Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / fs / direct-io.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002    Andrew Morton
10  *              Initial version
11  * 11Sep2002    janetinc@us.ibm.com
12  *              added readv/writev support.
13  * 29Oct2002    Andrew Morton
14  *              rewrote bio_add_page() support.
15  * 30Oct2002    pbadari@us.ibm.com
16  *              added support for non-aligned IO.
17  * 06Nov2002    pbadari@us.ibm.com
18  *              added asynchronous IO support.
19  * 21Jul2003    nathans@sgi.com
20  *              added IO completion notifier.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41
42 /*
43  * How many user pages to map in one call to get_user_pages().  This determines
44  * the size of a structure in the slab cache
45  */
46 #define DIO_PAGES       64
47
48 /*
49  * Flags for dio_complete()
50  */
51 #define DIO_COMPLETE_ASYNC              0x01    /* This is async IO */
52 #define DIO_COMPLETE_INVALIDATE         0x02    /* Can invalidate pages */
53
54 /*
55  * This code generally works in units of "dio_blocks".  A dio_block is
56  * somewhere between the hard sector size and the filesystem block size.  it
57  * is determined on a per-invocation basis.   When talking to the filesystem
58  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
59  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
60  * to bio_block quantities by shifting left by blkfactor.
61  *
62  * If blkfactor is zero then the user's request was aligned to the filesystem's
63  * blocksize.
64  */
65
66 /* dio_state only used in the submission path */
67
68 struct dio_submit {
69         struct bio *bio;                /* bio under assembly */
70         unsigned blkbits;               /* doesn't change */
71         unsigned blkfactor;             /* When we're using an alignment which
72                                            is finer than the filesystem's soft
73                                            blocksize, this specifies how much
74                                            finer.  blkfactor=2 means 1/4-block
75                                            alignment.  Does not change */
76         unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
77                                            been performed at the start of a
78                                            write */
79         int pages_in_io;                /* approximate total IO pages */
80         sector_t block_in_file;         /* Current offset into the underlying
81                                            file in dio_block units. */
82         unsigned blocks_available;      /* At block_in_file.  changes */
83         int reap_counter;               /* rate limit reaping */
84         sector_t final_block_in_request;/* doesn't change */
85         int boundary;                   /* prev block is at a boundary */
86         get_block_t *get_block;         /* block mapping function */
87         dio_submit_t *submit_io;        /* IO submition function */
88
89         loff_t logical_offset_in_bio;   /* current first logical block in bio */
90         sector_t final_block_in_bio;    /* current final block in bio + 1 */
91         sector_t next_block_for_io;     /* next block to be put under IO,
92                                            in dio_blocks units */
93
94         /*
95          * Deferred addition of a page to the dio.  These variables are
96          * private to dio_send_cur_page(), submit_page_section() and
97          * dio_bio_add_page().
98          */
99         struct page *cur_page;          /* The page */
100         unsigned cur_page_offset;       /* Offset into it, in bytes */
101         unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
102         sector_t cur_page_block;        /* Where it starts */
103         loff_t cur_page_fs_offset;      /* Offset in file */
104
105         struct iov_iter *iter;
106         /*
107          * Page queue.  These variables belong to dio_refill_pages() and
108          * dio_get_page().
109          */
110         unsigned head;                  /* next page to process */
111         unsigned tail;                  /* last valid page + 1 */
112         size_t from, to;
113 };
114
115 /* dio_state communicated between submission path and end_io */
116 struct dio {
117         int flags;                      /* doesn't change */
118         int op;
119         int op_flags;
120         blk_qc_t bio_cookie;
121         struct gendisk *bio_disk;
122         struct inode *inode;
123         loff_t i_size;                  /* i_size when submitted */
124         dio_iodone_t *end_io;           /* IO completion function */
125
126         void *private;                  /* copy from map_bh.b_private */
127
128         /* BIO completion state */
129         spinlock_t bio_lock;            /* protects BIO fields below */
130         int page_errors;                /* errno from get_user_pages() */
131         int is_async;                   /* is IO async ? */
132         bool defer_completion;          /* defer AIO completion to workqueue? */
133         bool should_dirty;              /* if pages should be dirtied */
134         int io_error;                   /* IO error in completion path */
135         unsigned long refcount;         /* direct_io_worker() and bios */
136         struct bio *bio_list;           /* singly linked via bi_private */
137         struct task_struct *waiter;     /* waiting task (NULL if none) */
138
139         /* AIO related stuff */
140         struct kiocb *iocb;             /* kiocb */
141         ssize_t result;                 /* IO result */
142
143         /*
144          * pages[] (and any fields placed after it) are not zeroed out at
145          * allocation time.  Don't add new fields after pages[] unless you
146          * wish that they not be zeroed.
147          */
148         union {
149                 struct page *pages[DIO_PAGES];  /* page buffer */
150                 struct work_struct complete_work;/* deferred AIO completion */
151         };
152 } ____cacheline_aligned_in_smp;
153
154 static struct kmem_cache *dio_cache __read_mostly;
155
156 /*
157  * How many pages are in the queue?
158  */
159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161         return sdio->tail - sdio->head;
162 }
163
164 /*
165  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166  */
167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169         ssize_t ret;
170
171         ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
172                                 &sdio->from);
173
174         if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
175                 struct page *page = ZERO_PAGE(0);
176                 /*
177                  * A memory fault, but the filesystem has some outstanding
178                  * mapped blocks.  We need to use those blocks up to avoid
179                  * leaking stale data in the file.
