Linux-libre 4.9.135-gnu
[librecmc/linux-libre.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched.h>                /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <asm/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49         kuid_t   uid;
50         kgid_t   gid;
51         umode_t mode;
52         long    max_hpages;
53         long    nr_inodes;
54         struct hstate *hstate;
55         long    min_hpages;
56 };
57
58 struct hugetlbfs_inode_info {
59         struct shared_policy policy;
60         struct inode vfs_inode;
61 };
62
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65         return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71         Opt_size, Opt_nr_inodes,
72         Opt_mode, Opt_uid, Opt_gid,
73         Opt_pagesize, Opt_min_size,
74         Opt_err,
75 };
76
77 static const match_table_t tokens = {
78         {Opt_size,      "size=%s"},
79         {Opt_nr_inodes, "nr_inodes=%s"},
80         {Opt_mode,      "mode=%o"},
81         {Opt_uid,       "uid=%u"},
82         {Opt_gid,       "gid=%u"},
83         {Opt_pagesize,  "pagesize=%s"},
84         {Opt_min_size,  "min_size=%s"},
85         {Opt_err,       NULL},
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123         struct inode *inode = file_inode(file);
124         loff_t len, vma_len;
125         int ret;
126         struct hstate *h = hstate_file(file);
127
128         /*
129          * vma address alignment (but not the pgoff alignment) has
130          * already been checked by prepare_hugepage_range.  If you add
131          * any error returns here, do so after setting VM_HUGETLB, so
132          * is_vm_hugetlb_page tests below unmap_region go the right
133          * way when do_mmap_pgoff unwinds (may be important on powerpc
134          * and ia64).
135          */
136         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137         vma->vm_ops = &hugetlb_vm_ops;
138
139         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
140                 return -EINVAL;
141
142         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
143
144         inode_lock(inode);
145         file_accessed(file);
146
147         ret = -ENOMEM;
148         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
149
150         if (hugetlb_reserve_pages(inode,
151                                 vma->vm_pgoff >> huge_page_order(h),
152                                 len >> huge_page_shift(h), vma,
153                                 vma->vm_flags))
154                 goto out;
155
156         ret = 0;
157         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
158                 inode->i_size = len;
159 out:
160         inode_unlock(inode);
161
162         return ret;
163 }
164
165 /*
166  * Called under down_write(mmap_sem).
167  */
168
169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
170 static unsigned long
171 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
172                 unsigned long len, unsigned long pgoff, unsigned long flags)
173 {
174         struct mm_struct *mm = current->mm;
175         struct vm_area_struct *vma;
176         struct hstate *h = hstate_file(file);
177         struct vm_unmapped_area_info info;
178
179         if (len & ~huge_page_mask(h))
180                 return -EINVAL;
181         if (len > TASK_SIZE)
182                 return -ENOMEM;
183
184         if (flags & MAP_FIXED) {
185                 if (prepare_hugepage_range(file, addr, len))
186                         return -EINVAL;
187                 return addr;
188         }
189
190         if (addr) {
191                 addr = ALIGN(addr, huge_page_size(h));
192                 vma = find_vma(mm, addr);
193                 if (TASK_SIZE - len >= addr &&
194                     (!vma || addr + len <= vm_start_gap(vma)))
195                         return addr;
196         }
197
198         info.flags = 0;
199         info.length = len;
200         info.low_limit = TASK_UNMAPPED_BASE;
201         info.high_limit = TASK_SIZE;
202         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
203         info.align_offset = 0;
204         return vm_unmapped_area(&info);
205 }
206 #endif
207
208 static size_t
209 hugetlbfs_read_actor(struct page *page, unsigned long offset,
210                         struct iov_iter *to, unsigned long size)
211 {
212         size_t copied = 0;
213         int i, chunksize;
214
215         /* Find which 4k chunk and offset with in that chunk */
216         i = offset >> PAGE_SHIFT;
217         offset = offset & ~PAGE_MASK;
218
219         while (size) {
220                 size_t n;
221                 chunksize = PAGE_SIZE;
222                 if (offset)
223                         chunksize -= offset;
224                 if (chunksize > size)
225                         chunksize = size;
226                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
227                 copied += n;
228                 if (n != chunksize)
229                         return copied;
230                 offset = 0;
231                 size -= chunksize;
232                 i++;
233         }
234         return copied;
235 }
236
237 /*
238  * Support for read() - Find the page attached to f_mapping and copy out the
239  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
240  * since it has PAGE_SIZE assumptions.
