Linux-libre 4.9.86-gnu
[librecmc/linux-libre.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170         if ((state & STS_HALT) == 0) {
171                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172                 return 0;
173         }
174
175         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176         command = readl(&xhci->op_regs->command);
177         command |= CMD_RESET;
178         writel(command, &xhci->op_regs->command);
179
180         /* Existing Intel xHCI controllers require a delay of 1 mS,
181          * after setting the CMD_RESET bit, and before accessing any
182          * HC registers. This allows the HC to complete the
183          * reset operation and be ready for HC register access.
184          * Without this delay, the subsequent HC register access,
185          * may result in a system hang very rarely.
186          */
187         if (xhci->quirks & XHCI_INTEL_HOST)
188                 udelay(1000);
189
190         ret = xhci_handshake(&xhci->op_regs->command,
191                         CMD_RESET, 0, 10 * 1000 * 1000);
192         if (ret)
193                 return ret;
194
195         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
196                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
197
198         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
199                          "Wait for controller to be ready for doorbell rings");
200         /*
201          * xHCI cannot write to any doorbells or operational registers other
202          * than status until the "Controller Not Ready" flag is cleared.
203          */
204         ret = xhci_handshake(&xhci->op_regs->status,
205                         STS_CNR, 0, 10 * 1000 * 1000);
206
207         for (i = 0; i < 2; ++i) {
208                 xhci->bus_state[i].port_c_suspend = 0;
209                 xhci->bus_state[i].suspended_ports = 0;
210                 xhci->bus_state[i].resuming_ports = 0;
211         }
212
213         return ret;
214 }
215
216 #ifdef CONFIG_PCI
217 static int xhci_free_msi(struct xhci_hcd *xhci)
218 {
219         int i;
220
221         if (!xhci->msix_entries)
222                 return -EINVAL;
223
224         for (i = 0; i < xhci->msix_count; i++)
225                 if (xhci->msix_entries[i].vector)
226                         free_irq(xhci->msix_entries[i].vector,
227                                         xhci_to_hcd(xhci));
228         return 0;
229 }
230
231 /*
232  * Set up MSI
233  */
234 static int xhci_setup_msi(struct xhci_hcd *xhci)
235 {
236         int ret;
237         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238
239         ret = pci_enable_msi(pdev);
240         if (ret) {
241                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
242                                 "failed to allocate MSI entry");
243                 return ret;
244         }
245
246         ret = request_irq(pdev->irq, xhci_msi_irq,
247                                 0, "xhci_hcd", xhci_to_hcd(xhci));
248         if (ret) {
249                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
250                                 "disable MSI interrupt");
251                 pci_disable_msi(pdev);
252         }
253
254         return ret;
255 }
256
257 /*
258  * Free IRQs
259  * free all IRQs request
260  */
261 static void xhci_free_irq(struct xhci_hcd *xhci)
262 {
263         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
264         int ret;
265
266         /* return if using legacy interrupt */
267         if (xhci_to_hcd(xhci)->irq > 0)
268                 return;
269
270         ret = xhci_free_msi(xhci);
271         if (!ret)
272                 return;
273         if (pdev->irq > 0)
274                 free_irq(pdev->irq, xhci_to_hcd(xhci));
275
276         return;
277 }
278
279 /*
280  * Set up MSI-X
281  */
282 static int xhci_setup_msix(struct xhci_hcd *xhci)
283 {
284         int i, ret = 0;
285         struct usb_hcd *hcd = xhci_to_hcd(xhci);
286         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
287
288         /*
289          * calculate number of msi-x vectors supported.
290          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
291          *   with max number of interrupters based on the xhci HCSPARAMS1.
292          * - num_online_cpus: maximum msi-x vectors per CPUs core.
293          *   Add additional 1 vector to ensure always available interrupt.
294          */
295         xhci->msix_count = min(num_online_cpus() + 1,
296                                 HCS_MAX_INTRS(xhci->hcs_params1));
297
298         xhci->msix_entries =
299                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
300                                 GFP_KERNEL);
301         if (!xhci->msix_entries)
302                 return -ENOMEM;
303
304         for (i = 0; i < xhci->msix_count; i++) {
305                 xhci->msix_entries[i].entry = i;
306                 xhci->msix_entries[i].vector = 0;
307         }
308
309         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "Failed to enable MSI-X");
313                 goto free_entries;
314         }
315
316         for (i = 0; i < xhci->msix_count; i++) {
317                 ret = request_irq(xhci->msix_entries[i].vector,
318                                 xhci_msi_irq,
319                                 0, "xhci_hcd", xhci_to_hcd(xhci));
320                 if (ret)
321                         goto disable_msix;
322         }
323
324         hcd->msix_enabled = 1;
325         return ret;
326
327 disable_msix:
328         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
329         xhci_free_irq(xhci);
330         pci_disable_msix(pdev);
331 free_entries:
332         kfree(xhci->msix_entries);
333         xhci->msix_entries = NULL;
334         return ret;
335 }
336
337 /* Free any IRQs and disable MSI-X */
338 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
339 {
340         struct usb_hcd *hcd = xhci_to_hcd(xhci);
341         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
342
343         if (xhci->quirks & XHCI_PLAT)
344                 return;
345
346         xhci_free_irq(xhci);
347
348         if (xhci->msix_entries) {
349                 pci_disable_msix(pdev);
350                 kfree(xhci->msix_entries);
351                 xhci->msix_entries = NULL;
352         } else {
353                 pci_disable_msi(pdev);
354         }
355
356         hcd->msix_enabled = 0;
357         return;
358 }
359
360 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
361 {
362         int i;
363
364         if (xhci->msix_entries) {
365                 for (i = 0; i < xhci->msix_count; i++)
366                         synchronize_irq(xhci->msix_entries[i].vector);
367         }
368 }
369
370 static int xhci_try_enable_msi(struct usb_hcd *hcd)
371 {
372         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
373         struct pci_dev  *pdev;
374         int ret;
375
376         /* The xhci platform device has set up IRQs through usb_add_hcd. */
377         if (xhci->quirks & XHCI_PLAT)
378                 return 0;
379
380         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
381         /*
382          * Some Fresco Logic host controllers advertise MSI, but fail to
383          * generate interrupts.  Don't even try to enable MSI.
384          */
385         if (xhci->quirks & XHCI_BROKEN_MSI)
386                 goto legacy_irq;
387
388         /* unregister the legacy interrupt */
389         if (hcd->irq)
390                 free_irq(hcd->irq, hcd);
391         hcd->irq = 0;
392
393         ret = xhci_setup_msix(xhci);
394         if (ret)
395                 /* fall back to msi*/
396                 ret = xhci_setup_msi(xhci);
397
398         if (!ret)
399                 /* hcd->irq is 0, we have MSI */
400                 return 0;
401
402         if (!pdev->irq) {
403                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
404                 return -EINVAL;
405         }
406
407  legacy_irq:
408         if (!strlen(hcd->irq_descr))
409                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
410                          hcd->driver->description, hcd->self.busnum);
411
412         /* fall back to legacy interrupt*/
413         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
414                         hcd->irq_descr, hcd);
415         if (ret) {
416                 xhci_err(xhci, "request interrupt %d failed\n",
417                                 pdev->irq);
418                 return ret;
419         }
420         hcd->irq = pdev->irq;
421         return 0;
422 }
423
424 #else
425
426 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
427 {
428         return 0;
429 }
430
431 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
432 {
433 }
434
435 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
436 {
437 }
438
439 #endif
440
441 static void compliance_mode_recovery(unsigned long arg)
442 {
443         struct xhci_hcd *xhci;
444         struct usb_hcd *hcd;
445         u32 temp;
446         int i;
447
448         xhci = (struct xhci_hcd *)arg;
449
450         for (i = 0; i < xhci->num_usb3_ports; i++) {
451                 temp = readl(xhci->usb3_ports[i]);
452                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
453                         /*
454                          * Compliance Mode Detected. Letting USB Core
455                          * handle the Warm Reset
456                          */
457                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458                                         "Compliance mode detected->port %d",
459                                         i + 1);
460                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461                                         "Attempting compliance mode recovery");
462                         hcd = xhci->shared_hcd;
463
464                         if (hcd->state == HC_STATE_SUSPENDED)
465                                 usb_hcd_resume_root_hub(hcd);
466
467                         usb_hcd_poll_rh_status(hcd);
468                 }
469         }
470
471         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
472                 mod_timer(&xhci->comp_mode_recovery_timer,
473                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
474 }
475
476 /*
477  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
478  * that causes ports behind that hardware to enter compliance mode sometimes.
479  * The quirk creates a timer that polls every 2 seconds the link state of
480  * each host controller's port and recovers it by issuing a Warm reset
481  * if Compliance mode is detected, otherwise the port will become "dead" (no
482  * device connections or disconnections will be detected anymore). Becasue no
483  * status event is generated when entering compliance mode (per xhci spec),
484  * this quirk is needed on systems that have the failing hardware installed.
485  */
486 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
487 {
488         xhci->port_status_u0 = 0;
489         setup_timer(&xhci->comp_mode_recovery_timer,
490                     compliance_mode_recovery, (unsigned long)xhci);
491         xhci->comp_mode_recovery_timer.expires = jiffies +
492                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
493
494         add_timer(&xhci->comp_mode_recovery_timer);
495         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496                         "Compliance mode recovery timer initialized");
497 }
498
499 /*
500  * This function identifies the systems that have installed the SN65LVPE502CP
501  * USB3.0 re-driver and that need the Compliance Mode Quirk.
502  * Systems:
503  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504  */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507         const char *dmi_product_name, *dmi_sys_vendor;
508
509         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511         if (!dmi_product_name || !dmi_sys_vendor)
512                 return false;
513
514         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515                 return false;
516
517         if (strstr(dmi_product_name, "Z420") ||
518                         strstr(dmi_product_name, "Z620") ||
519                         strstr(dmi_product_name, "Z820") ||
520                         strstr(dmi_product_name, "Z1 Workstation"))
521                 return true;
522
523         return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533  * Initialize memory for HCD and xHC (one-time init).
534  *
535  * Program the PAGESIZE register, initialize the device context array, create
536  * device contexts (?), set up a command ring segment (or two?), create event
537  * ring (one for now).
538  */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542         int retval = 0;
543
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545         spin_lock_init(&xhci->lock);
546         if (xhci->hci_version == 0x95 && link_quirk) {
547                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548                                 "QUIRK: Not clearing Link TRB chain bits.");
549                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550         } else {
551                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552                                 "xHCI doesn't need link TRB QUIRK");
553         }
554         retval = xhci_mem_init(xhci, GFP_KERNEL);
555         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557         /* Initializing Compliance Mode Recovery Data If Needed */
558         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560                 compliance_mode_recovery_timer_init(xhci);
561         }
562
563         return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571         if (xhci_start(xhci)) {
572                 xhci_halt(xhci);
573                 return -ENODEV;
574         }
575         xhci->shared_hcd->state = HC_STATE_RUNNING;
576         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578         if (xhci->quirks & XHCI_NEC_HOST)
579                 xhci_ring_cmd_db(xhci);
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582                         "Finished xhci_run for USB3 roothub");
583         return 0;
584 }
585
586 /*
587  * Start the HC after it was halted.
588  *
589  * This function is called by the USB core when the HC driver is added.
590  * Its opposite is xhci_stop().
591  *
592  * xhci_init() must be called once before this function can be called.
593  * Reset the HC, enable device slot contexts, program DCBAAP, and
594  * set command ring pointer and event ring pointer.
595  *
596  * Setup MSI-X vectors and enable interrupts.
597  */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600         u32 temp;
601         u64 temp_64;
602         int ret;
603         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605         /* Start the xHCI host controller running only after the USB 2.0 roothub
606          * is setup.
607          */
608
609         hcd->uses_new_polling = 1;
610         if (!usb_hcd_is_primary_hcd(hcd))
611                 return xhci_run_finished(xhci);
612
613         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615         ret = xhci_try_enable_msi(hcd);
616         if (ret)
617                 return ret;
618
619         xhci_dbg(xhci, "Command ring memory map follows:\n");
620         xhci_debug_ring(xhci, xhci->cmd_ring);
621         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622         xhci_dbg_cmd_ptrs(xhci);
623
624         xhci_dbg(xhci, "ERST memory map follows:\n");
625         xhci_dbg_erst(xhci, &xhci->erst);
626         xhci_dbg(xhci, "Event ring:\n");
627         xhci_debug_ring(xhci, xhci->event_ring);
628         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630         temp_64 &= ~ERST_PTR_MASK;
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "// Set the interrupt modulation register");
636         temp = readl(&xhci->ir_set->irq_control);
637         temp &= ~ER_IRQ_INTERVAL_MASK;
638         /*
639          * the increment interval is 8 times as much as that defined
640          * in xHCI spec on MTK's controller
641          */
642         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643         writel(temp, &xhci->ir_set->irq_control);
644
645         /* Set the HCD state before we enable the irqs */
646         temp = readl(&xhci->op_regs->command);
647         temp |= (CMD_EIE);
648         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649                         "// Enable interrupts, cmd = 0x%x.", temp);
650         writel(temp, &xhci->op_regs->command);
651
652         temp = readl(&xhci->ir_set->irq_pending);
653         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657         xhci_print_ir_set(xhci, 0);
658
659         if (xhci->quirks & XHCI_NEC_HOST) {
660                 struct xhci_command *command;
661                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662                 if (!command)
663                         return -ENOMEM;
664                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665                                 TRB_TYPE(TRB_NEC_GET_FW));
666         }
667         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668                         "Finished xhci_run for USB2 roothub");
669         return 0;
670 }
671 EXPORT_SYMBOL_GPL(xhci_run);
672
673 /*
674  * Stop xHCI driver.
675  *
676  * This function is called by the USB core when the HC driver is removed.
677  * Its opposite is xhci_run().
678  *
679  * Disable device contexts, disable IRQs, and quiesce the HC.
680  * Reset the HC, finish any completed transactions, and cleanup memory.
681  */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684         u32 temp;
685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687         mutex_lock(&xhci->mutex);
688
689         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
690                 spin_lock_irq(&xhci->lock);
691
692                 xhci->xhc_state |= XHCI_STATE_HALTED;
693                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694                 xhci_halt(xhci);
695                 xhci_reset(xhci);
696
697                 spin_unlock_irq(&xhci->lock);
698         }
699
700         if (!usb_hcd_is_primary_hcd(hcd)) {
701                 mutex_unlock(&xhci->mutex);
702                 return;
703         }
704
705         xhci_cleanup_msix(xhci);
706
707         /* Deleting Compliance Mode Recovery Timer */
708         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
709                         (!(xhci_all_ports_seen_u0(xhci)))) {
710                 del_timer_sync(&xhci->comp_mode_recovery_timer);
711                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
712                                 "%s: compliance mode recovery timer deleted",
713                                 __func__);
714         }
715
716         if (xhci->quirks & XHCI_AMD_PLL_FIX)
717                 usb_amd_dev_put();
718
719         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
720                         "// Disabling event ring interrupts");
721         temp = readl(&xhci->op_regs->status);
722         writel(temp & ~STS_EINT, &xhci->op_regs->status);
723         temp = readl(&xhci->ir_set->irq_pending);
724         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
725         xhci_print_ir_set(xhci, 0);
726
727         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
728         xhci_mem_cleanup(xhci);
729         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
730                         "xhci_stop completed - status = %x",
731                         readl(&xhci->op_regs->status));
732         mutex_unlock(&xhci->mutex);
733 }
734
735 /*
736  * Shutdown HC (not bus-specific)
737  *
738  * This is called when the machine is rebooting or halting.  We assume that the
739  * machine will be powered off, and the HC's internal state will be reset.
740  * Don't bother to free memory.
741  *
742  * This will only ever be called with the main usb_hcd (the USB3 roothub).
