_super,
139         .fs_flags       = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147         struct udf_inode_info *ei;
148         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149         if (!ei)
150                 return NULL;
151
152         ei->i_unique = 0;
153         ei->i_lenExtents = 0;
154         ei->i_next_alloc_block = 0;
155         ei->i_next_alloc_goal = 0;
156         ei->i_strat4096 = 0;
157         init_rwsem(&ei->i_data_sem);
158         ei->cached_extent.lstart = -1;
159         spin_lock_init(&ei->i_extent_cache_lock);
160
161         return &ei->vfs_inode;
162 }
163
164 static void udf_i_callback(struct rcu_head *head)
165 {
166         struct inode *inode = container_of(head, struct inode, i_rcu);
167         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169
170 static void udf_destroy_inode(struct inode *inode)
171 {
172         call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174
175 static void init_once(void *foo)
176 {
177         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179         ei->i_ext.i_data = NULL;
180         inode_init_once(&ei->vfs_inode);
181 }
182
183 static int __init init_inodecache(void)
184 {
185         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186                                              sizeof(struct udf_inode_info),
187                                              0, (SLAB_RECLAIM_ACCOUNT |
188                                                  SLAB_MEM_SPREAD |
189                                                  SLAB_ACCOUNT),
190                                              init_once);
191         if (!udf_inode_cachep)
192                 return -ENOMEM;
193         return 0;
194 }
195
196 static void destroy_inodecache(void)
197 {
198         /*
199          * Make sure all delayed rcu free inodes are flushed before we
200          * destroy cache.
201          */
202         rcu_barrier();
203         kmem_cache_destroy(udf_inode_cachep);
204 }
205
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208         .alloc_inode    = udf_alloc_inode,
209         .destroy_inode  = udf_destroy_inode,
210         .write_inode    = udf_write_inode,
211         .evict_inode    = udf_evict_inode,
212         .put_super      = udf_put_super,
213         .sync_fs        = udf_sync_fs,
214         .statfs         = udf_statfs,
215         .remount_fs     = udf_remount_fs,
216         .show_options   = udf_show_options,
217 };
218
219 struct udf_options {
220         unsigned char novrs;
221         unsigned int blocksize;
222         unsigned int session;
223         unsigned int lastblock;
224         unsigned int anchor;
225         unsigned int flags;
226         umode_t umask;
227         kgid_t gid;
228         kuid_t uid;
229         umode_t fmode;
230         umode_t dmode;
231         struct nls_table *nls_map;
232 };
233
234 static int __init init_udf_fs(void)
235 {
236         int err;
237
238         err = init_inodecache();
239         if (err)
240                 goto out1;
241         err = register_filesystem(&udf_fstype);
242         if (err)
243                 goto out;
244
245         return 0;
246
247 out:
248         destroy_inodecache();
249
250 out1:
251         return err;
252 }
253
254 static void __exit exit_udf_fs(void)
255 {
256         unregister_filesystem(&udf_fstype);
257         destroy_inodecache();
258 }
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262         struct udf_sb_info *sbi = UDF_SB(sb);
263
264         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265         if (!sbi->s_partmaps) {
266                 sbi->s_partitions = 0;
267                 return -ENOMEM;
268         }
269
270         sbi->s_partitions = count;
271         return 0;
272 }
273
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276         int i;
277         int nr_groups = bitmap->s_nr_groups;
278
279         for (i = 0; i < nr_groups; i++)
280                 if (bitmap->s_block_bitmap[i])
281                         brelse(bitmap->s_block_bitmap[i]);
282
283         kvfree(bitmap);
284 }
285
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288         int i;
289         struct udf_meta_data *mdata;
290
291         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292                 iput(map->s_uspace.s_table);
293         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294                 iput(map->s_fspace.s_table);
295         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299         if (map->s_partition_type == UDF_SPARABLE_MAP15)
300                 for (i = 0; i < 4; i++)
301                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302         else if (map->s_partition_type == UDF_METADATA_MAP25) {
303                 mdata = &map->s_type_specific.s_metadata;
304                 iput(mdata->s_metadata_fe);
305                 mdata->s_metadata_fe = NULL;
306
307                 iput(mdata->s_mirror_fe);
308                 mdata->s_mirror_fe = NULL;
309
310                 iput(mdata->s_bitmap_fe);
311                 mdata->s_bitmap_fe = NULL;
312         }
313 }
314
315 static void udf_sb_free_partitions(struct super_block *sb)
316 {
317         struct udf_sb_info *sbi = UDF_SB(sb);
318         int i;
319
320         if (!sbi->s_partmaps)
321                 return;
322         for (i = 0; i < sbi->s_partitions; i++)
323                 udf_free_partition(&sbi->s_partmaps[i]);
324         kfree(sbi->s_partmaps);
325         sbi->s_partmaps = NULL;
326 }
327
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
329 {
330         struct super_block *sb = root->d_sb;
331         struct udf_sb_info *sbi = UDF_SB(sb);
332
333         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334                 seq_puts(seq, ",nostrict");
335         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338                 seq_puts(seq, ",unhide");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340                 seq_puts(seq, ",undelete");
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342                 seq_puts(seq, ",noadinicb");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344                 seq_puts(seq, ",shortad");
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346                 seq_puts(seq, ",uid=forget");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348                 seq_puts(seq, ",gid=forget");
349         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353         if (sbi->s_umask != 0)
354                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355         if (sbi->s_fmode != UDF_INVALID_MODE)
356                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357         if (sbi->s_dmode != UDF_INVALID_MODE)
358                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360                 seq_printf(seq, ",session=%d", sbi->s_session);
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363         if (sbi->s_anchor != 0)
364                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366                 seq_puts(seq, ",utf8");
367         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370         return 0;
371 }
372
373 /*
374  * udf_parse_options
375  *
376  * PURPOSE
377  *      Parse mount options.
378  *
379  * DESCRIPTION
380  *      The following mount options are supported:
381  *
382  *      gid=            Set the default group.
383  *      umask=          Set the default umask.
384  *      mode=           Set the default file permissions.
385  *      dmode=          Set the default directory permissions.
386  *      uid=            Set the default user.
387  *      bs=             Set the block size.
388  *      unhide          Show otherwise hidden files.
389  *      undelete        Show deleted files in lists.
390  *      adinicb         Embed data in the inode (default)
391  *      noadinicb       Don't embed data in the inode
392  *      shortad         Use short ad's
393  *      longad          Use long ad's (default)
394  *      nostrict        Unset strict conformance
395  *      iocharset=      Set the NLS character set
396  *
397  *      The remaining are for debugging and disaster recovery:
398  *
399  *      novrs           Skip volume sequence recognition
400  *
401  *      The following expect a offset from 0.
402  *
403  *      session=        Set the CDROM session (default= last session)
404  *      anchor=         Override standard anchor location. (default= 256)
405  *      volume=         Override the VolumeDesc location. (unused)
406  *      partition=      Override the PartitionDesc location. (unused)
407  *      lastblock=      Set the last block of the filesystem/
408  *
409  *      The following expect a offset from the partition root.
410  *
411  *      fileset=        Override the fileset block location. (unused)
412  *      rootdir=        Override the root directory location. (unused)
413  *              WARNING: overriding the rootdir to a non-directory may
414  *              yield highly unpredictable results.
415  *
416  * PRE-CONDITIONS
417  *      options         Pointer to mount options string.
418  *      uopts           Pointer to mount options variable.
419  *
420  * POST-CONDITIONS
421  *      <return>        1       Mount options parsed okay.
422  *      <return>        0       Error parsing mount options.
423  *
424  * HISTORY
425  *      July 1, 1997 - Andrew E. Mileski
426  *      Written, tested, and released.
