Linux-libre 5.7.6-gnu
[librecmc/linux-libre.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161                           bool may_use_included)
162 {
163         ASSERT(s_info);
164         return s_info->bytes_used + s_info->bytes_reserved +
165                 s_info->bytes_pinned + s_info->bytes_readonly +
166                 (may_use_included ? s_info->bytes_may_use : 0);
167 }
168
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175         struct list_head *head = &info->space_info;
176         struct btrfs_space_info *found;
177
178         rcu_read_lock();
179         list_for_each_entry_rcu(found, head, list)
180                 found->full = 0;
181         rcu_read_unlock();
182 }
183
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186
187         struct btrfs_space_info *space_info;
188         int i;
189         int ret;
190
191         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192         if (!space_info)
193                 return -ENOMEM;
194
195         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196                                  GFP_KERNEL);
197         if (ret) {
198                 kfree(space_info);
199                 return ret;
200         }
201
202         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203                 INIT_LIST_HEAD(&space_info->block_groups[i]);
204         init_rwsem(&space_info->groups_sem);
205         spin_lock_init(&space_info->lock);
206         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208         INIT_LIST_HEAD(&space_info->ro_bgs);
209         INIT_LIST_HEAD(&space_info->tickets);
210         INIT_LIST_HEAD(&space_info->priority_tickets);
211
212         ret = btrfs_sysfs_add_space_info_type(info, space_info);
213         if (ret)
214                 return ret;
215
216         list_add_rcu(&space_info->list, &info->space_info);
217         if (flags & BTRFS_BLOCK_GROUP_DATA)
218                 info->data_sinfo = space_info;
219
220         return ret;
221 }
222
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225         struct btrfs_super_block *disk_super;
226         u64 features;
227         u64 flags;
228         int mixed = 0;
229         int ret;
230
231         disk_super = fs_info->super_copy;
232         if (!btrfs_super_root(disk_super))
233                 return -EINVAL;
234
235         features = btrfs_super_incompat_flags(disk_super);
236         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237                 mixed = 1;
238
239         flags = BTRFS_BLOCK_GROUP_SYSTEM;
240         ret = create_space_info(fs_info, flags);
241         if (ret)
242                 goto out;
243
244         if (mixed) {
245                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246                 ret = create_space_info(fs_info, flags);
247         } else {
248                 flags = BTRFS_BLOCK_GROUP_METADATA;
249                 ret = create_space_info(fs_info, flags);
250                 if (ret)
251                         goto out;
252
253                 flags = BTRFS_BLOCK_GROUP_DATA;
254                 ret = create_space_info(fs_info, flags);
255         }
256 out:
257         return ret;
258 }
259
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261                              u64 total_bytes, u64 bytes_used,
262                              u64 bytes_readonly,
263                              struct btrfs_space_info **space_info)
264 {
265         struct btrfs_space_info *found;
266         int factor;
267
268         factor = btrfs_bg_type_to_factor(flags);
269
270         found = btrfs_find_space_info(info, flags);
271         ASSERT(found);
272         spin_lock(&found->lock);
273         found->total_bytes += total_bytes;
274         found->disk_total += total_bytes * factor;
275         found->bytes_used += bytes_used;
276         found->disk_used += bytes_used * factor;
277         found->bytes_readonly += bytes_readonly;
278         if (total_bytes > 0)
279                 found->full = 0;
280         btrfs_try_granting_tickets(info, found);
281         spin_unlock(&found->lock);
282         *space_info = found;
283 }
284
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286                                                u64 flags)
287 {
288         struct list_head *head = &info->space_info;
289         struct btrfs_space_info *found;
290
291         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(found, head, list) {
295                 if (found->flags & flags) {
296                         rcu_read_unlock();
297                         return found;
298                 }
299         }
300         rcu_read_unlock();
301         return NULL;
302 }
303
304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
305 {
306         return (global->size << 1);
307 }
308
309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
310                           struct btrfs_space_info *space_info,
311                           enum btrfs_reserve_flush_enum flush)
312 {
313         u64 profile;
314         u64 avail;
315         int factor;
316
317         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
318                 profile = btrfs_system_alloc_profile(fs_info);
319         else
320                 profile = btrfs_metadata_alloc_profile(fs_info);
321
322         avail = atomic64_read(&fs_info->free_chunk_space);
323
324         /*
325          * If we have dup, raid1 or raid10 then only half of the free
326          * space is actually usable.  For raid56, the space info used
327          * doesn't include the parity drive, so we don't have to
328          * change the math
329          */
330         factor = btrfs_bg_type_to_factor(profile);
331         avail = div_u64(avail, factor);
332
333         /*
334          * If we aren't flushing all things, let us overcommit up to
335          * 1/2th of the space. If we can flush, don't let us overcommit
336          * too much, let it overcommit up to 1/8 of the space.