743  */
744 void xhci_shutdown(struct usb_hcd *hcd)
745 {
746         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
747
748         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
749                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
750
751         spin_lock_irq(&xhci->lock);
752         xhci_halt(xhci);
753         /* Workaround for spurious wakeups at shutdown with HSW */
754         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
755                 xhci_reset(xhci);
756         spin_unlock_irq(&xhci->lock);
757
758         xhci_cleanup_msix(xhci);
759
760         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761                         "xhci_shutdown completed - status = %x",
762                         readl(&xhci->op_regs->status));
763
764         /* Yet another workaround for spurious wakeups at shutdown with HSW */
765         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
766                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
767 }
768
769 #ifdef CONFIG_PM
770 static void xhci_save_registers(struct xhci_hcd *xhci)
771 {
772         xhci->s3.command = readl(&xhci->op_regs->command);
773         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
774         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
775         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
776         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
777         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
778         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
779         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
780         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
781 }
782
783 static void xhci_restore_registers(struct xhci_hcd *xhci)
784 {
785         writel(xhci->s3.command, &xhci->op_regs->command);
786         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
787         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
788         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
789         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
790         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
791         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
792         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
793         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
794 }
795
796 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
797 {
798         u64     val_64;
799
800         /* step 2: initialize command ring buffer */
801         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
802         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
803                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
804                                       xhci->cmd_ring->dequeue) &
805                  (u64) ~CMD_RING_RSVD_BITS) |
806                 xhci->cmd_ring->cycle_state;
807         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
808                         "// Setting command ring address to 0x%llx",
809                         (long unsigned long) val_64);
810         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
811 }
812
813 /*
814  * The whole command ring must be cleared to zero when we suspend the host.
815  *
816  * The host doesn't save the command ring pointer in the suspend well, so we
817  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
818  * aligned, because of the reserved bits in the command ring dequeue pointer
819  * register.  Therefore, we can't just set the dequeue pointer back in the
820  * middle of the ring (TRBs are 16-byte aligned).
821  */
822 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
823 {
824         struct xhci_ring *ring;
825         struct xhci_segment *seg;
826
827         ring = xhci->cmd_ring;
828         seg = ring->deq_seg;
829         do {
830                 memset(seg->trbs, 0,
831                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
832                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
833                         cpu_to_le32(~TRB_CYCLE);
834                 seg = seg->next;
835         } while (seg != ring->deq_seg);
836
837         /* Reset the software enqueue and dequeue pointers */
838         ring->deq_seg = ring->first_seg;
839         ring->dequeue = ring->first_seg->trbs;
840         ring->enq_seg = ring->deq_seg;
841         ring->enqueue = ring->dequeue;
842
843         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
844         /*
845          * Ring is now zeroed, so the HW should look for change of ownership
846          * when the cycle bit is set to 1.
847          */
848         ring->cycle_state = 1;
849
850         /*
851          * Reset the hardware dequeue pointer.
852          * Yes, this will need to be re-written after resume, but we're paranoid
853          * and want to make sure the hardware doesn't access bogus memory
854          * because, say, the BIOS or an SMI started the host without changing
855          * the command ring pointers.
856          */
857         xhci_set_cmd_ring_deq(xhci);
858 }
859
860 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
861 {
862         int port_index;
863         __le32 __iomem **port_array;
864         unsigned long flags;
865         u32 t1, t2;
866
867         spin_lock_irqsave(&xhci->lock, flags);
868
869         /* disble usb3 ports Wake bits*/
870         port_index = xhci->num_usb3_ports;
871         port_array = xhci->usb3_ports;
872         while (port_index--) {
873                 t1 = readl(port_array[port_index]);
874                 t1 = xhci_port_state_to_neutral(t1);
875                 t2 = t1 & ~PORT_WAKE_BITS;
876                 if (t1 != t2)
877                         writel(t2, port_array[port_index]);
878         }
879
880         /* disble usb2 ports Wake bits*/
881         port_index = xhci->num_usb2_ports;
882         port_array = xhci->usb2_ports;
883         while (port_index--) {
884                 t1 = readl(port_array[port_index]);
885                 t1 = xhci_port_state_to_neutral(t1);
886                 t2 = t1 & ~PORT_WAKE_BITS;
887                 if (t1 != t2)
888                         writel(t2, port_array[port_index]);
889         }
890
891         spin_unlock_irqrestore(&xhci->lock, flags);
892 }
893
894 /*
895  * Stop HC (not bus-specific)
896  *
897  * This is called when the machine transition into S3/S4 mode.
898  *
899  */
900 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
901 {
902         int                     rc = 0;
903         unsigned int            delay = XHCI_MAX_HALT_USEC;
904         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
905         u32                     command;
906
907         if (!hcd->state)
908                 return 0;
909
910         if (hcd->state != HC_STATE_SUSPENDED ||
911                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
912                 return -EINVAL;
913
914         /* Clear root port wake on bits if wakeup not allowed. */
915         if (!do_wakeup)
916                 xhci_disable_port_wake_on_bits(xhci);
917
918         /* Don't poll the roothubs on bus suspend. */
919         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
920         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
921         del_timer_sync(&hcd->rh_timer);
922         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
923         del_timer_sync(&xhci->shared_hcd->rh_timer);
924
925         spin_lock_irq(&xhci->lock);
926         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
927         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
928         /* step 1: stop endpoint */
929         /* skipped assuming that port suspend has done */
930
931         /* step 2: clear Run/Stop bit */
932         command = readl(&xhci->op_regs->command);
933         command &= ~CMD_RUN;
934         writel(command, &xhci->op_regs->command);
935
936         /* Some chips from Fresco Logic need an extraordinary delay */
937         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
938
939         if (xhci_handshake(&xhci->op_regs->status,
940                       STS_HALT, STS_HALT, delay)) {
941                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
942                 spin_unlock_irq(&xhci->lock);
943                 return -ETIMEDOUT;
944         }
945         xhci_clear_command_ring(xhci);
946
947         /* step 3: save registers */
948         xhci_save_registers(xhci);
949
950         /* step 4: set CSS flag */
951         command = readl(&xhci->op_regs->command);
952         command |= CMD_CSS;
953         writel(command, &xhci->op_regs->command);
954         if (xhci_handshake(&xhci->op_regs->status,
955                                 STS_SAVE, 0, 10 * 1000)) {
956                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
957                 spin_unlock_irq(&xhci->lock);
958                 return -ETIMEDOUT;
959         }
960         spin_unlock_irq(&xhci->lock);
961
962         /*
963          * Deleting Compliance Mode Recovery Timer because the xHCI Host
964          * is about to be suspended.
965          */
966         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
967                         (!(xhci_all_ports_seen_u0(xhci)))) {
968                 del_timer_sync(&xhci->comp_mode_recovery_timer);
969                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
970                                 "%s: compliance mode recovery timer deleted",
971                                 __func__);
972         }
973
974         /* step 5: remove core well power */
975         /* synchronize irq when using MSI-X */
976         xhci_msix_sync_irqs(xhci);
977
978         return rc;
979 }
980 EXPORT_SYMBOL_GPL(xhci_suspend);
981
982 /*
983  * start xHC (not bus-specific)
984  *
985  * This is called when the machine transition from S3/S4 mode.
986  *
987  */
988 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
989 {
990         u32                     command, temp = 0, status;
991         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
992         struct usb_hcd          *secondary_hcd;
993         int                     retval = 0;
994         bool                    comp_timer_running = false;
995
996         if (!hcd->state)
997                 return 0;
998
999         /* Wait a bit if either of the roothubs need to settle from the
1000          * transition into bus suspend.
1001          */
1002         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1003                         time_before(jiffies,
1004                                 xhci->bus_state[1].next_statechange))
1005                 msleep(100);
1006
1007         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009
1010         spin_lock_irq(&xhci->lock);
1011         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1012                 hibernated = true;
1013
1014         if (!hibernated) {
1015                 /* step 1: restore register */
1016                 xhci_restore_registers(xhci);
1017                 /* step 2: initialize command ring buffer */
1018                 xhci_set_cmd_ring_deq(xhci);
1019                 /* step 3: restore state and start state*/
1020                 /* step 3: set CRS flag */
1021                 command = readl(&xhci->op_regs->command);
1022                 command |= CMD_CRS;
1023                 writel(command, &xhci->op_regs->command);
1024                 if (xhci_handshake(&xhci->op_regs->status,
1025                               STS_RESTORE, 0, 10 * 1000)) {
1026                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1027                         spin_unlock_irq(&xhci->lock);
1028                         return -ETIMEDOUT;
1029                 }
1030                 temp = readl(&xhci->op_regs->status);
1031         }
1032
1033         /* If restore operation fails, re-initialize the HC during resume */
1034         if ((temp & STS_SRE) || hibernated) {
1035
1036                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1037                                 !(xhci_all_ports_seen_u0(xhci))) {
1038                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1039                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1040                                 "Compliance Mode Recovery Timer deleted!");
1041                 }
1042
1043                 /* Let the USB core know _both_ roothubs lost power. */
1044                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1045                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1046
1047                 xhci_dbg(xhci, "Stop HCD\n");
1048                 xhci_halt(xhci);
1049                 xhci_reset(xhci);
1050                 spin_unlock_irq(&xhci->lock);
1051                 xhci_cleanup_msix(xhci);
1052
1053                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1054                 temp = readl(&xhci->op_regs->status);
1055                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1056                 temp = readl(&xhci->ir_set->irq_pending);
1057                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1058                 xhci_print_ir_set(xhci, 0);
1059
1060                 xhci_dbg(xhci, "cleaning up memory\n");
1061                 xhci_mem_cleanup(xhci);
1062                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1063                             readl(&xhci->op_regs->status));
1064
1065                 /* USB core calls the PCI reinit and start functions twice:
1066                  * first with the primary HCD, and then with the secondary HCD.
1067                  * If we don't do the same, the host will never be started.
1068                  */
1069                 if (!usb_hcd_is_primary_hcd(hcd))
1070                         secondary_hcd = hcd;
1071                 else
1072                         secondary_hcd = xhci->shared_hcd;
1073
1074                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1075                 retval = xhci_init(hcd->primary_hcd);
1076                 if (retval)
1077                         return retval;
1078                 comp_timer_running = true;
1079
1080                 xhci_dbg(xhci, "Start the primary HCD\n");
1081                 retval = xhci_run(hcd->primary_hcd);
1082                 if (!retval) {
1083                         xhci_dbg(xhci, "Start the secondary HCD\n");
1084                         retval = xhci_run(secondary_hcd);
1085                 }
1086                 hcd->state = HC_STATE_SUSPENDED;
1087                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1088                 goto done;
1089         }
1090
1091         /* step 4: set Run/Stop bit */
1092         command = readl(&xhci->op_regs->command);
1093         command |= CMD_RUN;
1094         writel(command, &xhci->op_regs->command);
1095         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1096                   0, 250 * 1000);
1097
1098         /* step 5: walk topology and initialize portsc,
1099          * portpmsc and portli
1100          */
1101         /* this is done in bus_resume */
1102
1103         /* step 6: restart each of the previously
1104          * Running endpoints by ringing their doorbells
1105          */
1106
1107         spin_unlock_irq(&xhci->lock);
1108
1109  done:
1110         if (retval == 0) {
1111                 /* Resume root hubs only when have pending events. */
1112                 status = readl(&xhci->op_regs->status);
1113                 if (status & STS_EINT) {
1114                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1115                         usb_hcd_resume_root_hub(hcd);
1116                 }
1117         }
1118
1119         /*
1120          * If system is subject to the Quirk, Compliance Mode Timer needs to
1121          * be re-initialized Always after a system resume. Ports are subject
1122          * to suffer the Compliance Mode issue again. It doesn't matter if
1123          * ports have entered previously to U0 before system's suspension.
1124          */
1125         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1126                 compliance_mode_recovery_timer_init(xhci);
1127
1128         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1129                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1130
1131         /* Re-enable port polling. */
1132         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1133         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1134         usb_hcd_poll_rh_status(xhci->shared_hcd);
1135         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1136         usb_hcd_poll_rh_status(hcd);
1137
1138         return retval;
1139 }
1140 EXPORT_SYMBOL_GPL(xhci_resume);
1141 #endif  /* CONFIG_PM */
1142
1143 /*-------------------------------------------------------------------------*/
1144
1145 /**
1146  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1147  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1148  * value to right shift 1 for the bitmask.
1149  *
1150  * Index  = (epnum * 2) + direction - 1,
1151  * where direction = 0 for OUT, 1 for IN.
1152  * For control endpoints, the IN index is used (OUT index is unused), so
1153  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1154  */
1155 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1156 {
1157         unsigned int index;
1158         if (usb_endpoint_xfer_control(desc))
1159                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1160         else
1161                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1162                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1163         return index;
1164 }
1165
1166 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1167  * address from the XHCI endpoint index.
1168  */
1169 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1170 {
1171         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1172         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1173         return direction | number;
1174 }
1175
1176 /* Find the flag for this endpoint (for use in the control context).  Use the
1177  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1178  * bit 1, etc.
1179  */
1180 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1181 {
1182         return 1 << (xhci_get_endpoint_index(desc) + 1);
1183 }
1184
1185 /* Find the flag for this endpoint (for use in the control context).  Use the
1186  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1187  * bit 1, etc.
1188  */
1189 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1190 {
1191         return 1 << (ep_index + 1);
1192 }
1193
1194 /* Compute the last valid endpoint context index.  Basically, this is the
1195  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1196  * we find the most significant bit set in the added contexts flags.
1197  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1198  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1199  */
1200 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1201 {
1202         return fls(added_ctxs) - 1;
1203 }
1204
1205 /* Returns 1 if the arguments are OK;
1206  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1207  */
1208 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1209                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1210                 const char *func) {
1211         struct xhci_hcd *xhci;
1212         struct xhci_virt_device *virt_dev;
1213
1214         if (!hcd || (check_ep && !ep) || !udev) {
1215                 pr_debug("xHCI %s called with invalid args\n", func);
1216                 return -EINVAL;
1217         }
1218         if (!udev->parent) {
1219                 pr_debug("xHCI %s called for root hub\n", func);
1220                 return 0;
1221         }
1222
1223         xhci = hcd_to_xhci(hcd);
1224         if (check_virt_dev) {
1225                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1226                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1227                                         func);
1228                         return -EINVAL;
1229                 }
1230
1231                 virt_dev = xhci->devs[udev->slot_id];
1232                 if (virt_dev->udev != udev) {
1233                         xhci_dbg(xhci, "xHCI %s called with udev and "
1234                                           "virt_dev does not match\n", func);
1235                         return -EINVAL;
1236                 }
1237         }
1238
1239         if (xhci->xhc_state & XHCI_STATE_HALTED)
1240                 return -ENODEV;
1241
1242         return 1;
1243 }
1244
1245 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1246                 struct usb_device *udev, struct xhci_command *command,
1247                 bool ctx_change, bool must_succeed);
1248
1249 /*
1250  * Full speed devices may have a max packet size greater than 8 bytes, but the
1251  * USB core doesn't know that until it reads the first 8 bytes of the
1252  * descriptor.  If the usb_device's max packet size changes after that point,
1253  * we need to issue an evaluate context command and wait on it.
1254  */
1255 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1256                 unsigned int ep_index, struct urb *urb)
1257 {
1258         struct xhci_container_ctx *out_ctx;
1259         struct xhci_input_control_ctx *ctrl_ctx;
1260         struct xhci_ep_ctx *ep_ctx;
1261         struct xhci_command *command;
1262         int max_packet_size;
1263         int hw_max_packet_size;
1264         int ret = 0;
1265
1266         out_ctx = xhci->devs[slot_id]->out_ctx;
1267         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1268         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1269         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1270         if (hw_max_packet_size != max_packet_size) {
1271                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272                                 "Max Packet Size for ep 0 changed.");
1273                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274                                 "Max packet size in usb_device = %d",
1275                                 max_packet_size);
1276                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1277                                 "Max packet size in xHCI HW = %d",
1278                                 hw_max_packet_size);
1279                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1280                                 "Issuing evaluate context command.");
1281
1282                 /* Set up the input context flags for the command */
1283                 /* FIXME: This won't work if a non-default control endpoint
1284                  * changes max packet sizes.
1285                  */
1286
1287                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1288                 if (!command)
1289                         return -ENOMEM;
1290
1291                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1292                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1293                 if (!ctrl_ctx) {
1294                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1295                                         __func__);
1296                         ret = -ENOMEM;
1297                         goto command_cleanup;
1298                 }
1299                 /* Set up the modified control endpoint 0 */
1300                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1301                                 xhci->devs[slot_id]->out_ctx, ep_index);
1302
1303                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1304                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1305                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1306
1307                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1308                 ctrl_ctx->drop_flags = 0;
1309
1310                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1311                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1312                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1313                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1314
1315                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1316                                 true, false);
1317
1318                 /* Clean up the input context for later use by bandwidth
1319                  * functions.