427  */
428
429 enum {
430         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434         Opt_rootdir, Opt_utf8, Opt_iocharset,
435         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436         Opt_fmode, Opt_dmode
437 };
438
439 static const match_table_t tokens = {
440         {Opt_novrs,     "novrs"},
441         {Opt_nostrict,  "nostrict"},
442         {Opt_bs,        "bs=%u"},
443         {Opt_unhide,    "unhide"},
444         {Opt_undelete,  "undelete"},
445         {Opt_noadinicb, "noadinicb"},
446         {Opt_adinicb,   "adinicb"},
447         {Opt_shortad,   "shortad"},
448         {Opt_longad,    "longad"},
449         {Opt_uforget,   "uid=forget"},
450         {Opt_uignore,   "uid=ignore"},
451         {Opt_gforget,   "gid=forget"},
452         {Opt_gignore,   "gid=ignore"},
453         {Opt_gid,       "gid=%u"},
454         {Opt_uid,       "uid=%u"},
455         {Opt_umask,     "umask=%o"},
456         {Opt_session,   "session=%u"},
457         {Opt_lastblock, "lastblock=%u"},
458         {Opt_anchor,    "anchor=%u"},
459         {Opt_volume,    "volume=%u"},
460         {Opt_partition, "partition=%u"},
461         {Opt_fileset,   "fileset=%u"},
462         {Opt_rootdir,   "rootdir=%u"},
463         {Opt_utf8,      "utf8"},
464         {Opt_iocharset, "iocharset=%s"},
465         {Opt_fmode,     "mode=%o"},
466         {Opt_dmode,     "dmode=%o"},
467         {Opt_err,       NULL}
468 };
469
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471                              bool remount)
472 {
473         char *p;
474         int option;
475
476         uopt->novrs = 0;
477         uopt->session = 0xFFFFFFFF;
478         uopt->lastblock = 0;
479         uopt->anchor = 0;
480
481         if (!options)
482                 return 1;
483
484         while ((p = strsep(&options, ",")) != NULL) {
485                 substring_t args[MAX_OPT_ARGS];
486                 int token;
487                 unsigned n;
488                 if (!*p)
489                         continue;
490
491                 token = match_token(p, tokens, args);
492                 switch (token) {
493                 case Opt_novrs:
494                         uopt->novrs = 1;
495                         break;
496                 case Opt_bs:
497                         if (match_int(&args[0], &option))
498                                 return 0;
499                         n = option;
500                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501                                 return 0;
502                         uopt->blocksize = n;
503                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504                         break;
505                 case Opt_unhide:
506                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507                         break;
508                 case Opt_undelete:
509                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510                         break;
511                 case Opt_noadinicb:
512                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513                         break;
514                 case Opt_adinicb:
515                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516                         break;
517                 case Opt_shortad:
518                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519                         break;
520                 case Opt_longad:
521                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522                         break;
523                 case Opt_gid:
524                         if (match_int(args, &option))
525                                 return 0;
526                         uopt->gid = make_kgid(current_user_ns(), option);
527                         if (!gid_valid(uopt->gid))
528                                 return 0;
529                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
530                         break;
531                 case Opt_uid:
532                         if (match_int(args, &option))
533                                 return 0;
534                         uopt->uid = make_kuid(current_user_ns(), option);
535                         if (!uid_valid(uopt->uid))
536                                 return 0;
537                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
538                         break;
539                 case Opt_umask:
540                         if (match_octal(args, &option))
541                                 return 0;
542                         uopt->umask = option;
543                         break;
544                 case Opt_nostrict:
545                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546                         break;
547                 case Opt_session:
548                         if (match_int(args, &option))
549                                 return 0;
550                         uopt->session = option;
551                         if (!remount)
552                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553                         break;
554                 case Opt_lastblock:
555                         if (match_int(args, &option))
556                                 return 0;
557                         uopt->lastblock = option;
558                         if (!remount)
559                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560                         break;
561                 case Opt_anchor:
562                         if (match_int(args, &option))
563                                 return 0;
564                         uopt->anchor = option;
565                         break;
566                 case Opt_volume:
567                 case Opt_partition:
568                 case Opt_fileset:
569                 case Opt_rootdir:
570                         /* Ignored (never implemented properly) */
571                         break;
572                 case Opt_utf8:
573                         uopt->flags |= (1 << UDF_FLAG_UTF8);
574                         break;
575 #ifdef CONFIG_UDF_NLS
576                 case Opt_iocharset:
577                         if (!remount) {
578                                 if (uopt->nls_map)
579                                         unload_nls(uopt->nls_map);
580                                 uopt->nls_map = load_nls(args[0].from);
581                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
582                         }
583                         break;
584 #endif
585                 case Opt_uforget:
586                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
587                         break;
588                 case Opt_uignore:
589                 case Opt_gignore:
590                         /* These options are superseeded by uid=<number> */
591                         break;
592                 case Opt_gforget:
593                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
594                         break;
595                 case Opt_fmode:
596                         if (match_octal(args, &option))
597                                 return 0;
598                         uopt->fmode = option & 0777;
599                         break;
600                 case Opt_dmode:
601                         if (match_octal(args, &option))
602                                 return 0;
603                         uopt->dmode = option & 0777;
604                         break;
605                 default:
606                         pr_err("bad mount option \"%s\" or missing value\n", p);
607                         return 0;
608                 }
609         }
610         return 1;
611 }
612
613 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
614 {
615         struct udf_options uopt;
616         struct udf_sb_info *sbi = UDF_SB(sb);
617         int error = 0;
618         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
619
620         sync_filesystem(sb);
621         if (lvidiu) {
622                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
623                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
624                         return -EACCES;
625         }
626
627         uopt.flags = sbi->s_flags;
628         uopt.uid   = sbi->s_uid;
629         uopt.gid   = sbi->s_gid;
630         uopt.umask = sbi->s_umask;
631         uopt.fmode = sbi->s_fmode;
632         uopt.dmode = sbi->s_dmode;
633         uopt.nls_map = NULL;
634
635         if (!udf_parse_options(options, &uopt, true))
636                 return -EINVAL;
637
638         write_lock(&sbi->s_cred_lock);
639         sbi->s_flags = uopt.flags;
640         sbi->s_uid   = uopt.uid;
641         sbi->s_gid   = uopt.gid;
642         sbi->s_umask = uopt.umask;
643         sbi->s_fmode = uopt.fmode;
644         sbi->s_dmode = uopt.dmode;
645         write_unlock(&sbi->s_cred_lock);
646
647         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
648                 goto out_unlock;
649
650         if (*flags & SB_RDONLY)
651                 udf_close_lvid(sb);
652         else
653                 udf_open_lvid(sb);
654
655 out_unlock:
656         return error;
657 }
658
659 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
660 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
661 static loff_t udf_check_vsd(struct super_block *sb)
662 {
663         struct volStructDesc *vsd = NULL;
664         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
665         int sectorsize;
666         struct buffer_head *bh = NULL;
667         int nsr02 = 0;
668         int nsr03 = 0;
669         struct udf_sb_info *sbi;
670
671         sbi = UDF_SB(sb);
672         if (sb->s_blocksize < sizeof(struct volStructDesc))
673                 sectorsize = sizeof(struct volStructDesc);
674         else
675                 sectorsize = sb->s_blocksize;
676
677         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
678
679         udf_debug("Starting at sector %u (%lu byte sectors)\n",
680                   (unsigned int)(sector >> sb->s_blocksize_bits),
681                   sb->s_blocksize);
682         /* Process the sequence (if applicable). The hard limit on the sector
683          * offset is arbitrary, hopefully large enough so that all valid UDF
684          * filesystems will be recognised. There is no mention of an upper
685          * bound to the size of the volume recognition area in the standard.
686          *  The limit will prevent the code to read all the sectors of a
687          * specially crafted image (like a bluray disc full of CD001 sectors),
688          * potentially causing minutes or even hours of uninterruptible I/O
689          * activity. This actually happened with uninitialised SSD partitions
690          * (all 0xFF) before the check for the limit and all valid IDs were
691          * added */
692         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
693              sector += sectorsize) {
694                 /* Read a block */
695                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
696                 if (!bh)
697                         break;
698
699                 /* Look for ISO  descriptors */
700                 vsd = (struct volStructDesc *)(bh->b_data +
701                                               (sector & (sb->s_blocksize - 1)));
702
703                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
704                                     VSD_STD_ID_LEN)) {
705                         switch (vsd->structType) {
706                         case 0:
707                                 udf_debug("ISO9660 Boot Record found\n");
708                                 break;
709                         case 1:
710                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
711                                 break;
712                         case 2:
713                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
714                                 break;
715                         case 3:
716                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
717                                 break;
718                         case 255:
719                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
720                                 break;
721                         default:
722                                 udf_debug("ISO9660 VRS (%u) found\n",
723                                           vsd->structType);
724                                 break;
725                         }
726                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
727                                     VSD_STD_ID_LEN))
728                         ; /* nothing */
729                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
730                                     VSD_STD_ID_LEN)) {
731                         brelse(bh);
732                         break;
733                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
734                                     VSD_STD_ID_LEN))
735                         nsr02 = sector;
736                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
737                                     VSD_STD_ID_LEN))
738                         nsr03 = sector;
739                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
740                                     VSD_STD_ID_LEN))
741                         ; /* nothing */
742                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
743                                     VSD_STD_ID_LEN))
744                         ; /* nothing */
745                 else {
746                         /* invalid id : end of volume recognition area */
747                         brelse(bh);
748                         break;
749                 }
750                 brelse(bh);
751         }
752
753         if (nsr03)
754                 return nsr03;
755         else if (nsr02)
756                 return nsr02;
757         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
758                         VSD_FIRST_SECTOR_OFFSET)
759                 return -1;
760         else
761                 return 0;
762 }
763
764 static int udf_find_fileset(struct super_block *sb,
765                             struct kernel_lb_addr *fileset,
766                             struct kernel_lb_addr *root)
767 {
768         struct buffer_head *bh = NULL;
769         long lastblock;
770         uint16_t ident;
771         struct udf_sb_info *sbi;
772
773         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
774             fileset->partitionReferenceNum != 0xFFFF) {
775                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
776
777                 if (!bh) {
778                         return 1;
779                 } else if (ident != TAG_IDENT_FSD) {
780                         brelse(bh);
781                         return 1;
782                 }
783
784         }
785
786         sbi = UDF_SB(sb);
787         if (!bh) {
788                 /* Search backwards through the partitions */
789                 struct kernel_lb_addr newfileset;
790
791 /* --> cvg: FIXME - is it reasonable? */
792                 return 1;
793
794                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
795                      (newfileset.partitionReferenceNum != 0xFFFF &&
796                       fileset->logicalBlockNum == 0xFFFFFFFF &&
797                       fileset->partitionReferenceNum == 0xFFFF);
798                      newfileset.partitionReferenceNum--) {
799                         lastblock = sbi->s_partmaps
800                                         [newfileset.partitionReferenceNum]
801                                                 .s_partition_len;
802                         newfileset.logicalBlockNum = 0;
803
804                         do {
805                                 bh = udf_read_ptagged(sb, &newfileset, 0,
806                                                       &ident);
807                                 if (!bh) {
808                                         newfileset.logicalBlockNum++;
809                                         continue;
810                                 }
811
812                                 switch (ident) {
813                                 case TAG_IDENT_SBD:
814                                 {
815                                         struct spaceBitmapDesc *sp;
816                                         sp = (struct spaceBitmapDesc *)
817                                                                 bh->b_data;
818                                         newfileset.logicalBlockNum += 1 +
819                                                 ((le32_to_cpu(sp->numOfBytes) +
820                                                   sizeof(struct spaceBitmapDesc)
821                                                   - 1) >> sb->s_blocksize_bits);
822                                         brelse(bh);
823                                         break;
824                                 }
825                                 case TAG_IDENT_FSD:
826                                         *fileset = newfileset;
827                                         break;
828                                 default:
829                                         newfileset.logicalBlockNum++;
830                                         brelse(bh);
831                                         bh = NULL;
832                                         break;
833                                 }
834                         } while (newfileset.logicalBlockNum < lastblock &&
835                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
836                                  fileset->partitionReferenceNum == 0xFFFF);
837                 }
838         }
839
840         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
841              fileset->partitionReferenceNum != 0xFFFF) && bh) {
842                 udf_debug("Fileset at block=%u, partition=%u\n",
843                           fileset->logicalBlockNum,
844                           fileset->partitionReferenceNum);
845
846                 sbi->s_partition = fileset->partitionReferenceNum;
847                 udf_load_fileset(sb, bh, root);
848                 brelse(bh);
849                 return 0;
850         }
851         return 1;
852 }
853
854 /*
855  * Load primary Volume Descriptor Sequence
856  *
857  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
858  * should be tried.