180                  */
181                 if (dio->page_errors == 0)
182                         dio->page_errors = ret;
183                 get_page(page);
184                 dio->pages[0] = page;
185                 sdio->head = 0;
186                 sdio->tail = 1;
187                 sdio->from = 0;
188                 sdio->to = PAGE_SIZE;
189                 return 0;
190         }
191
192         if (ret >= 0) {
193                 iov_iter_advance(sdio->iter, ret);
194                 ret += sdio->from;
195                 sdio->head = 0;
196                 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197                 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198                 return 0;
199         }
200         return ret;     
201 }
202
203 /*
204  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
205  * buffered inside the dio so that we can call get_user_pages() against a
206  * decent number of pages, less frequently.  To provide nicer use of the
207  * L1 cache.
208  */
209 static inline struct page *dio_get_page(struct dio *dio,
210                                         struct dio_submit *sdio)
211 {
212         if (dio_pages_present(sdio) == 0) {
213                 int ret;
214
215                 ret = dio_refill_pages(dio, sdio);
216                 if (ret)
217                         return ERR_PTR(ret);
218                 BUG_ON(dio_pages_present(sdio) == 0);
219         }
220         return dio->pages[sdio->head];
221 }
222
223 /*
224  * Warn about a page cache invalidation failure during a direct io write.
225  */
226 void dio_warn_stale_pagecache(struct file *filp)
227 {
228         static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
229         char pathname[128];
230         struct inode *inode = file_inode(filp);
231         char *path;
232
233         errseq_set(&inode->i_mapping->wb_err, -EIO);
234         if (__ratelimit(&_rs)) {
235                 path = file_path(filp, pathname, sizeof(pathname));
236                 if (IS_ERR(path))
237                         path = "(unknown)";
238                 pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
239                 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
240                         current->comm);
241         }
242 }
243
244 /*
245  * dio_complete() - called when all DIO BIO I/O has been completed
246  *
247  * This drops i_dio_count, lets interested parties know that a DIO operation
248  * has completed, and calculates the resulting return code for the operation.
249  *
250  * It lets the filesystem know if it registered an interest earlier via
251  * get_block.  Pass the private field of the map buffer_head so that
252  * filesystems can use it to hold additional state between get_block calls and
253  * dio_complete.
254  */
255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
256 {
257         loff_t offset = dio->iocb->ki_pos;
258         ssize_t transferred = 0;
259         int err;
260
261         /*
262          * AIO submission can race with bio completion to get here while
263          * expecting to have the last io completed by bio completion.
264          * In that case -EIOCBQUEUED is in fact not an error we want
265          * to preserve through this call.
266          */
267         if (ret == -EIOCBQUEUED)
268                 ret = 0;
269
270         if (dio->result) {
271                 transferred = dio->result;
272
273                 /* Check for short read case */
274                 if ((dio->op == REQ_OP_READ) &&
275                     ((offset + transferred) > dio->i_size))
276                         transferred = dio->i_size - offset;
277                 /* ignore EFAULT if some IO has been done */
278                 if (unlikely(ret == -EFAULT) && transferred)
279                         ret = 0;
280         }
281
282         if (ret == 0)
283                 ret = dio->page_errors;
284         if (ret == 0)
285                 ret = dio->io_error;
286         if (ret == 0)
287                 ret = transferred;
288
289         if (dio->end_io) {
290                 // XXX: ki_pos??
291                 err = dio->end_io(dio->iocb, offset, ret, dio->private);
292                 if (err)
293                         ret = err;
294         }
295
296         /*
297          * Try again to invalidate clean pages which might have been cached by
298          * non-direct readahead, or faulted in by get_user_pages() if the source
299          * of the write was an mmap'ed region of the file we're writing.  Either
300          * one is a pretty crazy thing to do, so we don't support it 100%.  If
301          * this invalidation fails, tough, the write still worked...
302          *
303          * And this page cache invalidation has to be after dio->end_io(), as
304          * some filesystems convert unwritten extents to real allocations in
305          * end_io() when necessary, otherwise a racing buffer read would cache
306          * zeros from unwritten extents.
307          */
308         if (flags & DIO_COMPLETE_INVALIDATE &&
309             ret > 0 && dio->op == REQ_OP_WRITE &&
310             dio->inode->i_mapping->nrpages) {
311                 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
312                                         offset >> PAGE_SHIFT,
313                                         (offset + ret - 1) >> PAGE_SHIFT);
314                 if (err)
315                         dio_warn_stale_pagecache(dio->iocb->ki_filp);
316         }
317
318         inode_dio_end(dio->inode);
319
320         if (flags & DIO_COMPLETE_ASYNC) {
321                 /*
322                  * generic_write_sync expects ki_pos to have been updated
323                  * already, but the submission path only does this for
324                  * synchronous I/O.
325                  */
326                 dio->iocb->ki_pos += transferred;
327
328                 if (ret > 0 && dio->op == REQ_OP_WRITE)
329                         ret = generic_write_sync(dio->iocb, ret);
330                 dio->iocb->ki_complete(dio->iocb, ret, 0);
331         }
332
333         kmem_cache_free(dio_cache, dio);
334         return ret;
335 }
336
337 static void dio_aio_complete_work(struct work_struct *work)
338 {
339         struct dio *dio = container_of(work, struct dio, complete_work);
340
341         dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
342 }
343
344 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
345
346 /*
347  * Asynchronous IO callback. 
348  */
349 static void dio_bio_end_aio(struct bio *bio)
350 {
351         struct dio *dio = bio->bi_private;
352         unsigned long remaining;
353         unsigned long flags;
354         bool defer_completion = false;
355
356         /* cleanup the bio */
357         dio_bio_complete(dio, bio);
358
359         spin_lock_irqsave(&dio->bio_lock, flags);
360         remaining = --dio->refcount;
361         if (remaining == 1 && dio->waiter)
362                 wake_up_process(dio->waiter);
363         spin_unlock_irqrestore(&dio->bio_lock, flags);
364
365         if (remaining == 0) {
366                 /*
367                  * Defer completion when defer_completion is set or
368                  * when the inode has pages mapped and this is AIO write.
369                  * We need to invalidate those pages because there is a
370                  * chance they contain stale data in the case buffered IO
371                  * went in between AIO submission and completion into the
372                  * same region.