337          */
338         if (flush == BTRFS_RESERVE_FLUSH_ALL)
339                 avail >>= 3;
340         else
341                 avail >>= 1;
342         return avail;
343 }
344
345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
346                          struct btrfs_space_info *space_info, u64 bytes,
347                          enum btrfs_reserve_flush_enum flush)
348 {
349         u64 avail;
350         u64 used;
351
352         /* Don't overcommit when in mixed mode */
353         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
354                 return 0;
355
356         used = btrfs_space_info_used(space_info, true);
357         avail = calc_available_free_space(fs_info, space_info, flush);
358
359         if (used + bytes < space_info->total_bytes + avail)
360                 return 1;
361         return 0;
362 }
363
364 static void remove_ticket(struct btrfs_space_info *space_info,
365                           struct reserve_ticket *ticket)
366 {
367         if (!list_empty(&ticket->list)) {
368                 list_del_init(&ticket->list);
369                 ASSERT(space_info->reclaim_size >= ticket->bytes);
370                 space_info->reclaim_size -= ticket->bytes;
371         }
372 }
373
374 /*
375  * This is for space we already have accounted in space_info->bytes_may_use, so
376  * basically when we're returning space from block_rsv's.
377  */
378 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
379                                 struct btrfs_space_info *space_info)
380 {
381         struct list_head *head;
382         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
383
384         lockdep_assert_held(&space_info->lock);
385
386         head = &space_info->priority_tickets;
387 again:
388         while (!list_empty(head)) {
389                 struct reserve_ticket *ticket;
390                 u64 used = btrfs_space_info_used(space_info, true);
391
392                 ticket = list_first_entry(head, struct reserve_ticket, list);
393
394                 /* Check and see if our ticket can be satisified now. */
395                 if ((used + ticket->bytes <= space_info->total_bytes) ||
396                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
397                                          flush)) {
398                         btrfs_space_info_update_bytes_may_use(fs_info,
399                                                               space_info,
400                                                               ticket->bytes);
401                         remove_ticket(space_info, ticket);
402                         ticket->bytes = 0;
403                         space_info->tickets_id++;
404                         wake_up(&ticket->wait);
405                 } else {
406                         break;
407                 }
408         }
409
410         if (head == &space_info->priority_tickets) {
411                 head = &space_info->tickets;
412                 flush = BTRFS_RESERVE_FLUSH_ALL;
413                 goto again;
414         }
415 }
416
417 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
418 do {                                                                    \
419         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
420         spin_lock(&__rsv->lock);                                        \
421         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
422                    __rsv->size, __rsv->reserved);                       \
423         spin_unlock(&__rsv->lock);                                      \
424 } while (0)
425
426 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
427                                     struct btrfs_space_info *info)
428 {
429         lockdep_assert_held(&info->lock);
430
431         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
432                    info->flags,
433                    info->total_bytes - btrfs_space_info_used(info, true),
434                    info->full ? "" : "not ");
435         btrfs_info(fs_info,
436                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
437                 info->total_bytes, info->bytes_used, info->bytes_pinned,
438                 info->bytes_reserved, info->bytes_may_use,
439                 info->bytes_readonly);
440
441         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
442         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
443         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
444         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
445         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
446
447 }
448
449 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
450                            struct btrfs_space_info *info, u64 bytes,
451                            int dump_block_groups)
452 {
453         struct btrfs_block_group *cache;
454         int index = 0;
455
456         spin_lock(&info->lock);
457         __btrfs_dump_space_info(fs_info, info);
458         spin_unlock(&info->lock);
459
460         if (!dump_block_groups)
461                 return;
462
463         down_read(&info->groups_sem);
464 again:
465         list_for_each_entry(cache, &info->block_groups[index], list) {
466                 spin_lock(&cache->lock);
467                 btrfs_info(fs_info,
468                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
469                         cache->start, cache->length, cache->used, cache->pinned,
470                         cache->reserved, cache->ro ? "[readonly]" : "");
471                 btrfs_dump_free_space(cache, bytes);
472                 spin_unlock(&cache->lock);
473         }
474         if (++index < BTRFS_NR_RAID_TYPES)
475                 goto again;
476         up_read(&info->groups_sem);
477 }
478
479 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
480                                          unsigned long nr_pages, int nr_items)
481 {
482         struct super_block *sb = fs_info->sb;
483
484         if (down_read_trylock(&sb->s_umount)) {
485                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
486                 up_read(&sb->s_umount);
487         } else {
488                 /*
489                  * We needn't worry the filesystem going from r/w to r/o though
490                  * we don't acquire ->s_umount mutex, because the filesystem
491                  * should guarantee the delalloc inodes list be empty after
492                  * the filesystem is readonly(all dirty pages are written to
493                  * the disk).