1320                  */
1321                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1322 command_cleanup:
1323                 kfree(command->completion);
1324                 kfree(command);
1325         }
1326         return ret;
1327 }
1328
1329 /*
1330  * non-error returns are a promise to giveback() the urb later
1331  * we drop ownership so next owner (or urb unlink) can get it
1332  */
1333 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1334 {
1335         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1336         struct xhci_td *buffer;
1337         unsigned long flags;
1338         int ret = 0;
1339         unsigned int slot_id, ep_index;
1340         struct urb_priv *urb_priv;
1341         int size, i;
1342
1343         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1344                                         true, true, __func__) <= 0)
1345                 return -EINVAL;
1346
1347         slot_id = urb->dev->slot_id;
1348         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1349
1350         if (!HCD_HW_ACCESSIBLE(hcd)) {
1351                 if (!in_interrupt())
1352                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1353                 ret = -ESHUTDOWN;
1354                 goto exit;
1355         }
1356
1357         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1358                 size = urb->number_of_packets;
1359         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1360             urb->transfer_buffer_length > 0 &&
1361             urb->transfer_flags & URB_ZERO_PACKET &&
1362             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1363                 size = 2;
1364         else
1365                 size = 1;
1366
1367         urb_priv = kzalloc(sizeof(struct urb_priv) +
1368                                   size * sizeof(struct xhci_td *), mem_flags);
1369         if (!urb_priv)
1370                 return -ENOMEM;
1371
1372         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1373         if (!buffer) {
1374                 kfree(urb_priv);
1375                 return -ENOMEM;
1376         }
1377
1378         for (i = 0; i < size; i++) {
1379                 urb_priv->td[i] = buffer;
1380                 buffer++;
1381         }
1382
1383         urb_priv->length = size;
1384         urb_priv->td_cnt = 0;
1385         urb->hcpriv = urb_priv;
1386
1387         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1388                 /* Check to see if the max packet size for the default control
1389                  * endpoint changed during FS device enumeration
1390                  */
1391                 if (urb->dev->speed == USB_SPEED_FULL) {
1392                         ret = xhci_check_maxpacket(xhci, slot_id,
1393                                         ep_index, urb);
1394                         if (ret < 0) {
1395                                 xhci_urb_free_priv(urb_priv);
1396                                 urb->hcpriv = NULL;
1397                                 return ret;
1398                         }
1399                 }
1400
1401                 /* We have a spinlock and interrupts disabled, so we must pass
1402                  * atomic context to this function, which may allocate memory.
1403                  */
1404                 spin_lock_irqsave(&xhci->lock, flags);
1405                 if (xhci->xhc_state & XHCI_STATE_DYING)
1406                         goto dying;
1407                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1408                                 slot_id, ep_index);
1409                 if (ret)
1410                         goto free_priv;
1411                 spin_unlock_irqrestore(&xhci->lock, flags);
1412         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1413                 spin_lock_irqsave(&xhci->lock, flags);
1414                 if (xhci->xhc_state & XHCI_STATE_DYING)
1415                         goto dying;
1416                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417                                 EP_GETTING_STREAMS) {
1418                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419                                         "is transitioning to using streams.\n");
1420                         ret = -EINVAL;
1421                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1422                                 EP_GETTING_NO_STREAMS) {
1423                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1424                                         "is transitioning to "
1425                                         "not having streams.\n");
1426                         ret = -EINVAL;
1427                 } else {
1428                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1429                                         slot_id, ep_index);
1430                 }
1431                 if (ret)
1432                         goto free_priv;
1433                 spin_unlock_irqrestore(&xhci->lock, flags);
1434         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1435                 spin_lock_irqsave(&xhci->lock, flags);
1436                 if (xhci->xhc_state & XHCI_STATE_DYING)
1437                         goto dying;
1438                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1439                                 slot_id, ep_index);
1440                 if (ret)
1441                         goto free_priv;
1442                 spin_unlock_irqrestore(&xhci->lock, flags);
1443         } else {
1444                 spin_lock_irqsave(&xhci->lock, flags);
1445                 if (xhci->xhc_state & XHCI_STATE_DYING)
1446                         goto dying;
1447                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1448                                 slot_id, ep_index);
1449                 if (ret)
1450                         goto free_priv;
1451                 spin_unlock_irqrestore(&xhci->lock, flags);
1452         }
1453 exit:
1454         return ret;
1455 dying:
1456         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1457                         "non-responsive xHCI host.\n",
1458                         urb->ep->desc.bEndpointAddress, urb);
1459         ret = -ESHUTDOWN;
1460 free_priv:
1461         xhci_urb_free_priv(urb_priv);
1462         urb->hcpriv = NULL;
1463         spin_unlock_irqrestore(&xhci->lock, flags);
1464         return ret;
1465 }
1466
1467 /*
1468  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1469  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1470  * should pick up where it left off in the TD, unless a Set Transfer Ring
1471  * Dequeue Pointer is issued.
1472  *
1473  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1474  * the ring.  Since the ring is a contiguous structure, they can't be physically
1475  * removed.  Instead, there are two options:
1476  *
1477  *  1) If the HC is in the middle of processing the URB to be canceled, we
1478  *     simply move the ring's dequeue pointer past those TRBs using the Set
1479  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1480  *     when drivers timeout on the last submitted URB and attempt to cancel.
1481  *
1482  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1483  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1484  *     HC will need to invalidate the any TRBs it has cached after the stop
1485  *     endpoint command, as noted in the xHCI 0.95 errata.
1486  *
1487  *  3) The TD may have completed by the time the Stop Endpoint Command
1488  *     completes, so software needs to handle that case too.
1489  *
1490  * This function should protect against the TD enqueueing code ringing the
1491  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1492  * It also needs to account for multiple cancellations on happening at the same
1493  * time for the same endpoint.
1494  *
1495  * Note that this function can be called in any context, or so says
1496  * usb_hcd_unlink_urb()
1497  */
1498 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1499 {
1500         unsigned long flags;
1501         int ret, i;
1502         u32 temp;
1503         struct xhci_hcd *xhci;
1504         struct urb_priv *urb_priv;
1505         struct xhci_td *td;
1506         unsigned int ep_index;
1507         struct xhci_ring *ep_ring;
1508         struct xhci_virt_ep *ep;
1509         struct xhci_command *command;
1510
1511         xhci = hcd_to_xhci(hcd);
1512         spin_lock_irqsave(&xhci->lock, flags);
1513         /* Make sure the URB hasn't completed or been unlinked already */
1514         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1515         if (ret || !urb->hcpriv)
1516                 goto done;
1517         temp = readl(&xhci->op_regs->status);
1518         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1519                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1520                                 "HW died, freeing TD.");
1521                 urb_priv = urb->hcpriv;
1522                 for (i = urb_priv->td_cnt;
1523                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1524                      i++) {
1525                         td = urb_priv->td[i];
1526                         if (!list_empty(&td->td_list))
1527                                 list_del_init(&td->td_list);
1528                         if (!list_empty(&td->cancelled_td_list))
1529                                 list_del_init(&td->cancelled_td_list);
1530                 }
1531
1532                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1533                 spin_unlock_irqrestore(&xhci->lock, flags);
1534                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1535                 xhci_urb_free_priv(urb_priv);
1536                 return ret;
1537         }
1538
1539         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1540         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1541         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1542         if (!ep_ring) {
1543                 ret = -EINVAL;
1544                 goto done;
1545         }
1546
1547         urb_priv = urb->hcpriv;
1548         i = urb_priv->td_cnt;
1549         if (i < urb_priv->length)
1550                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1551                                 "Cancel URB %p, dev %s, ep 0x%x, "
1552                                 "starting at offset 0x%llx",
1553                                 urb, urb->dev->devpath,
1554                                 urb->ep->desc.bEndpointAddress,
1555                                 (unsigned long long) xhci_trb_virt_to_dma(
1556                                         urb_priv->td[i]->start_seg,
1557                                         urb_priv->td[i]->first_trb));
1558
1559         for (; i < urb_priv->length; i++) {
1560                 td = urb_priv->td[i];
1561                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1562         }
1563
1564         /* Queue a stop endpoint command, but only if this is
1565          * the first cancellation to be handled.
1566          */
1567         if (!(ep->ep_state & EP_HALT_PENDING)) {
1568                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1569                 if (!command) {
1570                         ret = -ENOMEM;
1571                         goto done;
1572                 }
1573                 ep->ep_state |= EP_HALT_PENDING;
1574                 ep->stop_cmds_pending++;
1575                 ep->stop_cmd_timer.expires = jiffies +
1576                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1577                 add_timer(&ep->stop_cmd_timer);
1578                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1579                                          ep_index, 0);
1580                 xhci_ring_cmd_db(xhci);
1581         }
1582 done:
1583         spin_unlock_irqrestore(&xhci->lock, flags);
1584         return ret;
1585 }
1586
1587 /* Drop an endpoint from a new bandwidth configuration for this device.
1588  * Only one call to this function is allowed per endpoint before
1589  * check_bandwidth() or reset_bandwidth() must be called.
1590  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1591  * add the endpoint to the schedule with possibly new parameters denoted by a
1592  * different endpoint descriptor in usb_host_endpoint.
1593  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1594  * not allowed.
1595  *
1596  * The USB core will not allow URBs to be queued to an endpoint that is being
1597  * disabled, so there's no need for mutual exclusion to protect
1598  * the xhci->devs[slot_id] structure.
1599  */
1600 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1601                 struct usb_host_endpoint *ep)
1602 {
1603         struct xhci_hcd *xhci;
1604         struct xhci_container_ctx *in_ctx, *out_ctx;
1605         struct xhci_input_control_ctx *ctrl_ctx;
1606         unsigned int ep_index;
1607         struct xhci_ep_ctx *ep_ctx;
1608         u32 drop_flag;
1609         u32 new_add_flags, new_drop_flags;
1610         int ret;
1611
1612         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1613         if (ret <= 0)
1614                 return ret;
1615         xhci = hcd_to_xhci(hcd);
1616         if (xhci->xhc_state & XHCI_STATE_DYING)
1617                 return -ENODEV;
1618
1619         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1620         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1621         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1622                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1623                                 __func__, drop_flag);
1624                 return 0;
1625         }
1626
1627         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1628         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1629         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1630         if (!ctrl_ctx) {
1631                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1632                                 __func__);
1633                 return 0;
1634         }
1635
1636         ep_index = xhci_get_endpoint_index(&ep->desc);
1637         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1638         /* If the HC already knows the endpoint is disabled,
1639          * or the HCD has noted it is disabled, ignore this request
1640          */
1641         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1642              cpu_to_le32(EP_STATE_DISABLED)) ||
1643             le32_to_cpu(ctrl_ctx->drop_flags) &
1644             xhci_get_endpoint_flag(&ep->desc)) {
1645                 /* Do not warn when called after a usb_device_reset */
1646                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1647                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1648                                   __func__, ep);
1649                 return 0;
1650         }
1651
1652         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1653         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1654
1655         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1656         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1657
1658         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1659
1660         if (xhci->quirks & XHCI_MTK_HOST)
1661                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1662
1663         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1664                         (unsigned int) ep->desc.bEndpointAddress,
1665                         udev->slot_id,
1666                         (unsigned int) new_drop_flags,
1667                         (unsigned int) new_add_flags);
1668         return 0;
1669 }
1670
1671 /* Add an endpoint to a new possible bandwidth configuration for this device.
1672  * Only one call to this function is allowed per endpoint before
1673  * check_bandwidth() or reset_bandwidth() must be called.
1674  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1675  * add the endpoint to the schedule with possibly new parameters denoted by a
1676  * different endpoint descriptor in usb_host_endpoint.
1677  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1678  * not allowed.
1679  *
1680  * The USB core will not allow URBs to be queued to an endpoint until the
1681  * configuration or alt setting is installed in the device, so there's no need
1682  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1683  */
1684 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1685                 struct usb_host_endpoint *ep)
1686 {
1687         struct xhci_hcd *xhci;
1688         struct xhci_container_ctx *in_ctx;
1689         unsigned int ep_index;
1690         struct xhci_input_control_ctx *ctrl_ctx;
1691         u32 added_ctxs;
1692         u32 new_add_flags, new_drop_flags;
1693         struct xhci_virt_device *virt_dev;
1694         int ret = 0;
1695
1696         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1697         if (ret <= 0) {
1698                 /* So we won't queue a reset ep command for a root hub */
1699                 ep->hcpriv = NULL;
1700                 return ret;
1701         }
1702         xhci = hcd_to_xhci(hcd);
1703         if (xhci->xhc_state & XHCI_STATE_DYING)
1704                 return -ENODEV;
1705
1706         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1707         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1708                 /* FIXME when we have to issue an evaluate endpoint command to
1709                  * deal with ep0 max packet size changing once we get the
1710                  * descriptors
1711                  */
1712                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1713                                 __func__, added_ctxs);
1714                 return 0;
1715         }
1716
1717         virt_dev = xhci->devs[udev->slot_id];
1718         in_ctx = virt_dev->in_ctx;
1719         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1720         if (!ctrl_ctx) {
1721                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1722                                 __func__);
1723                 return 0;
1724         }
1725
1726         ep_index = xhci_get_endpoint_index(&ep->desc);
1727         /* If this endpoint is already in use, and the upper layers are trying
1728          * to add it again without dropping it, reject the addition.
1729          */
1730         if (virt_dev->eps[ep_index].ring &&
1731                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1732                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1733                                 "without dropping it.\n",
1734                                 (unsigned int) ep->desc.bEndpointAddress);
1735                 return -EINVAL;
1736         }
1737
1738         /* If the HCD has already noted the endpoint is enabled,
1739          * ignore this request.
1740          */
1741         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1742                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1743                                 __func__, ep);
1744                 return 0;
1745         }
1746
1747         /*
1748          * Configuration and alternate setting changes must be done in
1749          * process context, not interrupt context (or so documenation
1750          * for usb_set_interface() and usb_set_configuration() claim).
1751          */
1752         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1753                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1754                                 __func__, ep->desc.bEndpointAddress);
1755                 return -ENOMEM;
1756         }
1757
1758         if (xhci->quirks & XHCI_MTK_HOST) {
1759                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1760                 if (ret < 0) {
1761                         xhci_free_or_cache_endpoint_ring(xhci,
1762                                 virt_dev, ep_index);
1763                         return ret;
1764                 }
1765         }
1766
1767         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1768         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1769
1770         /* If xhci_endpoint_disable() was called for this endpoint, but the
1771          * xHC hasn't been notified yet through the check_bandwidth() call,
1772          * this re-adds a new state for the endpoint from the new endpoint
1773          * descriptors.  We must drop and re-add this endpoint, so we leave the
1774          * drop flags alone.
1775          */
1776         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1777
1778         /* Store the usb_device pointer for later use */
1779         ep->hcpriv = udev;
1780
1781         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1782                         (unsigned int) ep->desc.bEndpointAddress,
1783                         udev->slot_id,
1784                         (unsigned int) new_drop_flags,
1785                         (unsigned int) new_add_flags);
1786         return 0;
1787 }
1788
1789 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1790 {
1791         struct xhci_input_control_ctx *ctrl_ctx;
1792         struct xhci_ep_ctx *ep_ctx;
1793         struct xhci_slot_ctx *slot_ctx;
1794         int i;
1795
1796         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1797         if (!ctrl_ctx) {
1798                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1799                                 __func__);
1800                 return;
1801         }
1802
1803         /* When a device's add flag and drop flag are zero, any subsequent
1804          * configure endpoint command will leave that endpoint's state
1805          * untouched.  Make sure we don't leave any old state in the input
1806          * endpoint contexts.