373                  */
374                 if (dio->result)
375                         defer_completion = dio->defer_completion ||
376                                            (dio->op == REQ_OP_WRITE &&
377                                             dio->inode->i_mapping->nrpages);
378                 if (defer_completion) {
379                         INIT_WORK(&dio->complete_work, dio_aio_complete_work);
380                         queue_work(dio->inode->i_sb->s_dio_done_wq,
381                                    &dio->complete_work);
382                 } else {
383                         dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
384                 }
385         }
386 }
387
388 /*
389  * The BIO completion handler simply queues the BIO up for the process-context
390  * handler.
391  *
392  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
393  * implement a singly-linked list of completed BIOs, at dio->bio_list.
394  */
395 static void dio_bio_end_io(struct bio *bio)
396 {
397         struct dio *dio = bio->bi_private;
398         unsigned long flags;
399
400         spin_lock_irqsave(&dio->bio_lock, flags);
401         bio->bi_private = dio->bio_list;
402         dio->bio_list = bio;
403         if (--dio->refcount == 1 && dio->waiter)
404                 wake_up_process(dio->waiter);
405         spin_unlock_irqrestore(&dio->bio_lock, flags);
406 }
407
408 /**
409  * dio_end_io - handle the end io action for the given bio
410  * @bio: The direct io bio thats being completed
411  *
412  * This is meant to be called by any filesystem that uses their own dio_submit_t
413  * so that the DIO specific endio actions are dealt with after the filesystem
414  * has done it's completion work.
415  */
416 void dio_end_io(struct bio *bio)
417 {
418         struct dio *dio = bio->bi_private;
419
420         if (dio->is_async)
421                 dio_bio_end_aio(bio);
422         else
423                 dio_bio_end_io(bio);
424 }
425 EXPORT_SYMBOL_GPL(dio_end_io);
426
427 static inline void
428 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
429               struct block_device *bdev,
430               sector_t first_sector, int nr_vecs)
431 {
432         struct bio *bio;
433
434         /*
435          * bio_alloc() is guaranteed to return a bio when allowed to sleep and
436          * we request a valid number of vectors.
437          */
438         bio = bio_alloc(GFP_KERNEL, nr_vecs);
439
440         bio_set_dev(bio, bdev);
441         bio->bi_iter.bi_sector = first_sector;
442         bio_set_op_attrs(bio, dio->op, dio->op_flags);
443         if (dio->is_async)
444                 bio->bi_end_io = dio_bio_end_aio;
445         else
446                 bio->bi_end_io = dio_bio_end_io;
447
448         bio->bi_write_hint = dio->iocb->ki_hint;
449
450         sdio->bio = bio;
451         sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
452 }
453
454 /*
455  * In the AIO read case we speculatively dirty the pages before starting IO.
456  * During IO completion, any of these pages which happen to have been written
457  * back will be redirtied by bio_check_pages_dirty().
458  *
459  * bios hold a dio reference between submit_bio and ->end_io.
460  */
461 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
462 {
463         struct bio *bio = sdio->bio;
464         unsigned long flags;
465
466         bio->bi_private = dio;
467
468         spin_lock_irqsave(&dio->bio_lock, flags);
469         dio->refcount++;
470         spin_unlock_irqrestore(&dio->bio_lock, flags);
471
472         if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
473                 bio_set_pages_dirty(bio);
474
475         dio->bio_disk = bio->bi_disk;
476
477         if (sdio->submit_io) {
478                 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
479                 dio->bio_cookie = BLK_QC_T_NONE;
480         } else
481                 dio->bio_cookie = submit_bio(bio);
482
483         sdio->bio = NULL;
484         sdio->boundary = 0;
485         sdio->logical_offset_in_bio = 0;
486 }
487
488 /*
489  * Release any resources in case of a failure
490  */
491 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
492 {
493         while (sdio->head < sdio->tail)
494                 put_page(dio->pages[sdio->head++]);
495 }
496
497 /*
498  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
499  * returned once all BIOs have been completed.  This must only be called once
500  * all bios have been issued so that dio->refcount can only decrease.  This
501  * requires that that the caller hold a reference on the dio.
502  */
503 static struct bio *dio_await_one(struct dio *dio)
504 {
505         unsigned long flags;
506         struct bio *bio = NULL;
507
508         spin_lock_irqsave(&dio->bio_lock, flags);
509
510         /*
511          * Wait as long as the list is empty and there are bios in flight.  bio
512          * completion drops the count, maybe adds to the list, and wakes while
513          * holding the bio_lock so we don't need set_current_state()'s barrier
514          * and can call it after testing our condition.
515          */
516         while (dio->refcount > 1 && dio->bio_list == NULL) {
517                 __set_current_state(TASK_UNINTERRUPTIBLE);
518                 dio->waiter = current;
519                 spin_unlock_irqrestore(&dio->bio_lock, flags);
520                 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
521                     !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
522                         io_schedule();
523                 /* wake up sets us TASK_RUNNING */
524                 spin_lock_irqsave(&dio->bio_lock, flags);
525                 dio->waiter = NULL;
526         }
527         if (dio->bio_list) {
528                 bio = dio->bio_list;
529                 dio->bio_list = bio->bi_private;
530         }
531         spin_unlock_irqrestore(&dio->bio_lock, flags);
532         return bio;
533 }
534
535 /*
536  * Process one completed BIO.  No locks are held.
537  */
538 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
539 {
540         blk_status_t err = bio->bi_status;
541         bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
542
543         if (err) {
544                 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
545                         dio->io_error = -EAGAIN;
546                 else
547                         dio->io_error = -EIO;
548         }
549
550         if (dio->is_async && should_dirty) {
551                 bio_check_pages_dirty(bio);     /* transfers ownership */
552         } else {
553                 bio_release_pages(bio, should_dirty);
554                 bio_put(bio);
555         }
556         return err;
557 }
558
559 /*
560  * Wait on and process all in-flight BIOs.  This must only be called once
561  * all bios have been issued so that the refcount can only decrease.