241  */
242 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
243 {
244         struct file *file = iocb->ki_filp;
245         struct hstate *h = hstate_file(file);
246         struct address_space *mapping = file->f_mapping;
247         struct inode *inode = mapping->host;
248         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
249         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
250         unsigned long end_index;
251         loff_t isize;
252         ssize_t retval = 0;
253
254         while (iov_iter_count(to)) {
255                 struct page *page;
256                 size_t nr, copied;
257
258                 /* nr is the maximum number of bytes to copy from this page */
259                 nr = huge_page_size(h);
260                 isize = i_size_read(inode);
261                 if (!isize)
262                         break;
263                 end_index = (isize - 1) >> huge_page_shift(h);
264                 if (index > end_index)
265                         break;
266                 if (index == end_index) {
267                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
268                         if (nr <= offset)
269                                 break;
270                 }
271                 nr = nr - offset;
272
273                 /* Find the page */
274                 page = find_lock_page(mapping, index);
275                 if (unlikely(page == NULL)) {
276                         /*
277                          * We have a HOLE, zero out the user-buffer for the
278                          * length of the hole or request.
279                          */
280                         copied = iov_iter_zero(nr, to);
281                 } else {
282                         unlock_page(page);
283
284                         /*
285                          * We have the page, copy it to user space buffer.
286                          */
287                         copied = hugetlbfs_read_actor(page, offset, to, nr);
288                         put_page(page);
289                 }
290                 offset += copied;
291                 retval += copied;
292                 if (copied != nr && iov_iter_count(to)) {
293                         if (!retval)
294                                 retval = -EFAULT;
295                         break;
296                 }
297                 index += offset >> huge_page_shift(h);
298                 offset &= ~huge_page_mask(h);
299         }
300         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
301         return retval;
302 }
303
304 static int hugetlbfs_write_begin(struct file *file,
305                         struct address_space *mapping,
306                         loff_t pos, unsigned len, unsigned flags,
307                         struct page **pagep, void **fsdata)
308 {
309         return -EINVAL;
310 }
311
312 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
313                         loff_t pos, unsigned len, unsigned copied,
314                         struct page *page, void *fsdata)
315 {
316         BUG();
317         return -EINVAL;
318 }
319
320 static void remove_huge_page(struct page *page)
321 {
322         ClearPageDirty(page);
323         ClearPageUptodate(page);
324         delete_from_page_cache(page);
325 }
326
327 static void
328 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
329 {
330         struct vm_area_struct *vma;
331
332         /*
333          * end == 0 indicates that the entire range after
334          * start should be unmapped.
335          */
336         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
337                 unsigned long v_offset;
338                 unsigned long v_end;
339
340                 /*
341                  * Can the expression below overflow on 32-bit arches?
342                  * No, because the interval tree returns us only those vmas
343                  * which overlap the truncated area starting at pgoff,
344                  * and no vma on a 32-bit arch can span beyond the 4GB.
345                  */
346                 if (vma->vm_pgoff < start)
347                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
348                 else
349                         v_offset = 0;
350
351                 if (!end)
352                         v_end = vma->vm_end;
353                 else {
354                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
355                                                         + vma->vm_start;
356                         if (v_end > vma->vm_end)
357                                 v_end = vma->vm_end;
358                 }
359
360                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
361                                                                         NULL);
362         }
363 }
364
365 /*
366  * remove_inode_hugepages handles two distinct cases: truncation and hole
367  * punch.  There are subtle differences in operation for each case.
368  *
369  * truncation is indicated by end of range being LLONG_MAX
370  *      In this case, we first scan the range and release found pages.
371  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
372  *      maps and global counts.  Page faults can not race with truncation
373  *      in this routine.  hugetlb_no_page() prevents page faults in the
374  *      truncated range.  It checks i_size before allocation, and again after
375  *      with the page table lock for the page held.  The same lock must be
376  *      acquired to unmap a page.
377  * hole punch is indicated if end is not LLONG_MAX
378  *      In the hole punch case we scan the range and release found pages.
379  *      Only when releasing a page is the associated region/reserv map
380  *      deleted.  The region/reserv map for ranges without associated
381  *      pages are not modified.  Page faults can race with hole punch.
382  *      This is indicated if we find a mapped page.
383  * Note: If the passed end of range value is beyond the end of file, but
384  * not LLONG_MAX this routine still performs a hole punch operation.
385  */
386 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
387                                    loff_t lend)
388 {
389         struct hstate *h = hstate_inode(inode);
390         struct address_space *mapping = &inode->i_data;
391         const pgoff_t start = lstart >> huge_page_shift(h);
392         const pgoff_t end = lend >> huge_page_shift(h);
393         struct vm_area_struct pseudo_vma;
394         struct pagevec pvec;
395         pgoff_t next;
396         int i, freed = 0;
397         long lookup_nr = PAGEVEC_SIZE;
398         bool truncate_op = (lend == LLONG_MAX);
399
400         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
401         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
402         pagevec_init(&pvec, 0);
403         next = start;
404         while (next < end) {
405                 /*
406                  * Don't grab more pages than the number left in the range.
407                  */
408                 if (end - next < lookup_nr)
409                         lookup_nr = end - next;
410
411                 /*
412                  * When no more pages are found, we are done.
