Linux-libre 3.10.48-gnu
[librecmc/linux-libre.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static void put_transaction(struct btrfs_transaction *transaction)
38 {
39         WARN_ON(atomic_read(&transaction->use_count) == 0);
40         if (atomic_dec_and_test(&transaction->use_count)) {
41                 BUG_ON(!list_empty(&transaction->list));
42                 WARN_ON(transaction->delayed_refs.root.rb_node);
43                 kmem_cache_free(btrfs_transaction_cachep, transaction);
44         }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49         free_extent_buffer(root->commit_root);
50         root->commit_root = btrfs_root_node(root);
51 }
52
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54                                        int type)
55 {
56         return !(trans->in_commit &&
57                  type != TRANS_JOIN &&
58                  type != TRANS_JOIN_NOLOCK);
59 }
60
61 /*
62  * either allocate a new transaction or hop into the existing one
63  */
64 static noinline int join_transaction(struct btrfs_root *root, int type)
65 {
66         struct btrfs_transaction *cur_trans;
67         struct btrfs_fs_info *fs_info = root->fs_info;
68
69         spin_lock(&fs_info->trans_lock);
70 loop:
71         /* The file system has been taken offline. No new transactions. */
72         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73                 spin_unlock(&fs_info->trans_lock);
74                 return -EROFS;
75         }
76
77         if (fs_info->trans_no_join) {
78                 /* 
79                  * If we are JOIN_NOLOCK we're already committing a current
80                  * transaction, we just need a handle to deal with something
81                  * when committing the transaction, such as inode cache and
82                  * space cache. It is a special case.
83                  */
84                 if (type != TRANS_JOIN_NOLOCK) {
85                         spin_unlock(&fs_info->trans_lock);
86                         return -EBUSY;
87                 }
88         }
89
90         cur_trans = fs_info->running_transaction;
91         if (cur_trans) {
92                 if (cur_trans->aborted) {
93                         spin_unlock(&fs_info->trans_lock);
94                         return cur_trans->aborted;
95                 }
96                 if (!can_join_transaction(cur_trans, type)) {
97                         spin_unlock(&fs_info->trans_lock);
98                         return -EBUSY;
99                 }
100                 atomic_inc(&cur_trans->use_count);
101                 atomic_inc(&cur_trans->num_writers);
102                 cur_trans->num_joined++;
103                 spin_unlock(&fs_info->trans_lock);
104                 return 0;
105         }
106         spin_unlock(&fs_info->trans_lock);
107
108         /*
109          * If we are ATTACH, we just want to catch the current transaction,
110          * and commit it. If there is no transaction, just return ENOENT.
111          */
112         if (type == TRANS_ATTACH)
113                 return -ENOENT;
114
115         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116         if (!cur_trans)
117                 return -ENOMEM;
118
119         spin_lock(&fs_info->trans_lock);
120         if (fs_info->running_transaction) {
121                 /*
122                  * someone started a transaction after we unlocked.  Make sure
123                  * to redo the trans_no_join checks above
124                  */
125                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126                 goto loop;
127         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
128                 spin_unlock(&fs_info->trans_lock);
129                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
130                 return -EROFS;
131         }
132
133         atomic_set(&cur_trans->num_writers, 1);
134         cur_trans->num_joined = 0;
135         init_waitqueue_head(&cur_trans->writer_wait);
136         init_waitqueue_head(&cur_trans->commit_wait);
137         cur_trans->in_commit = 0;
138         cur_trans->blocked = 0;
139         /*
140          * One for this trans handle, one so it will live on until we
141          * commit the transaction.
142          */
143         atomic_set(&cur_trans->use_count, 2);
144         cur_trans->commit_done = 0;
145         cur_trans->start_time = get_seconds();
146
147         cur_trans->delayed_refs.root = RB_ROOT;
148         cur_trans->delayed_refs.num_entries = 0;
149         cur_trans->delayed_refs.num_heads_ready = 0;
150         cur_trans->delayed_refs.num_heads = 0;
151         cur_trans->delayed_refs.flushing = 0;
152         cur_trans->delayed_refs.run_delayed_start = 0;
153
154         /*
155          * although the tree mod log is per file system and not per transaction,
156          * the log must never go across transaction boundaries.
157          */
158         smp_mb();
159         if (!list_empty(&fs_info->tree_mod_seq_list))
160                 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
161                         "creating a fresh transaction\n");
162         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
163                 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
164                         "creating a fresh transaction\n");
165         atomic64_set(&fs_info->tree_mod_seq, 0);
166
167         spin_lock_init(&cur_trans->commit_lock);
168         spin_lock_init(&cur_trans->delayed_refs.lock);
169         atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
170         atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
171         init_waitqueue_head(&cur_trans->delayed_refs.wait);
172
173         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
174         INIT_LIST_HEAD(&cur_trans->ordered_operations);
175         list_add_tail(&cur_trans->list, &fs_info->trans_list);
176         extent_io_tree_init(&cur_trans->dirty_pages,
177                              fs_info->btree_inode->i_mapping);
178         fs_info->generation++;
179         cur_trans->transid = fs_info->generation;
180         fs_info->running_transaction = cur_trans;
181         cur_trans->aborted = 0;
182         spin_unlock(&fs_info->trans_lock);
183
184         return 0;
185 }
186
187 /*
188  * this does all the record keeping required to make sure that a reference
189  * counted root is properly recorded in a given transaction.  This is required
190  * to make sure the old root from before we joined the transaction is deleted
191  * when the transaction commits
192  */
193 static int record_root_in_trans(struct btrfs_trans_handle *trans,
194                                struct btrfs_root *root)
195 {
196         if (root->ref_cows && root->last_trans < trans->transid) {
197                 WARN_ON(root == root->fs_info->extent_root);
198                 WARN_ON(root->commit_root != root->node);
199
200                 /*
201                  * see below for in_trans_setup usage rules
202                  * we have the reloc mutex held now, so there
203                  * is only one writer in this function
204                  */
205                 root->in_trans_setup = 1;
206
207                 /* make sure readers find in_trans_setup before
208                  * they find our root->last_trans update
209                  */
210                 smp_wmb();
211
212                 spin_lock(&root->fs_info->fs_roots_radix_lock);
213                 if (root->last_trans == trans->transid) {
214                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
215                         return 0;
216                 }
217                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
218                            (unsigned long)root->root_key.objectid,
219                            BTRFS_ROOT_TRANS_TAG);
220                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
221                 root->last_trans = trans->transid;
222
223                 /* this is pretty tricky.  We don't want to
224                  * take the relocation lock in btrfs_record_root_in_trans
225                  * unless we're really doing the first setup for this root in
226                  * this transaction.
227                  *
228                  * Normally we'd use root->last_trans as a flag to decide
229                  * if we want to take the expensive mutex.
230                  *
231                  * But, we have to set root->last_trans before we
232                  * init the relocation root, otherwise, we trip over warnings
233                  * in ctree.c.  The solution used here is to flag ourselves
234                  * with root->in_trans_setup.  When this is 1, we're still
235                  * fixing up the reloc trees and everyone must wait.