859  */
860 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
861 {
862         struct primaryVolDesc *pvoldesc;
863         uint8_t *outstr;
864         struct buffer_head *bh;
865         uint16_t ident;
866         int ret = -ENOMEM;
867
868         outstr = kmalloc(128, GFP_NOFS);
869         if (!outstr)
870                 return -ENOMEM;
871
872         bh = udf_read_tagged(sb, block, block, &ident);
873         if (!bh) {
874                 ret = -EAGAIN;
875                 goto out2;
876         }
877
878         if (ident != TAG_IDENT_PVD) {
879                 ret = -EIO;
880                 goto out_bh;
881         }
882
883         pvoldesc = (struct primaryVolDesc *)bh->b_data;
884
885         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
886                               pvoldesc->recordingDateAndTime)) {
887 #ifdef UDFFS_DEBUG
888                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
889                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
890                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
891                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
892 #endif
893         }
894
895         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
896         if (ret < 0)
897                 goto out_bh;
898
899         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
900         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
901
902         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
903         if (ret < 0)
904                 goto out_bh;
905
906         outstr[ret] = 0;
907         udf_debug("volSetIdent[] = '%s'\n", outstr);
908
909         ret = 0;
910 out_bh:
911         brelse(bh);
912 out2:
913         kfree(outstr);
914         return ret;
915 }
916
917 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
918                                         u32 meta_file_loc, u32 partition_ref)
919 {
920         struct kernel_lb_addr addr;
921         struct inode *metadata_fe;
922
923         addr.logicalBlockNum = meta_file_loc;
924         addr.partitionReferenceNum = partition_ref;
925
926         metadata_fe = udf_iget_special(sb, &addr);
927
928         if (IS_ERR(metadata_fe)) {
929                 udf_warn(sb, "metadata inode efe not found\n");
930                 return metadata_fe;
931         }
932         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
933                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
934                 iput(metadata_fe);
935                 return ERR_PTR(-EIO);
936         }
937
938         return metadata_fe;
939 }
940
941 static int udf_load_metadata_files(struct super_block *sb, int partition,
942                                    int type1_index)
943 {
944         struct udf_sb_info *sbi = UDF_SB(sb);
945         struct udf_part_map *map;
946         struct udf_meta_data *mdata;
947         struct kernel_lb_addr addr;
948         struct inode *fe;
949
950         map = &sbi->s_partmaps[partition];
951         mdata = &map->s_type_specific.s_metadata;
952         mdata->s_phys_partition_ref = type1_index;
953
954         /* metadata address */
955         udf_debug("Metadata file location: block = %u part = %u\n",
956                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
957
958         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
959                                          mdata->s_phys_partition_ref);
960         if (IS_ERR(fe)) {
961                 /* mirror file entry */
962                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
963                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
964
965                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
966                                                  mdata->s_phys_partition_ref);
967
968                 if (IS_ERR(fe)) {
969                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
970                         return PTR_ERR(fe);
971                 }
972                 mdata->s_mirror_fe = fe;
973         } else
974                 mdata->s_metadata_fe = fe;
975
976
977         /*
978          * bitmap file entry
979          * Note:
980          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
981         */
982         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
983                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
984                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
985
986                 udf_debug("Bitmap file location: block = %u part = %u\n",
987                           addr.logicalBlockNum, addr.partitionReferenceNum);
988
989                 fe = udf_iget_special(sb, &addr);
990                 if (IS_ERR(fe)) {
991                         if (sb_rdonly(sb))
992                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
993                         else {
994                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
995                                 return PTR_ERR(fe);
996                         }
997                 } else
998                         mdata->s_bitmap_fe = fe;
999         }
1000
1001         udf_debug("udf_load_metadata_files Ok\n");
1002         return 0;
1003 }
1004
1005 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1006                              struct kernel_lb_addr *root)
1007 {
1008         struct fileSetDesc *fset;
1009
1010         fset = (struct fileSetDesc *)bh->b_data;
1011
1012         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1013
1014         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1015
1016         udf_debug("Rootdir at block=%u, partition=%u\n",
1017                   root->logicalBlockNum, root->partitionReferenceNum);
1018 }
1019
1020 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1021 {
1022         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1023         return DIV_ROUND_UP(map->s_partition_len +
1024                             (sizeof(struct spaceBitmapDesc) << 3),
1025                             sb->s_blocksize * 8);
1026 }
1027
1028 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1029 {
1030         struct udf_bitmap *bitmap;
1031         int nr_groups;
1032         int size;
1033
1034         nr_groups = udf_compute_nr_groups(sb, index);
1035         size = sizeof(struct udf_bitmap) +
1036                 (sizeof(struct buffer_head *) * nr_groups);
1037
1038         if (size <= PAGE_SIZE)
1039                 bitmap = kzalloc(size, GFP_KERNEL);
1040         else
1041                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1042
1043         if (!bitmap)
1044                 return NULL;
1045
1046         bitmap->s_nr_groups = nr_groups;
1047         return bitmap;
1048 }
1049
1050 static int udf_fill_partdesc_info(struct super_block *sb,
1051                 struct partitionDesc *p, int p_index)
1052 {
1053         struct udf_part_map *map;
1054         struct udf_sb_info *sbi = UDF_SB(sb);
1055         struct partitionHeaderDesc *phd;
1056
1057         map = &sbi->s_partmaps[p_index];
1058
1059         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1060         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1061
1062         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1063                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1064         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1065                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1066         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1067                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1068         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1069                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1070
1071         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1072                   p_index, map->s_partition_type,
1073                   map->s_partition_root, map->s_partition_len);
1074
1075         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1076             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1077                 return 0;
1078
1079         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1080         if (phd->unallocSpaceTable.extLength) {
1081                 struct kernel_lb_addr loc = {
1082                         .logicalBlockNum = le32_to_cpu(
1083                                 phd->unallocSpaceTable.extPosition),
1084                         .partitionReferenceNum = p_index,
1085                 };
1086                 struct inode *inode;
1087
1088                 inode = udf_iget_special(sb, &loc);
1089                 if (IS_ERR(inode)) {
1090                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1091                                   p_index);
1092                         return PTR_ERR(inode);
1093                 }
1094                 map->s_uspace.s_table = inode;
1095                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1096                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1097                           p_index, map->s_uspace.s_table->i_ino);
1098         }
1099
1100         if (phd->unallocSpaceBitmap.extLength) {
1101                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1102                 if (!bitmap)
1103                         return -ENOMEM;
1104                 map->s_uspace.s_bitmap = bitmap;
1105                 bitmap->s_extPosition = le32_to_cpu(
1106                                 phd->unallocSpaceBitmap.extPosition);
1107                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1108                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1109                           p_index, bitmap->s_extPosition);
1110         }
1111
1112         if (phd->partitionIntegrityTable.extLength)
1113                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1114
1115         if (phd->freedSpaceTable.extLength) {
1116                 struct kernel_lb_addr loc = {
1117                         .logicalBlockNum = le32_to_cpu(
1118                                 phd->freedSpaceTable.extPosition),
1119                         .partitionReferenceNum = p_index,
1120                 };
1121                 struct inode *inode;
1122
1123                 inode = udf_iget_special(sb, &loc);
1124                 if (IS_ERR(inode)) {
1125                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1126                                   p_index);
1127                         return PTR_ERR(inode);
1128                 }
1129                 map->s_fspace.s_table = inode;
1130                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1131                 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1132                           p_index, map->s_fspace.s_table->i_ino);
1133         }
1134
1135         if (phd->freedSpaceBitmap.extLength) {
1136                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137                 if (!bitmap)
1138                         return -ENOMEM;
1139                 map->s_fspace.s_bitmap = bitmap;
1140                 bitmap->s_extPosition = le32_to_cpu(
1141                                 phd->freedSpaceBitmap.extPosition);
1142                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1143                 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1144                           p_index, bitmap->s_extPosition);
1145         }
1146         return 0;
1147 }
1148
1149 static void udf_find_vat_block(struct super_block *sb, int p_index,
1150                                int type1_index, sector_t start_block)
1151 {
1152         struct udf_sb_info *sbi = UDF_SB(sb);
1153         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1154         sector_t vat_block;
1155         struct kernel_lb_addr ino;
1156         struct inode *inode;
1157
1158         /*
1159          * VAT file entry is in the last recorded block. Some broken disks have
1160          * it a few blocks before so try a bit harder...