413                  */
414                 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
415                         break;
416
417                 for (i = 0; i < pagevec_count(&pvec); ++i) {
418                         struct page *page = pvec.pages[i];
419                         u32 hash;
420
421                         /*
422                          * The page (index) could be beyond end.  This is
423                          * only possible in the punch hole case as end is
424                          * max page offset in the truncate case.
425                          */
426                         next = page->index;
427                         if (next >= end)
428                                 break;
429
430                         hash = hugetlb_fault_mutex_hash(h, current->mm,
431                                                         &pseudo_vma,
432                                                         mapping, next, 0);
433                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
434
435                         /*
436                          * If page is mapped, it was faulted in after being
437                          * unmapped in caller.  Unmap (again) now after taking
438                          * the fault mutex.  The mutex will prevent faults
439                          * until we finish removing the page.
440                          *
441                          * This race can only happen in the hole punch case.
442                          * Getting here in a truncate operation is a bug.
443                          */
444                         if (unlikely(page_mapped(page))) {
445                                 BUG_ON(truncate_op);
446
447                                 i_mmap_lock_write(mapping);
448                                 hugetlb_vmdelete_list(&mapping->i_mmap,
449                                         next * pages_per_huge_page(h),
450                                         (next + 1) * pages_per_huge_page(h));
451                                 i_mmap_unlock_write(mapping);
452                         }
453
454                         lock_page(page);
455                         /*
456                          * We must free the huge page and remove from page
457                          * cache (remove_huge_page) BEFORE removing the
458                          * region/reserve map (hugetlb_unreserve_pages).  In
459                          * rare out of memory conditions, removal of the
460                          * region/reserve map could fail. Correspondingly,
461                          * the subpool and global reserve usage count can need
462                          * to be adjusted.
463                          */
464                         VM_BUG_ON(PagePrivate(page));
465                         remove_huge_page(page);
466                         freed++;
467                         if (!truncate_op) {
468                                 if (unlikely(hugetlb_unreserve_pages(inode,
469                                                         next, next + 1, 1)))
470                                         hugetlb_fix_reserve_counts(inode);
471                         }
472
473                         unlock_page(page);
474                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
475                 }
476                 ++next;
477                 huge_pagevec_release(&pvec);
478                 cond_resched();
479         }
480
481         if (truncate_op)
482                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
483 }
484
485 static void hugetlbfs_evict_inode(struct inode *inode)
486 {
487         struct resv_map *resv_map;
488
489         remove_inode_hugepages(inode, 0, LLONG_MAX);
490         resv_map = (struct resv_map *)inode->i_mapping->private_data;
491         /* root inode doesn't have the resv_map, so we should check it */
492         if (resv_map)
493                 resv_map_release(&resv_map->refs);
494         clear_inode(inode);
495 }
496
497 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
498 {
499         pgoff_t pgoff;
500         struct address_space *mapping = inode->i_mapping;
501         struct hstate *h = hstate_inode(inode);
502
503         BUG_ON(offset & ~huge_page_mask(h));
504         pgoff = offset >> PAGE_SHIFT;
505
506         i_size_write(inode, offset);
507         i_mmap_lock_write(mapping);
508         if (!RB_EMPTY_ROOT(&mapping->i_mmap))
509                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
510         i_mmap_unlock_write(mapping);
511         remove_inode_hugepages(inode, offset, LLONG_MAX);
512         return 0;
513 }
514
515 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
516 {
517         struct hstate *h = hstate_inode(inode);
518         loff_t hpage_size = huge_page_size(h);
519         loff_t hole_start, hole_end;
520
521         /*
522          * For hole punch round up the beginning offset of the hole and
523          * round down the end.
524          */
525         hole_start = round_up(offset, hpage_size);
526         hole_end = round_down(offset + len, hpage_size);
527
528         if (hole_end > hole_start) {
529                 struct address_space *mapping = inode->i_mapping;
530
531                 inode_lock(inode);
532                 i_mmap_lock_write(mapping);
533                 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
534                         hugetlb_vmdelete_list(&mapping->i_mmap,
535                                                 hole_start >> PAGE_SHIFT,
536                                                 hole_end  >> PAGE_SHIFT);
537                 i_mmap_unlock_write(mapping);
538                 remove_inode_hugepages(inode, hole_start, hole_end);
539                 inode_unlock(inode);
540         }
541
542         return 0;
543 }
544
545 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
546                                 loff_t len)
547 {
548         struct inode *inode = file_inode(file);
549         struct address_space *mapping = inode->i_mapping;
550         struct hstate *h = hstate_inode(inode);
551         struct vm_area_struct pseudo_vma;
552         struct mm_struct *mm = current->mm;
553         loff_t hpage_size = huge_page_size(h);
554         unsigned long hpage_shift = huge_page_shift(h);
555         pgoff_t start, index, end;
556         int error;
557         u32 hash;
558
559         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
560                 return -EOPNOTSUPP;
561
562         if (mode & FALLOC_FL_PUNCH_HOLE)
563                 return hugetlbfs_punch_hole(inode, offset, len);
564
565         /*
566          * Default preallocate case.