494                  */
495                 btrfs_start_delalloc_roots(fs_info, nr_items);
496                 if (!current->journal_info)
497                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
498         }
499 }
500
501 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
502                                         u64 to_reclaim)
503 {
504         u64 bytes;
505         u64 nr;
506
507         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
508         nr = div64_u64(to_reclaim, bytes);
509         if (!nr)
510                 nr = 1;
511         return nr;
512 }
513
514 #define EXTENT_SIZE_PER_ITEM    SZ_256K
515
516 /*
517  * shrink metadata reservation for delalloc
518  */
519 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
520                             u64 orig, bool wait_ordered)
521 {
522         struct btrfs_space_info *space_info;
523         struct btrfs_trans_handle *trans;
524         u64 delalloc_bytes;
525         u64 dio_bytes;
526         u64 async_pages;
527         u64 items;
528         long time_left;
529         unsigned long nr_pages;
530         int loops;
531
532         /* Calc the number of the pages we need flush for space reservation */
533         items = calc_reclaim_items_nr(fs_info, to_reclaim);
534         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
535
536         trans = (struct btrfs_trans_handle *)current->journal_info;
537         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
538
539         delalloc_bytes = percpu_counter_sum_positive(
540                                                 &fs_info->delalloc_bytes);
541         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
542         if (delalloc_bytes == 0 && dio_bytes == 0) {
543                 if (trans)
544                         return;
545                 if (wait_ordered)
546                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
547                 return;
548         }
549
550         /*
551          * If we are doing more ordered than delalloc we need to just wait on
552          * ordered extents, otherwise we'll waste time trying to flush delalloc
553          * that likely won't give us the space back we need.
554          */
555         if (dio_bytes > delalloc_bytes)
556                 wait_ordered = true;
557
558         loops = 0;
559         while ((delalloc_bytes || dio_bytes) && loops < 3) {
560                 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
561
562                 /*
563                  * Triggers inode writeback for up to nr_pages. This will invoke
564                  * ->writepages callback and trigger delalloc filling
565                  *  (btrfs_run_delalloc_range()).
566                  */
567                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
568
569                 /*
570                  * We need to wait for the compressed pages to start before
571                  * we continue.
572                  */
573                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
574                 if (!async_pages)
575                         goto skip_async;
576
577                 /*
578                  * Calculate how many compressed pages we want to be written
579                  * before we continue. I.e if there are more async pages than we
580                  * require wait_event will wait until nr_pages are written.
581                  */
582                 if (async_pages <= nr_pages)
583                         async_pages = 0;
584                 else
585                         async_pages -= nr_pages;
586
587                 wait_event(fs_info->async_submit_wait,
588                            atomic_read(&fs_info->async_delalloc_pages) <=
589                            (int)async_pages);
590 skip_async:
591                 spin_lock(&space_info->lock);
592                 if (list_empty(&space_info->tickets) &&
593                     list_empty(&space_info->priority_tickets)) {
594                         spin_unlock(&space_info->lock);
595                         break;
596                 }
597                 spin_unlock(&space_info->lock);
598
599                 loops++;
600                 if (wait_ordered && !trans) {
601                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
602                 } else {
603                         time_left = schedule_timeout_killable(1);
604                         if (time_left)
605                                 break;
606                 }
607                 delalloc_bytes = percpu_counter_sum_positive(
608                                                 &fs_info->delalloc_bytes);
609                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
610         }
611 }
612
613 /**
614  * maybe_commit_transaction - possibly commit the transaction if its ok to
615  * @root - the root we're allocating for
616  * @bytes - the number of bytes we want to reserve
617  * @force - force the commit
618  *
619  * This will check to make sure that committing the transaction will actually
620  * get us somewhere and then commit the transaction if it does.  Otherwise it
621  * will return -ENOSPC.