562  * This just waits for all bios to make it through dio_bio_complete.  IO
563  * errors are propagated through dio->io_error and should be propagated via
564  * dio_complete().
565  */
566 static void dio_await_completion(struct dio *dio)
567 {
568         struct bio *bio;
569         do {
570                 bio = dio_await_one(dio);
571                 if (bio)
572                         dio_bio_complete(dio, bio);
573         } while (bio);
574 }
575
576 /*
577  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
578  * to keep the memory consumption sane we periodically reap any completed BIOs
579  * during the BIO generation phase.
580  *
581  * This also helps to limit the peak amount of pinned userspace memory.
582  */
583 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
584 {
585         int ret = 0;
586
587         if (sdio->reap_counter++ >= 64) {
588                 while (dio->bio_list) {
589                         unsigned long flags;
590                         struct bio *bio;
591                         int ret2;
592
593                         spin_lock_irqsave(&dio->bio_lock, flags);
594                         bio = dio->bio_list;
595                         dio->bio_list = bio->bi_private;
596                         spin_unlock_irqrestore(&dio->bio_lock, flags);
597                         ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
598                         if (ret == 0)
599                                 ret = ret2;
600                 }
601                 sdio->reap_counter = 0;
602         }
603         return ret;
604 }
605
606 /*
607  * Create workqueue for deferred direct IO completions. We allocate the
608  * workqueue when it's first needed. This avoids creating workqueue for
609  * filesystems that don't need it and also allows us to create the workqueue
610  * late enough so the we can include s_id in the name of the workqueue.
611  */
612 int sb_init_dio_done_wq(struct super_block *sb)
613 {
614         struct workqueue_struct *old;
615         struct workqueue_struct *wq = alloc_workqueue("dio/%s",
616                                                       WQ_MEM_RECLAIM, 0,
617                                                       sb->s_id);
618         if (!wq)
619                 return -ENOMEM;
620         /*
621          * This has to be atomic as more DIOs can race to create the workqueue
622          */
623         old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
624         /* Someone created workqueue before us? Free ours... */
625         if (old)
626                 destroy_workqueue(wq);
627         return 0;
628 }
629
630 static int dio_set_defer_completion(struct dio *dio)
631 {
632         struct super_block *sb = dio->inode->i_sb;
633
634         if (dio->defer_completion)
635                 return 0;
636         dio->defer_completion = true;
637         if (!sb->s_dio_done_wq)
638                 return sb_init_dio_done_wq(sb);
639         return 0;
640 }
641
642 /*
643  * Call into the fs to map some more disk blocks.  We record the current number
644  * of available blocks at sdio->blocks_available.  These are in units of the
645  * fs blocksize, i_blocksize(inode).
646  *
647  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
648  * it uses the passed inode-relative block number as the file offset, as usual.
649  *
650  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
651  * has remaining to do.  The fs should not map more than this number of blocks.
652  *
653  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
654  * indicate how much contiguous disk space has been made available at
655  * bh->b_blocknr.
656  *
657  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
658  * This isn't very efficient...
659  *
660  * In the case of filesystem holes: the fs may return an arbitrarily-large
661  * hole by returning an appropriate value in b_size and by clearing
662  * buffer_mapped().  However the direct-io code will only process holes one
663  * block at a time - it will repeatedly call get_block() as it walks the hole.
664  */
665 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
666                            struct buffer_head *map_bh)
667 {
668         int ret;
669         sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
670         sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
671         unsigned long fs_count; /* Number of filesystem-sized blocks */
672         int create;
673         unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
674         loff_t i_size;
675
676         /*
677          * If there was a memory error and we've overwritten all the
678          * mapped blocks then we can now return that memory error
679          */
680         ret = dio->page_errors;
681         if (ret == 0) {
682                 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
683                 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
684                 fs_endblk = (sdio->final_block_in_request - 1) >>
685                                         sdio->blkfactor;
686                 fs_count = fs_endblk - fs_startblk + 1;
687
688                 map_bh->b_state = 0;
689                 map_bh->b_size = fs_count << i_blkbits;
690
691                 /*
692                  * For writes that could fill holes inside i_size on a
693                  * DIO_SKIP_HOLES filesystem we forbid block creations: only
694                  * overwrites are permitted. We will return early to the caller
695                  * once we see an unmapped buffer head returned, and the caller
696                  * will fall back to buffered I/O.
697                  *
698                  * Otherwise the decision is left to the get_blocks method,
699                  * which may decide to handle it or also return an unmapped
700                  * buffer head.
701                  */
702                 create = dio->op == REQ_OP_WRITE;
703                 if (dio->flags & DIO_SKIP_HOLES) {
704                         i_size = i_size_read(dio->inode);
705                         if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
706                                 create = 0;
707                 }
708
709                 ret = (*sdio->get_block)(dio->inode, fs_startblk,
710                                                 map_bh, create);
711
712                 /* Store for completion */
713                 dio->private = map_bh->b_private;
714
715                 if (ret == 0 && buffer_defer_completion(map_bh))
716                         ret = dio_set_defer_completion(dio);
717         }
718         return ret;
719 }
720
721 /*
722  * There is no bio.  Make one now.
723  */
724 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
725                 sector_t start_sector, struct buffer_head *map_bh)
726 {
727         sector_t sector;
728         int ret, nr_pages;
729
730         ret = dio_bio_reap(dio, sdio);
731         if (ret)
732                 goto out;
733         sector = start_sector << (sdio->blkbits - 9);
734         nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
735         BUG_ON(nr_pages <= 0);
736         dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
737         sdio->boundary = 0;
738 out:
739         return ret;
740 }
741
742 /*
743  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
744  * that was successful then update final_block_in_bio and take a ref against
745  * the just-added page.