567          * For this range, start is rounded down and end is rounded up
568          * as well as being converted to page offsets.
569          */
570         start = offset >> hpage_shift;
571         end = (offset + len + hpage_size - 1) >> hpage_shift;
572
573         inode_lock(inode);
574
575         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
576         error = inode_newsize_ok(inode, offset + len);
577         if (error)
578                 goto out;
579
580         /*
581          * Initialize a pseudo vma as this is required by the huge page
582          * allocation routines.  If NUMA is configured, use page index
583          * as input to create an allocation policy.
584          */
585         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
586         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
587         pseudo_vma.vm_file = file;
588
589         for (index = start; index < end; index++) {
590                 /*
591                  * This is supposed to be the vaddr where the page is being
592                  * faulted in, but we have no vaddr here.
593                  */
594                 struct page *page;
595                 unsigned long addr;
596                 int avoid_reserve = 0;
597
598                 cond_resched();
599
600                 /*
601                  * fallocate(2) manpage permits EINTR; we may have been
602                  * interrupted because we are using up too much memory.
603                  */
604                 if (signal_pending(current)) {
605                         error = -EINTR;
606                         break;
607                 }
608
609                 /* Set numa allocation policy based on index */
610                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
611
612                 /* addr is the offset within the file (zero based) */
613                 addr = index * hpage_size;
614
615                 /* mutex taken here, fault path and hole punch */
616                 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
617                                                 index, addr);
618                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
619
620                 /* See if already present in mapping to avoid alloc/free */
621                 page = find_get_page(mapping, index);
622                 if (page) {
623                         put_page(page);
624                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
625                         hugetlb_drop_vma_policy(&pseudo_vma);
626                         continue;
627                 }
628
629                 /* Allocate page and add to page cache */
630                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
631                 hugetlb_drop_vma_policy(&pseudo_vma);
632                 if (IS_ERR(page)) {
633                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
634                         error = PTR_ERR(page);
635                         goto out;
636                 }
637                 clear_huge_page(page, addr, pages_per_huge_page(h));
638                 __SetPageUptodate(page);
639                 error = huge_add_to_page_cache(page, mapping, index);
640                 if (unlikely(error)) {
641                         put_page(page);
642                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
643                         goto out;
644                 }
645
646                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
647
648                 /*
649                  * page_put due to reference from alloc_huge_page()
650                  * unlock_page because locked by add_to_page_cache()
651                  */
652                 put_page(page);
653                 unlock_page(page);
654         }
655
656         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
657                 i_size_write(inode, offset + len);
658         inode->i_ctime = current_time(inode);
659 out:
660         inode_unlock(inode);
661         return error;
662 }
663
664 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
665 {
666         struct inode *inode = d_inode(dentry);
667         struct hstate *h = hstate_inode(inode);
668         int error;
669         unsigned int ia_valid = attr->ia_valid;
670
671         BUG_ON(!inode);
672
673         error = setattr_prepare(dentry, attr);
674         if (error)
675                 return error;
676
677         if (ia_valid & ATTR_SIZE) {
678                 error = -EINVAL;
679                 if (attr->ia_size & ~huge_page_mask(h))
680                         return -EINVAL;
681                 error = hugetlb_vmtruncate(inode, attr->ia_size);
682                 if (error)
683                         return error;
684         }
685
686         setattr_copy(inode, attr);
687         mark_inode_dirty(inode);
688         return 0;
689 }
690
691 static struct inode *hugetlbfs_get_root(struct super_block *sb,
692                                         struct hugetlbfs_config *config)
693 {
694         struct inode *inode;
695
696         inode = new_inode(sb);
697         if (inode) {
698                 inode->i_ino = get_next_ino();
699                 inode->i_mode = S_IFDIR | config->mode;
700                 inode->i_uid = config->uid;
701                 inode->i_gid = config->gid;
702                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
703                 inode->i_op = &hugetlbfs_dir_inode_operations;
704                 inode->i_fop = &simple_dir_operations;
705                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
706                 inc_nlink(inode);
707                 lockdep_annotate_inode_mutex_key(inode);
708         }
709         return inode;
710 }
711
712 /*
713  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
714  * be taken from reclaim -- unlike regular filesystems. This needs an
715  * annotation because huge_pmd_share() does an allocation under hugetlb's
716  * i_mmap_rwsem.