1161          */
1162         ino.partitionReferenceNum = type1_index;
1163         for (vat_block = start_block;
1164              vat_block >= map->s_partition_root &&
1165              vat_block >= start_block - 3; vat_block--) {
1166                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1167                 inode = udf_iget_special(sb, &ino);
1168                 if (!IS_ERR(inode)) {
1169                         sbi->s_vat_inode = inode;
1170                         break;
1171                 }
1172         }
1173 }
1174
1175 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1176 {
1177         struct udf_sb_info *sbi = UDF_SB(sb);
1178         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179         struct buffer_head *bh = NULL;
1180         struct udf_inode_info *vati;
1181         uint32_t pos;
1182         struct virtualAllocationTable20 *vat20;
1183         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1184                           sb->s_blocksize_bits;
1185
1186         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1187         if (!sbi->s_vat_inode &&
1188             sbi->s_last_block != blocks - 1) {
1189                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1190                           (unsigned long)sbi->s_last_block,
1191                           (unsigned long)blocks - 1);
1192                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1193         }
1194         if (!sbi->s_vat_inode)
1195                 return -EIO;
1196
1197         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1198                 map->s_type_specific.s_virtual.s_start_offset = 0;
1199                 map->s_type_specific.s_virtual.s_num_entries =
1200                         (sbi->s_vat_inode->i_size - 36) >> 2;
1201         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1202                 vati = UDF_I(sbi->s_vat_inode);
1203                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1204                         pos = udf_block_map(sbi->s_vat_inode, 0);
1205                         bh = sb_bread(sb, pos);
1206                         if (!bh)
1207                                 return -EIO;
1208                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1209                 } else {
1210                         vat20 = (struct virtualAllocationTable20 *)
1211                                                         vati->i_ext.i_data;
1212                 }
1213
1214                 map->s_type_specific.s_virtual.s_start_offset =
1215                         le16_to_cpu(vat20->lengthHeader);
1216                 map->s_type_specific.s_virtual.s_num_entries =
1217                         (sbi->s_vat_inode->i_size -
1218                                 map->s_type_specific.s_virtual.
1219                                         s_start_offset) >> 2;
1220                 brelse(bh);
1221         }
1222         return 0;
1223 }
1224
1225 /*
1226  * Load partition descriptor block
1227  *
1228  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1229  * sequence.
1230  */
1231 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1232 {
1233         struct buffer_head *bh;
1234         struct partitionDesc *p;
1235         struct udf_part_map *map;
1236         struct udf_sb_info *sbi = UDF_SB(sb);
1237         int i, type1_idx;
1238         uint16_t partitionNumber;
1239         uint16_t ident;
1240         int ret;
1241
1242         bh = udf_read_tagged(sb, block, block, &ident);
1243         if (!bh)
1244                 return -EAGAIN;
1245         if (ident != TAG_IDENT_PD) {
1246                 ret = 0;
1247                 goto out_bh;
1248         }
1249
1250         p = (struct partitionDesc *)bh->b_data;
1251         partitionNumber = le16_to_cpu(p->partitionNumber);
1252
1253         /* First scan for TYPE1 and SPARABLE partitions */
1254         for (i = 0; i < sbi->s_partitions; i++) {
1255                 map = &sbi->s_partmaps[i];
1256                 udf_debug("Searching map: (%u == %u)\n",
1257                           map->s_partition_num, partitionNumber);
1258                 if (map->s_partition_num == partitionNumber &&
1259                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1260                      map->s_partition_type == UDF_SPARABLE_MAP15))
1261                         break;
1262         }
1263
1264         if (i >= sbi->s_partitions) {
1265                 udf_debug("Partition (%u) not found in partition map\n",
1266                           partitionNumber);
1267                 ret = 0;
1268                 goto out_bh;
1269         }
1270
1271         ret = udf_fill_partdesc_info(sb, p, i);
1272         if (ret < 0)
1273                 goto out_bh;
1274
1275         /*
1276          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1277          * PHYSICAL partitions are already set up
1278          */
1279         type1_idx = i;
1280 #ifdef UDFFS_DEBUG
1281         map = NULL; /* supress 'maybe used uninitialized' warning */
1282 #endif
1283         for (i = 0; i < sbi->s_partitions; i++) {
1284                 map = &sbi->s_partmaps[i];
1285
1286                 if (map->s_partition_num == partitionNumber &&
1287                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1288                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1289                      map->s_partition_type == UDF_METADATA_MAP25))
1290                         break;
1291         }
1292
1293         if (i >= sbi->s_partitions) {
1294                 ret = 0;
1295                 goto out_bh;
1296         }
1297
1298         ret = udf_fill_partdesc_info(sb, p, i);
1299         if (ret < 0)
1300                 goto out_bh;
1301
1302         if (map->s_partition_type == UDF_METADATA_MAP25) {
1303                 ret = udf_load_metadata_files(sb, i, type1_idx);
1304                 if (ret < 0) {
1305                         udf_err(sb, "error loading MetaData partition map %d\n",
1306                                 i);
1307                         goto out_bh;
1308                 }
1309         } else {
1310                 /*
1311                  * If we have a partition with virtual map, we don't handle
1312                  * writing to it (we overwrite blocks instead of relocating
1313                  * them).