746  *
747  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
748  */
749 static inline int dio_bio_add_page(struct dio_submit *sdio)
750 {
751         int ret;
752
753         ret = bio_add_page(sdio->bio, sdio->cur_page,
754                         sdio->cur_page_len, sdio->cur_page_offset);
755         if (ret == sdio->cur_page_len) {
756                 /*
757                  * Decrement count only, if we are done with this page
758                  */
759                 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
760                         sdio->pages_in_io--;
761                 get_page(sdio->cur_page);
762                 sdio->final_block_in_bio = sdio->cur_page_block +
763                         (sdio->cur_page_len >> sdio->blkbits);
764                 ret = 0;
765         } else {
766                 ret = 1;
767         }
768         return ret;
769 }
770                 
771 /*
772  * Put cur_page under IO.  The section of cur_page which is described by
773  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
774  * starts on-disk at cur_page_block.
775  *
776  * We take a ref against the page here (on behalf of its presence in the bio).
777  *
778  * The caller of this function is responsible for removing cur_page from the
779  * dio, and for dropping the refcount which came from that presence.
780  */
781 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
782                 struct buffer_head *map_bh)
783 {
784         int ret = 0;
785
786         if (sdio->bio) {
787                 loff_t cur_offset = sdio->cur_page_fs_offset;
788                 loff_t bio_next_offset = sdio->logical_offset_in_bio +
789                         sdio->bio->bi_iter.bi_size;
790
791                 /*
792                  * See whether this new request is contiguous with the old.
793                  *
794                  * Btrfs cannot handle having logically non-contiguous requests
795                  * submitted.  For example if you have
796                  *
797                  * Logical:  [0-4095][HOLE][8192-12287]
798                  * Physical: [0-4095]      [4096-8191]
799                  *
800                  * We cannot submit those pages together as one BIO.  So if our
801                  * current logical offset in the file does not equal what would
802                  * be the next logical offset in the bio, submit the bio we
803                  * have.
804                  */
805                 if (sdio->final_block_in_bio != sdio->cur_page_block ||
806                     cur_offset != bio_next_offset)
807                         dio_bio_submit(dio, sdio);
808         }
809
810         if (sdio->bio == NULL) {
811                 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
812                 if (ret)
813                         goto out;
814         }
815
816         if (dio_bio_add_page(sdio) != 0) {
817                 dio_bio_submit(dio, sdio);
818                 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
819                 if (ret == 0) {
820                         ret = dio_bio_add_page(sdio);
821                         BUG_ON(ret != 0);
822                 }
823         }
824 out:
825         return ret;
826 }
827
828 /*
829  * An autonomous function to put a chunk of a page under deferred IO.
830  *
831  * The caller doesn't actually know (or care) whether this piece of page is in
832  * a BIO, or is under IO or whatever.  We just take care of all possible 
833  * situations here.  The separation between the logic of do_direct_IO() and
834  * that of submit_page_section() is important for clarity.  Please don't break.
835  *
836  * The chunk of page starts on-disk at blocknr.
837  *
838  * We perform deferred IO, by recording the last-submitted page inside our
839  * private part of the dio structure.  If possible, we just expand the IO
840  * across that page here.
841  *
842  * If that doesn't work out then we put the old page into the bio and add this
843  * page to the dio instead.
844  */
845 static inline int
846 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
847                     unsigned offset, unsigned len, sector_t blocknr,
848                     struct buffer_head *map_bh)
849 {
850         int ret = 0;
851
852         if (dio->op == REQ_OP_WRITE) {
853                 /*
854                  * Read accounting is performed in submit_bio()
855                  */
856                 task_io_account_write(len);
857         }
858
859         /*
860          * Can we just grow the current page's presence in the dio?
861          */
862         if (sdio->cur_page == page &&
863             sdio->cur_page_offset + sdio->cur_page_len == offset &&
864             sdio->cur_page_block +
865             (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
866                 sdio->cur_page_len += len;
867                 goto out;
868         }
869
870         /*
871          * If there's a deferred page already there then send it.
872          */
873         if (sdio->cur_page) {
874                 ret = dio_send_cur_page(dio, sdio, map_bh);
875                 put_page(sdio->cur_page);
876                 sdio->cur_page = NULL;
877                 if (ret)
878                         return ret;
879         }
880
881         get_page(page);         /* It is in dio */
882         sdio->cur_page = page;
883         sdio->cur_page_offset = offset;
884         sdio->cur_page_len = len;
885         sdio->cur_page_block = blocknr;
886         sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
887 out:
888         /*
889          * If sdio->boundary then we want to schedule the IO now to
890          * avoid metadata seeks.
891          */
892         if (sdio->boundary) {
893                 ret = dio_send_cur_page(dio, sdio, map_bh);
894                 if (sdio->bio)
895                         dio_bio_submit(dio, sdio);
896                 put_page(sdio->cur_page);
897                 sdio->cur_page = NULL;
898         }
899         return ret;
900 }
901
902 /*
903  * If we are not writing the entire block and get_block() allocated
904  * the block for us, we need to fill-in the unused portion of the
905  * block with zeros. This happens only if user-buffer, fileoffset or
906  * io length is not filesystem block-size multiple.
907  *
908  * `end' is zero if we're doing the start of the IO, 1 at the end of the
909  * IO.
910  */
911 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
912                 int end, struct buffer_head *map_bh)
913 {
914         unsigned dio_blocks_per_fs_block;
915         unsigned this_chunk_blocks;     /* In dio_blocks */
916         unsigned this_chunk_bytes;
917         struct page *page;
918
919         sdio->start_zero_done = 1;
920         if (!sdio->blkfactor || !buffer_new(map_bh))
921                 return;
922
923         dio_blocks_per_fs_block = 1 << sdio->blkfactor;
924         this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
925
926         if (!this_chunk_blocks)
927                 return;
928
929         /*
930          * We need to zero out part of an fs block.  It is either at the
931          * beginning or the end of the fs block.