717  */
718 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
719
720 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
721                                         struct inode *dir,
722                                         umode_t mode, dev_t dev)
723 {
724         struct inode *inode;
725         struct resv_map *resv_map;
726
727         resv_map = resv_map_alloc();
728         if (!resv_map)
729                 return NULL;
730
731         inode = new_inode(sb);
732         if (inode) {
733                 inode->i_ino = get_next_ino();
734                 inode_init_owner(inode, dir, mode);
735                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
736                                 &hugetlbfs_i_mmap_rwsem_key);
737                 inode->i_mapping->a_ops = &hugetlbfs_aops;
738                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
739                 inode->i_mapping->private_data = resv_map;
740                 switch (mode & S_IFMT) {
741                 default:
742                         init_special_inode(inode, mode, dev);
743                         break;
744                 case S_IFREG:
745                         inode->i_op = &hugetlbfs_inode_operations;
746                         inode->i_fop = &hugetlbfs_file_operations;
747                         break;
748                 case S_IFDIR:
749                         inode->i_op = &hugetlbfs_dir_inode_operations;
750                         inode->i_fop = &simple_dir_operations;
751
752                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
753                         inc_nlink(inode);
754                         break;
755                 case S_IFLNK:
756                         inode->i_op = &page_symlink_inode_operations;
757                         inode_nohighmem(inode);
758                         break;
759                 }
760                 lockdep_annotate_inode_mutex_key(inode);
761         } else
762                 kref_put(&resv_map->refs, resv_map_release);
763
764         return inode;
765 }
766
767 /*
768  * File creation. Allocate an inode, and we're done..
769  */
770 static int hugetlbfs_mknod(struct inode *dir,
771                         struct dentry *dentry, umode_t mode, dev_t dev)
772 {
773         struct inode *inode;
774         int error = -ENOSPC;
775
776         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
777         if (inode) {
778                 dir->i_ctime = dir->i_mtime = current_time(dir);
779                 d_instantiate(dentry, inode);
780                 dget(dentry);   /* Extra count - pin the dentry in core */
781                 error = 0;
782         }
783         return error;
784 }
785
786 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
787 {
788         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
789         if (!retval)
790                 inc_nlink(dir);
791         return retval;
792 }
793
794 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
795 {
796         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
797 }
798
799 static int hugetlbfs_symlink(struct inode *dir,
800                         struct dentry *dentry, const char *symname)
801 {
802         struct inode *inode;
803         int error = -ENOSPC;
804
805         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
806         if (inode) {
807                 int l = strlen(symname)+1;
808                 error = page_symlink(inode, symname, l);
809                 if (!error) {
810                         d_instantiate(dentry, inode);
811                         dget(dentry);
812                 } else
813                         iput(inode);
814         }
815         dir->i_ctime = dir->i_mtime = current_time(dir);
816
817         return error;
818 }
819
820 /*
821  * mark the head page dirty
822  */
823 static int hugetlbfs_set_page_dirty(struct page *page)
824 {
825         struct page *head = compound_head(page);
826
827         SetPageDirty(head);
828         return 0;
829 }
830
831 static int hugetlbfs_migrate_page(struct address_space *mapping,
832                                 struct page *newpage, struct page *page,
833                                 enum migrate_mode mode)
834 {
835         int rc;
836
837         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
838         if (rc != MIGRATEPAGE_SUCCESS)
839                 return rc;
840         migrate_page_copy(newpage, page);
841
842         return MIGRATEPAGE_SUCCESS;
843 }
844
845 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
846 {
847         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
848         struct hstate *h = hstate_inode(d_inode(dentry));
849
850         buf->f_type = HUGETLBFS_MAGIC;
851         buf->f_bsize = huge_page_size(h);
852         if (sbinfo) {
853                 spin_lock(&sbinfo->stat_lock);
854                 /* If no limits set, just report 0 for max/free/used
855                  * blocks, like simple_statfs() */
856                 if (sbinfo->spool) {
857                         long free_pages;
858
859                         spin_lock(&sbinfo->spool->lock);
860                         buf->f_blocks = sbinfo->spool->max_hpages;
861                         free_pages = sbinfo->spool->max_hpages
862                                 - sbinfo->spool->used_hpages;
863                         buf->f_bavail = buf->f_bfree = free_pages;
864                         spin_unlock(&sbinfo->spool->lock);
865                         buf->f_files = sbinfo->max_inodes;
866                         buf->f_ffree = sbinfo->free_inodes;
867                 }
868                 spin_unlock(&sbinfo->stat_lock);
869         }
870         buf->f_namelen = NAME_MAX;
871         return 0;
872 }
873
874 static void hugetlbfs_put_super(struct super_block *sb)
875 {
876         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
877
878         if (sbi) {
879                 sb->s_fs_info = NULL;
880
881                 if (sbi->spool)
882                         hugepage_put_subpool(sbi->spool);
883
884                 kfree(sbi);
885         }
886 }
887
888 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
889 {
890         if (sbinfo->free_inodes >= 0) {
891                 spin_lock(&sbinfo->stat_lock);
892                 if (unlikely(!sbinfo->free_inodes)) {
893                         spin_unlock(&sbinfo->stat_lock);
894                         return 0;
895                 }
896                 sbinfo->free_inodes--;
897                 spin_unlock(&sbinfo->stat_lock);
898         }
899
900         return 1;
901 }
902
903 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
904 {
905         if (sbinfo->free_inodes >= 0) {
906                 spin_lock(&sbinfo->stat_lock);
907                 sbinfo->free_inodes++;
908                 spin_unlock(&sbinfo->stat_lock);
909         }
910 }
911
912
913 static struct kmem_cache *hugetlbfs_inode_cachep;
914
915 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
916 {
917         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
918         struct hugetlbfs_inode_info *p;
919
920         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
921                 return NULL;
922         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
923         if (unlikely(!p)) {
924                 hugetlbfs_inc_free_inodes(sbinfo);
925                 return NULL;
926         }
927
928         /*
929          * Any time after allocation, hugetlbfs_destroy_inode can be called
930          * for the inode.  mpol_free_shared_policy is unconditionally called
931          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
932          * in case of a quick call to destroy.