622  */
623 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
624                                   struct btrfs_space_info *space_info)
625 {
626         struct reserve_ticket *ticket = NULL;
627         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
628         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
629         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
630         struct btrfs_trans_handle *trans;
631         u64 bytes_needed;
632         u64 reclaim_bytes = 0;
633         u64 cur_free_bytes = 0;
634
635         trans = (struct btrfs_trans_handle *)current->journal_info;
636         if (trans)
637                 return -EAGAIN;
638
639         spin_lock(&space_info->lock);
640         cur_free_bytes = btrfs_space_info_used(space_info, true);
641         if (cur_free_bytes < space_info->total_bytes)
642                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
643         else
644                 cur_free_bytes = 0;
645
646         if (!list_empty(&space_info->priority_tickets))
647                 ticket = list_first_entry(&space_info->priority_tickets,
648                                           struct reserve_ticket, list);
649         else if (!list_empty(&space_info->tickets))
650                 ticket = list_first_entry(&space_info->tickets,
651                                           struct reserve_ticket, list);
652         bytes_needed = (ticket) ? ticket->bytes : 0;
653
654         if (bytes_needed > cur_free_bytes)
655                 bytes_needed -= cur_free_bytes;
656         else
657                 bytes_needed = 0;
658         spin_unlock(&space_info->lock);
659
660         if (!bytes_needed)
661                 return 0;
662
663         trans = btrfs_join_transaction(fs_info->extent_root);
664         if (IS_ERR(trans))
665                 return PTR_ERR(trans);
666
667         /*
668          * See if there is enough pinned space to make this reservation, or if
669          * we have block groups that are going to be freed, allowing us to
670          * possibly do a chunk allocation the next loop through.
671          */
672         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
673             __percpu_counter_compare(&space_info->total_bytes_pinned,
674                                      bytes_needed,
675                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
676                 goto commit;
677
678         /*
679          * See if there is some space in the delayed insertion reservation for
680          * this reservation.
681          */
682         if (space_info != delayed_rsv->space_info)
683                 goto enospc;
684
685         spin_lock(&delayed_rsv->lock);
686         reclaim_bytes += delayed_rsv->reserved;
687         spin_unlock(&delayed_rsv->lock);
688
689         spin_lock(&delayed_refs_rsv->lock);
690         reclaim_bytes += delayed_refs_rsv->reserved;
691         spin_unlock(&delayed_refs_rsv->lock);
692
693         spin_lock(&trans_rsv->lock);
694         reclaim_bytes += trans_rsv->reserved;
695         spin_unlock(&trans_rsv->lock);
696
697         if (reclaim_bytes >= bytes_needed)
698                 goto commit;
699         bytes_needed -= reclaim_bytes;
700
701         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
702                                    bytes_needed,
703                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
704                 goto enospc;
705
706 commit:
707         return btrfs_commit_transaction(trans);
708 enospc:
709         btrfs_end_transaction(trans);
710         return -ENOSPC;
711 }
712
713 /*
714  * Try to flush some data based on policy set by @state. This is only advisory
715  * and may fail for various reasons. The caller is supposed to examine the
716  * state of @space_info to detect the outcome.
717  */
718 static void flush_space(struct btrfs_fs_info *fs_info,
719                        struct btrfs_space_info *space_info, u64 num_bytes,
720                        int state)
721 {
722         struct btrfs_root *root = fs_info->extent_root;
723         struct btrfs_trans_handle *trans;
724         int nr;
725         int ret = 0;
726
727         switch (state) {
728         case FLUSH_DELAYED_ITEMS_NR:
729         case FLUSH_DELAYED_ITEMS:
730                 if (state == FLUSH_DELAYED_ITEMS_NR)
731                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
732                 else
733                         nr = -1;
734
735                 trans = btrfs_join_transaction(root);
736                 if (IS_ERR(trans)) {
737                         ret = PTR_ERR(trans);
738                         break;
739                 }
740                 ret = btrfs_run_delayed_items_nr(trans, nr);
741                 btrfs_end_transaction(trans);
742                 break;
743         case FLUSH_DELALLOC:
744         case FLUSH_DELALLOC_WAIT:
745                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
746                                 state == FLUSH_DELALLOC_WAIT);
747                 break;
748         case FLUSH_DELAYED_REFS_NR:
749         case FLUSH_DELAYED_REFS:
750                 trans = btrfs_join_transaction(root);
751                 if (IS_ERR(trans)) {
752                         ret = PTR_ERR(trans);
753                         break;
754                 }
755                 if (state == FLUSH_DELAYED_REFS_NR)
756                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
757                 else
758                         nr = 0;
759                 btrfs_run_delayed_refs(trans, nr);
760                 btrfs_end_transaction(trans);
761                 break;
762         case ALLOC_CHUNK:
763         case ALLOC_CHUNK_FORCE:
764                 trans = btrfs_join_transaction(root);
765                 if (IS_ERR(trans)) {
766                         ret = PTR_ERR(trans);
767                         break;
768                 }
769                 ret = btrfs_chunk_alloc(trans,
770                                 btrfs_metadata_alloc_profile(fs_info),
771                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
772                                         CHUNK_ALLOC_FORCE);
773                 btrfs_end_transaction(trans);
774                 if (ret > 0 || ret == -ENOSPC)
775                         ret = 0;
776                 break;
777         case RUN_DELAYED_IPUTS:
778                 /*
779                  * If we have pending delayed iputs then we could free up a
780                  * bunch of pinned space, so make sure we run the iputs before
781                  * we do our pinned bytes check below.