236                  *
237                  * When this is zero, they can trust root->last_trans and fly
238                  * through btrfs_record_root_in_trans without having to take the
239                  * lock.  smp_wmb() makes sure that all the writes above are
240                  * done before we pop in the zero below
241                  */
242                 btrfs_init_reloc_root(trans, root);
243                 smp_wmb();
244                 root->in_trans_setup = 0;
245         }
246         return 0;
247 }
248
249
250 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
251                                struct btrfs_root *root)
252 {
253         if (!root->ref_cows)
254                 return 0;
255
256         /*
257          * see record_root_in_trans for comments about in_trans_setup usage
258          * and barriers
259          */
260         smp_rmb();
261         if (root->last_trans == trans->transid &&
262             !root->in_trans_setup)
263                 return 0;
264
265         mutex_lock(&root->fs_info->reloc_mutex);
266         record_root_in_trans(trans, root);
267         mutex_unlock(&root->fs_info->reloc_mutex);
268
269         return 0;
270 }
271
272 /* wait for commit against the current transaction to become unblocked
273  * when this is done, it is safe to start a new transaction, but the current
274  * transaction might not be fully on disk.
275  */
276 static void wait_current_trans(struct btrfs_root *root)
277 {
278         struct btrfs_transaction *cur_trans;
279
280         spin_lock(&root->fs_info->trans_lock);
281         cur_trans = root->fs_info->running_transaction;
282         if (cur_trans && cur_trans->blocked) {
283                 atomic_inc(&cur_trans->use_count);
284                 spin_unlock(&root->fs_info->trans_lock);
285
286                 wait_event(root->fs_info->transaction_wait,
287                            !cur_trans->blocked);
288                 put_transaction(cur_trans);
289         } else {
290                 spin_unlock(&root->fs_info->trans_lock);
291         }
292 }
293
294 static int may_wait_transaction(struct btrfs_root *root, int type)
295 {
296         if (root->fs_info->log_root_recovering)
297                 return 0;
298
299         if (type == TRANS_USERSPACE)
300                 return 1;
301
302         if (type == TRANS_START &&
303             !atomic_read(&root->fs_info->open_ioctl_trans))
304                 return 1;
305
306         return 0;
307 }
308
309 static struct btrfs_trans_handle *
310 start_transaction(struct btrfs_root *root, u64 num_items, int type,
311                   enum btrfs_reserve_flush_enum flush)
312 {
313         struct btrfs_trans_handle *h;
314         struct btrfs_transaction *cur_trans;
315         u64 num_bytes = 0;
316         int ret;
317         u64 qgroup_reserved = 0;
318
319         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
320                 return ERR_PTR(-EROFS);
321
322         if (current->journal_info) {
323                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
324                 h = current->journal_info;
325                 h->use_count++;
326                 WARN_ON(h->use_count > 2);
327                 h->orig_rsv = h->block_rsv;
328                 h->block_rsv = NULL;
329                 goto got_it;
330         }
331
332         /*
333          * Do the reservation before we join the transaction so we can do all
334          * the appropriate flushing if need be.
335          */
336         if (num_items > 0 && root != root->fs_info->chunk_root) {
337                 if (root->fs_info->quota_enabled &&
338                     is_fstree(root->root_key.objectid)) {
339                         qgroup_reserved = num_items * root->leafsize;
340                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
341                         if (ret)
342                                 return ERR_PTR(ret);
343                 }
344
345                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
346                 ret = btrfs_block_rsv_add(root,
347                                           &root->fs_info->trans_block_rsv,
348                                           num_bytes, flush);
349                 if (ret)
350                         goto reserve_fail;
351         }
352 again:
353         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
354         if (!h) {
355                 ret = -ENOMEM;
356                 goto alloc_fail;
357         }
358
359         /*
360          * If we are JOIN_NOLOCK we're already committing a transaction and
361          * waiting on this guy, so we don't need to do the sb_start_intwrite
362          * because we're already holding a ref.  We need this because we could
363          * have raced in and did an fsync() on a file which can kick a commit
364          * and then we deadlock with somebody doing a freeze.
365          *
366          * If we are ATTACH, it means we just want to catch the current
367          * transaction and commit it, so we needn't do sb_start_intwrite(). 
368          */
369         if (type < TRANS_JOIN_NOLOCK)
370                 sb_start_intwrite(root->fs_info->sb);
371
372         if (may_wait_transaction(root, type))
373                 wait_current_trans(root);
374
375         do {
376                 ret = join_transaction(root, type);
377                 if (ret == -EBUSY) {
378                         wait_current_trans(root);
379                         if (unlikely(type == TRANS_ATTACH))
380                                 ret = -ENOENT;
381                 }
382         } while (ret == -EBUSY);
383
384         if (ret < 0) {
385                 /* We must get the transaction if we are JOIN_NOLOCK. */
386                 BUG_ON(type == TRANS_JOIN_NOLOCK);
387                 goto join_fail;
388         }
389
390         cur_trans = root->fs_info->running_transaction;
391
392         h->transid = cur_trans->transid;
393         h->transaction = cur_trans;
394         h->blocks_used = 0;
395         h->bytes_reserved = 0;
396         h->root = root;
397         h->delayed_ref_updates = 0;
398         h->use_count = 1;
399         h->adding_csums = 0;
400         h->block_rsv = NULL;
401         h->orig_rsv = NULL;
402         h->aborted = 0;
403         h->qgroup_reserved = 0;
404         h->delayed_ref_elem.seq = 0;
405         h->type = type;
406         h->allocating_chunk = false;
407         INIT_LIST_HEAD(&h->qgroup_ref_list);
408         INIT_LIST_HEAD(&h->new_bgs);
409
410         smp_mb();
411         if (cur_trans->blocked && may_wait_transaction(root, type)) {
412                 btrfs_commit_transaction(h, root);
413                 goto again;
414         }
415
416         if (num_bytes) {
417                 trace_btrfs_space_reservation(root->fs_info, "transaction",
418                                               h->transid, num_bytes, 1);
419                 h->block_rsv = &root->fs_info->trans_block_rsv;
420                 h->bytes_reserved = num_bytes;
421         }
422         h->qgroup_reserved = qgroup_reserved;
423
424 got_it:
425         btrfs_record_root_in_trans(h, root);
426
427         if (!current->journal_info && type != TRANS_USERSPACE)
428                 current->journal_info = h;
429         return h;
430
431 join_fail:
432         if (type < TRANS_JOIN_NOLOCK)
433                 sb_end_intwrite(root->fs_info->sb);
434         kmem_cache_free(btrfs_trans_handle_cachep, h);
435 alloc_fail:
436         if (num_bytes)
437                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
438                                         num_bytes);
439 reserve_fail:
440         if (qgroup_reserved)
441                 btrfs_qgroup_free(root, qgroup_reserved);
442         return ERR_PTR(ret);
443 }
444
445 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
446                                                    int num_items)
447 {
448         return start_transaction(root, num_items, TRANS_START,
449                                  BTRFS_RESERVE_FLUSH_ALL);
450 }
451
452 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
453                                         struct btrfs_root *root, int num_items)
454 {
455         return start_transaction(root, num_items, TRANS_START,
456                                  BTRFS_RESERVE_FLUSH_LIMIT);
457 }
458
459 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
460 {
461         return start_transaction(root, 0, TRANS_JOIN, 0);
462 }
463
464 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
465 {
466         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
467 }
468
469 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
470 {
471         return start_transaction(root, 0, TRANS_USERSPACE, 0);
472 }
473
474 /*
475  * btrfs_attach_transaction() - catch the running transaction
476  *
477  * It is used when we want to commit the current the transaction, but
478  * don't want to start a new one.
479  *
480  * Note: If this function return -ENOENT, it just means there is no
481  * running transaction. But it is possible that the inactive transaction
482  * is still in the memory, not fully on disk. If you hope there is no
483  * inactive transaction in the fs when -ENOENT is returned, you should
484  * invoke
485  *     btrfs_attach_transaction_barrier()
486  */
487 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
488 {
489         return start_transaction(root, 0, TRANS_ATTACH, 0);
490 }
491
492 /*
493  * btrfs_attach_transaction() - catch the running transaction
494  *
495  * It is similar to the above function, the differentia is this one
496  * will wait for all the inactive transactions until they fully
497  * complete.