933          *
934          * Note that the policy is initialized even if we are creating a
935          * private inode.  This simplifies hugetlbfs_destroy_inode.
936          */
937         mpol_shared_policy_init(&p->policy, NULL);
938
939         return &p->vfs_inode;
940 }
941
942 static void hugetlbfs_i_callback(struct rcu_head *head)
943 {
944         struct inode *inode = container_of(head, struct inode, i_rcu);
945         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
946 }
947
948 static void hugetlbfs_destroy_inode(struct inode *inode)
949 {
950         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
951         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
952         call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
953 }
954
955 static const struct address_space_operations hugetlbfs_aops = {
956         .write_begin    = hugetlbfs_write_begin,
957         .write_end      = hugetlbfs_write_end,
958         .set_page_dirty = hugetlbfs_set_page_dirty,
959         .migratepage    = hugetlbfs_migrate_page,
960 };
961
962
963 static void init_once(void *foo)
964 {
965         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
966
967         inode_init_once(&ei->vfs_inode);
968 }
969
970 const struct file_operations hugetlbfs_file_operations = {
971         .read_iter              = hugetlbfs_read_iter,
972         .mmap                   = hugetlbfs_file_mmap,
973         .fsync                  = noop_fsync,
974         .get_unmapped_area      = hugetlb_get_unmapped_area,
975         .llseek                 = default_llseek,
976         .fallocate              = hugetlbfs_fallocate,
977 };
978
979 static const struct inode_operations hugetlbfs_dir_inode_operations = {
980         .create         = hugetlbfs_create,
981         .lookup         = simple_lookup,
982         .link           = simple_link,
983         .unlink         = simple_unlink,
984         .symlink        = hugetlbfs_symlink,
985         .mkdir          = hugetlbfs_mkdir,
986         .rmdir          = simple_rmdir,
987         .mknod          = hugetlbfs_mknod,
988         .rename         = simple_rename,
989         .setattr        = hugetlbfs_setattr,
990 };
991
992 static const struct inode_operations hugetlbfs_inode_operations = {
993         .setattr        = hugetlbfs_setattr,
994 };
995
996 static const struct super_operations hugetlbfs_ops = {
997         .alloc_inode    = hugetlbfs_alloc_inode,
998         .destroy_inode  = hugetlbfs_destroy_inode,
999         .evict_inode    = hugetlbfs_evict_inode,
1000         .statfs         = hugetlbfs_statfs,
1001         .put_super      = hugetlbfs_put_super,
1002         .show_options   = generic_show_options,
1003 };
1004
1005 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1006
1007 /*
1008  * Convert size option passed from command line to number of huge pages
1009  * in the pool specified by hstate.  Size option could be in bytes
1010  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1011  */
1012 static long long
1013 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1014                                                                 int val_type)
1015 {
1016         if (val_type == NO_SIZE)
1017                 return -1;
1018
1019         if (val_type == SIZE_PERCENT) {
1020                 size_opt <<= huge_page_shift(h);
1021                 size_opt *= h->max_huge_pages;
1022                 do_div(size_opt, 100);
1023         }
1024
1025         size_opt >>= huge_page_shift(h);
1026         return size_opt;
1027 }
1028
1029 static int
1030 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1031 {
1032         char *p, *rest;
1033         substring_t args[MAX_OPT_ARGS];
1034         int option;
1035         unsigned long long max_size_opt = 0, min_size_opt = 0;
1036         int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1037
1038         if (!options)
1039                 return 0;
1040
1041         while ((p = strsep(&options, ",")) != NULL) {
1042                 int token;
1043                 if (!*p)
1044                         continue;
1045
1046                 token = match_token(p, tokens, args);
1047                 switch (token) {
1048                 case Opt_uid:
1049                         if (match_int(&args[0], &option))
1050                                 goto bad_val;
1051                         pconfig->uid = make_kuid(current_user_ns(), option);
1052                         if (!uid_valid(pconfig->uid))
1053                                 goto bad_val;
1054                         break;
1055
1056                 case Opt_gid:
1057                         if (match_int(&args[0], &option))
1058                                 goto bad_val;
1059                         pconfig->gid = make_kgid(current_user_ns(), option);
1060                         if (!gid_valid(pconfig->gid))