932          */
933         if (end) 
934                 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
935
936         this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
937
938         page = ZERO_PAGE(0);
939         if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
940                                 sdio->next_block_for_io, map_bh))
941                 return;
942
943         sdio->next_block_for_io += this_chunk_blocks;
944 }
945
946 /*
947  * Walk the user pages, and the file, mapping blocks to disk and generating
948  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
949  * into submit_page_section(), which takes care of the next stage of submission
950  *
951  * Direct IO against a blockdev is different from a file.  Because we can
952  * happily perform page-sized but 512-byte aligned IOs.  It is important that
953  * blockdev IO be able to have fine alignment and large sizes.
954  *
955  * So what we do is to permit the ->get_block function to populate bh.b_size
956  * with the size of IO which is permitted at this offset and this i_blkbits.
957  *
958  * For best results, the blockdev should be set up with 512-byte i_blkbits and
959  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
960  * fine alignment but still allows this function to work in PAGE_SIZE units.
961  */
962 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
963                         struct buffer_head *map_bh)
964 {
965         const unsigned blkbits = sdio->blkbits;
966         const unsigned i_blkbits = blkbits + sdio->blkfactor;
967         int ret = 0;
968
969         while (sdio->block_in_file < sdio->final_block_in_request) {
970                 struct page *page;
971                 size_t from, to;
972
973                 page = dio_get_page(dio, sdio);
974                 if (IS_ERR(page)) {
975                         ret = PTR_ERR(page);
976                         goto out;
977                 }
978                 from = sdio->head ? 0 : sdio->from;
979                 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
980                 sdio->head++;
981
982                 while (from < to) {
983                         unsigned this_chunk_bytes;      /* # of bytes mapped */
984                         unsigned this_chunk_blocks;     /* # of blocks */
985                         unsigned u;
986
987                         if (sdio->blocks_available == 0) {
988                                 /*
989                                  * Need to go and map some more disk
990                                  */
991                                 unsigned long blkmask;
992                                 unsigned long dio_remainder;
993
994                                 ret = get_more_blocks(dio, sdio, map_bh);
995                                 if (ret) {
996                                         put_page(page);
997                                         goto out;
998                                 }
999                                 if (!buffer_mapped(map_bh))
1000                                         goto do_holes;
1001
1002                                 sdio->blocks_available =
1003                                                 map_bh->b_size >> blkbits;
1004                                 sdio->next_block_for_io =
1005                                         map_bh->b_blocknr << sdio->blkfactor;
1006                                 if (buffer_new(map_bh)) {
1007                                         clean_bdev_aliases(
1008                                                 map_bh->b_bdev,
1009                                                 map_bh->b_blocknr,
1010                                                 map_bh->b_size >> i_blkbits);
1011                                 }
1012
1013                                 if (!sdio->blkfactor)
1014                                         goto do_holes;
1015
1016                                 blkmask = (1 << sdio->blkfactor) - 1;
1017                                 dio_remainder = (sdio->block_in_file & blkmask);
1018
1019                                 /*
1020                                  * If we are at the start of IO and that IO
1021                                  * starts partway into a fs-block,
1022                                  * dio_remainder will be non-zero.  If the IO
1023                                  * is a read then we can simply advance the IO
1024                                  * cursor to the first block which is to be
1025                                  * read.  But if the IO is a write and the
1026                                  * block was newly allocated we cannot do that;
1027                                  * the start of the fs block must be zeroed out
1028                                  * on-disk
1029                                  */
1030                                 if (!buffer_new(map_bh))
1031                                         sdio->next_block_for_io += dio_remainder;
1032                                 sdio->blocks_available -= dio_remainder;
1033                         }
1034 do_holes:
1035                         /* Handle holes */
1036                         if (!buffer_mapped(map_bh)) {
1037                                 loff_t i_size_aligned;
1038
1039                                 /* AKPM: eargh, -ENOTBLK is a hack */
1040                                 if (dio->op == REQ_OP_WRITE) {
1041                                         put_page(page);
1042                                         return -ENOTBLK;
1043                                 }
1044
1045                                 /*
1046                                  * Be sure to account for a partial block as the
1047                                  * last block in the file
1048                                  */
1049                                 i_size_aligned = ALIGN(i_size_read(dio->inode),
1050                                                         1 << blkbits);
1051                                 if (sdio->block_in_file >=
1052                                                 i_size_aligned >> blkbits) {
1053                                         /* We hit eof */
1054                                         put_page(page);
1055                                         goto out;
1056                                 }
1057                                 zero_user(page, from, 1 << blkbits);
1058                                 sdio->block_in_file++;
1059                                 from += 1 << blkbits;
1060                                 dio->result += 1 << blkbits;
1061                                 goto next_block;
1062                         }
1063
1064                         /*
1065                          * If we're performing IO which has an alignment which
1066                          * is finer than the underlying fs, go check to see if
1067                          * we must zero out the start of this block.