782                  */
783                 btrfs_run_delayed_iputs(fs_info);
784                 btrfs_wait_on_delayed_iputs(fs_info);
785                 break;
786         case COMMIT_TRANS:
787                 ret = may_commit_transaction(fs_info, space_info);
788                 break;
789         default:
790                 ret = -ENOSPC;
791                 break;
792         }
793
794         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
795                                 ret);
796         return;
797 }
798
799 static inline u64
800 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
801                                  struct btrfs_space_info *space_info)
802 {
803         u64 used;
804         u64 avail;
805         u64 expected;
806         u64 to_reclaim = space_info->reclaim_size;
807
808         lockdep_assert_held(&space_info->lock);
809
810         avail = calc_available_free_space(fs_info, space_info,
811                                           BTRFS_RESERVE_FLUSH_ALL);
812         used = btrfs_space_info_used(space_info, true);
813
814         /*
815          * We may be flushing because suddenly we have less space than we had
816          * before, and now we're well over-committed based on our current free
817          * space.  If that's the case add in our overage so we make sure to put
818          * appropriate pressure on the flushing state machine.
819          */
820         if (space_info->total_bytes + avail < used)
821                 to_reclaim += used - (space_info->total_bytes + avail);
822
823         if (to_reclaim)
824                 return to_reclaim;
825
826         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
827         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
828                                  BTRFS_RESERVE_FLUSH_ALL))
829                 return 0;
830
831         used = btrfs_space_info_used(space_info, true);
832
833         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
834                                  BTRFS_RESERVE_FLUSH_ALL))
835                 expected = div_factor_fine(space_info->total_bytes, 95);
836         else
837                 expected = div_factor_fine(space_info->total_bytes, 90);
838
839         if (used > expected)
840                 to_reclaim = used - expected;
841         else
842                 to_reclaim = 0;
843         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
844                                      space_info->bytes_reserved);
845         return to_reclaim;
846 }
847
848 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
849                                         struct btrfs_space_info *space_info,
850                                         u64 used)
851 {
852         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
853
854         /* If we're just plain full then async reclaim just slows us down. */
855         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
856                 return 0;
857
858         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
859                 return 0;
860
861         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
862                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
863 }
864
865 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
866                                   struct btrfs_space_info *space_info,
867                                   struct reserve_ticket *ticket)
868 {
869         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
870         u64 min_bytes;
871
872         if (global_rsv->space_info != space_info)
873                 return false;
874
875         spin_lock(&global_rsv->lock);
876         min_bytes = div_factor(global_rsv->size, 5);
877         if (global_rsv->reserved < min_bytes + ticket->bytes) {
878                 spin_unlock(&global_rsv->lock);
879                 return false;
880         }
881         global_rsv->reserved -= ticket->bytes;
882         ticket->bytes = 0;
883         list_del_init(&ticket->list);
884         wake_up(&ticket->wait);
885         space_info->tickets_id++;
886         if (global_rsv->reserved < global_rsv->size)
887                 global_rsv->full = 0;
888         spin_unlock(&global_rsv->lock);
889
890         return true;
891 }
892
893 /*
894  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
895  * @fs_info - fs_info for this fs
896  * @space_info - the space info we were flushing
897  *
898  * We call this when we've exhausted our flushing ability and haven't made
899  * progress in satisfying tickets.  The reservation code handles tickets in
900  * order, so if there is a large ticket first and then smaller ones we could
901  * very well satisfy the smaller tickets.  This will attempt to wake up any
902  * tickets in the list to catch this case.
903  *
904  * This function returns true if it was able to make progress by clearing out
905  * other tickets, or if it stumbles across a ticket that was smaller than the
906  * first ticket.