1314                  */
1315                 if (!sb_rdonly(sb)) {
1316                         ret = -EACCES;
1317                         goto out_bh;
1318                 }
1319                 ret = udf_load_vat(sb, i, type1_idx);
1320                 if (ret < 0)
1321                         goto out_bh;
1322         }
1323         ret = 0;
1324 out_bh:
1325         /* In case loading failed, we handle cleanup in udf_fill_super */
1326         brelse(bh);
1327         return ret;
1328 }
1329
1330 static int udf_load_sparable_map(struct super_block *sb,
1331                                  struct udf_part_map *map,
1332                                  struct sparablePartitionMap *spm)
1333 {
1334         uint32_t loc;
1335         uint16_t ident;
1336         struct sparingTable *st;
1337         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1338         int i;
1339         struct buffer_head *bh;
1340
1341         map->s_partition_type = UDF_SPARABLE_MAP15;
1342         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1343         if (!is_power_of_2(sdata->s_packet_len)) {
1344                 udf_err(sb, "error loading logical volume descriptor: "
1345                         "Invalid packet length %u\n",
1346                         (unsigned)sdata->s_packet_len);
1347                 return -EIO;
1348         }
1349         if (spm->numSparingTables > 4) {
1350                 udf_err(sb, "error loading logical volume descriptor: "
1351                         "Too many sparing tables (%d)\n",
1352                         (int)spm->numSparingTables);
1353                 return -EIO;
1354         }
1355
1356         for (i = 0; i < spm->numSparingTables; i++) {
1357                 loc = le32_to_cpu(spm->locSparingTable[i]);
1358                 bh = udf_read_tagged(sb, loc, loc, &ident);
1359                 if (!bh)
1360                         continue;
1361
1362                 st = (struct sparingTable *)bh->b_data;
1363                 if (ident != 0 ||
1364                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365                             strlen(UDF_ID_SPARING)) ||
1366                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367                                                         sb->s_blocksize) {
1368                         brelse(bh);
1369                         continue;
1370                 }
1371
1372                 sdata->s_spar_map[i] = bh;
1373         }
1374         map->s_partition_func = udf_get_pblock_spar15;
1375         return 0;
1376 }
1377
1378 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379                                struct kernel_lb_addr *fileset)
1380 {
1381         struct logicalVolDesc *lvd;
1382         int i, offset;
1383         uint8_t type;
1384         struct udf_sb_info *sbi = UDF_SB(sb);
1385         struct genericPartitionMap *gpm;
1386         uint16_t ident;
1387         struct buffer_head *bh;
1388         unsigned int table_len;
1389         int ret;
1390
1391         bh = udf_read_tagged(sb, block, block, &ident);
1392         if (!bh)
1393                 return -EAGAIN;
1394         BUG_ON(ident != TAG_IDENT_LVD);
1395         lvd = (struct logicalVolDesc *)bh->b_data;
1396         table_len = le32_to_cpu(lvd->mapTableLength);
1397         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398                 udf_err(sb, "error loading logical volume descriptor: "
1399                         "Partition table too long (%u > %lu)\n", table_len,
1400                         sb->s_blocksize - sizeof(*lvd));
1401                 ret = -EIO;
1402                 goto out_bh;
1403         }
1404
1405         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1406         if (ret)
1407                 goto out_bh;
1408
1409         for (i = 0, offset = 0;
1410              i < sbi->s_partitions && offset < table_len;
1411              i++, offset += gpm->partitionMapLength) {
1412                 struct udf_part_map *map = &sbi->s_partmaps[i];
1413                 gpm = (struct genericPartitionMap *)
1414                                 &(lvd->partitionMaps[offset]);
1415                 type = gpm->partitionMapType;
1416                 if (type == 1) {
1417                         struct genericPartitionMap1 *gpm1 =
1418                                 (struct genericPartitionMap1 *)gpm;
1419                         map->s_partition_type = UDF_TYPE1_MAP15;
1420                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1421                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1422                         map->s_partition_func = NULL;
1423                 } else if (type == 2) {
1424                         struct udfPartitionMap2 *upm2 =
1425                                                 (struct udfPartitionMap2 *)gpm;
1426                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1427                                                 strlen(UDF_ID_VIRTUAL))) {
1428                                 u16 suf =
1429                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1430                                                         identSuffix)[0]);
1431                                 if (suf < 0x0200) {
1432                                         map->s_partition_type =
1433                                                         UDF_VIRTUAL_MAP15;
1434                                         map->s_partition_func =
1435                                                         udf_get_pblock_virt15;
1436                                 } else {
1437                                         map->s_partition_type =
1438                                                         UDF_VIRTUAL_MAP20;
1439                                         map->s_partition_func =
1440                                                         udf_get_pblock_virt20;
1441                                 }
1442                         } else if (!strncmp(upm2->partIdent.ident,
1443                                                 UDF_ID_SPARABLE,
1444                                                 strlen(UDF_ID_SPARABLE))) {
1445                                 ret = udf_load_sparable_map(sb, map,
1446                                         (struct sparablePartitionMap *)gpm);
1447                                 if (ret < 0)
1448                                         goto out_bh;
1449                         } else if (!strncmp(upm2->partIdent.ident,
1450                                                 UDF_ID_METADATA,
1451                                                 strlen(UDF_ID_METADATA))) {
1452                                 struct udf_meta_data *mdata =
1453                                         &map->s_type_specific.s_metadata;
1454                                 struct metadataPartitionMap *mdm =
1455                                                 (struct metadataPartitionMap *)
1456                                                 &(lvd->partitionMaps[offset]);
1457                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1458                                           i, type, UDF_ID_METADATA);
1459
1460                                 map->s_partition_type = UDF_METADATA_MAP25;
1461                                 map->s_partition_func = udf_get_pblock_meta25;
1462
1463                                 mdata->s_meta_file_loc   =
1464                                         le32_to_cpu(mdm->metadataFileLoc);
1465                                 mdata->s_mirror_file_loc =
1466                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1467                                 mdata->s_bitmap_file_loc =
1468                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1469                                 mdata->s_alloc_unit_size =
1470                                         le32_to_cpu(mdm->allocUnitSize);
1471                                 mdata->s_align_unit_size =
1472                                         le16_to_cpu(mdm->alignUnitSize);
1473                                 if (mdm->flags & 0x01)
1474                                         mdata->s_flags |= MF_DUPLICATE_MD;
1475
1476                                 udf_debug("Metadata Ident suffix=0x%x\n",
1477                                           le16_to_cpu(*(__le16 *)
1478                                                       mdm->partIdent.identSuffix));
1479                                 udf_debug("Metadata part num=%u\n",
1480                                           le16_to_cpu(mdm->partitionNum));
1481                                 udf_debug("Metadata part alloc unit size=%u\n",
1482                                           le32_to_cpu(mdm->allocUnitSize));
1483                                 udf_debug("Metadata file loc=%u\n",
1484                                           le32_to_cpu(mdm->metadataFileLoc));
1485                                 udf_debug("Mirror file loc=%u\n",
1486                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1487                                 udf_debug("Bitmap file loc=%u\n",
1488                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1489                                 udf_debug("Flags: %d %u\n",
1490                                           mdata->s_flags, mdm->flags);
1491                         } else {
1492                                 udf_debug("Unknown ident: %s\n",
1493                                           upm2->partIdent.ident);
1494                                 continue;
1495                         }
1496                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1497                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1498                 }
1499                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1500                           i, map->s_partition_num, type, map->s_volumeseqnum);
1501         }
1502
1503         if (fileset) {
1504                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1505
1506                 *fileset = lelb_to_cpu(la->extLocation);
1507                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1508                           fileset->logicalBlockNum,
1509                           fileset->partitionReferenceNum);
1510         }
1511         if (lvd->integritySeqExt.extLength)
1512                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1513         ret = 0;
1514 out_bh:
1515         brelse(bh);
1516         return ret;
1517 }
1518
1519 /*
1520  * Find the prevailing Logical Volume Integrity Descriptor.
1521  */
1522 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1523 {
1524         struct buffer_head *bh, *final_bh;
1525         uint16_t ident;
1526         struct udf_sb_info *sbi = UDF_SB(sb);
1527         struct logicalVolIntegrityDesc *lvid;
1528         int indirections = 0;
1529
1530         while (++indirections <= UDF_MAX_LVID_NESTING) {
1531                 final_bh = NULL;
1532                 while (loc.extLength > 0 &&
1533                         (bh = udf_read_tagged(sb, loc.extLocation,
1534                                         loc.extLocation, &ident))) {
1535                         if (ident != TAG_IDENT_LVID) {
1536                                 brelse(bh);
1537                                 break;
1538                         }
1539
1540                         brelse(final_bh);
1541                         final_bh = bh;
1542
1543                         loc.extLength -= sb->s_blocksize;
1544                         loc.extLocation++;
1545                 }
1546
1547                 if (!final_bh)
1548                         return;
1549
1550                 brelse(sbi->s_lvid_bh);
1551                 sbi->s_lvid_bh = final_bh;
1552
1553                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1554                 if (lvid->nextIntegrityExt.extLength == 0)
1555                         return;
1556
1557                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1558         }
1559
1560         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1561                 UDF_MAX_LVID_NESTING);
1562         brelse(sbi->s_lvid_bh);
1563         sbi->s_lvid_bh = NULL;
1564 }
1565
1566 /*
1567  * Step for reallocation of table of partition descriptor sequence numbers.
1568  * Must be power of 2.
1569  */
1570 #define PART_DESC_ALLOC_STEP 32
1571
1572 struct desc_seq_scan_data {
1573         struct udf_vds_record vds[VDS_POS_LENGTH];
1574         unsigned int size_part_descs;
1575         struct udf_vds_record *part_descs_loc;
1576 };
1577
1578 static struct udf_vds_record *handle_partition_descriptor(
1579                                 struct buffer_head *bh,
1580                                 struct desc_seq_scan_data *data)
1581 {
1582         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1583         int partnum;
1584
1585         partnum = le16_to_cpu(desc->partitionNumber);
1586         if (partnum >= data->size_part_descs) {
1587                 struct udf_vds_record *new_loc;
1588                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1589
1590                 new_loc = kzalloc(sizeof(*new_loc) * new_size, GFP_KERNEL);
1591                 if (!new_loc)
1592                         return ERR_PTR(-ENOMEM);
1593                 memcpy(new_loc, data->part_descs_loc,
1594                        data->size_part_descs * sizeof(*new_loc));
1595                 kfree(data->part_descs_loc);
1596                 data->part_descs_loc = new_loc;
1597                 data->size_part_descs = new_size;
1598         }
1599         return &(data->part_descs_loc[partnum]);
1600 }
1601
1602
1603 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1604                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1605 {
1606         switch (ident) {
1607         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1608                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1609         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1610                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1611         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1612                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1613         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1614                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1615         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1616                 return handle_partition_descriptor(bh, data);
1617         }
1618         return NULL;
1619 }
1620
1621 /*
1622  * Process a main/reserve volume descriptor sequence.
1623  *   @block             First block of first extent of the sequence.
1624  *   @lastblock         Lastblock of first extent of the sequence.