1807          */
1808         ctrl_ctx->drop_flags = 0;
1809         ctrl_ctx->add_flags = 0;
1810         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1811         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1812         /* Endpoint 0 is always valid */
1813         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1814         for (i = 1; i < 31; ++i) {
1815                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1816                 ep_ctx->ep_info = 0;
1817                 ep_ctx->ep_info2 = 0;
1818                 ep_ctx->deq = 0;
1819                 ep_ctx->tx_info = 0;
1820         }
1821 }
1822
1823 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1824                 struct usb_device *udev, u32 *cmd_status)
1825 {
1826         int ret;
1827
1828         switch (*cmd_status) {
1829         case COMP_CMD_ABORT:
1830         case COMP_CMD_STOP:
1831                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1832                 ret = -ETIME;
1833                 break;
1834         case COMP_ENOMEM:
1835                 dev_warn(&udev->dev,
1836                          "Not enough host controller resources for new device state.\n");
1837                 ret = -ENOMEM;
1838                 /* FIXME: can we allocate more resources for the HC? */
1839                 break;
1840         case COMP_BW_ERR:
1841         case COMP_2ND_BW_ERR:
1842                 dev_warn(&udev->dev,
1843                          "Not enough bandwidth for new device state.\n");
1844                 ret = -ENOSPC;
1845                 /* FIXME: can we go back to the old state? */
1846                 break;
1847         case COMP_TRB_ERR:
1848                 /* the HCD set up something wrong */
1849                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1850                                 "add flag = 1, "
1851                                 "and endpoint is not disabled.\n");
1852                 ret = -EINVAL;
1853                 break;
1854         case COMP_DEV_ERR:
1855                 dev_warn(&udev->dev,
1856                          "ERROR: Incompatible device for endpoint configure command.\n");
1857                 ret = -ENODEV;
1858                 break;
1859         case COMP_SUCCESS:
1860                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1861                                 "Successful Endpoint Configure command");
1862                 ret = 0;
1863                 break;
1864         default:
1865                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1866                                 *cmd_status);
1867                 ret = -EINVAL;
1868                 break;
1869         }
1870         return ret;
1871 }
1872
1873 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1874                 struct usb_device *udev, u32 *cmd_status)
1875 {
1876         int ret;
1877         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1878
1879         switch (*cmd_status) {
1880         case COMP_CMD_ABORT:
1881         case COMP_CMD_STOP:
1882                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1883                 ret = -ETIME;
1884                 break;
1885         case COMP_EINVAL:
1886                 dev_warn(&udev->dev,
1887                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1888                 ret = -EINVAL;
1889                 break;
1890         case COMP_EBADSLT:
1891                 dev_warn(&udev->dev,
1892                         "WARN: slot not enabled for evaluate context command.\n");
1893                 ret = -EINVAL;
1894                 break;
1895         case COMP_CTX_STATE:
1896                 dev_warn(&udev->dev,
1897                         "WARN: invalid context state for evaluate context command.\n");
1898                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1899                 ret = -EINVAL;
1900                 break;
1901         case COMP_DEV_ERR:
1902                 dev_warn(&udev->dev,
1903                         "ERROR: Incompatible device for evaluate context command.\n");
1904                 ret = -ENODEV;
1905                 break;
1906         case COMP_MEL_ERR:
1907                 /* Max Exit Latency too large error */
1908                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1909                 ret = -EINVAL;
1910                 break;
1911         case COMP_SUCCESS:
1912                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1913                                 "Successful evaluate context command");
1914                 ret = 0;
1915                 break;
1916         default:
1917                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1918                         *cmd_status);
1919                 ret = -EINVAL;
1920                 break;
1921         }
1922         return ret;
1923 }
1924
1925 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1926                 struct xhci_input_control_ctx *ctrl_ctx)
1927 {
1928         u32 valid_add_flags;
1929         u32 valid_drop_flags;
1930
1931         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1932          * (bit 1).  The default control endpoint is added during the Address
1933          * Device command and is never removed until the slot is disabled.
1934          */
1935         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1936         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1937
1938         /* Use hweight32 to count the number of ones in the add flags, or
1939          * number of endpoints added.  Don't count endpoints that are changed
1940          * (both added and dropped).
1941          */
1942         return hweight32(valid_add_flags) -
1943                 hweight32(valid_add_flags & valid_drop_flags);
1944 }
1945
1946 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1947                 struct xhci_input_control_ctx *ctrl_ctx)
1948 {
1949         u32 valid_add_flags;
1950         u32 valid_drop_flags;
1951
1952         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1953         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1954
1955         return hweight32(valid_drop_flags) -
1956                 hweight32(valid_add_flags & valid_drop_flags);
1957 }
1958
1959 /*
1960  * We need to reserve the new number of endpoints before the configure endpoint
1961  * command completes.  We can't subtract the dropped endpoints from the number
1962  * of active endpoints until the command completes because we can oversubscribe
1963  * the host in this case:
1964  *
1965  *  - the first configure endpoint command drops more endpoints than it adds
1966  *  - a second configure endpoint command that adds more endpoints is queued
1967  *  - the first configure endpoint command fails, so the config is unchanged
1968  *  - the second command may succeed, even though there isn't enough resources
1969  *
1970  * Must be called with xhci->lock held.
1971  */
1972 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1973                 struct xhci_input_control_ctx *ctrl_ctx)
1974 {
1975         u32 added_eps;
1976
1977         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1978         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1979                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1980                                 "Not enough ep ctxs: "
1981                                 "%u active, need to add %u, limit is %u.",
1982                                 xhci->num_active_eps, added_eps,
1983                                 xhci->limit_active_eps);
1984                 return -ENOMEM;
1985         }
1986         xhci->num_active_eps += added_eps;
1987         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1988                         "Adding %u ep ctxs, %u now active.", added_eps,
1989                         xhci->num_active_eps);
1990         return 0;
1991 }
1992
1993 /*
1994  * The configure endpoint was failed by the xHC for some other reason, so we
1995  * need to revert the resources that failed configuration would have used.
1996  *
1997  * Must be called with xhci->lock held.
1998  */
1999 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2000                 struct xhci_input_control_ctx *ctrl_ctx)
2001 {
2002         u32 num_failed_eps;
2003
2004         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2005         xhci->num_active_eps -= num_failed_eps;
2006         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2007                         "Removing %u failed ep ctxs, %u now active.",
2008                         num_failed_eps,
2009                         xhci->num_active_eps);
2010 }
2011
2012 /*
2013  * Now that the command has completed, clean up the active endpoint count by
2014  * subtracting out the endpoints that were dropped (but not changed).
2015  *
2016  * Must be called with xhci->lock held.
2017  */
2018 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2019                 struct xhci_input_control_ctx *ctrl_ctx)
2020 {
2021         u32 num_dropped_eps;
2022
2023         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2024         xhci->num_active_eps -= num_dropped_eps;
2025         if (num_dropped_eps)
2026                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2027                                 "Removing %u dropped ep ctxs, %u now active.",
2028                                 num_dropped_eps,
2029                                 xhci->num_active_eps);
2030 }
2031
2032 static unsigned int xhci_get_block_size(struct usb_device *udev)
2033 {
2034         switch (udev->speed) {
2035         case USB_SPEED_LOW:
2036         case USB_SPEED_FULL:
2037                 return FS_BLOCK;
2038         case USB_SPEED_HIGH:
2039                 return HS_BLOCK;
2040         case USB_SPEED_SUPER:
2041         case USB_SPEED_SUPER_PLUS:
2042                 return SS_BLOCK;
2043         case USB_SPEED_UNKNOWN:
2044         case USB_SPEED_WIRELESS:
2045         default:
2046                 /* Should never happen */
2047                 return 1;
2048         }
2049 }
2050
2051 static unsigned int
2052 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2053 {
2054         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2055                 return LS_OVERHEAD;
2056         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2057                 return FS_OVERHEAD;
2058         return HS_OVERHEAD;
2059 }
2060
2061 /* If we are changing a LS/FS device under a HS hub,
2062  * make sure (if we are activating a new TT) that the HS bus has enough
2063  * bandwidth for this new TT.
2064  */
2065 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2066                 struct xhci_virt_device *virt_dev,
2067                 int old_active_eps)
2068 {
2069         struct xhci_interval_bw_table *bw_table;
2070         struct xhci_tt_bw_info *tt_info;
2071
2072         /* Find the bandwidth table for the root port this TT is attached to. */
2073         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2074         tt_info = virt_dev->tt_info;
2075         /* If this TT already had active endpoints, the bandwidth for this TT
2076          * has already been added.  Removing all periodic endpoints (and thus
2077          * making the TT enactive) will only decrease the bandwidth used.
2078          */
2079         if (old_active_eps)
2080                 return 0;
2081         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2082                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2083                         return -ENOMEM;
2084                 return 0;
2085         }
2086         /* Not sure why we would have no new active endpoints...
2087          *
2088          * Maybe because of an Evaluate Context change for a hub update or a
2089          * control endpoint 0 max packet size change?
2090          * FIXME: skip the bandwidth calculation in that case.
2091          */
2092         return 0;
2093 }
2094
2095 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2096                 struct xhci_virt_device *virt_dev)
2097 {
2098         unsigned int bw_reserved;
2099
2100         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2101         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2102                 return -ENOMEM;
2103
2104         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2105         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2106                 return -ENOMEM;
2107
2108         return 0;
2109 }
2110
2111 /*
2112  * This algorithm is a very conservative estimate of the worst-case scheduling
2113  * scenario for any one interval.  The hardware dynamically schedules the
2114  * packets, so we can't tell which microframe could be the limiting factor in
2115  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2116  *
2117  * Obviously, we can't solve an NP complete problem to find the minimum worst
2118  * case scenario.  Instead, we come up with an estimate that is no less than
2119  * the worst case bandwidth used for any one microframe, but may be an
2120  * over-estimate.
2121  *
2122  * We walk the requirements for each endpoint by interval, starting with the
2123  * smallest interval, and place packets in the schedule where there is only one
2124  * possible way to schedule packets for that interval.  In order to simplify
2125  * this algorithm, we record the largest max packet size for each interval, and
2126  * assume all packets will be that size.
2127  *
2128  * For interval 0, we obviously must schedule all packets for each interval.
2129  * The bandwidth for interval 0 is just the amount of data to be transmitted
2130  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2131  * the number of packets).
2132  *
2133  * For interval 1, we have two possible microframes to schedule those packets
2134  * in.  For this algorithm, if we can schedule the same number of packets for
2135  * each possible scheduling opportunity (each microframe), we will do so.  The
2136  * remaining number of packets will be saved to be transmitted in the gaps in
2137  * the next interval's scheduling sequence.
2138  *
2139  * As we move those remaining packets to be scheduled with interval 2 packets,
2140  * we have to double the number of remaining packets to transmit.  This is
2141  * because the intervals are actually powers of 2, and we would be transmitting
2142  * the previous interval's packets twice in this interval.  We also have to be
2143  * sure that when we look at the largest max packet size for this interval, we
2144  * also look at the largest max packet size for the remaining packets and take
2145  * the greater of the two.
2146  *
2147  * The algorithm continues to evenly distribute packets in each scheduling
2148  * opportunity, and push the remaining packets out, until we get to the last
2149  * interval.  Then those packets and their associated overhead are just added
2150  * to the bandwidth used.
2151  */
2152 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2153                 struct xhci_virt_device *virt_dev,
2154                 int old_active_eps)
2155 {
2156         unsigned int bw_reserved;
2157         unsigned int max_bandwidth;
2158         unsigned int bw_used;
2159         unsigned int block_size;
2160         struct xhci_interval_bw_table *bw_table;
2161         unsigned int packet_size = 0;
2162         unsigned int overhead = 0;
2163         unsigned int packets_transmitted = 0;
2164         unsigned int packets_remaining = 0;
2165         unsigned int i;
2166
2167         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2168                 return xhci_check_ss_bw(xhci, virt_dev);
2169
2170         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2171                 max_bandwidth = HS_BW_LIMIT;
2172                 /* Convert percent of bus BW reserved to blocks reserved */
2173                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2174         } else {
2175                 max_bandwidth = FS_BW_LIMIT;
2176                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2177         }
2178
2179         bw_table = virt_dev->bw_table;
2180         /* We need to translate the max packet size and max ESIT payloads into
2181          * the units the hardware uses.
2182          */
2183         block_size = xhci_get_block_size(virt_dev->udev);
2184
2185         /* If we are manipulating a LS/FS device under a HS hub, double check
2186          * that the HS bus has enough bandwidth if we are activing a new TT.
2187          */
2188         if (virt_dev->tt_info) {
2189                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2190                                 "Recalculating BW for rootport %u",
2191                                 virt_dev->real_port);
2192                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2193                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2194                                         "newly activated TT.\n");
2195                         return -ENOMEM;
2196                 }
2197                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2198                                 "Recalculating BW for TT slot %u port %u",
2199                                 virt_dev->tt_info->slot_id,
2200                                 virt_dev->tt_info->ttport);
2201         } else {
2202                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2203                                 "Recalculating BW for rootport %u",
2204                                 virt_dev->real_port);
2205         }
2206
2207         /* Add in how much bandwidth will be used for interval zero, or the
2208          * rounded max ESIT payload + number of packets * largest overhead.
2209          */
2210         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2211                 bw_table->interval_bw[0].num_packets *
2212                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2213
2214         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2215                 unsigned int bw_added;
2216                 unsigned int largest_mps;
2217                 unsigned int interval_overhead;
2218
2219                 /*
2220                  * How many packets could we transmit in this interval?
2221                  * If packets didn't fit in the previous interval, we will need
2222                  * to transmit that many packets twice within this interval.
2223                  */
2224                 packets_remaining = 2 * packets_remaining +
2225                         bw_table->interval_bw[i].num_packets;
2226
2227                 /* Find the largest max packet size of this or the previous
2228                  * interval.
2229                  */
2230                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2231                         largest_mps = 0;
2232                 else {
2233                         struct xhci_virt_ep *virt_ep;
2234                         struct list_head *ep_entry;
2235
2236                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2237                         virt_ep = list_entry(ep_entry,
2238                                         struct xhci_virt_ep, bw_endpoint_list);
2239                         /* Convert to blocks, rounding up */
2240                         largest_mps = DIV_ROUND_UP(
2241                                         virt_ep->bw_info.max_packet_size,
2242                                         block_size);
2243                 }
2244                 if (largest_mps > packet_size)
2245                         packet_size = largest_mps;
2246
2247                 /* Use the larger overhead of this or the previous interval. */
2248                 interval_overhead = xhci_get_largest_overhead(
2249                                 &bw_table->interval_bw[i]);
2250                 if (interval_overhead > overhead)
2251                         overhead = interval_overhead;
2252
2253                 /* How many packets can we evenly distribute across
2254                  * (1 << (i + 1)) possible scheduling opportunities?
2255                  */
2256                 packets_transmitted = packets_remaining >> (i + 1);
2257
2258                 /* Add in the bandwidth used for those scheduled packets */
2259                 bw_added = packets_transmitted * (overhead + packet_size);
2260
2261                 /* How many packets do we have remaining to transmit? */
2262                 packets_remaining = packets_remaining % (1 << (i + 1));
2263
2264                 /* What largest max packet size should those packets have? */
2265                 /* If we've transmitted all packets, don't carry over the
2266                  * largest packet size.
2267                  */
2268                 if (packets_remaining == 0) {
2269                         packet_size = 0;
2270                         overhead = 0;
2271                 } else if (packets_transmitted > 0) {
2272                         /* Otherwise if we do have remaining packets, and we've
2273                          * scheduled some packets in this interval, take the
2274                          * largest max packet size from endpoints with this
2275                          * interval.
2276                          */
2277                         packet_size = largest_mps;
2278                         overhead = interval_overhead;
2279                 }
2280                 /* Otherwise carry over packet_size and overhead from the last
2281                  * time we had a remainder.
2282                  */
2283                 bw_used += bw_added;
2284                 if (bw_used > max_bandwidth) {
2285                         xhci_warn(xhci, "Not enough bandwidth. "
2286                                         "Proposed: %u, Max: %u\n",
2287                                 bw_used, max_bandwidth);
2288                         return -ENOMEM;
2289                 }
2290         }
2291         /*
2292          * Ok, we know we have some packets left over after even-handedly
2293          * scheduling interval 15.  We don't know which microframes they will
2294          * fit into, so we over-schedule and say they will be scheduled every
2295          * microframe.
2296          */
2297         if (packets_remaining > 0)
2298                 bw_used += overhead + packet_size;
2299
2300         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2301                 unsigned int port_index = virt_dev->real_port - 1;
2302
2303                 /* OK, we're manipulating a HS device attached to a
2304                  * root port bandwidth domain.  Include the number of active TTs
2305                  * in the bandwidth used.