907  */
908 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
909                                    struct btrfs_space_info *space_info)
910 {
911         struct reserve_ticket *ticket;
912         u64 tickets_id = space_info->tickets_id;
913         u64 first_ticket_bytes = 0;
914
915         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
916                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
917                 __btrfs_dump_space_info(fs_info, space_info);
918         }
919
920         while (!list_empty(&space_info->tickets) &&
921                tickets_id == space_info->tickets_id) {
922                 ticket = list_first_entry(&space_info->tickets,
923                                           struct reserve_ticket, list);
924
925                 if (ticket->steal &&
926                     steal_from_global_rsv(fs_info, space_info, ticket))
927                         return true;
928
929                 /*
930                  * may_commit_transaction will avoid committing the transaction
931                  * if it doesn't feel like the space reclaimed by the commit
932                  * would result in the ticket succeeding.  However if we have a
933                  * smaller ticket in the queue it may be small enough to be
934                  * satisified by committing the transaction, so if any
935                  * subsequent ticket is smaller than the first ticket go ahead
936                  * and send us back for another loop through the enospc flushing
937                  * code.
938                  */
939                 if (first_ticket_bytes == 0)
940                         first_ticket_bytes = ticket->bytes;
941                 else if (first_ticket_bytes > ticket->bytes)
942                         return true;
943
944                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
945                         btrfs_info(fs_info, "failing ticket with %llu bytes",
946                                    ticket->bytes);
947
948                 remove_ticket(space_info, ticket);
949                 ticket->error = -ENOSPC;
950                 wake_up(&ticket->wait);
951
952                 /*
953                  * We're just throwing tickets away, so more flushing may not
954                  * trip over btrfs_try_granting_tickets, so we need to call it
955                  * here to see if we can make progress with the next ticket in
956                  * the list.
957                  */
958                 btrfs_try_granting_tickets(fs_info, space_info);
959         }
960         return (tickets_id != space_info->tickets_id);
961 }
962
963 /*
964  * This is for normal flushers, we can wait all goddamned day if we want to.  We
965  * will loop and continuously try to flush as long as we are making progress.
966  * We count progress as clearing off tickets each time we have to loop.
967  */
968 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
969 {
970         struct btrfs_fs_info *fs_info;
971         struct btrfs_space_info *space_info;
972         u64 to_reclaim;
973         int flush_state;
974         int commit_cycles = 0;
975         u64 last_tickets_id;
976
977         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
978         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
979
980         spin_lock(&space_info->lock);
981         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
982         if (!to_reclaim) {
983                 space_info->flush = 0;
984                 spin_unlock(&space_info->lock);
985                 return;
986         }
987         last_tickets_id = space_info->tickets_id;
988         spin_unlock(&space_info->lock);
989
990         flush_state = FLUSH_DELAYED_ITEMS_NR;
991         do {
992                 flush_space(fs_info, space_info, to_reclaim, flush_state);
993                 spin_lock(&space_info->lock);
994                 if (list_empty(&space_info->tickets)) {
995                         space_info->flush = 0;
996                         spin_unlock(&space_info->lock);
997                         return;
998                 }
999                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1000                                                               space_info);
1001                 if (last_tickets_id == space_info->tickets_id) {
1002                         flush_state++;
1003                 } else {
1004                         last_tickets_id = space_info->tickets_id;
1005                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1006                         if (commit_cycles)
1007                                 commit_cycles--;
1008                 }
1009
1010                 /*
1011                  * We don't want to force a chunk allocation until we've tried
1012                  * pretty hard to reclaim space.  Think of the case where we
1013                  * freed up a bunch of space and so have a lot of pinned space
1014                  * to reclaim.  We would rather use that than possibly create a
1015                  * underutilized metadata chunk.  So if this is our first run
1016                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1017                  * commit the transaction.  If nothing has changed the next go
1018                  * around then we can force a chunk allocation.