1625  *   @fileset           There we store extent containing root fileset
1626  *
1627  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1628  * sequence
1629  */
1630 static noinline int udf_process_sequence(
1631                 struct super_block *sb,
1632                 sector_t block, sector_t lastblock,
1633                 struct kernel_lb_addr *fileset)
1634 {
1635         struct buffer_head *bh = NULL;
1636         struct udf_vds_record *curr;
1637         struct generic_desc *gd;
1638         struct volDescPtr *vdp;
1639         bool done = false;
1640         uint32_t vdsn;
1641         uint16_t ident;
1642         int ret;
1643         unsigned int indirections = 0;
1644         struct desc_seq_scan_data data;
1645         unsigned int i;
1646
1647         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1648         data.size_part_descs = PART_DESC_ALLOC_STEP;
1649         data.part_descs_loc = kzalloc(sizeof(*data.part_descs_loc) *
1650                                         data.size_part_descs, GFP_KERNEL);
1651         if (!data.part_descs_loc)
1652                 return -ENOMEM;
1653
1654         /*
1655          * Read the main descriptor sequence and find which descriptors
1656          * are in it.
1657          */
1658         for (; (!done && block <= lastblock); block++) {
1659
1660                 bh = udf_read_tagged(sb, block, block, &ident);
1661                 if (!bh)
1662                         break;
1663
1664                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1665                 gd = (struct generic_desc *)bh->b_data;
1666                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1667                 switch (ident) {
1668                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1669                         if (++indirections > UDF_MAX_TD_NESTING) {
1670                                 udf_err(sb, "too many Volume Descriptor "
1671                                         "Pointers (max %u supported)\n",
1672                                         UDF_MAX_TD_NESTING);
1673                                 brelse(bh);
1674                                 return -EIO;
1675                         }
1676
1677                         vdp = (struct volDescPtr *)bh->b_data;
1678                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1679                         lastblock = le32_to_cpu(
1680                                 vdp->nextVolDescSeqExt.extLength) >>
1681                                 sb->s_blocksize_bits;
1682                         lastblock += block - 1;
1683                         /* For loop is going to increment 'block' again */
1684                         block--;
1685                         break;
1686                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1687                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1688                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1689                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1691                         curr = get_volume_descriptor_record(ident, bh, &data);
1692                         if (IS_ERR(curr)) {
1693                                 brelse(bh);
1694                                 return PTR_ERR(curr);
1695                         }
1696                         /* Descriptor we don't care about? */
1697                         if (!curr)
1698                                 break;
1699                         if (vdsn >= curr->volDescSeqNum) {
1700                                 curr->volDescSeqNum = vdsn;
1701                                 curr->block = block;
1702                         }
1703                         break;
1704                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1705                         done = true;
1706                         break;
1707                 }
1708                 brelse(bh);
1709         }
1710         /*
1711          * Now read interesting descriptors again and process them
1712          * in a suitable order
1713          */
1714         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1715                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1716                 return -EAGAIN;
1717         }
1718         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1719         if (ret < 0)
1720                 return ret;
1721
1722         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1723                 ret = udf_load_logicalvol(sb,
1724                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1725                                 fileset);
1726                 if (ret < 0)
1727                         return ret;
1728         }
1729
1730         /* Now handle prevailing Partition Descriptors */
1731         for (i = 0; i < data.size_part_descs; i++) {
1732                 if (data.part_descs_loc[i].block) {
1733                         ret = udf_load_partdesc(sb,
1734                                                 data.part_descs_loc[i].block);
1735                         if (ret < 0)
1736                                 return ret;
1737                 }
1738         }
1739
1740         return 0;
1741 }
1742
1743 /*
1744  * Load Volume Descriptor Sequence described by anchor in bh
1745  *
1746  * Returns <0 on error, 0 on success
1747  */
1748 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1749                              struct kernel_lb_addr *fileset)
1750 {
1751         struct anchorVolDescPtr *anchor;
1752         sector_t main_s, main_e, reserve_s, reserve_e;
1753         int ret;
1754
1755         anchor = (struct anchorVolDescPtr *)bh->b_data;
1756
1757         /* Locate the main sequence */
1758         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1759         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1760         main_e = main_e >> sb->s_blocksize_bits;
1761         main_e += main_s - 1;
1762
1763         /* Locate the reserve sequence */
1764         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1765         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1766         reserve_e = reserve_e >> sb->s_blocksize_bits;
1767         reserve_e += reserve_s - 1;
1768
1769         /* Process the main & reserve sequences */
1770         /* responsible for finding the PartitionDesc(s) */
1771         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1772         if (ret != -EAGAIN)
1773                 return ret;
1774         udf_sb_free_partitions(sb);
1775         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1776         if (ret < 0) {
1777                 udf_sb_free_partitions(sb);
1778                 /* No sequence was OK, return -EIO */
1779                 if (ret == -EAGAIN)
1780                         ret = -EIO;
1781         }
1782         return ret;
1783 }
1784
1785 /*
1786  * Check whether there is an anchor block in the given block and
1787  * load Volume Descriptor Sequence if so.
1788  *
1789  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1790  * block
1791  */
1792 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1793                                   struct kernel_lb_addr *fileset)
1794 {
1795         struct buffer_head *bh;
1796         uint16_t ident;
1797         int ret;
1798
1799         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1800             udf_fixed_to_variable(block) >=
1801             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1802                 return -EAGAIN;
1803
1804         bh = udf_read_tagged(sb, block, block, &ident);
1805         if (!bh)
1806                 return -EAGAIN;
1807         if (ident != TAG_IDENT_AVDP) {
1808                 brelse(bh);
1809                 return -EAGAIN;
1810         }
1811         ret = udf_load_sequence(sb, bh, fileset);
1812         brelse(bh);
1813         return ret;
1814 }
1815
1816 /*
1817  * Search for an anchor volume descriptor pointer.
1818  *
1819  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1820  * of anchors.
1821  */
1822 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1823                             struct kernel_lb_addr *fileset)
1824 {
1825         sector_t last[6];
1826         int i;
1827         struct udf_sb_info *sbi = UDF_SB(sb);
1828         int last_count = 0;
1829         int ret;
1830
1831         /* First try user provided anchor */
1832         if (sbi->s_anchor) {
1833                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1834                 if (ret != -EAGAIN)
1835                         return ret;
1836         }
1837         /*
1838          * according to spec, anchor is in either:
1839          *     block 256
1840          *     lastblock-256
1841          *     lastblock
1842          *  however, if the disc isn't closed, it could be 512.
1843          */
1844         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1845         if (ret != -EAGAIN)
1846                 return ret;
1847         /*
1848          * The trouble is which block is the last one. Drives often misreport
1849          * this so we try various possibilities.
1850          */
1851         last[last_count++] = *lastblock;
1852         if (*lastblock >= 1)
1853                 last[last_count++] = *lastblock - 1;
1854         last[last_count++] = *lastblock + 1;
1855         if (*lastblock >= 2)
1856                 last[last_count++] = *lastblock - 2;
1857         if (*lastblock >= 150)
1858                 last[last_count++] = *lastblock - 150;
1859         if (*lastblock >= 152)
1860                 last[last_count++] = *lastblock - 152;
1861
1862         for (i = 0; i < last_count; i++) {
1863                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1864                                 sb->s_blocksize_bits)
1865                         continue;
1866                 ret = udf_check_anchor_block(sb, last[i], fileset);
1867                 if (ret != -EAGAIN) {
1868                         if (!ret)
1869                                 *lastblock = last[i];
1870                         return ret;
1871                 }
1872                 if (last[i] < 256)
1873                         continue;
1874                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1875                 if (ret != -EAGAIN) {
1876                         if (!ret)
1877                                 *lastblock = last[i];
1878                         return ret;
1879                 }
1880         }
1881
1882         /* Finally try block 512 in case media is open */
1883         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1884 }
1885
1886 /*
1887  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1888  * area specified by it. The function expects sbi->s_lastblock to be the last
1889  * block on the media.
1890  *
1891  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1892  * was not found.
1893  */
1894 static int udf_find_anchor(struct super_block *sb,
1895                            struct kernel_lb_addr *fileset)
1896 {
1897         struct udf_sb_info *sbi = UDF_SB(sb);
1898         sector_t lastblock = sbi->s_last_block;
1899         int ret;
1900
1901         ret = udf_scan_anchors(sb, &lastblock, fileset);
1902         if (ret != -EAGAIN)
1903                 goto out;
1904
1905         /* No anchor found? Try VARCONV conversion of block numbers */
1906         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1907         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1908         /* Firstly, we try to not convert number of the last block */
1909         ret = udf_scan_anchors(sb, &lastblock, fileset);
1910         if (ret != -EAGAIN)
1911                 goto out;
1912
1913         lastblock = sbi->s_last_block;
1914         /* Secondly, we try with converted number of the last block */
1915         ret = udf_scan_anchors(sb, &lastblock, fileset);
1916         if (ret < 0) {
1917                 /* VARCONV didn't help. Clear it. */
1918                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1919         }
1920 out:
1921         if (ret == 0)
1922                 sbi->s_last_block = lastblock;
1923         return ret;
1924 }
1925
1926 /*
1927  * Check Volume Structure Descriptor, find Anchor block and load Volume
1928  * Descriptor Sequence.
1929  *
1930  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1931  * block was not found.