498  */
499 struct btrfs_trans_handle *
500 btrfs_attach_transaction_barrier(struct btrfs_root *root)
501 {
502         struct btrfs_trans_handle *trans;
503
504         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
505         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
506                 btrfs_wait_for_commit(root, 0);
507
508         return trans;
509 }
510
511 /* wait for a transaction commit to be fully complete */
512 static noinline void wait_for_commit(struct btrfs_root *root,
513                                     struct btrfs_transaction *commit)
514 {
515         wait_event(commit->commit_wait, commit->commit_done);
516 }
517
518 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
519 {
520         struct btrfs_transaction *cur_trans = NULL, *t;
521         int ret = 0;
522
523         if (transid) {
524                 if (transid <= root->fs_info->last_trans_committed)
525                         goto out;
526
527                 ret = -EINVAL;
528                 /* find specified transaction */
529                 spin_lock(&root->fs_info->trans_lock);
530                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
531                         if (t->transid == transid) {
532                                 cur_trans = t;
533                                 atomic_inc(&cur_trans->use_count);
534                                 ret = 0;
535                                 break;
536                         }
537                         if (t->transid > transid) {
538                                 ret = 0;
539                                 break;
540                         }
541                 }
542                 spin_unlock(&root->fs_info->trans_lock);
543                 /* The specified transaction doesn't exist */
544                 if (!cur_trans)
545                         goto out;
546         } else {
547                 /* find newest transaction that is committing | committed */
548                 spin_lock(&root->fs_info->trans_lock);
549                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
550                                             list) {
551                         if (t->in_commit) {
552                                 if (t->commit_done)
553                                         break;
554                                 cur_trans = t;
555                                 atomic_inc(&cur_trans->use_count);
556                                 break;
557                         }
558                 }
559                 spin_unlock(&root->fs_info->trans_lock);
560                 if (!cur_trans)
561                         goto out;  /* nothing committing|committed */
562         }
563
564         wait_for_commit(root, cur_trans);
565         put_transaction(cur_trans);
566 out:
567         return ret;
568 }
569
570 void btrfs_throttle(struct btrfs_root *root)
571 {
572         if (!atomic_read(&root->fs_info->open_ioctl_trans))
573                 wait_current_trans(root);
574 }
575
576 static int should_end_transaction(struct btrfs_trans_handle *trans,
577                                   struct btrfs_root *root)
578 {
579         int ret;
580
581         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
582         return ret ? 1 : 0;
583 }
584
585 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
586                                  struct btrfs_root *root)
587 {
588         struct btrfs_transaction *cur_trans = trans->transaction;
589         int updates;
590         int err;
591
592         smp_mb();
593         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
594                 return 1;
595
596         updates = trans->delayed_ref_updates;
597         trans->delayed_ref_updates = 0;
598         if (updates) {
599                 err = btrfs_run_delayed_refs(trans, root, updates);
600                 if (err) /* Error code will also eval true */
601                         return err;
602         }
603
604         return should_end_transaction(trans, root);
605 }
606
607 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
608                           struct btrfs_root *root, int throttle)
609 {
610         struct btrfs_transaction *cur_trans = trans->transaction;
611         struct btrfs_fs_info *info = root->fs_info;
612         int count = 0;
613         int lock = (trans->type != TRANS_JOIN_NOLOCK);
614         int err = 0;
615
616         if (--trans->use_count) {
617                 trans->block_rsv = trans->orig_rsv;
618                 return 0;
619         }
620
621         /*
622          * do the qgroup accounting as early as possible
623          */
624         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
625
626         btrfs_trans_release_metadata(trans, root);
627         trans->block_rsv = NULL;
628
629         if (trans->qgroup_reserved) {
630                 /*
631                  * the same root has to be passed here between start_transaction
632                  * and end_transaction. Subvolume quota depends on this.
633                  */
634                 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
635                 trans->qgroup_reserved = 0;
636         }
637
638         if (!list_empty(&trans->new_bgs))
639                 btrfs_create_pending_block_groups(trans, root);
640
641         while (count < 1) {
642                 unsigned long cur = trans->delayed_ref_updates;
643                 trans->delayed_ref_updates = 0;
644                 if (cur &&
645                     trans->transaction->delayed_refs.num_heads_ready > 64) {
646                         trans->delayed_ref_updates = 0;
647                         btrfs_run_delayed_refs(trans, root, cur);
648                 } else {
649                         break;
650                 }
651                 count++;
652         }
653
654         btrfs_trans_release_metadata(trans, root);
655         trans->block_rsv = NULL;
656
657         if (!list_empty(&trans->new_bgs))
658                 btrfs_create_pending_block_groups(trans, root);
659
660         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
661             should_end_transaction(trans, root)) {
662                 trans->transaction->blocked = 1;
663                 smp_wmb();
664         }
665
666         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
667                 if (throttle) {
668                         /*
669                          * We may race with somebody else here so end up having
670                          * to call end_transaction on ourselves again, so inc
671                          * our use_count.
672                          */
673                         trans->use_count++;
674                         return btrfs_commit_transaction(trans, root);
675                 } else {
676                         wake_up_process(info->transaction_kthread);
677                 }
678         }
679
680         if (trans->type < TRANS_JOIN_NOLOCK)
681                 sb_end_intwrite(root->fs_info->sb);
682
683         WARN_ON(cur_trans != info->running_transaction);
684         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
685         atomic_dec(&cur_trans->num_writers);
686
687         smp_mb();
688         if (waitqueue_active(&cur_trans->writer_wait))
689                 wake_up(&cur_trans->writer_wait);
690         put_transaction(cur_trans);
691
692         if (current->journal_info == trans)
693                 current->journal_info = NULL;
694
695         if (throttle)
696                 btrfs_run_delayed_iputs(root);
697
698         if (trans->aborted ||
699             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
700                 err = -EIO;
701         assert_qgroups_uptodate(trans);
702
703         kmem_cache_free(btrfs_trans_handle_cachep, trans);
704         return err;
705 }
706
707 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
708                           struct btrfs_root *root)
709 {
710         return __btrfs_end_transaction(trans, root, 0);
711 }
712
713 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
714                                    struct btrfs_root *root)
715 {
716         return __btrfs_end_transaction(trans, root, 1);
717 }
718
719 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
720                                 struct btrfs_root *root)
721 {
722         return __btrfs_end_transaction(trans, root, 1);
723 }
724
725 /*
726  * when btree blocks are allocated, they have some corresponding bits set for
727  * them in one of two extent_io trees.  This is used to make sure all of
728  * those extents are sent to disk but does not wait on them
729  */
730 int btrfs_write_marked_extents(struct btrfs_root *root,
731                                struct extent_io_tree *dirty_pages, int mark)
732 {
733         int err = 0;
734         int werr = 0;
735         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
736         struct extent_state *cached_state = NULL;
737         u64 start = 0;
738         u64 end;
739         struct blk_plug plug;
740
741         blk_start_plug(&plug);
742         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
743                                       mark, &cached_state)) {
744                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
745                                    mark, &cached_state, GFP_NOFS);
746                 cached_state = NULL;
747                 err = filemap_fdatawrite_range(mapping, start, end);
748                 if (err)
749                         werr = err;
750                 cond_resched();
751                 start = end + 1;
752         }
753         if (err)
754                 werr = err;
755         blk_finish_plug(&plug);
756         return werr;
757 }
758
759 /*
760  * when btree blocks are allocated, they have some corresponding bits set for
761  * them in one of two extent_io trees.  This is used to make sure all of
762  * those extents are on disk for transaction or log commit.  We wait
763  * on all the pages and clear them from the dirty pages state tree
764  */
765 int btrfs_wait_marked_extents(struct btrfs_root *root,
766                               struct extent_io_tree *dirty_pages, int mark)
767 {
768         int err = 0;
769         int werr = 0;
770         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
771         struct extent_state *cached_state = NULL;
772         u64 start = 0;
773         u64 end;
774
775         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
776                                       EXTENT_NEED_WAIT, &cached_state)) {
777                 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
778                                  0, 0, &cached_state, GFP_NOFS);
779                 err = filemap_fdatawait_range(mapping, start, end);
780                 if (err)
781                         werr = err;
782                 cond_resched();
783                 start = end + 1;
784         }
785         if (err)
786                 werr = err;
787         return werr;
788 }
789
790 /*
791  * when btree blocks are allocated, they have some corresponding bits set for
792  * them in one of two extent_io trees.  This is used to make sure all of
793  * those extents are on disk for transaction or log commit
794  */
795 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
796                                 struct extent_io_tree *dirty_pages, int mark)
797 {
798         int ret;
799         int ret2;
800
801         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
802         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
803
804         if (ret)
805                 return ret;
806         if (ret2)
807                 return ret2;
808         return 0;
809 }
810
811 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
812                                      struct btrfs_root *root)
813 {
814         if (!trans || !trans->transaction) {
815                 struct inode *btree_inode;
816                 btree_inode = root->fs_info->btree_inode;
817                 return filemap_write_and_wait(btree_inode->i_mapping);
818         }
819         return btrfs_write_and_wait_marked_extents(root,
820                                            &trans->transaction->dirty_pages,
821                                            EXTENT_DIRTY);
822 }
823
824 /*
825  * this is used to update the root pointer in the tree of tree roots.