1061                                 goto bad_val;
1062                         break;
1063
1064                 case Opt_mode:
1065                         if (match_octal(&args[0], &option))
1066                                 goto bad_val;
1067                         pconfig->mode = option & 01777U;
1068                         break;
1069
1070                 case Opt_size: {
1071                         /* memparse() will accept a K/M/G without a digit */
1072                         if (!isdigit(*args[0].from))
1073                                 goto bad_val;
1074                         max_size_opt = memparse(args[0].from, &rest);
1075                         max_val_type = SIZE_STD;
1076                         if (*rest == '%')
1077                                 max_val_type = SIZE_PERCENT;
1078                         break;
1079                 }
1080
1081                 case Opt_nr_inodes:
1082                         /* memparse() will accept a K/M/G without a digit */
1083                         if (!isdigit(*args[0].from))
1084                                 goto bad_val;
1085                         pconfig->nr_inodes = memparse(args[0].from, &rest);
1086                         break;
1087
1088                 case Opt_pagesize: {
1089                         unsigned long ps;
1090                         ps = memparse(args[0].from, &rest);
1091                         pconfig->hstate = size_to_hstate(ps);
1092                         if (!pconfig->hstate) {
1093                                 pr_err("Unsupported page size %lu MB\n",
1094                                         ps >> 20);
1095                                 return -EINVAL;
1096                         }
1097                         break;
1098                 }
1099
1100                 case Opt_min_size: {
1101                         /* memparse() will accept a K/M/G without a digit */
1102                         if (!isdigit(*args[0].from))
1103                                 goto bad_val;
1104                         min_size_opt = memparse(args[0].from, &rest);
1105                         min_val_type = SIZE_STD;
1106                         if (*rest == '%')
1107                                 min_val_type = SIZE_PERCENT;
1108                         break;
1109                 }
1110
1111                 default:
1112                         pr_err("Bad mount option: \"%s\"\n", p);
1113                         return -EINVAL;
1114                         break;
1115                 }
1116         }
1117
1118         /*
1119          * Use huge page pool size (in hstate) to convert the size
1120          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1121          */
1122         pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1123                                                 max_size_opt, max_val_type);
1124         pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1125                                                 min_size_opt, min_val_type);
1126
1127         /*
1128          * If max_size was specified, then min_size must be smaller
1129          */
1130         if (max_val_type > NO_SIZE &&
1131             pconfig->min_hpages > pconfig->max_hpages) {
1132                 pr_err("minimum size can not be greater than maximum size\n");
1133                 return -EINVAL;
1134         }
1135
1136         return 0;
1137
1138 bad_val:
1139         pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1140         return -EINVAL;
1141 }
1142
1143 static int
1144 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1145 {
1146         int ret;
1147         struct hugetlbfs_config config;
1148         struct hugetlbfs_sb_info *sbinfo;
1149
1150         save_mount_options(sb, data);
1151
1152         config.max_hpages = -1; /* No limit on size by default */
1153         config.nr_inodes = -1; /* No limit on number of inodes by default */
1154         config.uid = current_fsuid();
1155         config.gid = current_fsgid();
1156         config.mode = 0755;
1157         config.hstate = &default_hstate;
1158         config.min_hpages = -1; /* No default minimum size */
1159         ret = hugetlbfs_parse_options(data, &config);
1160         if (ret)
1161                 return ret;
1162
1163         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1164         if (!sbinfo)
1165                 return -ENOMEM;
1166         sb->s_fs_info = sbinfo;
1167         sbinfo->hstate = config.hstate;
1168         spin_lock_init(&sbinfo->stat_lock);
1169         sbinfo->max_inodes = config.nr_inodes;
1170         sbinfo->free_inodes = config.nr_inodes;
1171         sbinfo->spool = NULL;
1172         /*
1173          * Allocate and initialize subpool if maximum or minimum size is
1174          * specified.  Any needed reservations (for minimim size) are taken
1175          * taken when the subpool is created.