1932  */
1933 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1934                         int silent, struct kernel_lb_addr *fileset)
1935 {
1936         struct udf_sb_info *sbi = UDF_SB(sb);
1937         loff_t nsr_off;
1938         int ret;
1939
1940         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1941                 if (!silent)
1942                         udf_warn(sb, "Bad block size\n");
1943                 return -EINVAL;
1944         }
1945         sbi->s_last_block = uopt->lastblock;
1946         if (!uopt->novrs) {
1947                 /* Check that it is NSR02 compliant */
1948                 nsr_off = udf_check_vsd(sb);
1949                 if (!nsr_off) {
1950                         if (!silent)
1951                                 udf_warn(sb, "No VRS found\n");
1952                         return -EINVAL;
1953                 }
1954                 if (nsr_off == -1)
1955                         udf_debug("Failed to read sector at offset %d. "
1956                                   "Assuming open disc. Skipping validity "
1957                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1958                 if (!sbi->s_last_block)
1959                         sbi->s_last_block = udf_get_last_block(sb);
1960         } else {
1961                 udf_debug("Validity check skipped because of novrs option\n");
1962         }
1963
1964         /* Look for anchor block and load Volume Descriptor Sequence */
1965         sbi->s_anchor = uopt->anchor;
1966         ret = udf_find_anchor(sb, fileset);
1967         if (ret < 0) {
1968                 if (!silent && ret == -EAGAIN)
1969                         udf_warn(sb, "No anchor found\n");
1970                 return ret;
1971         }
1972         return 0;
1973 }
1974
1975 static void udf_open_lvid(struct super_block *sb)
1976 {
1977         struct udf_sb_info *sbi = UDF_SB(sb);
1978         struct buffer_head *bh = sbi->s_lvid_bh;
1979         struct logicalVolIntegrityDesc *lvid;
1980         struct logicalVolIntegrityDescImpUse *lvidiu;
1981         struct timespec ts;
1982
1983         if (!bh)
1984                 return;
1985         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1986         lvidiu = udf_sb_lvidiu(sb);
1987         if (!lvidiu)
1988                 return;
1989
1990         mutex_lock(&sbi->s_alloc_mutex);
1991         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1992         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1993         ktime_get_real_ts(&ts);
1994         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1995         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1996                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1997         else
1998                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1999
2000         lvid->descTag.descCRC = cpu_to_le16(
2001                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2002                         le16_to_cpu(lvid->descTag.descCRCLength)));
2003
2004         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2005         mark_buffer_dirty(bh);
2006         sbi->s_lvid_dirty = 0;
2007         mutex_unlock(&sbi->s_alloc_mutex);
2008         /* Make opening of filesystem visible on the media immediately */
2009         sync_dirty_buffer(bh);
2010 }
2011
2012 static void udf_close_lvid(struct super_block *sb)
2013 {
2014         struct udf_sb_info *sbi = UDF_SB(sb);
2015         struct buffer_head *bh = sbi->s_lvid_bh;
2016         struct logicalVolIntegrityDesc *lvid;
2017         struct logicalVolIntegrityDescImpUse *lvidiu;
2018         struct timespec ts;
2019
2020         if (!bh)
2021                 return;
2022         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2023         lvidiu = udf_sb_lvidiu(sb);
2024         if (!lvidiu)
2025                 return;
2026
2027         mutex_lock(&sbi->s_alloc_mutex);
2028         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2029         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2030         ktime_get_real_ts(&ts);
2031         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2032         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2033                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2034         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2035                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2036         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2037                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2038         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2039                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2040
2041         lvid->descTag.descCRC = cpu_to_le16(
2042                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2043                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2044
2045         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2046         /*
2047          * We set buffer uptodate unconditionally here to avoid spurious
2048          * warnings from mark_buffer_dirty() when previous EIO has marked
2049          * the buffer as !uptodate
2050          */
2051         set_buffer_uptodate(bh);
2052         mark_buffer_dirty(bh);
2053         sbi->s_lvid_dirty = 0;
2054         mutex_unlock(&sbi->s_alloc_mutex);
2055         /* Make closing of filesystem visible on the media immediately */
2056         sync_dirty_buffer(bh);
2057 }
2058
2059 u64 lvid_get_unique_id(struct super_block *sb)
2060 {
2061         struct buffer_head *bh;
2062         struct udf_sb_info *sbi = UDF_SB(sb);
2063         struct logicalVolIntegrityDesc *lvid;
2064         struct logicalVolHeaderDesc *lvhd;
2065         u64 uniqueID;
2066         u64 ret;
2067
2068         bh = sbi->s_lvid_bh;
2069         if (!bh)
2070                 return 0;
2071
2072         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2073         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2074
2075         mutex_lock(&sbi->s_alloc_mutex);
2076         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2077         if (!(++uniqueID & 0xFFFFFFFF))
2078                 uniqueID += 16;
2079         lvhd->uniqueID = cpu_to_le64(uniqueID);
2080         mutex_unlock(&sbi->s_alloc_mutex);
2081         mark_buffer_dirty(bh);
2082
2083         return ret;
2084 }
2085
2086 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2087 {
2088         int ret = -EINVAL;
2089         struct inode *inode = NULL;
2090         struct udf_options uopt;
2091         struct kernel_lb_addr rootdir, fileset;
2092         struct udf_sb_info *sbi;
2093         bool lvid_open = false;
2094
2095         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2096         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2097         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2098         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2099         uopt.umask = 0;
2100         uopt.fmode = UDF_INVALID_MODE;
2101         uopt.dmode = UDF_INVALID_MODE;
2102         uopt.nls_map = NULL;
2103
2104         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2105         if (!sbi)
2106                 return -ENOMEM;
2107
2108         sb->s_fs_info = sbi;
2109
2110         mutex_init(&sbi->s_alloc_mutex);
2111
2112         if (!udf_parse_options((char *)options, &uopt, false))
2113                 goto parse_options_failure;
2114
2115         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2116             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2117                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2118                 goto parse_options_failure;
2119         }
2120 #ifdef CONFIG_UDF_NLS
2121         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2122                 uopt.nls_map = load_nls_default();
2123                 if (!uopt.nls_map)
2124                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2125                 else
2126                         udf_debug("Using default NLS map\n");
2127         }
2128 #endif
2129         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2130                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2131
2132         fileset.logicalBlockNum = 0xFFFFFFFF;
2133         fileset.partitionReferenceNum = 0xFFFF;
2134
2135         sbi->s_flags = uopt.flags;
2136         sbi->s_uid = uopt.uid;
2137         sbi->s_gid = uopt.gid;
2138         sbi->s_umask = uopt.umask;
2139         sbi->s_fmode = uopt.fmode;
2140         sbi->s_dmode = uopt.dmode;
2141         sbi->s_nls_map = uopt.nls_map;
2142         rwlock_init(&sbi->s_cred_lock);
2143
2144         if (uopt.session == 0xFFFFFFFF)
2145                 sbi->s_session = udf_get_last_session(sb);
2146         else
2147                 sbi->s_session = uopt.session;
2148
2149         udf_debug("Multi-session=%d\n", sbi->s_session);
2150
2151         /* Fill in the rest of the superblock */
2152         sb->s_op = &udf_sb_ops;
2153         sb->s_export_op = &udf_export_ops;
2154
2155         sb->s_magic = UDF_SUPER_MAGIC;
2156         sb->s_time_gran = 1000;
2157
2158         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160         } else {
2161                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162                 while (uopt.blocksize <= 4096) {
2163                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164                         if (ret < 0) {
2165                                 if (!silent && ret != -EACCES) {
2166                                         pr_notice("Scanning with blocksize %u failed\n",
2167                                                   uopt.blocksize);
2168                                 }
2169                                 brelse(sbi->s_lvid_bh);
2170                                 sbi->s_lvid_bh = NULL;
2171                                 /*
2172                                  * EACCES is special - we want to propagate to
2173                                  * upper layers that we cannot handle RW mount.