826  *
827  * But, in the case of the extent allocation tree, updating the root
828  * pointer may allocate blocks which may change the root of the extent
829  * allocation tree.
830  *
831  * So, this loops and repeats and makes sure the cowonly root didn't
832  * change while the root pointer was being updated in the metadata.
833  */
834 static int update_cowonly_root(struct btrfs_trans_handle *trans,
835                                struct btrfs_root *root)
836 {
837         int ret;
838         u64 old_root_bytenr;
839         u64 old_root_used;
840         struct btrfs_root *tree_root = root->fs_info->tree_root;
841
842         old_root_used = btrfs_root_used(&root->root_item);
843         btrfs_write_dirty_block_groups(trans, root);
844
845         while (1) {
846                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
847                 if (old_root_bytenr == root->node->start &&
848                     old_root_used == btrfs_root_used(&root->root_item))
849                         break;
850
851                 btrfs_set_root_node(&root->root_item, root->node);
852                 ret = btrfs_update_root(trans, tree_root,
853                                         &root->root_key,
854                                         &root->root_item);
855                 if (ret)
856                         return ret;
857
858                 old_root_used = btrfs_root_used(&root->root_item);
859                 ret = btrfs_write_dirty_block_groups(trans, root);
860                 if (ret)
861                         return ret;
862         }
863
864         if (root != root->fs_info->extent_root)
865                 switch_commit_root(root);
866
867         return 0;
868 }
869
870 /*
871  * update all the cowonly tree roots on disk
872  *
873  * The error handling in this function may not be obvious. Any of the
874  * failures will cause the file system to go offline. We still need
875  * to clean up the delayed refs.
876  */
877 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
878                                          struct btrfs_root *root)
879 {
880         struct btrfs_fs_info *fs_info = root->fs_info;
881         struct list_head *next;
882         struct extent_buffer *eb;
883         int ret;
884
885         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
886         if (ret)
887                 return ret;
888
889         eb = btrfs_lock_root_node(fs_info->tree_root);
890         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
891                               0, &eb);
892         btrfs_tree_unlock(eb);
893         free_extent_buffer(eb);
894
895         if (ret)
896                 return ret;
897
898         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
899         if (ret)
900                 return ret;
901
902         ret = btrfs_run_dev_stats(trans, root->fs_info);
903         WARN_ON(ret);
904         ret = btrfs_run_dev_replace(trans, root->fs_info);
905         WARN_ON(ret);
906
907         ret = btrfs_run_qgroups(trans, root->fs_info);
908         BUG_ON(ret);
909
910         /* run_qgroups might have added some more refs */
911         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
912         BUG_ON(ret);
913
914         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
915                 next = fs_info->dirty_cowonly_roots.next;
916                 list_del_init(next);
917                 root = list_entry(next, struct btrfs_root, dirty_list);
918
919                 ret = update_cowonly_root(trans, root);
920                 if (ret)
921                         return ret;
922         }
923
924         down_write(&fs_info->extent_commit_sem);
925         switch_commit_root(fs_info->extent_root);
926         up_write(&fs_info->extent_commit_sem);
927
928         btrfs_after_dev_replace_commit(fs_info);
929
930         return 0;
931 }
932
933 /*
934  * dead roots are old snapshots that need to be deleted.  This allocates
935  * a dirty root struct and adds it into the list of dead roots that need to
936  * be deleted
937  */
938 int btrfs_add_dead_root(struct btrfs_root *root)
939 {
940         spin_lock(&root->fs_info->trans_lock);
941         list_add_tail(&root->root_list, &root->fs_info->dead_roots);
942         spin_unlock(&root->fs_info->trans_lock);
943         return 0;
944 }
945
946 /*
947  * update all the cowonly tree roots on disk
948  */
949 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
950                                     struct btrfs_root *root)
951 {
952         struct btrfs_root *gang[8];
953         struct btrfs_fs_info *fs_info = root->fs_info;
954         int i;
955         int ret;
956         int err = 0;
957
958         spin_lock(&fs_info->fs_roots_radix_lock);
959         while (1) {
960                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
961                                                  (void **)gang, 0,
962                                                  ARRAY_SIZE(gang),
963                                                  BTRFS_ROOT_TRANS_TAG);
964                 if (ret == 0)
965                         break;
966                 for (i = 0; i < ret; i++) {
967                         root = gang[i];
968                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
969                                         (unsigned long)root->root_key.objectid,
970                                         BTRFS_ROOT_TRANS_TAG);
971                         spin_unlock(&fs_info->fs_roots_radix_lock);
972
973                         btrfs_free_log(trans, root);
974                         btrfs_update_reloc_root(trans, root);
975                         btrfs_orphan_commit_root(trans, root);
976
977                         btrfs_save_ino_cache(root, trans);
978
979                         /* see comments in should_cow_block() */
980                         root->force_cow = 0;
981                         smp_wmb();
982
983                         if (root->commit_root != root->node) {
984                                 mutex_lock(&root->fs_commit_mutex);
985                                 switch_commit_root(root);
986                                 btrfs_unpin_free_ino(root);
987                                 mutex_unlock(&root->fs_commit_mutex);
988
989                                 btrfs_set_root_node(&root->root_item,
990                                                     root->node);
991                         }
992
993                         err = btrfs_update_root(trans, fs_info->tree_root,
994                                                 &root->root_key,
995                                                 &root->root_item);
996                         spin_lock(&fs_info->fs_roots_radix_lock);
997                         if (err)
998                                 break;
999                 }
1000         }
1001         spin_unlock(&fs_info->fs_roots_radix_lock);
1002         return err;
1003 }
1004
1005 /*
1006  * defrag a given btree.
1007  * Every leaf in the btree is read and defragged.