1068                          */
1069                         if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1070                                 dio_zero_block(dio, sdio, 0, map_bh);
1071
1072                         /*
1073                          * Work out, in this_chunk_blocks, how much disk we
1074                          * can add to this page
1075                          */
1076                         this_chunk_blocks = sdio->blocks_available;
1077                         u = (to - from) >> blkbits;
1078                         if (this_chunk_blocks > u)
1079                                 this_chunk_blocks = u;
1080                         u = sdio->final_block_in_request - sdio->block_in_file;
1081                         if (this_chunk_blocks > u)
1082                                 this_chunk_blocks = u;
1083                         this_chunk_bytes = this_chunk_blocks << blkbits;
1084                         BUG_ON(this_chunk_bytes == 0);
1085
1086                         if (this_chunk_blocks == sdio->blocks_available)
1087                                 sdio->boundary = buffer_boundary(map_bh);
1088                         ret = submit_page_section(dio, sdio, page,
1089                                                   from,
1090                                                   this_chunk_bytes,
1091                                                   sdio->next_block_for_io,
1092                                                   map_bh);
1093                         if (ret) {
1094                                 put_page(page);
1095                                 goto out;
1096                         }
1097                         sdio->next_block_for_io += this_chunk_blocks;
1098
1099                         sdio->block_in_file += this_chunk_blocks;
1100                         from += this_chunk_bytes;
1101                         dio->result += this_chunk_bytes;
1102                         sdio->blocks_available -= this_chunk_blocks;
1103 next_block:
1104                         BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1105                         if (sdio->block_in_file == sdio->final_block_in_request)
1106                                 break;
1107                 }
1108
1109                 /* Drop the ref which was taken in get_user_pages() */
1110                 put_page(page);
1111         }
1112 out:
1113         return ret;
1114 }
1115
1116 static inline int drop_refcount(struct dio *dio)
1117 {
1118         int ret2;
1119         unsigned long flags;
1120
1121         /*
1122          * Sync will always be dropping the final ref and completing the
1123          * operation.  AIO can if it was a broken operation described above or
1124          * in fact if all the bios race to complete before we get here.  In
1125          * that case dio_complete() translates the EIOCBQUEUED into the proper
1126          * return code that the caller will hand to ->complete().
1127          *
1128          * This is managed by the bio_lock instead of being an atomic_t so that
1129          * completion paths can drop their ref and use the remaining count to
1130          * decide to wake the submission path atomically.
1131          */
1132         spin_lock_irqsave(&dio->bio_lock, flags);
1133         ret2 = --dio->refcount;
1134         spin_unlock_irqrestore(&dio->bio_lock, flags);
1135         return ret2;
1136 }
1137
1138 /*
1139  * This is a library function for use by filesystem drivers.
1140  *
1141  * The locking rules are governed by the flags parameter:
1142  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1143  *    scheme for dumb filesystems.
1144  *    For writes this function is called under i_mutex and returns with
1145  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1146  *    taken and dropped again before returning.
1147  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1148  *    internal locking but rather rely on the filesystem to synchronize
1149  *    direct I/O reads/writes versus each other and truncate.
1150  *
1151  * To help with locking against truncate we incremented the i_dio_count
1152  * counter before starting direct I/O, and decrement it once we are done.
1153  * Truncate can wait for it to reach zero to provide exclusion.  It is
1154  * expected that filesystem provide exclusion between new direct I/O
1155  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1156  * but other filesystems need to take care of this on their own.
1157  *
1158  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1159  * is always inlined. Otherwise gcc is unable to split the structure into
1160  * individual fields and will generate much worse code. This is important
1161  * for the whole file.
1162  */
1163 static inline ssize_t
1164 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1165                       struct block_device *bdev, struct iov_iter *iter,
1166                       get_block_t get_block, dio_iodone_t end_io,
1167                       dio_submit_t submit_io, int flags)
1168 {
1169         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1170         unsigned blkbits = i_blkbits;
1171         unsigned blocksize_mask = (1 << blkbits) - 1;
1172         ssize_t retval = -EINVAL;
1173         const size_t count = iov_iter_count(iter);
1174         loff_t offset = iocb->ki_pos;
1175         const loff_t end = offset + count;
1176         struct dio *dio;
1177         struct dio_submit sdio = { 0, };
1178         struct buffer_head map_bh = { 0, };
1179         struct blk_plug plug;
1180         unsigned long align = offset | iov_iter_alignment(iter);
1181
1182         /*
1183          * Avoid references to bdev if not absolutely needed to give
1184          * the early prefetch in the caller enough time.
1185          */
1186
1187         if (align & blocksize_mask) {
1188                 if (bdev)
1189                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
1190                 blocksize_mask = (1 << blkbits) - 1;
1191                 if (align & blocksize_mask)
1192                         goto out;
1193         }
1194
1195         /* watch out for a 0 len io from a tricksy fs */
1196         if (iov_iter_rw(iter) == READ && !count)
1197                 return 0;
1198
1199         dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1200         retval = -ENOMEM;
1201         if (!dio)
1202                 goto out;
1203         /*
1204          * Believe it or not, zeroing out the page array caused a .5%
1205          * performance regression in a database benchmark.  So, we take
1206          * care to only zero out what's needed.
1207          */
1208         memset(dio, 0, offsetof(struct dio, pages));
1209
1210         dio->flags = flags;
1211         if (dio->flags & DIO_LOCKING) {
1212                 if (iov_iter_rw(iter) == READ) {
1213                         struct address_space *mapping =
1214                                         iocb->ki_filp->f_mapping;
1215
1216                         /* will be released by direct_io_worker */
1217                         inode_lock(inode);
1218
1219                         retval = filemap_write_and_wait_range(mapping, offset,
1220                                                               end - 1);
1221                         if (retval) {
1222                                 inode_unlock(inode);
1223                                 kmem_cache_free(dio_cache, dio);
1224                                 goto out;
1225                         }
1226                 }
1227         }
1228
1229         /* Once we sampled i_size check for reads beyond EOF */
1230         dio->i_size = i_size_read(inode);
1231         if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1232                 if (dio->flags & DIO_LOCKING)
1233                         inode_unlock(inode);
1234                 kmem_cache_free(dio_cache, dio);
1235                 retval = 0;
1236                 goto out;
1237         }
1238
1239         /*
1240          * For file extending writes updating i_size before data writeouts
1241          * complete can expose uninitialized blocks in dumb filesystems.
1242          * In that case we need to wait for I/O completion even if asked
1243          * for an asynchronous write.