1019                  */
1020                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1021                         flush_state++;
1022
1023                 if (flush_state > COMMIT_TRANS) {
1024                         commit_cycles++;
1025                         if (commit_cycles > 2) {
1026                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1027                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1028                                         commit_cycles--;
1029                                 } else {
1030                                         space_info->flush = 0;
1031                                 }
1032                         } else {
1033                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1034                         }
1035                 }
1036                 spin_unlock(&space_info->lock);
1037         } while (flush_state <= COMMIT_TRANS);
1038 }
1039
1040 void btrfs_init_async_reclaim_work(struct work_struct *work)
1041 {
1042         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
1043 }
1044
1045 static const enum btrfs_flush_state priority_flush_states[] = {
1046         FLUSH_DELAYED_ITEMS_NR,
1047         FLUSH_DELAYED_ITEMS,
1048         ALLOC_CHUNK,
1049 };
1050
1051 static const enum btrfs_flush_state evict_flush_states[] = {
1052         FLUSH_DELAYED_ITEMS_NR,
1053         FLUSH_DELAYED_ITEMS,
1054         FLUSH_DELAYED_REFS_NR,
1055         FLUSH_DELAYED_REFS,
1056         FLUSH_DELALLOC,
1057         FLUSH_DELALLOC_WAIT,
1058         ALLOC_CHUNK,
1059         COMMIT_TRANS,
1060 };
1061
1062 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1063                                 struct btrfs_space_info *space_info,
1064                                 struct reserve_ticket *ticket,
1065                                 const enum btrfs_flush_state *states,
1066                                 int states_nr)
1067 {
1068         u64 to_reclaim;
1069         int flush_state;
1070
1071         spin_lock(&space_info->lock);
1072         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1073         if (!to_reclaim) {
1074                 spin_unlock(&space_info->lock);
1075                 return;
1076         }
1077         spin_unlock(&space_info->lock);
1078
1079         flush_state = 0;
1080         do {
1081                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1082                 flush_state++;
1083                 spin_lock(&space_info->lock);
1084                 if (ticket->bytes == 0) {
1085                         spin_unlock(&space_info->lock);
1086                         return;
1087                 }
1088                 spin_unlock(&space_info->lock);
1089         } while (flush_state < states_nr);
1090 }
1091
1092 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1093                                 struct btrfs_space_info *space_info,
1094                                 struct reserve_ticket *ticket)
1095
1096 {
1097         DEFINE_WAIT(wait);
1098         int ret = 0;
1099
1100         spin_lock(&space_info->lock);
1101         while (ticket->bytes > 0 && ticket->error == 0) {
1102                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1103                 if (ret) {
1104                         /*
1105                          * Delete us from the list. After we unlock the space
1106                          * info, we don't want the async reclaim job to reserve
1107                          * space for this ticket. If that would happen, then the
1108                          * ticket's task would not known that space was reserved
1109                          * despite getting an error, resulting in a space leak
1110                          * (bytes_may_use counter of our space_info).
1111                          */
1112                         remove_ticket(space_info, ticket);
1113                         ticket->error = -EINTR;
1114                         break;
1115                 }
1116                 spin_unlock(&space_info->lock);
1117
1118                 schedule();
1119
1120                 finish_wait(&ticket->wait, &wait);
1121                 spin_lock(&space_info->lock);
1122         }
1123         spin_unlock(&space_info->lock);
1124 }
1125
1126 /**
1127  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1128  * @fs_info - the fs
1129  * @space_info - the space_info for the reservation
1130  * @ticket - the ticket for the reservation
1131  * @flush - how much we can flush
1132  *
1133  * This does the work of figuring out how to flush for the ticket, waiting for
1134  * the reservation, and returning the appropriate error if there is one.
1135  */
1136 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1137                                  struct btrfs_space_info *space_info,
1138                                  struct reserve_ticket *ticket,
1139                                  enum btrfs_reserve_flush_enum flush)
1140 {
1141         int ret;
1142
1143         switch (flush) {
1144         case BTRFS_RESERVE_FLUSH_ALL:
1145         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1146                 wait_reserve_ticket(fs_info, space_info, ticket);
1147                 break;
1148         case BTRFS_RESERVE_FLUSH_LIMIT:
1149                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1150                                                 priority_flush_states,
1151                                                 ARRAY_SIZE(priority_flush_states));
1152                 break;
1153         case BTRFS_RESERVE_FLUSH_EVICT:
1154                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1155                                                 evict_flush_states,
1156                                                 ARRAY_SIZE(evict_flush_states));
1157                 break;
1158         default:
1159                 ASSERT(0);
1160                 break;
1161         }
1162
1163         spin_lock(&space_info->lock);
1164         ret = ticket->error;
1165         if (ticket->bytes || ticket->error) {
1166                 /*
1167                  * Need to delete here for priority tickets. For regular tickets
1168                  * either the async reclaim job deletes the ticket from the list
1169                  * or we delete it ourselves at wait_reserve_ticket().
1170                  */
1171                 remove_ticket(space_info, ticket);
1172                 if (!ret)
1173                         ret = -ENOSPC;
1174         }
1175         spin_unlock(&space_info->lock);
1176         ASSERT(list_empty(&ticket->list));
1177         /*
1178          * Check that we can't have an error set if the reservation succeeded,
1179          * as that would confuse tasks and lead them to error out without
1180          * releasing reserved space (if an error happens the expectation is that
1181          * space wasn't reserved at all).
1182          */
1183         ASSERT(!(ticket->bytes == 0 && ticket->error));
1184         return ret;
1185 }
1186
1187 /**
1188  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1189  * @root - the root we're allocating for
1190  * @space_info - the space info we want to allocate from
1191  * @orig_bytes - the number of bytes we want
1192  * @flush - whether or not we can flush to make our reservation
1193  *
1194  * This will reserve orig_bytes number of bytes from the space info associated
1195  * with the block_rsv.  If there is not enough space it will make an attempt to
1196  * flush out space to make room.  It will do this by flushing delalloc if
1197  * possible or committing the transaction.  If flush is 0 then no attempts to
1198  * regain reservations will be made and this will fail if there is not enough
1199  * space already.