2306                  */
2307                 bw_used += TT_HS_OVERHEAD *
2308                         xhci->rh_bw[port_index].num_active_tts;
2309         }
2310
2311         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2312                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2313                 "Available: %u " "percent",
2314                 bw_used, max_bandwidth, bw_reserved,
2315                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2316                 max_bandwidth);
2317
2318         bw_used += bw_reserved;
2319         if (bw_used > max_bandwidth) {
2320                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2321                                 bw_used, max_bandwidth);
2322                 return -ENOMEM;
2323         }
2324
2325         bw_table->bw_used = bw_used;
2326         return 0;
2327 }
2328
2329 static bool xhci_is_async_ep(unsigned int ep_type)
2330 {
2331         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2332                                         ep_type != ISOC_IN_EP &&
2333                                         ep_type != INT_IN_EP);
2334 }
2335
2336 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2337 {
2338         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2339 }
2340
2341 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2342 {
2343         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2344
2345         if (ep_bw->ep_interval == 0)
2346                 return SS_OVERHEAD_BURST +
2347                         (ep_bw->mult * ep_bw->num_packets *
2348                                         (SS_OVERHEAD + mps));
2349         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2350                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2351                                 1 << ep_bw->ep_interval);
2352
2353 }
2354
2355 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2356                 struct xhci_bw_info *ep_bw,
2357                 struct xhci_interval_bw_table *bw_table,
2358                 struct usb_device *udev,
2359                 struct xhci_virt_ep *virt_ep,
2360                 struct xhci_tt_bw_info *tt_info)
2361 {
2362         struct xhci_interval_bw *interval_bw;
2363         int normalized_interval;
2364
2365         if (xhci_is_async_ep(ep_bw->type))
2366                 return;
2367
2368         if (udev->speed >= USB_SPEED_SUPER) {
2369                 if (xhci_is_sync_in_ep(ep_bw->type))
2370                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2371                                 xhci_get_ss_bw_consumed(ep_bw);
2372                 else
2373                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2374                                 xhci_get_ss_bw_consumed(ep_bw);
2375                 return;
2376         }
2377
2378         /* SuperSpeed endpoints never get added to intervals in the table, so
2379          * this check is only valid for HS/FS/LS devices.
2380          */
2381         if (list_empty(&virt_ep->bw_endpoint_list))
2382                 return;
2383         /* For LS/FS devices, we need to translate the interval expressed in
2384          * microframes to frames.
2385          */
2386         if (udev->speed == USB_SPEED_HIGH)
2387                 normalized_interval = ep_bw->ep_interval;
2388         else
2389                 normalized_interval = ep_bw->ep_interval - 3;
2390
2391         if (normalized_interval == 0)
2392                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2393         interval_bw = &bw_table->interval_bw[normalized_interval];
2394         interval_bw->num_packets -= ep_bw->num_packets;
2395         switch (udev->speed) {
2396         case USB_SPEED_LOW:
2397                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2398                 break;
2399         case USB_SPEED_FULL:
2400                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2401                 break;
2402         case USB_SPEED_HIGH:
2403                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2404                 break;
2405         case USB_SPEED_SUPER:
2406         case USB_SPEED_SUPER_PLUS:
2407         case USB_SPEED_UNKNOWN:
2408         case USB_SPEED_WIRELESS:
2409                 /* Should never happen because only LS/FS/HS endpoints will get
2410                  * added to the endpoint list.
2411                  */
2412                 return;
2413         }
2414         if (tt_info)
2415                 tt_info->active_eps -= 1;
2416         list_del_init(&virt_ep->bw_endpoint_list);
2417 }
2418
2419 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2420                 struct xhci_bw_info *ep_bw,
2421                 struct xhci_interval_bw_table *bw_table,
2422                 struct usb_device *udev,
2423                 struct xhci_virt_ep *virt_ep,
2424                 struct xhci_tt_bw_info *tt_info)
2425 {
2426         struct xhci_interval_bw *interval_bw;
2427         struct xhci_virt_ep *smaller_ep;
2428         int normalized_interval;
2429
2430         if (xhci_is_async_ep(ep_bw->type))
2431                 return;
2432
2433         if (udev->speed == USB_SPEED_SUPER) {
2434                 if (xhci_is_sync_in_ep(ep_bw->type))
2435                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2436                                 xhci_get_ss_bw_consumed(ep_bw);
2437                 else
2438                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2439                                 xhci_get_ss_bw_consumed(ep_bw);
2440                 return;
2441         }
2442
2443         /* For LS/FS devices, we need to translate the interval expressed in
2444          * microframes to frames.
2445          */
2446         if (udev->speed == USB_SPEED_HIGH)
2447                 normalized_interval = ep_bw->ep_interval;
2448         else
2449                 normalized_interval = ep_bw->ep_interval - 3;
2450
2451         if (normalized_interval == 0)
2452                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2453         interval_bw = &bw_table->interval_bw[normalized_interval];
2454         interval_bw->num_packets += ep_bw->num_packets;
2455         switch (udev->speed) {
2456         case USB_SPEED_LOW:
2457                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2458                 break;
2459         case USB_SPEED_FULL:
2460                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2461                 break;
2462         case USB_SPEED_HIGH:
2463                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2464                 break;
2465         case USB_SPEED_SUPER:
2466         case USB_SPEED_SUPER_PLUS:
2467         case USB_SPEED_UNKNOWN:
2468         case USB_SPEED_WIRELESS:
2469                 /* Should never happen because only LS/FS/HS endpoints will get
2470                  * added to the endpoint list.
2471                  */
2472                 return;
2473         }
2474
2475         if (tt_info)
2476                 tt_info->active_eps += 1;
2477         /* Insert the endpoint into the list, largest max packet size first. */
2478         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2479                         bw_endpoint_list) {
2480                 if (ep_bw->max_packet_size >=
2481                                 smaller_ep->bw_info.max_packet_size) {
2482                         /* Add the new ep before the smaller endpoint */
2483                         list_add_tail(&virt_ep->bw_endpoint_list,
2484                                         &smaller_ep->bw_endpoint_list);
2485                         return;
2486                 }
2487         }
2488         /* Add the new endpoint at the end of the list. */
2489         list_add_tail(&virt_ep->bw_endpoint_list,
2490                         &interval_bw->endpoints);
2491 }
2492
2493 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2494                 struct xhci_virt_device *virt_dev,
2495                 int old_active_eps)
2496 {
2497         struct xhci_root_port_bw_info *rh_bw_info;
2498         if (!virt_dev->tt_info)
2499                 return;
2500
2501         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2502         if (old_active_eps == 0 &&
2503                                 virt_dev->tt_info->active_eps != 0) {
2504                 rh_bw_info->num_active_tts += 1;
2505                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2506         } else if (old_active_eps != 0 &&
2507                                 virt_dev->tt_info->active_eps == 0) {
2508                 rh_bw_info->num_active_tts -= 1;
2509                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2510         }
2511 }
2512
2513 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2514                 struct xhci_virt_device *virt_dev,
2515                 struct xhci_container_ctx *in_ctx)
2516 {
2517         struct xhci_bw_info ep_bw_info[31];
2518         int i;
2519         struct xhci_input_control_ctx *ctrl_ctx;
2520         int old_active_eps = 0;
2521
2522         if (virt_dev->tt_info)
2523                 old_active_eps = virt_dev->tt_info->active_eps;
2524
2525         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2526         if (!ctrl_ctx) {
2527                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2528                                 __func__);
2529                 return -ENOMEM;
2530         }
2531
2532         for (i = 0; i < 31; i++) {
2533                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2534                         continue;
2535
2536                 /* Make a copy of the BW info in case we need to revert this */
2537                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2538                                 sizeof(ep_bw_info[i]));
2539                 /* Drop the endpoint from the interval table if the endpoint is
2540                  * being dropped or changed.
2541                  */
2542                 if (EP_IS_DROPPED(ctrl_ctx, i))
2543                         xhci_drop_ep_from_interval_table(xhci,
2544                                         &virt_dev->eps[i].bw_info,
2545                                         virt_dev->bw_table,
2546                                         virt_dev->udev,
2547                                         &virt_dev->eps[i],
2548                                         virt_dev->tt_info);
2549         }
2550         /* Overwrite the information stored in the endpoints' bw_info */
2551         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2552         for (i = 0; i < 31; i++) {
2553                 /* Add any changed or added endpoints to the interval table */
2554                 if (EP_IS_ADDED(ctrl_ctx, i))
2555                         xhci_add_ep_to_interval_table(xhci,
2556                                         &virt_dev->eps[i].bw_info,
2557                                         virt_dev->bw_table,
2558                                         virt_dev->udev,
2559                                         &virt_dev->eps[i],
2560                                         virt_dev->tt_info);
2561         }
2562
2563         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2564                 /* Ok, this fits in the bandwidth we have.
2565                  * Update the number of active TTs.
2566                  */
2567                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2568                 return 0;
2569         }
2570
2571         /* We don't have enough bandwidth for this, revert the stored info. */
2572         for (i = 0; i < 31; i++) {
2573                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2574                         continue;
2575
2576                 /* Drop the new copies of any added or changed endpoints from
2577                  * the interval table.
2578                  */
2579                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2580                         xhci_drop_ep_from_interval_table(xhci,
2581                                         &virt_dev->eps[i].bw_info,
2582                                         virt_dev->bw_table,
2583                                         virt_dev->udev,
2584                                         &virt_dev->eps[i],
2585                                         virt_dev->tt_info);
2586                 }
2587                 /* Revert the endpoint back to its old information */
2588                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2589                                 sizeof(ep_bw_info[i]));
2590                 /* Add any changed or dropped endpoints back into the table */
2591                 if (EP_IS_DROPPED(ctrl_ctx, i))
2592                         xhci_add_ep_to_interval_table(xhci,
2593                                         &virt_dev->eps[i].bw_info,
2594                                         virt_dev->bw_table,
2595                                         virt_dev->udev,
2596                                         &virt_dev->eps[i],
2597                                         virt_dev->tt_info);
2598         }
2599         return -ENOMEM;
2600 }
2601
2602
2603 /* Issue a configure endpoint command or evaluate context command
2604  * and wait for it to finish.
2605  */
2606 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2607                 struct usb_device *udev,
2608                 struct xhci_command *command,
2609                 bool ctx_change, bool must_succeed)
2610 {
2611         int ret;
2612         unsigned long flags;
2613         struct xhci_input_control_ctx *ctrl_ctx;
2614         struct xhci_virt_device *virt_dev;
2615
2616         if (!command)
2617                 return -EINVAL;
2618
2619         spin_lock_irqsave(&xhci->lock, flags);
2620         virt_dev = xhci->devs[udev->slot_id];
2621
2622         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2623         if (!ctrl_ctx) {
2624                 spin_unlock_irqrestore(&xhci->lock, flags);
2625                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2626                                 __func__);
2627                 return -ENOMEM;
2628         }
2629
2630         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2631                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2632                 spin_unlock_irqrestore(&xhci->lock, flags);
2633                 xhci_warn(xhci, "Not enough host resources, "
2634                                 "active endpoint contexts = %u\n",
2635                                 xhci->num_active_eps);
2636                 return -ENOMEM;
2637         }
2638         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2639             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2640                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2641                         xhci_free_host_resources(xhci, ctrl_ctx);
2642                 spin_unlock_irqrestore(&xhci->lock, flags);
2643                 xhci_warn(xhci, "Not enough bandwidth\n");
2644                 return -ENOMEM;
2645         }
2646
2647         if (!ctx_change)
2648                 ret = xhci_queue_configure_endpoint(xhci, command,
2649                                 command->in_ctx->dma,
2650                                 udev->slot_id, must_succeed);
2651         else
2652                 ret = xhci_queue_evaluate_context(xhci, command,
2653                                 command->in_ctx->dma,
2654                                 udev->slot_id, must_succeed);
2655         if (ret < 0) {
2656                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2657                         xhci_free_host_resources(xhci, ctrl_ctx);
2658                 spin_unlock_irqrestore(&xhci->lock, flags);
2659                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2660                                 "FIXME allocate a new ring segment");
2661                 return -ENOMEM;
2662         }
2663         xhci_ring_cmd_db(xhci);
2664         spin_unlock_irqrestore(&xhci->lock, flags);
2665
2666         /* Wait for the configure endpoint command to complete */
2667         wait_for_completion(command->completion);
2668
2669         if (!ctx_change)
2670                 ret = xhci_configure_endpoint_result(xhci, udev,
2671                                                      &command->status);
2672         else
2673                 ret = xhci_evaluate_context_result(xhci, udev,
2674                                                    &command->status);
2675
2676         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2677                 spin_lock_irqsave(&xhci->lock, flags);
2678                 /* If the command failed, remove the reserved resources.
2679                  * Otherwise, clean up the estimate to include dropped eps.
2680                  */
2681                 if (ret)
2682                         xhci_free_host_resources(xhci, ctrl_ctx);
2683                 else
2684                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2685                 spin_unlock_irqrestore(&xhci->lock, flags);
2686         }
2687         return ret;
2688 }
2689
2690 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2691         struct xhci_virt_device *vdev, int i)
2692 {
2693         struct xhci_virt_ep *ep = &vdev->eps[i];
2694
2695         if (ep->ep_state & EP_HAS_STREAMS) {
2696                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2697                                 xhci_get_endpoint_address(i));
2698                 xhci_free_stream_info(xhci, ep->stream_info);
2699                 ep->stream_info = NULL;
2700                 ep->ep_state &= ~EP_HAS_STREAMS;
2701         }
2702 }
2703
2704 /* Called after one or more calls to xhci_add_endpoint() or
2705  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2706  * to call xhci_reset_bandwidth().
2707  *
2708  * Since we are in the middle of changing either configuration or
2709  * installing a new alt setting, the USB core won't allow URBs to be
2710  * enqueued for any endpoint on the old config or interface.  Nothing
2711  * else should be touching the xhci->devs[slot_id] structure, so we
2712  * don't need to take the xhci->lock for manipulating that.
2713  */
2714 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2715 {
2716         int i;
2717         int ret = 0;
2718         struct xhci_hcd *xhci;
2719         struct xhci_virt_device *virt_dev;
2720         struct xhci_input_control_ctx *ctrl_ctx;
2721         struct xhci_slot_ctx *slot_ctx;
2722         struct xhci_command *command;
2723
2724         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2725         if (ret <= 0)
2726                 return ret;
2727         xhci = hcd_to_xhci(hcd);
2728         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2729                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2730                 return -ENODEV;
2731
2732         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2733         virt_dev = xhci->devs[udev->slot_id];
2734
2735         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2736         if (!command)
2737                 return -ENOMEM;
2738
2739         command->in_ctx = virt_dev->in_ctx;
2740
2741         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2742         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2743         if (!ctrl_ctx) {
2744                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2745                                 __func__);
2746                 ret = -ENOMEM;
2747                 goto command_cleanup;
2748         }
2749         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2750         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2751         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2752
2753         /* Don't issue the command if there's no endpoints to update. */
2754         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2755             ctrl_ctx->drop_flags == 0) {
2756                 ret = 0;
2757                 goto command_cleanup;
2758         }
2759         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2760         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2761         for (i = 31; i >= 1; i--) {
2762                 __le32 le32 = cpu_to_le32(BIT(i));
2763
2764                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2765                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2766                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2767                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2768                         break;
2769                 }
2770         }
2771         xhci_dbg(xhci, "New Input Control Context:\n");
2772         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2773                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2774
2775         ret = xhci_configure_endpoint(xhci, udev, command,
2776                         false, false);
2777         if (ret)
2778                 /* Callee should call reset_bandwidth() */
2779                 goto command_cleanup;
2780
2781         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2782         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2783                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2784
2785         /* Free any rings that were dropped, but not changed. */
2786         for (i = 1; i < 31; ++i) {
2787                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2788                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2789                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2790                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2791                 }
2792         }
2793         xhci_zero_in_ctx(xhci, virt_dev);
2794         /*
2795          * Install any rings for completely new endpoints or changed endpoints,
2796          * and free or cache any old rings from changed endpoints.
2797          */
2798         for (i = 1; i < 31; ++i) {
2799                 if (!virt_dev->eps[i].new_ring)
2800                         continue;
2801                 /* Only cache or free the old ring if it exists.
2802                  * It may not if this is the first add of an endpoint.