1244          */
1245         if (is_sync_kiocb(iocb))
1246                 dio->is_async = false;
1247         else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1248                 dio->is_async = false;
1249         else
1250                 dio->is_async = true;
1251
1252         dio->inode = inode;
1253         if (iov_iter_rw(iter) == WRITE) {
1254                 dio->op = REQ_OP_WRITE;
1255                 dio->op_flags = REQ_SYNC | REQ_IDLE;
1256                 if (iocb->ki_flags & IOCB_NOWAIT)
1257                         dio->op_flags |= REQ_NOWAIT;
1258         } else {
1259                 dio->op = REQ_OP_READ;
1260         }
1261         if (iocb->ki_flags & IOCB_HIPRI)
1262                 dio->op_flags |= REQ_HIPRI;
1263
1264         /*
1265          * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1266          * so that we can call ->fsync.
1267          */
1268         if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1269                 retval = 0;
1270                 if (iocb->ki_flags & IOCB_DSYNC)
1271                         retval = dio_set_defer_completion(dio);
1272                 else if (!dio->inode->i_sb->s_dio_done_wq) {
1273                         /*
1274                          * In case of AIO write racing with buffered read we
1275                          * need to defer completion. We can't decide this now,
1276                          * however the workqueue needs to be initialized here.
1277                          */
1278                         retval = sb_init_dio_done_wq(dio->inode->i_sb);
1279                 }
1280                 if (retval) {
1281                         /*
1282                          * We grab i_mutex only for reads so we don't have
1283                          * to release it here
1284                          */
1285                         kmem_cache_free(dio_cache, dio);
1286                         goto out;
1287                 }
1288         }
1289
1290         /*
1291          * Will be decremented at I/O completion time.
1292          */
1293         inode_dio_begin(inode);
1294
1295         retval = 0;
1296         sdio.blkbits = blkbits;
1297         sdio.blkfactor = i_blkbits - blkbits;
1298         sdio.block_in_file = offset >> blkbits;
1299
1300         sdio.get_block = get_block;
1301         dio->end_io = end_io;
1302         sdio.submit_io = submit_io;
1303         sdio.final_block_in_bio = -1;
1304         sdio.next_block_for_io = -1;
1305
1306         dio->iocb = iocb;
1307
1308         spin_lock_init(&dio->bio_lock);
1309         dio->refcount = 1;
1310
1311         dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1312         sdio.iter = iter;
1313         sdio.final_block_in_request = end >> blkbits;
1314
1315         /*
1316          * In case of non-aligned buffers, we may need 2 more
1317          * pages since we need to zero out first and last block.
1318          */
1319         if (unlikely(sdio.blkfactor))
1320                 sdio.pages_in_io = 2;
1321
1322         sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1323
1324         blk_start_plug(&plug);
1325
1326         retval = do_direct_IO(dio, &sdio, &map_bh);
1327         if (retval)
1328                 dio_cleanup(dio, &sdio);
1329
1330         if (retval == -ENOTBLK) {
1331                 /*
1332                  * The remaining part of the request will be
1333                  * be handled by buffered I/O when we return
1334                  */
1335                 retval = 0;
1336         }
1337         /*
1338          * There may be some unwritten disk at the end of a part-written
1339          * fs-block-sized block.  Go zero that now.
1340          */
1341         dio_zero_block(dio, &sdio, 1, &map_bh);
1342
1343         if (sdio.cur_page) {
1344                 ssize_t ret2;
1345
1346                 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1347                 if (retval == 0)
1348                         retval = ret2;
1349                 put_page(sdio.cur_page);
1350                 sdio.cur_page = NULL;
1351         }
1352         if (sdio.bio)
1353                 dio_bio_submit(dio, &sdio);
1354
1355         blk_finish_plug(&plug);
1356
1357         /*
1358          * It is possible that, we return short IO due to end of file.
1359          * In that case, we need to release all the pages we got hold on.
1360          */
1361         dio_cleanup(dio, &sdio);
1362
1363         /*
1364          * All block lookups have been performed. For READ requests
1365          * we can let i_mutex go now that its achieved its purpose
1366          * of protecting us from looking up uninitialized blocks.
1367          */
1368         if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1369                 inode_unlock(dio->inode);
1370
1371         /*
1372          * The only time we want to leave bios in flight is when a successful
1373          * partial aio read or full aio write have been setup.  In that case
1374          * bio completion will call aio_complete.  The only time it's safe to
1375          * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1376          * This had *better* be the only place that raises -EIOCBQUEUED.
1377          */
1378         BUG_ON(retval == -EIOCBQUEUED);
1379         if (dio->is_async && retval == 0 && dio->result &&
1380             (iov_iter_rw(iter) == READ || dio->result == count))
1381                 retval = -EIOCBQUEUED;
1382         else
1383                 dio_await_completion(dio);
1384
1385         if (drop_refcount(dio) == 0) {
1386                 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1387         } else
1388                 BUG_ON(retval != -EIOCBQUEUED);
1389
1390 out:
1391         return retval;
1392 }
1393
1394 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1395                              struct block_device *bdev, struct iov_iter *iter,
1396                              get_block_t get_block,
1397                              dio_iodone_t end_io, dio_submit_t submit_io,
1398                              int flags)
1399 {
1400         /*
1401          * The block device state is needed in the end to finally
1402          * submit everything.  Since it's likely to be cache cold
1403          * prefetch it here as first thing to hide some of the
1404          * latency.
1405          *
1406          * Attempt to prefetch the pieces we likely need later.
1407          */
1408         prefetch(&bdev->bd_disk->part_tbl);
1409         prefetch(bdev->bd_queue);
1410         prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1411
1412         return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1413                                      end_io, submit_io, flags);
1414 }
1415
1416 EXPORT_SYMBOL(__blockdev_direct_IO);
1417
1418 static __init int dio_init(void)
1419 {
1420         dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1421         return 0;
1422 }
1423 module_init(dio_init)