1200  */
1201 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1202                                     struct btrfs_space_info *space_info,
1203                                     u64 orig_bytes,
1204                                     enum btrfs_reserve_flush_enum flush)
1205 {
1206         struct reserve_ticket ticket;
1207         u64 used;
1208         int ret = 0;
1209         bool pending_tickets;
1210
1211         ASSERT(orig_bytes);
1212         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1213
1214         spin_lock(&space_info->lock);
1215         ret = -ENOSPC;
1216         used = btrfs_space_info_used(space_info, true);
1217         pending_tickets = !list_empty(&space_info->tickets) ||
1218                 !list_empty(&space_info->priority_tickets);
1219
1220         /*
1221          * Carry on if we have enough space (short-circuit) OR call
1222          * can_overcommit() to ensure we can overcommit to continue.
1223          */
1224         if (!pending_tickets &&
1225             ((used + orig_bytes <= space_info->total_bytes) ||
1226              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1227                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1228                                                       orig_bytes);
1229                 ret = 0;
1230         }
1231
1232         /*
1233          * If we couldn't make a reservation then setup our reservation ticket
1234          * and kick the async worker if it's not already running.
1235          *
1236          * If we are a priority flusher then we just need to add our ticket to
1237          * the list and we will do our own flushing further down.
1238          */
1239         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1240                 ASSERT(space_info->reclaim_size >= 0);
1241                 ticket.bytes = orig_bytes;
1242                 ticket.error = 0;
1243                 space_info->reclaim_size += ticket.bytes;
1244                 init_waitqueue_head(&ticket.wait);
1245                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1246                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1247                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
1248                         list_add_tail(&ticket.list, &space_info->tickets);
1249                         if (!space_info->flush) {
1250                                 space_info->flush = 1;
1251                                 trace_btrfs_trigger_flush(fs_info,
1252                                                           space_info->flags,
1253                                                           orig_bytes, flush,
1254                                                           "enospc");
1255                                 queue_work(system_unbound_wq,
1256                                            &fs_info->async_reclaim_work);
1257                         }
1258                 } else {
1259                         list_add_tail(&ticket.list,
1260                                       &space_info->priority_tickets);
1261                 }
1262         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1263                 used += orig_bytes;
1264                 /*
1265                  * We will do the space reservation dance during log replay,
1266                  * which means we won't have fs_info->fs_root set, so don't do
1267                  * the async reclaim as we will panic.
1268                  */
1269                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1270                     need_do_async_reclaim(fs_info, space_info, used) &&
1271                     !work_busy(&fs_info->async_reclaim_work)) {
1272                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1273                                                   orig_bytes, flush, "preempt");
1274                         queue_work(system_unbound_wq,
1275                                    &fs_info->async_reclaim_work);
1276                 }
1277         }
1278         spin_unlock(&space_info->lock);
1279         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1280                 return ret;
1281
1282         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1283 }
1284
1285 /**
1286  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1287  * @root - the root we're allocating for
1288  * @block_rsv - the block_rsv we're allocating for
1289  * @orig_bytes - the number of bytes we want
1290  * @flush - whether or not we can flush to make our reservation
1291  *
1292  * This will reserve orig_bytes number of bytes from the space info associated
1293  * with the block_rsv.  If there is not enough space it will make an attempt to
1294  * flush out space to make room.  It will do this by flushing delalloc if
1295  * possible or committing the transaction.  If flush is 0 then no attempts to
1296  * regain reservations will be made and this will fail if there is not enough
1297  * space already.
1298  */
1299 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1300                                  struct btrfs_block_rsv *block_rsv,
1301                                  u64 orig_bytes,
1302                                  enum btrfs_reserve_flush_enum flush)
1303 {
1304         struct btrfs_fs_info *fs_info = root->fs_info;
1305         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1306         int ret;
1307
1308         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1309                                        orig_bytes, flush);
1310         if (ret == -ENOSPC &&
1311             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1312                 if (block_rsv != global_rsv &&
1313                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1314                         ret = 0;
1315         }
1316         if (ret == -ENOSPC) {
1317                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1318                                               block_rsv->space_info->flags,
1319                                               orig_bytes, 1);
1320
1321                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1322                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1323                                               orig_bytes, 0);
1324         }
1325         return ret;
1326 }