1008  */
1009 int btrfs_defrag_root(struct btrfs_root *root)
1010 {
1011         struct btrfs_fs_info *info = root->fs_info;
1012         struct btrfs_trans_handle *trans;
1013         int ret;
1014
1015         if (xchg(&root->defrag_running, 1))
1016                 return 0;
1017
1018         while (1) {
1019                 trans = btrfs_start_transaction(root, 0);
1020                 if (IS_ERR(trans))
1021                         return PTR_ERR(trans);
1022
1023                 ret = btrfs_defrag_leaves(trans, root);
1024
1025                 btrfs_end_transaction(trans, root);
1026                 btrfs_btree_balance_dirty(info->tree_root);
1027                 cond_resched();
1028
1029                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1030                         break;
1031
1032                 if (btrfs_defrag_cancelled(root->fs_info)) {
1033                         printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1034                         ret = -EAGAIN;
1035                         break;
1036                 }
1037         }
1038         root->defrag_running = 0;
1039         return ret;
1040 }
1041
1042 /*
1043  * new snapshots need to be created at a very specific time in the
1044  * transaction commit.  This does the actual creation.
1045  *
1046  * Note:
1047  * If the error which may affect the commitment of the current transaction
1048  * happens, we should return the error number. If the error which just affect
1049  * the creation of the pending snapshots, just return 0.
1050  */
1051 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1052                                    struct btrfs_fs_info *fs_info,
1053                                    struct btrfs_pending_snapshot *pending)
1054 {
1055         struct btrfs_key key;
1056         struct btrfs_root_item *new_root_item;
1057         struct btrfs_root *tree_root = fs_info->tree_root;
1058         struct btrfs_root *root = pending->root;
1059         struct btrfs_root *parent_root;
1060         struct btrfs_block_rsv *rsv;
1061         struct inode *parent_inode;
1062         struct btrfs_path *path;
1063         struct btrfs_dir_item *dir_item;
1064         struct dentry *dentry;
1065         struct extent_buffer *tmp;
1066         struct extent_buffer *old;
1067         struct timespec cur_time = CURRENT_TIME;
1068         int ret = 0;
1069         u64 to_reserve = 0;
1070         u64 index = 0;
1071         u64 objectid;
1072         u64 root_flags;
1073         uuid_le new_uuid;
1074
1075         path = btrfs_alloc_path();
1076         if (!path) {
1077                 pending->error = -ENOMEM;
1078                 return 0;
1079         }
1080
1081         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1082         if (!new_root_item) {
1083                 pending->error = -ENOMEM;
1084                 goto root_item_alloc_fail;
1085         }
1086
1087         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1088         if (pending->error)
1089                 goto no_free_objectid;
1090
1091         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1092
1093         if (to_reserve > 0) {
1094                 pending->error = btrfs_block_rsv_add(root,
1095                                                      &pending->block_rsv,
1096                                                      to_reserve,
1097                                                      BTRFS_RESERVE_NO_FLUSH);
1098                 if (pending->error)
1099                         goto no_free_objectid;
1100         }
1101
1102         pending->error = btrfs_qgroup_inherit(trans, fs_info,
1103                                               root->root_key.objectid,
1104                                               objectid, pending->inherit);
1105         if (pending->error)
1106                 goto no_free_objectid;
1107
1108         key.objectid = objectid;
1109         key.offset = (u64)-1;
1110         key.type = BTRFS_ROOT_ITEM_KEY;
1111
1112         rsv = trans->block_rsv;
1113         trans->block_rsv = &pending->block_rsv;
1114         trans->bytes_reserved = trans->block_rsv->reserved;
1115
1116         dentry = pending->dentry;
1117         parent_inode = pending->dir;
1118         parent_root = BTRFS_I(parent_inode)->root;
1119         record_root_in_trans(trans, parent_root);
1120
1121         /*
1122          * insert the directory item
1123          */
1124         ret = btrfs_set_inode_index(parent_inode, &index);
1125         BUG_ON(ret); /* -ENOMEM */
1126
1127         /* check if there is a file/dir which has the same name. */
1128         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1129                                          btrfs_ino(parent_inode),
1130                                          dentry->d_name.name,
1131                                          dentry->d_name.len, 0);
1132         if (dir_item != NULL && !IS_ERR(dir_item)) {
1133                 pending->error = -EEXIST;
1134                 goto dir_item_existed;
1135         } else if (IS_ERR(dir_item)) {
1136                 ret = PTR_ERR(dir_item);
1137                 btrfs_abort_transaction(trans, root, ret);
1138                 goto fail;
1139         }
1140         btrfs_release_path(path);
1141
1142         /*
1143          * pull in the delayed directory update
1144          * and the delayed inode item
1145          * otherwise we corrupt the FS during
1146          * snapshot
1147          */
1148         ret = btrfs_run_delayed_items(trans, root);
1149         if (ret) {      /* Transaction aborted */
1150                 btrfs_abort_transaction(trans, root, ret);
1151                 goto fail;
1152         }
1153
1154         record_root_in_trans(trans, root);
1155         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1156         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1157         btrfs_check_and_init_root_item(new_root_item);
1158
1159         root_flags = btrfs_root_flags(new_root_item);
1160         if (pending->readonly)
1161                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1162         else
1163                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1164         btrfs_set_root_flags(new_root_item, root_flags);
1165
1166         btrfs_set_root_generation_v2(new_root_item,
1167                         trans->transid);
1168         uuid_le_gen(&new_uuid);
1169         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1170         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1171                         BTRFS_UUID_SIZE);
1172         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1173                 memset(new_root_item->received_uuid, 0,
1174                        sizeof(new_root_item->received_uuid));
1175                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1176                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1177                 btrfs_set_root_stransid(new_root_item, 0);
1178                 btrfs_set_root_rtransid(new_root_item, 0);
1179         }
1180         new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1181         new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1182         btrfs_set_root_otransid(new_root_item, trans->transid);
1183
1184         old = btrfs_lock_root_node(root);
1185         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1186         if (ret) {
1187                 btrfs_tree_unlock(old);
1188                 free_extent_buffer(old);
1189                 btrfs_abort_transaction(trans, root, ret);
1190                 goto fail;
1191         }
1192
1193         btrfs_set_lock_blocking(old);
1194
1195         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1196         /* clean up in any case */
1197         btrfs_tree_unlock(old);
1198         free_extent_buffer(old);
1199         if (ret) {
1200                 btrfs_abort_transaction(trans, root, ret);
1201                 goto fail;
1202         }
1203
1204         /* see comments in should_cow_block() */
1205         root->force_cow = 1;
1206         smp_wmb();
1207
1208         btrfs_set_root_node(new_root_item, tmp);
1209         /* record when the snapshot was created in key.offset */
1210         key.offset = trans->transid;
1211         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1212         btrfs_tree_unlock(tmp);
1213         free_extent_buffer(tmp);
1214         if (ret) {
1215                 btrfs_abort_transaction(trans, root, ret);
1216                 goto fail;
1217         }
1218
1219         /*
1220          * insert root back/forward references
1221          */
1222         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1223                                  parent_root->root_key.objectid,
1224                                  btrfs_ino(parent_inode), index,
1225                                  dentry->d_name.name, dentry->d_name.len);
1226         if (ret) {
1227                 btrfs_abort_transaction(trans, root, ret);
1228                 goto fail;
1229         }
1230
1231         key.offset = (u64)-1;
1232         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1233         if (IS_ERR(pending->snap)) {
1234                 ret = PTR_ERR(pending->snap);
1235                 btrfs_abort_transaction(trans, root, ret);
1236                 goto fail;
1237         }
1238
1239         ret = btrfs_reloc_post_snapshot(trans, pending);
1240         if (ret) {
1241                 btrfs_abort_transaction(trans, root, ret);
1242                 goto fail;
1243         }
1244
1245         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1246         if (ret) {
1247                 btrfs_abort_transaction(trans, root, ret);
1248                 goto fail;
1249         }
1250
1251         ret = btrfs_insert_dir_item(trans, parent_root,