2803                  */
2804                 if (virt_dev->eps[i].ring) {
2805                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2806                 }
2807                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2808                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2809                 virt_dev->eps[i].new_ring = NULL;
2810         }
2811 command_cleanup:
2812         kfree(command->completion);
2813         kfree(command);
2814
2815         return ret;
2816 }
2817
2818 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2819 {
2820         struct xhci_hcd *xhci;
2821         struct xhci_virt_device *virt_dev;
2822         int i, ret;
2823
2824         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2825         if (ret <= 0)
2826                 return;
2827         xhci = hcd_to_xhci(hcd);
2828
2829         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2830         virt_dev = xhci->devs[udev->slot_id];
2831         /* Free any rings allocated for added endpoints */
2832         for (i = 0; i < 31; ++i) {
2833                 if (virt_dev->eps[i].new_ring) {
2834                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2835                         virt_dev->eps[i].new_ring = NULL;
2836                 }
2837         }
2838         xhci_zero_in_ctx(xhci, virt_dev);
2839 }
2840
2841 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2842                 struct xhci_container_ctx *in_ctx,
2843                 struct xhci_container_ctx *out_ctx,
2844                 struct xhci_input_control_ctx *ctrl_ctx,
2845                 u32 add_flags, u32 drop_flags)
2846 {
2847         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2848         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2849         xhci_slot_copy(xhci, in_ctx, out_ctx);
2850         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2851
2852         xhci_dbg(xhci, "Input Context:\n");
2853         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2854 }
2855
2856 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2857                 unsigned int slot_id, unsigned int ep_index,
2858                 struct xhci_dequeue_state *deq_state)
2859 {
2860         struct xhci_input_control_ctx *ctrl_ctx;
2861         struct xhci_container_ctx *in_ctx;
2862         struct xhci_ep_ctx *ep_ctx;
2863         u32 added_ctxs;
2864         dma_addr_t addr;
2865
2866         in_ctx = xhci->devs[slot_id]->in_ctx;
2867         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2868         if (!ctrl_ctx) {
2869                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2870                                 __func__);
2871                 return;
2872         }
2873
2874         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2875                         xhci->devs[slot_id]->out_ctx, ep_index);
2876         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2877         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2878                         deq_state->new_deq_ptr);
2879         if (addr == 0) {
2880                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2881                                 "reset ep command\n");
2882                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2883                                 deq_state->new_deq_seg,
2884                                 deq_state->new_deq_ptr);
2885                 return;
2886         }
2887         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2888
2889         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2890         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2891                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2892                         added_ctxs, added_ctxs);
2893 }
2894
2895 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2896                         unsigned int ep_index, struct xhci_td *td)
2897 {
2898         struct xhci_dequeue_state deq_state;
2899         struct xhci_virt_ep *ep;
2900         struct usb_device *udev = td->urb->dev;
2901
2902         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2903                         "Cleaning up stalled endpoint ring");
2904         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2905         /* We need to move the HW's dequeue pointer past this TD,
2906          * or it will attempt to resend it on the next doorbell ring.
2907          */
2908         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2909                         ep_index, ep->stopped_stream, td, &deq_state);
2910
2911         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2912                 return;
2913
2914         /* HW with the reset endpoint quirk will use the saved dequeue state to
2915          * issue a configure endpoint command later.
2916          */
2917         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2918                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2919                                 "Queueing new dequeue state");
2920                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2921                                 ep_index, ep->stopped_stream, &deq_state);
2922         } else {
2923                 /* Better hope no one uses the input context between now and the
2924                  * reset endpoint completion!
2925                  * XXX: No idea how this hardware will react when stream rings
2926                  * are enabled.
2927                  */
2928                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2929                                 "Setting up input context for "
2930                                 "configure endpoint command");
2931                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2932                                 ep_index, &deq_state);
2933         }
2934 }
2935
2936 /* Called when clearing halted device. The core should have sent the control
2937  * message to clear the device halt condition. The host side of the halt should
2938  * already be cleared with a reset endpoint command issued when the STALL tx
2939  * event was received.
2940  *
2941  * Context: in_interrupt
2942  */
2943
2944 void xhci_endpoint_reset(struct usb_hcd *hcd,
2945                 struct usb_host_endpoint *ep)
2946 {
2947         struct xhci_hcd *xhci;
2948
2949         xhci = hcd_to_xhci(hcd);
2950
2951         /*
2952          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2953          * The Reset Endpoint Command may only be issued to endpoints in the
2954          * Halted state. If software wishes reset the Data Toggle or Sequence
2955          * Number of an endpoint that isn't in the Halted state, then software
2956          * may issue a Configure Endpoint Command with the Drop and Add bits set
2957          * for the target endpoint. that is in the Stopped state.
2958          */
2959
2960         /* For now just print debug to follow the situation */
2961         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2962                  ep->desc.bEndpointAddress);
2963 }
2964
2965 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2966                 struct usb_device *udev, struct usb_host_endpoint *ep,
2967                 unsigned int slot_id)
2968 {
2969         int ret;
2970         unsigned int ep_index;
2971         unsigned int ep_state;
2972
2973         if (!ep)
2974                 return -EINVAL;
2975         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2976         if (ret <= 0)
2977                 return -EINVAL;
2978         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2979                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2980                                 " descriptor for ep 0x%x does not support streams\n",
2981                                 ep->desc.bEndpointAddress);
2982                 return -EINVAL;
2983         }
2984
2985         ep_index = xhci_get_endpoint_index(&ep->desc);
2986         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2987         if (ep_state & EP_HAS_STREAMS ||
2988                         ep_state & EP_GETTING_STREAMS) {
2989                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2990                                 "already has streams set up.\n",
2991                                 ep->desc.bEndpointAddress);
2992                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2993                                 "dynamic stream context array reallocation.\n");
2994                 return -EINVAL;
2995         }
2996         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2997                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2998                                 "endpoint 0x%x; URBs are pending.\n",
2999                                 ep->desc.bEndpointAddress);
3000                 return -EINVAL;
3001         }
3002         return 0;
3003 }
3004
3005 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3006                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3007 {
3008         unsigned int max_streams;
3009
3010         /* The stream context array size must be a power of two */
3011         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3012         /*
3013          * Find out how many primary stream array entries the host controller
3014          * supports.  Later we may use secondary stream arrays (similar to 2nd
3015          * level page entries), but that's an optional feature for xHCI host
3016          * controllers. xHCs must support at least 4 stream IDs.
3017          */
3018         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3019         if (*num_stream_ctxs > max_streams) {
3020                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3021                                 max_streams);
3022                 *num_stream_ctxs = max_streams;
3023                 *num_streams = max_streams;
3024         }
3025 }
3026
3027 /* Returns an error code if one of the endpoint already has streams.
3028  * This does not change any data structures, it only checks and gathers
3029  * information.
3030  */
3031 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3032                 struct usb_device *udev,
3033                 struct usb_host_endpoint **eps, unsigned int num_eps,
3034                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3035 {
3036         unsigned int max_streams;
3037         unsigned int endpoint_flag;
3038         int i;
3039         int ret;
3040
3041         for (i = 0; i < num_eps; i++) {
3042                 ret = xhci_check_streams_endpoint(xhci, udev,
3043                                 eps[i], udev->slot_id);
3044                 if (ret < 0)
3045                         return ret;
3046
3047                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3048                 if (max_streams < (*num_streams - 1)) {
3049                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3050                                         eps[i]->desc.bEndpointAddress,
3051                                         max_streams);
3052                         *num_streams = max_streams+1;
3053                 }
3054
3055                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3056                 if (*changed_ep_bitmask & endpoint_flag)
3057                         return -EINVAL;
3058                 *changed_ep_bitmask |= endpoint_flag;
3059         }
3060         return 0;
3061 }
3062
3063 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3064                 struct usb_device *udev,
3065                 struct usb_host_endpoint **eps, unsigned int num_eps)
3066 {
3067         u32 changed_ep_bitmask = 0;
3068         unsigned int slot_id;
3069         unsigned int ep_index;
3070         unsigned int ep_state;
3071         int i;
3072
3073         slot_id = udev->slot_id;
3074         if (!xhci->devs[slot_id])
3075                 return 0;
3076
3077         for (i = 0; i < num_eps; i++) {
3078                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3079                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3080                 /* Are streams already being freed for the endpoint? */
3081                 if (ep_state & EP_GETTING_NO_STREAMS) {
3082                         xhci_warn(xhci, "WARN Can't disable streams for "
3083                                         "endpoint 0x%x, "
3084                                         "streams are being disabled already\n",
3085                                         eps[i]->desc.bEndpointAddress);
3086                         return 0;
3087                 }
3088                 /* Are there actually any streams to free? */
3089                 if (!(ep_state & EP_HAS_STREAMS) &&
3090                                 !(ep_state & EP_GETTING_STREAMS)) {
3091                         xhci_warn(xhci, "WARN Can't disable streams for "
3092                                         "endpoint 0x%x, "
3093                                         "streams are already disabled!\n",
3094                                         eps[i]->desc.bEndpointAddress);
3095                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3096                                         "with non-streams endpoint\n");
3097                         return 0;
3098                 }
3099                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3100         }
3101         return changed_ep_bitmask;
3102 }
3103
3104 /*
3105  * The USB device drivers use this function (through the HCD interface in USB
3106  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3107  * coordinate mass storage command queueing across multiple endpoints (basically
3108  * a stream ID == a task ID).
3109  *
3110  * Setting up streams involves allocating the same size stream context array
3111  * for each endpoint and issuing a configure endpoint command for all endpoints.
3112  *
3113  * Don't allow the call to succeed if one endpoint only supports one stream
3114  * (which means it doesn't support streams at all).
3115  *
3116  * Drivers may get less stream IDs than they asked for, if the host controller
3117  * hardware or endpoints claim they can't support the number of requested
3118  * stream IDs.
3119  */
3120 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3121                 struct usb_host_endpoint **eps, unsigned int num_eps,
3122                 unsigned int num_streams, gfp_t mem_flags)
3123 {
3124         int i, ret;
3125         struct xhci_hcd *xhci;
3126         struct xhci_virt_device *vdev;
3127         struct xhci_command *config_cmd;
3128         struct xhci_input_control_ctx *ctrl_ctx;
3129         unsigned int ep_index;
3130         unsigned int num_stream_ctxs;
3131         unsigned int max_packet;
3132         unsigned long flags;
3133         u32 changed_ep_bitmask = 0;
3134
3135         if (!eps)
3136                 return -EINVAL;
3137
3138         /* Add one to the number of streams requested to account for
3139          * stream 0 that is reserved for xHCI usage.
3140          */
3141         num_streams += 1;
3142         xhci = hcd_to_xhci(hcd);
3143         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3144                         num_streams);
3145
3146         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3147         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3148                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3149                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3150                 return -ENOSYS;
3151         }
3152
3153         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3154         if (!config_cmd) {
3155                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3156                 return -ENOMEM;
3157         }
3158         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3159         if (!ctrl_ctx) {
3160                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3161                                 __func__);
3162                 xhci_free_command(xhci, config_cmd);
3163                 return -ENOMEM;
3164         }
3165
3166         /* Check to make sure all endpoints are not already configured for
3167          * streams.  While we're at it, find the maximum number of streams that
3168          * all the endpoints will support and check for duplicate endpoints.
3169          */
3170         spin_lock_irqsave(&xhci->lock, flags);
3171         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3172                         num_eps, &num_streams, &changed_ep_bitmask);
3173         if (ret < 0) {
3174                 xhci_free_command(xhci, config_cmd);
3175                 spin_unlock_irqrestore(&xhci->lock, flags);
3176                 return ret;
3177         }
3178         if (num_streams <= 1) {
3179                 xhci_warn(xhci, "WARN: endpoints can't handle "
3180                                 "more than one stream.\n");
3181                 xhci_free_command(xhci, config_cmd);
3182                 spin_unlock_irqrestore(&xhci->lock, flags);
3183                 return -EINVAL;
3184         }
3185         vdev = xhci->devs[udev->slot_id];
3186         /* Mark each endpoint as being in transition, so
3187          * xhci_urb_enqueue() will reject all URBs.
3188          */
3189         for (i = 0; i < num_eps; i++) {
3190                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3191                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3192         }
3193         spin_unlock_irqrestore(&xhci->lock, flags);
3194
3195         /* Setup internal data structures and allocate HW data structures for
3196          * streams (but don't install the HW structures in the input context
3197          * until we're sure all memory allocation succeeded).
3198          */
3199         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3200         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3201                         num_stream_ctxs, num_streams);
3202
3203         for (i = 0; i < num_eps; i++) {
3204                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3205                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3206                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3207                                 num_stream_ctxs,
3208                                 num_streams,
3209                                 max_packet, mem_flags);
3210                 if (!vdev->eps[ep_index].stream_info)
3211                         goto cleanup;
3212                 /* Set maxPstreams in endpoint context and update deq ptr to
3213                  * point to stream context array. FIXME
3214                  */
3215         }
3216
3217         /* Set up the input context for a configure endpoint command. */
3218         for (i = 0; i < num_eps; i++) {
3219                 struct xhci_ep_ctx *ep_ctx;
3220
3221                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3222                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3223
3224                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3225                                 vdev->out_ctx, ep_index);
3226                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3227                                 vdev->eps[ep_index].stream_info);
3228         }
3229         /* Tell the HW to drop its old copy of the endpoint context info
3230          * and add the updated copy from the input context.
3231          */
3232         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3233                         vdev->out_ctx, ctrl_ctx,
3234                         changed_ep_bitmask, changed_ep_bitmask);
3235
3236         /* Issue and wait for the configure endpoint command */
3237         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3238                         false, false);
3239
3240         /* xHC rejected the configure endpoint command for some reason, so we
3241          * leave the old ring intact and free our internal streams data
3242          * structure.
3243          */
3244         if (ret < 0)
3245                 goto cleanup;
3246
3247         spin_lock_irqsave(&xhci->lock, flags);
3248         for (i = 0; i < num_eps; i++) {
3249                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3250                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3251                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3252                          udev->slot_id, ep_index);
3253                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3254         }
3255         xhci_free_command(xhci, config_cmd);
3256         spin_unlock_irqrestore(&xhci->lock, flags);
3257
3258         /* Subtract 1 for stream 0, which drivers can't use */
3259         return num_streams - 1;
3260
3261 cleanup:
3262         /* If it didn't work, free the streams! */
3263         for (i = 0; i < num_eps; i++) {
3264                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3265                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3266                 vdev->eps[ep_index].stream_info = NULL;
3267                 /* FIXME Unset maxPstreams in endpoint context and
3268                  * update deq ptr to point to normal string ring.
3269                  */
3270                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3271                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3272                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3273         }
3274         xhci_free_command(xhci, config_cmd);
3275         return -ENOMEM;
3276 }
3277
3278 /* Transition the endpoint from using streams to being a "normal" endpoint
3279  * without streams.
3280  *
3281  * Modify the endpoint context state, submit a configure endpoint command,
3282  * and free all endpoint rings for streams if that completes successfully.
3283  */
3284 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3285                 struct usb_host_endpoint **eps, unsigned int num_eps,
3286                 gfp_t mem_flags)
3287 {
3288         int i, ret;
3289         struct xhci_hcd *xhci;
3290         struct xhci_virt_device *vdev;
3291         struct xhci_command *command;
3292         struct xhci_input_control_ctx *ctrl_ctx;
3293         unsigned int ep_index;
3294         unsigned long flags;
3295         u32 changed_ep_bitmask;
3296
3297         xhci = hcd_to_xhci(hcd);
3298         vdev = xhci->devs[udev->slot_id];
3299
3300         /* Set up a configure endpoint command to remove the streams rings */
3301         spin_lock_irqsave(&xhci->lock, flags);
3302         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3303                         udev, eps, num_eps);
3304         if (changed_ep_bitmask == 0) {
3305                 spin_unlock_irqrestore(&xhci->lock, flags);
3306                 return -EINVAL;
3307         }
3308
3309         /* Use the xhci_command structure from the first endpoint.  We may have
3310          * allocated too many, but the driver may call xhci_free_streams() for
3311          * each endpoint it grouped into one call to xhci_alloc_streams().
3312          */
3313         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3314         command = vdev->eps[ep_index].stream_info->free_streams_command;
3315         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3316         if (!ctrl_ctx) {
3317                 spin_unlock_irqrestore(&xhci->lock, flags);
3318                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3319                                 __func__);
3320                 return -EINVAL;
3321         }
3322
3323         for (i = 0; i < num_eps; i++) {
3324                 struct xhci_ep_ctx *ep_ctx;
3325
3326                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3327                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3328                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3329                         EP_GETTING_NO_STREAMS;
3330
3331                 xhci_endpoint_copy(xhci, command->in_ctx,
3332                                 vdev->out_ctx, ep_index);
3333                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3334                                 &vdev->eps[ep_index]);
3335         }
3336         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3337                         vdev->out_ctx, ctrl_ctx,
3338                         changed_ep_bitmask, changed_ep_bitmask);
3339         spin_unlock_irqrestore(&xhci->lock, flags);
3340
3341         /* Issue and wait for the configure endpoint command,
3342          * which must succeed.