1176          */
1177         if (config.max_hpages != -1 || config.min_hpages != -1) {
1178                 sbinfo->spool = hugepage_new_subpool(config.hstate,
1179                                                         config.max_hpages,
1180                                                         config.min_hpages);
1181                 if (!sbinfo->spool)
1182                         goto out_free;
1183         }
1184         sb->s_maxbytes = MAX_LFS_FILESIZE;
1185         sb->s_blocksize = huge_page_size(config.hstate);
1186         sb->s_blocksize_bits = huge_page_shift(config.hstate);
1187         sb->s_magic = HUGETLBFS_MAGIC;
1188         sb->s_op = &hugetlbfs_ops;
1189         sb->s_time_gran = 1;
1190         sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1191         if (!sb->s_root)
1192                 goto out_free;
1193         return 0;
1194 out_free:
1195         kfree(sbinfo->spool);
1196         kfree(sbinfo);
1197         return -ENOMEM;
1198 }
1199
1200 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1201         int flags, const char *dev_name, void *data)
1202 {
1203         return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1204 }
1205
1206 static struct file_system_type hugetlbfs_fs_type = {
1207         .name           = "hugetlbfs",
1208         .mount          = hugetlbfs_mount,
1209         .kill_sb        = kill_litter_super,
1210 };
1211
1212 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1213
1214 static int can_do_hugetlb_shm(void)
1215 {
1216         kgid_t shm_group;
1217         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1218         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1219 }
1220
1221 static int get_hstate_idx(int page_size_log)
1222 {
1223         struct hstate *h = hstate_sizelog(page_size_log);
1224
1225         if (!h)
1226                 return -1;
1227         return h - hstates;
1228 }
1229
1230 static const struct dentry_operations anon_ops = {
1231         .d_dname = simple_dname
1232 };
1233
1234 /*
1235  * Note that size should be aligned to proper hugepage size in caller side,
1236  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1237  */
1238 struct file *hugetlb_file_setup(const char *name, size_t size,
1239                                 vm_flags_t acctflag, struct user_struct **user,
1240                                 int creat_flags, int page_size_log)
1241 {
1242         struct file *file = ERR_PTR(-ENOMEM);
1243         struct inode *inode;
1244         struct path path;
1245         struct super_block *sb;
1246         struct qstr quick_string;
1247         int hstate_idx;
1248
1249         hstate_idx = get_hstate_idx(page_size_log);
1250         if (hstate_idx < 0)
1251                 return ERR_PTR(-ENODEV);
1252
1253         *user = NULL;
1254         if (!hugetlbfs_vfsmount[hstate_idx])
1255                 return ERR_PTR(-ENOENT);
1256
1257         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1258                 *user = current_user();
1259                 if (user_shm_lock(size, *user)) {
1260                         task_lock(current);
1261                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1262                                 current->comm, current->pid);
1263                         task_unlock(current);
1264                 } else {
1265                         *user = NULL;
1266                         return ERR_PTR(-EPERM);
1267                 }
1268         }
1269
1270         sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1271         quick_string.name = name;
1272         quick_string.len = strlen(quick_string.name);
1273         quick_string.hash = 0;
1274         path.dentry = d_alloc_pseudo(sb, &quick_string);
1275         if (!path.dentry)
1276                 goto out_shm_unlock;
1277
1278         d_set_d_op(path.dentry, &anon_ops);
1279         path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1280         file = ERR_PTR(-ENOSPC);
1281         inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1282         if (!inode)
1283                 goto out_dentry;
1284         if (creat_flags == HUGETLB_SHMFS_INODE)
1285                 inode->i_flags |= S_PRIVATE;
1286
1287         file = ERR_PTR(-ENOMEM);
1288         if (hugetlb_reserve_pages(inode, 0,
1289                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1290                         acctflag))
1291                 goto out_inode;
1292
1293         d_instantiate(path.dentry, inode);
1294         inode->i_size = size;
1295         clear_nlink(inode);
1296
1297         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1298                         &hugetlbfs_file_operations);
1299         if (IS_ERR(file))
1300                 goto out_dentry; /* inode is already attached */
1301
1302         return file;
1303
1304 out_inode:
1305         iput(inode);
1306 out_dentry:
1307         path_put(&path);
1308 out_shm_unlock:
1309         if (*user) {
1310                 user_shm_unlock(size, *user);
1311                 *user = NULL;
1312         }
1313         return file;
1314 }
1315
1316 static int __init init_hugetlbfs_fs(void)
1317 {
1318         struct hstate *h;
1319         int error;
1320         int i;
1321
1322         if (!hugepages_supported()) {
1323                 pr_info("disabling because there are no supported hugepage sizes\n");
1324                 return -ENOTSUPP;
1325         }
1326
1327         error = -ENOMEM;
1328         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1329                                         sizeof(struct hugetlbfs_inode_info),
1330                                         0, SLAB_ACCOUNT, init_once);
1331         if (hugetlbfs_inode_cachep == NULL)
1332                 goto out2;
1333
1334         error = register_filesystem(&hugetlbfs_fs_type);
1335         if (error)
1336                 goto out;
1337
1338         i = 0;
1339         for_each_hstate(h) {
1340                 char buf[50];
1341                 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1342
1343                 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1344                 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1345                                                         buf);
1346
1347                 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1348                         pr_err("Cannot mount internal hugetlbfs for "
1349                                 "page size %uK", ps_kb);
1350                         error = PTR_ERR(hugetlbfs_vfsmount[i]);
1351                         hugetlbfs_vfsmount[i] = NULL;
1352                 }
1353                 i++;
1354         }
1355         /* Non default hstates are optional */
1356         if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1357                 return 0;
1358
1359  out:
1360         kmem_cache_destroy(hugetlbfs_inode_cachep);
1361  out2:
1362         return error;
1363 }
1364 fs_initcall(init_hugetlbfs_fs)