1252                                     dentry->d_name.name, dentry->d_name.len,
1253                                     parent_inode, &key,
1254                                     BTRFS_FT_DIR, index);
1255         /* We have check then name at the beginning, so it is impossible. */
1256         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1257         if (ret) {
1258                 btrfs_abort_transaction(trans, root, ret);
1259                 goto fail;
1260         }
1261
1262         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1263                                          dentry->d_name.len * 2);
1264         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1265         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1266         if (ret)
1267                 btrfs_abort_transaction(trans, root, ret);
1268 fail:
1269         pending->error = ret;
1270 dir_item_existed:
1271         trans->block_rsv = rsv;
1272         trans->bytes_reserved = 0;
1273 no_free_objectid:
1274         kfree(new_root_item);
1275 root_item_alloc_fail:
1276         btrfs_free_path(path);
1277         return ret;
1278 }
1279
1280 /*
1281  * create all the snapshots we've scheduled for creation
1282  */
1283 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1284                                              struct btrfs_fs_info *fs_info)
1285 {
1286         struct btrfs_pending_snapshot *pending, *next;
1287         struct list_head *head = &trans->transaction->pending_snapshots;
1288         int ret = 0;
1289
1290         list_for_each_entry_safe(pending, next, head, list) {
1291                 list_del(&pending->list);
1292                 ret = create_pending_snapshot(trans, fs_info, pending);
1293                 if (ret)
1294                         break;
1295         }
1296         return ret;
1297 }
1298
1299 static void update_super_roots(struct btrfs_root *root)
1300 {
1301         struct btrfs_root_item *root_item;
1302         struct btrfs_super_block *super;
1303
1304         super = root->fs_info->super_copy;
1305
1306         root_item = &root->fs_info->chunk_root->root_item;
1307         super->chunk_root = root_item->bytenr;
1308         super->chunk_root_generation = root_item->generation;
1309         super->chunk_root_level = root_item->level;
1310
1311         root_item = &root->fs_info->tree_root->root_item;
1312         super->root = root_item->bytenr;
1313         super->generation = root_item->generation;
1314         super->root_level = root_item->level;
1315         if (btrfs_test_opt(root, SPACE_CACHE))
1316                 super->cache_generation = root_item->generation;
1317 }
1318
1319 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1320 {
1321         int ret = 0;
1322         spin_lock(&info->trans_lock);
1323         if (info->running_transaction)
1324                 ret = info->running_transaction->in_commit;
1325         spin_unlock(&info->trans_lock);
1326         return ret;
1327 }
1328
1329 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1330 {
1331         int ret = 0;
1332         spin_lock(&info->trans_lock);
1333         if (info->running_transaction)
1334                 ret = info->running_transaction->blocked;
1335         spin_unlock(&info->trans_lock);
1336         return ret;
1337 }
1338
1339 /*
1340  * wait for the current transaction commit to start and block subsequent
1341  * transaction joins
1342  */
1343 static void wait_current_trans_commit_start(struct btrfs_root *root,
1344                                             struct btrfs_transaction *trans)
1345 {
1346         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1347 }
1348
1349 /*
1350  * wait for the current transaction to start and then become unblocked.
1351  * caller holds ref.
1352  */
1353 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1354                                          struct btrfs_transaction *trans)
1355 {
1356         wait_event(root->fs_info->transaction_wait,
1357                    trans->commit_done || (trans->in_commit && !trans->blocked));
1358 }
1359
1360 /*
1361  * commit transactions asynchronously. once btrfs_commit_transaction_async
1362  * returns, any subsequent transaction will not be allowed to join.
1363  */
1364 struct btrfs_async_commit {
1365         struct btrfs_trans_handle *newtrans;
1366         struct btrfs_root *root;
1367         struct work_struct work;
1368 };
1369
1370 static void do_async_commit(struct work_struct *work)
1371 {
1372         struct btrfs_async_commit *ac =
1373                 container_of(work, struct btrfs_async_commit, work);
1374
1375         /*
1376          * We've got freeze protection passed with the transaction.
1377          * Tell lockdep about it.
1378          */
1379         if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1380                 rwsem_acquire_read(
1381                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1382                      0, 1, _THIS_IP_);
1383
1384         current->journal_info = ac->newtrans;
1385
1386         btrfs_commit_transaction(ac->newtrans, ac->root);
1387         kfree(ac);
1388 }
1389
1390 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1391                                    struct btrfs_root *root,
1392                                    int wait_for_unblock)
1393 {
1394         struct btrfs_async_commit *ac;
1395         struct btrfs_transaction *cur_trans;
1396
1397         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1398         if (!ac)
1399                 return -ENOMEM;
1400
1401         INIT_WORK(&ac->work, do_async_commit);
1402         ac->root = root;
1403         ac->newtrans = btrfs_join_transaction(root);
1404         if (IS_ERR(ac->newtrans)) {
1405                 int err = PTR_ERR(ac->newtrans);
1406                 kfree(ac);
1407                 return err;
1408         }
1409
1410         /* take transaction reference */
1411         cur_trans = trans->transaction;
1412         atomic_inc(&cur_trans->use_count);
1413
1414         btrfs_end_transaction(trans, root);
1415
1416         /*
1417          * Tell lockdep we've released the freeze rwsem, since the
1418          * async commit thread will be the one to unlock it.
1419          */
1420         if (trans->type < TRANS_JOIN_NOLOCK)
1421                 rwsem_release(
1422                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1423                         1, _THIS_IP_);
1424
1425         schedule_work(&ac->work);
1426
1427         /* wait for transaction to start and unblock */
1428         if (wait_for_unblock)
1429                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1430         else
1431                 wait_current_trans_commit_start(root, cur_trans);
1432
1433         if (current->journal_info == trans)
1434                 current->journal_info = NULL;
1435
1436         put_transaction(cur_trans);
1437         return 0;
1438 }
1439
1440
1441 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1442                                 struct btrfs_root *root, int err)
1443 {
1444         struct btrfs_transaction *cur_trans = trans->transaction;
1445         DEFINE_WAIT(wait);
1446
1447         WARN_ON(trans->use_count > 1);
1448
1449         btrfs_abort_transaction(trans, root, err);
1450
1451         spin_lock(&root->fs_info->trans_lock);
1452
1453         if (list_empty(&cur_trans->list)) {
1454                 spin_unlock(&root->fs_info->trans_lock);
1455                 btrfs_end_transaction(trans, root);
1456                 return;
1457         }
1458
1459         list_del_init(&cur_trans->list);
1460         if (cur_trans == root->fs_info->running_transaction) {
1461                 root->fs_info->trans_no_join = 1;
1462                 spin_unlock(&root->fs_info->trans_lock);
1463                 wait_event(cur_trans->writer_wait,
1464                            atomic_read(&cur_trans->num_writers) == 1);
1465
1466                 spin_lock(&root->fs_info->trans_lock);
1467                 root->fs_info->running_transaction = NULL;
1468         }
1469         spin_unlock(&root->fs_info->trans_lock);
1470
1471         btrfs_cleanup_one_transaction(trans->transaction, root);
1472
1473         put_transaction(cur_trans);
1474         put_transaction(cur_trans);
1475
1476         trace_btrfs_transaction_commit(root);
1477
1478         btrfs_scrub_continue(root);
1479
1480         if (current->journal_info == trans)
1481                 current->journal_info = NULL;
1482
1483         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1484
1485         spin_lock(&root->fs_info->trans_lock);
1486         root->fs_info->trans_no_join = 0;
1487         spin_unlock(&root->fs_info->trans_lock);
1488 }
1489
1490 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1491                                           struct btrfs_root *root)
1492 {
1493         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1494         int snap_pending = 0;
1495         int ret;
1496
1497         if (!flush_on_commit) {
1498                 spin_lock(&root->fs_info->trans_lock);
1499                 if (!list_empty(&trans->transaction->pending_snapshots))
1500                         snap_pending = 1;
1501                 spin_unlock(&root->fs_info->trans_lock);
1502         }
1503
1504         if (flush_on_commit || snap_pending) {
1505                 ret = btrfs_start_delalloc_inodes(root, 1);
1506                 if (ret)
1507                         return ret;
1508                 btrfs_wait_ordered_extents(root, 1);
1509         }
1510
1511         ret = btrfs_run_delayed_items(trans, root);
1512         if (ret)
1513                 return ret;
1514
1515         /*
1516          * running the delayed items may have added new refs. account
1517          * them now so that they hinder processing of more delayed refs
1518          * as little as possible.