3343          */
3344         ret = xhci_configure_endpoint(xhci, udev, command,
3345                         false, true);
3346
3347         /* xHC rejected the configure endpoint command for some reason, so we
3348          * leave the streams rings intact.
3349          */
3350         if (ret < 0)
3351                 return ret;
3352
3353         spin_lock_irqsave(&xhci->lock, flags);
3354         for (i = 0; i < num_eps; i++) {
3355                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3356                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3357                 vdev->eps[ep_index].stream_info = NULL;
3358                 /* FIXME Unset maxPstreams in endpoint context and
3359                  * update deq ptr to point to normal string ring.
3360                  */
3361                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3362                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3363         }
3364         spin_unlock_irqrestore(&xhci->lock, flags);
3365
3366         return 0;
3367 }
3368
3369 /*
3370  * Deletes endpoint resources for endpoints that were active before a Reset
3371  * Device command, or a Disable Slot command.  The Reset Device command leaves
3372  * the control endpoint intact, whereas the Disable Slot command deletes it.
3373  *
3374  * Must be called with xhci->lock held.
3375  */
3376 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3377         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3378 {
3379         int i;
3380         unsigned int num_dropped_eps = 0;
3381         unsigned int drop_flags = 0;
3382
3383         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3384                 if (virt_dev->eps[i].ring) {
3385                         drop_flags |= 1 << i;
3386                         num_dropped_eps++;
3387                 }
3388         }
3389         xhci->num_active_eps -= num_dropped_eps;
3390         if (num_dropped_eps)
3391                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3392                                 "Dropped %u ep ctxs, flags = 0x%x, "
3393                                 "%u now active.",
3394                                 num_dropped_eps, drop_flags,
3395                                 xhci->num_active_eps);
3396 }
3397
3398 /*
3399  * This submits a Reset Device Command, which will set the device state to 0,
3400  * set the device address to 0, and disable all the endpoints except the default
3401  * control endpoint.  The USB core should come back and call
3402  * xhci_address_device(), and then re-set up the configuration.  If this is
3403  * called because of a usb_reset_and_verify_device(), then the old alternate
3404  * settings will be re-installed through the normal bandwidth allocation
3405  * functions.
3406  *
3407  * Wait for the Reset Device command to finish.  Remove all structures
3408  * associated with the endpoints that were disabled.  Clear the input device
3409  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3410  *
3411  * If the virt_dev to be reset does not exist or does not match the udev,
3412  * it means the device is lost, possibly due to the xHC restore error and
3413  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3414  * re-allocate the device.
3415  */
3416 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3417 {
3418         int ret, i;
3419         unsigned long flags;
3420         struct xhci_hcd *xhci;
3421         unsigned int slot_id;
3422         struct xhci_virt_device *virt_dev;
3423         struct xhci_command *reset_device_cmd;
3424         int last_freed_endpoint;
3425         struct xhci_slot_ctx *slot_ctx;
3426         int old_active_eps = 0;
3427
3428         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3429         if (ret <= 0)
3430                 return ret;
3431         xhci = hcd_to_xhci(hcd);
3432         slot_id = udev->slot_id;
3433         virt_dev = xhci->devs[slot_id];
3434         if (!virt_dev) {
3435                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3436                                 "not exist. Re-allocate the device\n", slot_id);
3437                 ret = xhci_alloc_dev(hcd, udev);
3438                 if (ret == 1)
3439                         return 0;
3440                 else
3441                         return -EINVAL;
3442         }
3443
3444         if (virt_dev->tt_info)
3445                 old_active_eps = virt_dev->tt_info->active_eps;
3446
3447         if (virt_dev->udev != udev) {
3448                 /* If the virt_dev and the udev does not match, this virt_dev
3449                  * may belong to another udev.
3450                  * Re-allocate the device.
3451                  */
3452                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3453                                 "not match the udev. Re-allocate the device\n",
3454                                 slot_id);
3455                 ret = xhci_alloc_dev(hcd, udev);
3456                 if (ret == 1)
3457                         return 0;
3458                 else
3459                         return -EINVAL;
3460         }
3461
3462         /* If device is not setup, there is no point in resetting it */
3463         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3464         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3465                                                 SLOT_STATE_DISABLED)
3466                 return 0;
3467
3468         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3469         /* Allocate the command structure that holds the struct completion.
3470          * Assume we're in process context, since the normal device reset
3471          * process has to wait for the device anyway.  Storage devices are
3472          * reset as part of error handling, so use GFP_NOIO instead of
3473          * GFP_KERNEL.
3474          */
3475         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3476         if (!reset_device_cmd) {
3477                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3478                 return -ENOMEM;
3479         }
3480
3481         /* Attempt to submit the Reset Device command to the command ring */
3482         spin_lock_irqsave(&xhci->lock, flags);
3483
3484         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3485         if (ret) {
3486                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3487                 spin_unlock_irqrestore(&xhci->lock, flags);
3488                 goto command_cleanup;
3489         }
3490         xhci_ring_cmd_db(xhci);
3491         spin_unlock_irqrestore(&xhci->lock, flags);
3492
3493         /* Wait for the Reset Device command to finish */
3494         wait_for_completion(reset_device_cmd->completion);
3495
3496         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3497          * unless we tried to reset a slot ID that wasn't enabled,
3498          * or the device wasn't in the addressed or configured state.
3499          */
3500         ret = reset_device_cmd->status;
3501         switch (ret) {
3502         case COMP_CMD_ABORT:
3503         case COMP_CMD_STOP:
3504                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3505                 ret = -ETIME;
3506                 goto command_cleanup;
3507         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3508         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3509                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3510                                 slot_id,
3511                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3512                 xhci_dbg(xhci, "Not freeing device rings.\n");
3513                 /* Don't treat this as an error.  May change my mind later. */
3514                 ret = 0;
3515                 goto command_cleanup;
3516         case COMP_SUCCESS:
3517                 xhci_dbg(xhci, "Successful reset device command.\n");
3518                 break;
3519         default:
3520                 if (xhci_is_vendor_info_code(xhci, ret))
3521                         break;
3522                 xhci_warn(xhci, "Unknown completion code %u for "
3523                                 "reset device command.\n", ret);
3524                 ret = -EINVAL;
3525                 goto command_cleanup;
3526         }
3527
3528         /* Free up host controller endpoint resources */
3529         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3530                 spin_lock_irqsave(&xhci->lock, flags);
3531                 /* Don't delete the default control endpoint resources */
3532                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3533                 spin_unlock_irqrestore(&xhci->lock, flags);
3534         }
3535
3536         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3537         last_freed_endpoint = 1;
3538         for (i = 1; i < 31; ++i) {
3539                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3540
3541                 if (ep->ep_state & EP_HAS_STREAMS) {
3542                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3543                                         xhci_get_endpoint_address(i));
3544                         xhci_free_stream_info(xhci, ep->stream_info);
3545                         ep->stream_info = NULL;
3546                         ep->ep_state &= ~EP_HAS_STREAMS;
3547                 }
3548
3549                 if (ep->ring) {
3550                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3551                         last_freed_endpoint = i;
3552                 }
3553                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3554                         xhci_drop_ep_from_interval_table(xhci,
3555                                         &virt_dev->eps[i].bw_info,
3556                                         virt_dev->bw_table,
3557                                         udev,
3558                                         &virt_dev->eps[i],
3559                                         virt_dev->tt_info);
3560                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3561         }
3562         /* If necessary, update the number of active TTs on this root port */
3563         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3564
3565         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3566         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3567         ret = 0;
3568
3569 command_cleanup:
3570         xhci_free_command(xhci, reset_device_cmd);
3571         return ret;
3572 }
3573
3574 /*
3575  * At this point, the struct usb_device is about to go away, the device has
3576  * disconnected, and all traffic has been stopped and the endpoints have been
3577  * disabled.  Free any HC data structures associated with that device.
3578  */
3579 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3580 {
3581         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3582         struct xhci_virt_device *virt_dev;
3583         unsigned long flags;
3584         u32 state;
3585         int i, ret;
3586         struct xhci_command *command;
3587
3588         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3589         if (!command)
3590                 return;
3591
3592 #ifndef CONFIG_USB_DEFAULT_PERSIST
3593         /*
3594          * We called pm_runtime_get_noresume when the device was attached.
3595          * Decrement the counter here to allow controller to runtime suspend
3596          * if no devices remain.
3597          */
3598         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3599                 pm_runtime_put_noidle(hcd->self.controller);
3600 #endif
3601
3602         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3603         /* If the host is halted due to driver unload, we still need to free the
3604          * device.
3605          */
3606         if (ret <= 0 && ret != -ENODEV) {
3607                 kfree(command);
3608                 return;
3609         }
3610
3611         virt_dev = xhci->devs[udev->slot_id];
3612
3613         /* Stop any wayward timer functions (which may grab the lock) */
3614         for (i = 0; i < 31; ++i) {
3615                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3616                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3617         }
3618
3619         spin_lock_irqsave(&xhci->lock, flags);
3620         /* Don't disable the slot if the host controller is dead. */
3621         state = readl(&xhci->op_regs->status);
3622         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3623                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3624                 xhci_free_virt_device(xhci, udev->slot_id);
3625                 spin_unlock_irqrestore(&xhci->lock, flags);
3626                 kfree(command);
3627                 return;
3628         }
3629
3630         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3631                                     udev->slot_id)) {
3632                 spin_unlock_irqrestore(&xhci->lock, flags);
3633                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3634                 return;
3635         }
3636         xhci_ring_cmd_db(xhci);
3637         spin_unlock_irqrestore(&xhci->lock, flags);
3638
3639         /*
3640          * Event command completion handler will free any data structures
3641          * associated with the slot.  XXX Can free sleep?
3642          */
3643 }
3644
3645 /*
3646  * Checks if we have enough host controller resources for the default control
3647  * endpoint.
3648  *
3649  * Must be called with xhci->lock held.
3650  */
3651 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3652 {
3653         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3654                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3655                                 "Not enough ep ctxs: "
3656                                 "%u active, need to add 1, limit is %u.",
3657                                 xhci->num_active_eps, xhci->limit_active_eps);
3658                 return -ENOMEM;
3659         }
3660         xhci->num_active_eps += 1;
3661         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3662                         "Adding 1 ep ctx, %u now active.",
3663                         xhci->num_active_eps);
3664         return 0;
3665 }
3666
3667
3668 /*
3669  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3670  * timed out, or allocating memory failed.  Returns 1 on success.
3671  */
3672 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3673 {
3674         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3675         unsigned long flags;
3676         int ret, slot_id;
3677         struct xhci_command *command;
3678
3679         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3680         if (!command)
3681                 return 0;
3682
3683         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3684         mutex_lock(&xhci->mutex);
3685         spin_lock_irqsave(&xhci->lock, flags);
3686         command->completion = &xhci->addr_dev;
3687         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3688         if (ret) {
3689                 spin_unlock_irqrestore(&xhci->lock, flags);
3690                 mutex_unlock(&xhci->mutex);
3691                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3692                 kfree(command);
3693                 return 0;
3694         }
3695         xhci_ring_cmd_db(xhci);
3696         spin_unlock_irqrestore(&xhci->lock, flags);
3697
3698         wait_for_completion(command->completion);
3699         slot_id = xhci->slot_id;
3700         mutex_unlock(&xhci->mutex);
3701
3702         if (!slot_id || command->status != COMP_SUCCESS) {
3703                 xhci_err(xhci, "Error while assigning device slot ID\n");
3704                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3705                                 HCS_MAX_SLOTS(
3706                                         readl(&xhci->cap_regs->hcs_params1)));
3707                 kfree(command);
3708                 return 0;
3709         }
3710
3711         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3712                 spin_lock_irqsave(&xhci->lock, flags);
3713                 ret = xhci_reserve_host_control_ep_resources(xhci);
3714                 if (ret) {
3715                         spin_unlock_irqrestore(&xhci->lock, flags);
3716                         xhci_warn(xhci, "Not enough host resources, "
3717                                         "active endpoint contexts = %u\n",
3718                                         xhci->num_active_eps);
3719                         goto disable_slot;
3720                 }
3721                 spin_unlock_irqrestore(&xhci->lock, flags);
3722         }
3723         /* Use GFP_NOIO, since this function can be called from
3724          * xhci_discover_or_reset_device(), which may be called as part of
3725          * mass storage driver error handling.
3726          */
3727         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3728                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3729                 goto disable_slot;
3730         }
3731         udev->slot_id = slot_id;
3732
3733 #ifndef CONFIG_USB_DEFAULT_PERSIST
3734         /*
3735          * If resetting upon resume, we can't put the controller into runtime
3736          * suspend if there is a device attached.
3737          */
3738         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3739                 pm_runtime_get_noresume(hcd->self.controller);
3740 #endif
3741
3742
3743         kfree(command);
3744         /* Is this a LS or FS device under a HS hub? */
3745         /* Hub or peripherial? */
3746         return 1;
3747
3748 disable_slot:
3749         /* Disable slot, if we can do it without mem alloc */
3750         spin_lock_irqsave(&xhci->lock, flags);
3751         command->completion = NULL;
3752         command->status = 0;
3753         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3754                                      udev->slot_id))
3755                 xhci_ring_cmd_db(xhci);
3756         spin_unlock_irqrestore(&xhci->lock, flags);
3757         return 0;
3758 }
3759
3760 /*
3761  * Issue an Address Device command and optionally send a corresponding
3762  * SetAddress request to the device.
3763  */
3764 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3765                              enum xhci_setup_dev setup)
3766 {
3767         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3768         unsigned long flags;
3769         struct xhci_virt_device *virt_dev;
3770         int ret = 0;
3771         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3772         struct xhci_slot_ctx *slot_ctx;
3773         struct xhci_input_control_ctx *ctrl_ctx;
3774         u64 temp_64;
3775         struct xhci_command *command = NULL;
3776
3777         mutex_lock(&xhci->mutex);
3778
3779         if (xhci->xhc_state) {  /* dying, removing or halted */
3780                 ret = -ESHUTDOWN;
3781                 goto out;
3782         }
3783
3784         if (!udev->slot_id) {
3785                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3786                                 "Bad Slot ID %d", udev->slot_id);
3787                 ret = -EINVAL;
3788                 goto out;
3789         }
3790
3791         virt_dev = xhci->devs[udev->slot_id];
3792
3793         if (WARN_ON(!virt_dev)) {
3794                 /*
3795                  * In plug/unplug torture test with an NEC controller,
3796                  * a zero-dereference was observed once due to virt_dev = 0.
3797                  * Print useful debug rather than crash if it is observed again!
3798                  */
3799                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3800                         udev->slot_id);
3801                 ret = -EINVAL;
3802                 goto out;
3803         }
3804
3805         if (setup == SETUP_CONTEXT_ONLY) {
3806                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3807                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3808                     SLOT_STATE_DEFAULT) {
3809                         xhci_dbg(xhci, "Slot already in default state\n");
3810                         goto out;
3811                 }
3812         }
3813
3814         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3815         if (!command) {
3816                 ret = -ENOMEM;
3817                 goto out;
3818         }
3819
3820         command->in_ctx = virt_dev->in_ctx;
3821         command->completion = &xhci->addr_dev;
3822
3823         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3824         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3825         if (!ctrl_ctx) {
3826                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3827                                 __func__);
3828                 ret = -EINVAL;
3829                 goto out;
3830         }
3831         /*
3832          * If this is the first Set Address since device plug-in or
3833          * virt_device realloaction after a resume with an xHCI power loss,
3834          * then set up the slot context.
3835          */
3836         if (!slot_ctx->dev_info)
3837                 xhci_setup_addressable_virt_dev(xhci, udev);
3838         /* Otherwise, update the control endpoint ring enqueue pointer. */
3839         else
3840                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3841         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3842         ctrl_ctx->drop_flags = 0;
3843
3844         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3845         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3846         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3847                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3848
3849         spin_lock_irqsave(&xhci->lock, flags);
3850         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3851                                         udev->slot_id, setup);
3852         if (ret) {
3853                 spin_unlock_irqrestore(&xhci->lock, flags);
3854                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3855                                 "FIXME: allocate a command ring segment");
3856                 goto out;
3857         }
3858         xhci_ring_cmd_db(xhci);
3859         spin_unlock_irqrestore(&xhci->lock, flags);
3860
3861         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3862         wait_for_completion(command->completion);
3863
3864         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3865          * the SetAddress() "recovery interval" required by USB and aborting the
3866          * command on a timeout.