2174                                  */
2175                                 if (ret == -EACCES)
2176                                         break;
2177                         } else
2178                                 break;
2179
2180                         uopt.blocksize <<= 1;
2181                 }
2182         }
2183         if (ret < 0) {
2184                 if (ret == -EAGAIN) {
2185                         udf_warn(sb, "No partition found (1)\n");
2186                         ret = -EINVAL;
2187                 }
2188                 goto error_out;
2189         }
2190
2191         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2192
2193         if (sbi->s_lvid_bh) {
2194                 struct logicalVolIntegrityDescImpUse *lvidiu =
2195                                                         udf_sb_lvidiu(sb);
2196                 uint16_t minUDFReadRev;
2197                 uint16_t minUDFWriteRev;
2198
2199                 if (!lvidiu) {
2200                         ret = -EINVAL;
2201                         goto error_out;
2202                 }
2203                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207                                 minUDFReadRev,
2208                                 UDF_MAX_READ_VERSION);
2209                         ret = -EINVAL;
2210                         goto error_out;
2211                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2212                            !sb_rdonly(sb)) {
2213                         ret = -EACCES;
2214                         goto error_out;
2215                 }
2216
2217                 sbi->s_udfrev = minUDFWriteRev;
2218
2219                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2220                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2221                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2222                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2223         }
2224
2225         if (!sbi->s_partitions) {
2226                 udf_warn(sb, "No partition found (2)\n");
2227                 ret = -EINVAL;
2228                 goto error_out;
2229         }
2230
2231         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2232                         UDF_PART_FLAG_READ_ONLY &&
2233             !sb_rdonly(sb)) {
2234                 ret = -EACCES;
2235                 goto error_out;
2236         }
2237
2238         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2239                 udf_warn(sb, "No fileset found\n");
2240                 ret = -EINVAL;
2241                 goto error_out;
2242         }
2243
2244         if (!silent) {
2245                 struct timestamp ts;
2246                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2247                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2248                          sbi->s_volume_ident,
2249                          le16_to_cpu(ts.year), ts.month, ts.day,
2250                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2251         }
2252         if (!sb_rdonly(sb)) {
2253                 udf_open_lvid(sb);
2254                 lvid_open = true;
2255         }
2256
2257         /* Assign the root inode */
2258         /* assign inodes by physical block number */
2259         /* perhaps it's not extensible enough, but for now ... */
2260         inode = udf_iget(sb, &rootdir);
2261         if (IS_ERR(inode)) {
2262                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2263                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2264                 ret = PTR_ERR(inode);
2265                 goto error_out;
2266         }
2267
2268         /* Allocate a dentry for the root inode */
2269         sb->s_root = d_make_root(inode);
2270         if (!sb->s_root) {
2271                 udf_err(sb, "Couldn't allocate root dentry\n");
2272                 ret = -ENOMEM;
2273                 goto error_out;
2274         }
2275         sb->s_maxbytes = MAX_LFS_FILESIZE;
2276         sb->s_max_links = UDF_MAX_LINKS;
2277         return 0;
2278
2279 error_out:
2280         iput(sbi->s_vat_inode);
2281 parse_options_failure:
2282 #ifdef CONFIG_UDF_NLS
2283         if (uopt.nls_map)
2284                 unload_nls(uopt.nls_map);
2285 #endif
2286         if (lvid_open)
2287                 udf_close_lvid(sb);
2288         brelse(sbi->s_lvid_bh);
2289         udf_sb_free_partitions(sb);
2290         kfree(sbi);
2291         sb->s_fs_info = NULL;
2292
2293         return ret;
2294 }
2295
2296 void _udf_err(struct super_block *sb, const char *function,
2297               const char *fmt, ...)
2298 {
2299         struct va_format vaf;
2300         va_list args;
2301
2302         va_start(args, fmt);
2303
2304         vaf.fmt = fmt;
2305         vaf.va = &args;
2306
2307         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2308
2309         va_end(args);
2310 }
2311
2312 void _udf_warn(struct super_block *sb, const char *function,
2313                const char *fmt, ...)
2314 {
2315         struct va_format vaf;
2316         va_list args;
2317
2318         va_start(args, fmt);
2319
2320         vaf.fmt = fmt;
2321         vaf.va = &args;
2322
2323         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2324
2325         va_end(args);
2326 }
2327
2328 static void udf_put_super(struct super_block *sb)
2329 {
2330         struct udf_sb_info *sbi;
2331
2332         sbi = UDF_SB(sb);
2333
2334         iput(sbi->s_vat_inode);
2335 #ifdef CONFIG_UDF_NLS
2336         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2337                 unload_nls(sbi->s_nls_map);
2338 #endif
2339         if (!sb_rdonly(sb))
2340                 udf_close_lvid(sb);
2341         brelse(sbi->s_lvid_bh);
2342         udf_sb_free_partitions(sb);
2343         mutex_destroy(&sbi->s_alloc_mutex);
2344         kfree(sb->s_fs_info);
2345         sb->s_fs_info = NULL;
2346 }
2347
2348 static int udf_sync_fs(struct super_block *sb, int wait)
2349 {
2350         struct udf_sb_info *sbi = UDF_SB(sb);
2351
2352         mutex_lock(&sbi->s_alloc_mutex);
2353         if (sbi->s_lvid_dirty) {
2354                 /*
2355                  * Blockdevice will be synced later so we don't have to submit
2356                  * the buffer for IO
2357                  */
2358                 mark_buffer_dirty(sbi->s_lvid_bh);
2359                 sbi->s_lvid_dirty = 0;
2360         }
2361         mutex_unlock(&sbi->s_alloc_mutex);
2362
2363         return 0;
2364 }
2365
2366 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2367 {
2368         struct super_block *sb = dentry->d_sb;
2369         struct udf_sb_info *sbi = UDF_SB(sb);
2370         struct logicalVolIntegrityDescImpUse *lvidiu;
2371         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2372
2373         lvidiu = udf_sb_lvidiu(sb);
2374         buf->f_type = UDF_SUPER_MAGIC;
2375         buf->f_bsize = sb->s_blocksize;
2376         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2377         buf->f_bfree = udf_count_free(sb);
2378         buf->f_bavail = buf->f_bfree;
2379         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2380                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2381                         + buf->f_bfree;
2382         buf->f_ffree = buf->f_bfree;
2383         buf->f_namelen = UDF_NAME_LEN;
2384         buf->f_fsid.val[0] = (u32)id;
2385         buf->f_fsid.val[1] = (u32)(id >> 32);
2386
2387         return 0;
2388 }
2389
2390 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2391                                           struct udf_bitmap *bitmap)
2392 {
2393         struct buffer_head *bh = NULL;
2394         unsigned int accum = 0;
2395         int index;
2396         udf_pblk_t block = 0, newblock;
2397         struct kernel_lb_addr loc;
2398         uint32_t bytes;
2399         uint8_t *ptr;
2400         uint16_t ident;
2401         struct spaceBitmapDesc *bm;
2402
2403         loc.logicalBlockNum = bitmap->s_extPosition;
2404         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2405         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2406
2407         if (!bh) {
2408                 udf_err(sb, "udf_count_free failed\n");
2409                 goto out;
2410         } else if (ident != TAG_IDENT_SBD) {
2411                 brelse(bh);
2412                 udf_err(sb, "udf_count_free failed\n");
2413                 goto out;
2414         }
2415
2416         bm = (struct spaceBitmapDesc *)bh->b_data;
2417         bytes = le32_to_cpu(bm->numOfBytes);
2418         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2419         ptr = (uint8_t *)bh->b_data;
2420
2421         while (bytes > 0) {
2422                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2423                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2424                                         cur_bytes * 8);
2425                 bytes -= cur_bytes;
2426                 if (bytes) {
2427                         brelse(bh);
2428                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2429                         bh = udf_tread(sb, newblock);
2430                         if (!bh) {
2431                                 udf_debug("read failed\n");
2432                                 goto out;
2433                         }
2434                         index = 0;
2435                         ptr = (uint8_t *)bh->b_data;
2436                 }
2437         }
2438         brelse(bh);
2439 out:
2440         return accum;
2441 }
2442
2443 static unsigned int udf_count_free_table(struct super_block *sb,
2444                                          struct inode *table)
2445 {
2446         unsigned int accum = 0;
2447         uint32_t elen;
2448         struct kernel_lb_addr eloc;
2449         int8_t etype;
2450         struct extent_position epos;
2451
2452         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2453         epos.block = UDF_I(table)->i_location;
2454         epos.offset = sizeof(struct unallocSpaceEntry);
2455         epos.bh = NULL;
2456
2457         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2458                 accum += (elen >> table->i_sb->s_blocksize_bits);
2459
2460         brelse(epos.bh);
2461         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2462
2463         return accum;
2464 }
2465
2466 static unsigned int udf_count_free(struct super_block *sb)
2467 {
2468         unsigned int accum = 0;
2469         struct udf_sb_info *sbi;
2470         struct udf_part_map *map;
2471
2472         sbi = UDF_SB(sb);
2473         if (sbi->s_lvid_bh) {
2474                 struct logicalVolIntegrityDesc *lvid =
2475                         (struct logicalVolIntegrityDesc *)
2476                         sbi->s_lvid_bh->b_data;
2477                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2478                         accum = le32_to_cpu(
2479                                         lvid->freeSpaceTable[sbi->s_partition]);
2480                         if (accum == 0xFFFFFFFF)
2481                                 accum = 0;
2482                 }
2483         }
2484
2485         if (accum)
2486                 return accum;
2487
2488         map = &sbi->s_partmaps[sbi->s_partition];
2489         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2490                 accum += udf_count_free_bitmap(sb,
2491                                                map->s_uspace.s_bitmap);
2492         }
2493         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2494                 accum += udf_count_free_bitmap(sb,
2495                                                map->s_fspace.s_bitmap);
2496         }
2497         if (accum)
2498                 return accum;
2499
2500         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2501                 accum += udf_count_free_table(sb,
2502                                               map->s_uspace.s_table);
2503         }
2504         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2505                 accum += udf_count_free_table(sb,
2506                                               map->s_fspace.s_table);
2507         }
2508
2509         return accum;
2510 }
2511
2512 MODULE_AUTHOR("Ben Fennema");
2513 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2514 MODULE_LICENSE("GPL");
2515 module_init(init_udf_fs)
2516 module_exit(exit_udf_fs)