1519          */
1520         btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1521
1522         /*
1523          * rename don't use btrfs_join_transaction, so, once we
1524          * set the transaction to blocked above, we aren't going
1525          * to get any new ordered operations.  We can safely run
1526          * it here and no for sure that nothing new will be added
1527          * to the list
1528          */
1529         ret = btrfs_run_ordered_operations(trans, root, 1);
1530
1531         return ret;
1532 }
1533
1534 /*
1535  * btrfs_transaction state sequence:
1536  *    in_commit = 0, blocked = 0  (initial)
1537  *    in_commit = 1, blocked = 1
1538  *    blocked = 0
1539  *    commit_done = 1
1540  */
1541 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1542                              struct btrfs_root *root)
1543 {
1544         unsigned long joined = 0;
1545         struct btrfs_transaction *cur_trans = trans->transaction;
1546         struct btrfs_transaction *prev_trans = NULL;
1547         DEFINE_WAIT(wait);
1548         int ret;
1549         int should_grow = 0;
1550         unsigned long now = get_seconds();
1551
1552         ret = btrfs_run_ordered_operations(trans, root, 0);
1553         if (ret) {
1554                 btrfs_abort_transaction(trans, root, ret);
1555                 btrfs_end_transaction(trans, root);
1556                 return ret;
1557         }
1558
1559         /* Stop the commit early if ->aborted is set */
1560         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1561                 ret = cur_trans->aborted;
1562                 btrfs_end_transaction(trans, root);
1563                 return ret;
1564         }
1565
1566         /* make a pass through all the delayed refs we have so far
1567          * any runnings procs may add more while we are here
1568          */
1569         ret = btrfs_run_delayed_refs(trans, root, 0);
1570         if (ret) {
1571                 btrfs_end_transaction(trans, root);
1572                 return ret;
1573         }
1574
1575         btrfs_trans_release_metadata(trans, root);
1576         trans->block_rsv = NULL;
1577         if (trans->qgroup_reserved) {
1578                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1579                 trans->qgroup_reserved = 0;
1580         }
1581
1582         cur_trans = trans->transaction;
1583
1584         /*
1585          * set the flushing flag so procs in this transaction have to
1586          * start sending their work down.
1587          */
1588         cur_trans->delayed_refs.flushing = 1;
1589
1590         if (!list_empty(&trans->new_bgs))
1591                 btrfs_create_pending_block_groups(trans, root);
1592
1593         ret = btrfs_run_delayed_refs(trans, root, 0);
1594         if (ret) {
1595                 btrfs_end_transaction(trans, root);
1596                 return ret;
1597         }
1598
1599         spin_lock(&cur_trans->commit_lock);
1600         if (cur_trans->in_commit) {
1601                 spin_unlock(&cur_trans->commit_lock);
1602                 atomic_inc(&cur_trans->use_count);
1603                 ret = btrfs_end_transaction(trans, root);
1604
1605                 wait_for_commit(root, cur_trans);
1606
1607                 put_transaction(cur_trans);
1608
1609                 return ret;
1610         }
1611
1612         trans->transaction->in_commit = 1;
1613         trans->transaction->blocked = 1;
1614         spin_unlock(&cur_trans->commit_lock);
1615         wake_up(&root->fs_info->transaction_blocked_wait);
1616
1617         spin_lock(&root->fs_info->trans_lock);
1618         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1619                 prev_trans = list_entry(cur_trans->list.prev,
1620                                         struct btrfs_transaction, list);
1621                 if (!prev_trans->commit_done) {
1622                         atomic_inc(&prev_trans->use_count);
1623                         spin_unlock(&root->fs_info->trans_lock);
1624
1625                         wait_for_commit(root, prev_trans);
1626
1627                         put_transaction(prev_trans);
1628                 } else {
1629                         spin_unlock(&root->fs_info->trans_lock);
1630                 }
1631         } else {
1632                 spin_unlock(&root->fs_info->trans_lock);
1633         }
1634
1635         if (!btrfs_test_opt(root, SSD) &&
1636             (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1637                 should_grow = 1;
1638
1639         do {
1640                 joined = cur_trans->num_joined;
1641
1642                 WARN_ON(cur_trans != trans->transaction);
1643
1644                 ret = btrfs_flush_all_pending_stuffs(trans, root);
1645                 if (ret)
1646                         goto cleanup_transaction;
1647
1648                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1649                                 TASK_UNINTERRUPTIBLE);
1650
1651                 if (atomic_read(&cur_trans->num_writers) > 1)
1652                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1653                 else if (should_grow)
1654                         schedule_timeout(1);
1655
1656                 finish_wait(&cur_trans->writer_wait, &wait);
1657         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1658                  (should_grow && cur_trans->num_joined != joined));
1659
1660         ret = btrfs_flush_all_pending_stuffs(trans, root);
1661         if (ret)
1662                 goto cleanup_transaction;
1663
1664         /*
1665          * Ok now we need to make sure to block out any other joins while we
1666          * commit the transaction.  We could have started a join before setting
1667          * no_join so make sure to wait for num_writers to == 1 again.
1668          */
1669         spin_lock(&root->fs_info->trans_lock);
1670         root->fs_info->trans_no_join = 1;
1671         spin_unlock(&root->fs_info->trans_lock);
1672         wait_event(cur_trans->writer_wait,
1673                    atomic_read(&cur_trans->num_writers) == 1);
1674
1675         /* ->aborted might be set after the previous check, so check it */
1676         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1677                 ret = cur_trans->aborted;
1678                 goto cleanup_transaction;
1679         }
1680         /*
1681          * the reloc mutex makes sure that we stop
1682          * the balancing code from coming in and moving
1683          * extents around in the middle of the commit
1684          */
1685         mutex_lock(&root->fs_info->reloc_mutex);
1686
1687         /*
1688          * We needn't worry about the delayed items because we will
1689          * deal with them in create_pending_snapshot(), which is the
1690          * core function of the snapshot creation.
1691          */
1692         ret = create_pending_snapshots(trans, root->fs_info);
1693         if (ret) {
1694                 mutex_unlock(&root->fs_info->reloc_mutex);
1695                 goto cleanup_transaction;
1696         }
1697
1698         /*
1699          * We insert the dir indexes of the snapshots and update the inode
1700          * of the snapshots' parents after the snapshot creation, so there
1701          * are some delayed items which are not dealt with. Now deal with
1702          * them.
1703          *
1704          * We needn't worry that this operation will corrupt the snapshots,
1705          * because all the tree which are snapshoted will be forced to COW
1706          * the nodes and leaves.
1707          */
1708         ret = btrfs_run_delayed_items(trans, root);
1709         if (ret) {
1710                 mutex_unlock(&root->fs_info->reloc_mutex);
1711                 goto cleanup_transaction;
1712         }
1713
1714         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1715         if (ret) {
1716                 mutex_unlock(&root->fs_info->reloc_mutex);
1717                 goto cleanup_transaction;
1718         }
1719
1720         /*
1721          * make sure none of the code above managed to slip in a
1722          * delayed item
1723          */
1724         btrfs_assert_delayed_root_empty(root);
1725
1726         WARN_ON(cur_trans != trans->transaction);
1727
1728         btrfs_scrub_pause(root);
1729         /* btrfs_commit_tree_roots is responsible for getting the
1730          * various roots consistent with each other.  Every pointer
1731          * in the tree of tree roots has to point to the most up to date
1732          * root for every subvolume and other tree.  So, we have to keep
1733          * the tree logging code from jumping in and changing any
1734          * of the trees.
1735          *
1736          * At this point in the commit, there can't be any tree-log
1737          * writers, but a little lower down we drop the trans mutex
1738          * and let new people in.  By holding the tree_log_mutex
1739          * from now until after the super is written, we avoid races
1740          * with the tree-log code.
1741          */
1742         mutex_lock(&root->fs_info->tree_log_mutex);
1743
1744         ret = commit_fs_roots(trans, root);
1745         if (ret) {
1746                 mutex_unlock(&root->fs_info->tree_log_mutex);
1747                 mutex_unlock(&root->fs_info->reloc_mutex);
1748                 goto cleanup_transaction;
1749         }
1750
1751         /* commit_fs_roots gets rid of all the tree log roots, it is now
1752          * safe to free the root of tree log roots
1753          */
1754         btrfs_free_log_root_tree(trans, root->fs_info);
1755
1756         ret = commit_cowonly_roots(trans, root);
1757         if (ret) {
1758                 mutex_unlock(&root->fs_info->tree_log_mutex);
1759                 mutex_unlock(&root->fs_info->reloc_mutex);
1760                 goto cleanup_transaction;
1761         }
1762
1763         /*
1764          * The tasks which save the space cache and inode cache may also
1765          * update ->aborted, check it.
1766          */
1767         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1768                 ret = cur_trans->aborted;
1769                 mutex_unlock(&root->fs_info->tree_log_mutex);
1770                 mutex_unlock(&root->fs_info->reloc_mutex);
1771                 goto cleanup_transaction;
1772         }
1773
1774         btrfs_prepare_extent_commit(trans, root);
1775
1776         cur_trans = root->fs_info->running_transaction;
1777
1778         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1779                             root->fs_info->tree_root->node);
1780         switch_commit_root(root->fs_info->tree_root);
1781
1782         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1783                             root->fs_info->chunk_root->node);
1784         switch_commit_root(root->fs_info->chunk_root);
1785
1786         assert_qgroups_uptodate(trans);
1787         update_super_roots(root);
1788
1789         if (!root->fs_info->log_root_recovering) {
1790                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1791                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1792         }
1793
1794         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1795                sizeof(*root->fs_info->super_copy));
1796
1797         trans->transaction->blocked = 0;
1798         spin_lock(&root->fs_info->trans_lock);
1799         root->fs_info->running_transaction = NULL;
1800         root->fs_info->trans_no_join = 0;
1801         spin_unlock(&root->fs_info->trans_lock);
1802         mutex_unlock(&root->fs_info->reloc_mutex);
1803
1804         wake_up(&root->fs_info->transaction_wait);
1805
1806         ret = btrfs_write_and_wait_transaction(trans, root);
1807         if (ret) {
1808                 btrfs_error(root->fs_info, ret,
1809                             "Error while writing out transaction");
1810                 mutex_unlock(&root->fs_info->tree_log_mutex);
1811                 goto cleanup_transaction;
1812         }
1813
1814         ret = write_ctree_super(trans, root, 0);
1815         if (ret) {
1816                 mutex_unlock(&root->fs_info->tree_log_mutex);
1817                 goto cleanup_transaction;
1818         }
1819
1820         /*
1821          * the super is written, we can safely allow the tree-loggers
1822          * to go about their business
1823          */
1824         mutex_unlock(&root->fs_info->tree_log_mutex);
1825
1826         btrfs_finish_extent_commit(trans, root);
1827
1828         cur_trans->commit_done = 1;
1829
1830         root->fs_info->last_trans_committed = cur_trans->transid;
1831
1832         wake_up(&cur_trans->commit_wait);
1833
1834         spin_lock(&root->fs_info->trans_lock);
1835         list_del_init(&cur_trans->list);
1836         spin_unlock(&root->fs_info->trans_lock);
1837
1838         put_transaction(cur_trans);
1839         put_transaction(cur_trans);
1840
1841         if (trans->type < TRANS_JOIN_NOLOCK)
1842                 sb_end_intwrite(root->fs_info->sb);
1843
1844         trace_btrfs_transaction_commit(root);
1845
1846         btrfs_scrub_continue(root);
1847
1848         if (current->journal_info == trans)
1849                 current->journal_info = NULL;
1850
1851         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1852
1853         if (current != root->fs_info->transaction_kthread)
1854                 btrfs_run_delayed_iputs(root);
1855
1856         return ret;
1857
1858 cleanup_transaction:
1859         btrfs_trans_release_metadata(trans, root);
1860         trans->block_rsv = NULL;
1861         if (trans->qgroup_reserved) {
1862                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1863                 trans->qgroup_reserved = 0;
1864         }
1865         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1866         if (current->journal_info == trans)
1867                 current->journal_info = NULL;
1868         cleanup_transaction(trans, root, ret);
1869
1870         return ret;
1871 }
1872
1873 /*
1874  * return < 0 if error
1875  * 0 if there are no more dead_roots at the time of call
1876  * 1 there are more to be processed, call me again
1877  *
1878  * The return value indicates there are certainly more snapshots to delete, but
1879  * if there comes a new one during processing, it may return 0. We don't mind,
1880  * because btrfs_commit_super will poke cleaner thread and it will process it a
1881  * few seconds later.
1882  */
1883 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1884 {
1885         int ret;
1886         struct btrfs_fs_info *fs_info = root->fs_info;
1887
1888         if (fs_info->sb->s_flags & MS_RDONLY) {
1889                 pr_debug("btrfs: cleaner called for RO fs!\n");
1890                 return 0;
1891         }
1892
1893         spin_lock(&fs_info->trans_lock);
1894         if (list_empty(&fs_info->dead_roots)) {
1895                 spin_unlock(&fs_info->trans_lock);
1896                 return 0;
1897         }
1898         root = list_first_entry(&fs_info->dead_roots,
1899                         struct btrfs_root, root_list);
1900         list_del(&root->root_list);
1901         spin_unlock(&fs_info->trans_lock);
1902
1903         pr_debug("btrfs: cleaner removing %llu\n",
1904                         (unsigned long long)root->objectid);
1905
1906         btrfs_kill_all_delayed_nodes(root);
1907
1908         if (btrfs_header_backref_rev(root->node) <
1909                         BTRFS_MIXED_BACKREF_REV)
1910                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1911         else
1912                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1913         /*
1914          * If we encounter a transaction abort during snapshot cleaning, we
1915          * don't want to crash here
1916          */
1917         BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS);
1918         return 1;
1919 }