3867          */
3868         switch (command->status) {
3869         case COMP_CMD_ABORT:
3870         case COMP_CMD_STOP:
3871                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3872                 ret = -ETIME;
3873                 break;
3874         case COMP_CTX_STATE:
3875         case COMP_EBADSLT:
3876                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3877                          act, udev->slot_id);
3878                 ret = -EINVAL;
3879                 break;
3880         case COMP_TX_ERR:
3881                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3882                 ret = -EPROTO;
3883                 break;
3884         case COMP_DEV_ERR:
3885                 dev_warn(&udev->dev,
3886                          "ERROR: Incompatible device for setup %s command\n", act);
3887                 ret = -ENODEV;
3888                 break;
3889         case COMP_SUCCESS:
3890                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3891                                "Successful setup %s command", act);
3892                 break;
3893         default:
3894                 xhci_err(xhci,
3895                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3896                          act, command->status);
3897                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3898                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3899                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3900                 ret = -EINVAL;
3901                 break;
3902         }
3903         if (ret)
3904                 goto out;
3905         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3906         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3907                         "Op regs DCBAA ptr = %#016llx", temp_64);
3908         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3909                 "Slot ID %d dcbaa entry @%p = %#016llx",
3910                 udev->slot_id,
3911                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3912                 (unsigned long long)
3913                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3914         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3915                         "Output Context DMA address = %#08llx",
3916                         (unsigned long long)virt_dev->out_ctx->dma);
3917         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3918         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3919         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3920                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3921         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3922         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3923         /*
3924          * USB core uses address 1 for the roothubs, so we add one to the
3925          * address given back to us by the HC.
3926          */
3927         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3928         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3929                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3930         /* Zero the input context control for later use */
3931         ctrl_ctx->add_flags = 0;
3932         ctrl_ctx->drop_flags = 0;
3933
3934         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935                        "Internal device address = %d",
3936                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3937 out:
3938         mutex_unlock(&xhci->mutex);
3939         kfree(command);
3940         return ret;
3941 }
3942
3943 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3944 {
3945         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3946 }
3947
3948 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3949 {
3950         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3951 }
3952
3953 /*
3954  * Transfer the port index into real index in the HW port status
3955  * registers. Caculate offset between the port's PORTSC register
3956  * and port status base. Divide the number of per port register
3957  * to get the real index. The raw port number bases 1.
3958  */
3959 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3960 {
3961         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3962         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3963         __le32 __iomem *addr;
3964         int raw_port;
3965
3966         if (hcd->speed < HCD_USB3)
3967                 addr = xhci->usb2_ports[port1 - 1];
3968         else
3969                 addr = xhci->usb3_ports[port1 - 1];
3970
3971         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3972         return raw_port;
3973 }
3974
3975 /*
3976  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3977  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3978  */
3979 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3980                         struct usb_device *udev, u16 max_exit_latency)
3981 {
3982         struct xhci_virt_device *virt_dev;
3983         struct xhci_command *command;
3984         struct xhci_input_control_ctx *ctrl_ctx;
3985         struct xhci_slot_ctx *slot_ctx;
3986         unsigned long flags;
3987         int ret;
3988
3989         spin_lock_irqsave(&xhci->lock, flags);
3990
3991         virt_dev = xhci->devs[udev->slot_id];
3992
3993         /*
3994          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3995          * xHC was re-initialized. Exit latency will be set later after
3996          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3997          */
3998
3999         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4000                 spin_unlock_irqrestore(&xhci->lock, flags);
4001                 return 0;
4002         }
4003
4004         /* Attempt to issue an Evaluate Context command to change the MEL. */
4005         command = xhci->lpm_command;
4006         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4007         if (!ctrl_ctx) {
4008                 spin_unlock_irqrestore(&xhci->lock, flags);
4009                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4010                                 __func__);
4011                 return -ENOMEM;
4012         }
4013
4014         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4015         spin_unlock_irqrestore(&xhci->lock, flags);
4016
4017         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4018         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4019         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4020         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4021         slot_ctx->dev_state = 0;
4022
4023         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4024                         "Set up evaluate context for LPM MEL change.");
4025         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4026         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4027
4028         /* Issue and wait for the evaluate context command. */
4029         ret = xhci_configure_endpoint(xhci, udev, command,
4030                         true, true);
4031         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4032         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4033
4034         if (!ret) {
4035                 spin_lock_irqsave(&xhci->lock, flags);
4036                 virt_dev->current_mel = max_exit_latency;
4037                 spin_unlock_irqrestore(&xhci->lock, flags);
4038         }
4039         return ret;
4040 }
4041
4042 #ifdef CONFIG_PM
4043
4044 /* BESL to HIRD Encoding array for USB2 LPM */
4045 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4046         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4047
4048 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4049 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4050                                         struct usb_device *udev)
4051 {
4052         int u2del, besl, besl_host;
4053         int besl_device = 0;
4054         u32 field;
4055
4056         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4057         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4058
4059         if (field & USB_BESL_SUPPORT) {
4060                 for (besl_host = 0; besl_host < 16; besl_host++) {
4061                         if (xhci_besl_encoding[besl_host] >= u2del)
4062                                 break;
4063                 }
4064                 /* Use baseline BESL value as default */
4065                 if (field & USB_BESL_BASELINE_VALID)
4066                         besl_device = USB_GET_BESL_BASELINE(field);
4067                 else if (field & USB_BESL_DEEP_VALID)
4068                         besl_device = USB_GET_BESL_DEEP(field);
4069         } else {
4070                 if (u2del <= 50)
4071                         besl_host = 0;
4072                 else
4073                         besl_host = (u2del - 51) / 75 + 1;
4074         }
4075
4076         besl = besl_host + besl_device;
4077         if (besl > 15)
4078                 besl = 15;
4079
4080         return besl;
4081 }
4082
4083 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4084 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4085 {
4086         u32 field;
4087         int l1;
4088         int besld = 0;
4089         int hirdm = 0;
4090
4091         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4092
4093         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4094         l1 = udev->l1_params.timeout / 256;
4095
4096         /* device has preferred BESLD */
4097         if (field & USB_BESL_DEEP_VALID) {
4098                 besld = USB_GET_BESL_DEEP(field);
4099                 hirdm = 1;
4100         }
4101
4102         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4103 }
4104
4105 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4106                         struct usb_device *udev, int enable)
4107 {
4108         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4109         __le32 __iomem  **port_array;
4110         __le32 __iomem  *pm_addr, *hlpm_addr;
4111         u32             pm_val, hlpm_val, field;
4112         unsigned int    port_num;
4113         unsigned long   flags;
4114         int             hird, exit_latency;
4115         int             ret;
4116
4117         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4118                         !udev->lpm_capable)
4119                 return -EPERM;
4120
4121         if (!udev->parent || udev->parent->parent ||
4122                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4123                 return -EPERM;
4124
4125         if (udev->usb2_hw_lpm_capable != 1)
4126                 return -EPERM;
4127
4128         spin_lock_irqsave(&xhci->lock, flags);
4129
4130         port_array = xhci->usb2_ports;
4131         port_num = udev->portnum - 1;
4132         pm_addr = port_array[port_num] + PORTPMSC;
4133         pm_val = readl(pm_addr);
4134         hlpm_addr = port_array[port_num] + PORTHLPMC;
4135         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136
4137         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4138                         enable ? "enable" : "disable", port_num + 1);
4139
4140         if (enable) {
4141                 /* Host supports BESL timeout instead of HIRD */
4142                 if (udev->usb2_hw_lpm_besl_capable) {
4143                         /* if device doesn't have a preferred BESL value use a
4144                          * default one which works with mixed HIRD and BESL
4145                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4146                          */
4147                         if ((field & USB_BESL_SUPPORT) &&
4148                             (field & USB_BESL_BASELINE_VALID))
4149                                 hird = USB_GET_BESL_BASELINE(field);
4150                         else
4151                                 hird = udev->l1_params.besl;
4152
4153                         exit_latency = xhci_besl_encoding[hird];
4154                         spin_unlock_irqrestore(&xhci->lock, flags);
4155
4156                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4157                          * input context for link powermanagement evaluate
4158                          * context commands. It is protected by hcd->bandwidth
4159                          * mutex and is shared by all devices. We need to set
4160                          * the max ext latency in USB 2 BESL LPM as well, so
4161                          * use the same mutex and xhci_change_max_exit_latency()
4162                          */
4163                         mutex_lock(hcd->bandwidth_mutex);
4164                         ret = xhci_change_max_exit_latency(xhci, udev,
4165                                                            exit_latency);
4166                         mutex_unlock(hcd->bandwidth_mutex);
4167
4168                         if (ret < 0)
4169                                 return ret;
4170                         spin_lock_irqsave(&xhci->lock, flags);
4171
4172                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4173                         writel(hlpm_val, hlpm_addr);
4174                         /* flush write */
4175                         readl(hlpm_addr);
4176                 } else {
4177                         hird = xhci_calculate_hird_besl(xhci, udev);
4178                 }
4179
4180                 pm_val &= ~PORT_HIRD_MASK;
4181                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4182                 writel(pm_val, pm_addr);
4183                 pm_val = readl(pm_addr);
4184                 pm_val |= PORT_HLE;
4185                 writel(pm_val, pm_addr);
4186                 /* flush write */
4187                 readl(pm_addr);
4188         } else {
4189                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4190                 writel(pm_val, pm_addr);
4191                 /* flush write */
4192                 readl(pm_addr);
4193                 if (udev->usb2_hw_lpm_besl_capable) {
4194                         spin_unlock_irqrestore(&xhci->lock, flags);
4195                         mutex_lock(hcd->bandwidth_mutex);
4196                         xhci_change_max_exit_latency(xhci, udev, 0);
4197                         mutex_unlock(hcd->bandwidth_mutex);
4198                         return 0;
4199                 }
4200         }
4201
4202         spin_unlock_irqrestore(&xhci->lock, flags);
4203         return 0;
4204 }
4205
4206 /* check if a usb2 port supports a given extened capability protocol
4207  * only USB2 ports extended protocol capability values are cached.
4208  * Return 1 if capability is supported
4209  */
4210 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4211                                            unsigned capability)
4212 {
4213         u32 port_offset, port_count;
4214         int i;
4215
4216         for (i = 0; i < xhci->num_ext_caps; i++) {
4217                 if (xhci->ext_caps[i] & capability) {
4218                         /* port offsets starts at 1 */
4219                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4220                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4221                         if (port >= port_offset &&
4222                             port < port_offset + port_count)
4223                                 return 1;
4224                 }
4225         }
4226         return 0;
4227 }
4228
4229 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4230 {
4231         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4232         int             portnum = udev->portnum - 1;
4233
4234         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4235                         !udev->lpm_capable)
4236                 return 0;
4237
4238         /* we only support lpm for non-hub device connected to root hub yet */
4239         if (!udev->parent || udev->parent->parent ||
4240                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4241                 return 0;
4242
4243         if (xhci->hw_lpm_support == 1 &&
4244                         xhci_check_usb2_port_capability(
4245                                 xhci, portnum, XHCI_HLC)) {
4246                 udev->usb2_hw_lpm_capable = 1;
4247                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4248                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4249                 if (xhci_check_usb2_port_capability(xhci, portnum,
4250                                         XHCI_BLC))
4251                         udev->usb2_hw_lpm_besl_capable = 1;
4252         }
4253
4254         return 0;
4255 }
4256
4257 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4258
4259 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4260 static unsigned long long xhci_service_interval_to_ns(
4261                 struct usb_endpoint_descriptor *desc)
4262 {
4263         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4264 }
4265
4266 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4267                 enum usb3_link_state state)
4268 {
4269         unsigned long long sel;
4270         unsigned long long pel;
4271         unsigned int max_sel_pel;
4272         char *state_name;
4273
4274         switch (state) {
4275         case USB3_LPM_U1:
4276                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4277                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4278                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4279                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4280                 state_name = "U1";
4281                 break;
4282         case USB3_LPM_U2:
4283                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4284                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4285                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4286                 state_name = "U2";
4287                 break;
4288         default:
4289                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4290                                 __func__);
4291                 return USB3_LPM_DISABLED;
4292         }
4293
4294         if (sel <= max_sel_pel && pel <= max_sel_pel)
4295                 return USB3_LPM_DEVICE_INITIATED;
4296
4297         if (sel > max_sel_pel)
4298                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4299                                 "due to long SEL %llu ms\n",
4300                                 state_name, sel);
4301         else
4302                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4303                                 "due to long PEL %llu ms\n",
4304                                 state_name, pel);
4305         return USB3_LPM_DISABLED;
4306 }
4307
4308 /* The U1 timeout should be the maximum of the following values:
4309  *  - For control endpoints, U1 system exit latency (SEL) * 3
4310  *  - For bulk endpoints, U1 SEL * 5
4311  *  - For interrupt endpoints:
4312  *    - Notification EPs, U1 SEL * 3
4313  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4314  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4315  */
4316 static unsigned long long xhci_calculate_intel_u1_timeout(
4317                 struct usb_device *udev,
4318                 struct usb_endpoint_descriptor *desc)
4319 {
4320         unsigned long long timeout_ns;
4321         int ep_type;
4322         int intr_type;
4323
4324         ep_type = usb_endpoint_type(desc);
4325         switch (ep_type) {
4326         case USB_ENDPOINT_XFER_CONTROL:
4327                 timeout_ns = udev->u1_params.sel * 3;
4328                 break;
4329         case USB_ENDPOINT_XFER_BULK:
4330                 timeout_ns = udev->u1_params.sel * 5;
4331                 break;
4332         case USB_ENDPOINT_XFER_INT:
4333                 intr_type = usb_endpoint_interrupt_type(desc);
4334                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4335                         timeout_ns = udev->u1_params.sel * 3;
4336                         break;
4337                 }
4338                 /* Otherwise the calculation is the same as isoc eps */
4339         case USB_ENDPOINT_XFER_ISOC:
4340                 timeout_ns = xhci_service_interval_to_ns(desc);
4341                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4342                 if (timeout_ns < udev->u1_params.sel * 2)
4343                         timeout_ns = udev->u1_params.sel * 2;
4344                 break;
4345         default:
4346                 return 0;
4347         }
4348
4349         return timeout_ns;
4350 }
4351
4352 /* Returns the hub-encoded U1 timeout value. */
4353 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4354                 struct usb_device *udev,
4355                 struct usb_endpoint_descriptor *desc)
4356 {
4357         unsigned long long timeout_ns;
4358
4359         if (xhci->quirks & XHCI_INTEL_HOST)
4360                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4361         else
4362                 timeout_ns = udev->u1_params.sel;
4363
4364         /* The U1 timeout is encoded in 1us intervals.
4365          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4366          */
4367         if (timeout_ns == USB3_LPM_DISABLED)
4368                 timeout_ns = 1;
4369         else
4370                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4371
4372         /* If the necessary timeout value is bigger than what we can set in the
4373          * USB 3.0 hub, we have to disable hub-initiated U1.
4374          */
4375         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4376                 return timeout_ns;
4377         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4378                         "due to long timeout %llu ms\n", timeout_ns);
4379         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4380 }
4381
4382 /* The U2 timeout should be the maximum of:
4383  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4384  *  - largest bInterval of any active periodic endpoint (to avoid going
4385  *    into lower power link states between intervals).
4386  *  - the U2 Exit Latency of the device
4387  */
4388 static unsigned long long xhci_calculate_intel_u2_timeout(
4389                 struct usb_device *udev,
4390                 struct usb_endpoint_descriptor *desc)
4391 {
4392         unsigned long long timeout_ns;
4393         unsigned long long u2_del_ns;
4394
4395         timeout_ns = 10 * 1000 * 1000;
4396
4397         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4398                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4399                 timeout_ns = xhci_service_interval_to_ns(desc);
4400
4401         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4402         if (u2_del_ns > timeout_ns)
4403                 timeout_ns = u2_del_ns;
4404
4405         return timeout_ns;
4406 }
4407
4408 /* Returns the hub-encoded U2 timeout value. */
4409 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4410                 struct usb_device *udev,
4411                 struct usb_endpoint_descriptor *desc)
4412 {
4413         unsigned long long timeout_ns;
4414
4415         if (xhci->quirks & XHCI_INTEL_HOST)
4416                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4417         else
4418                 timeout_ns = udev->u2_params.sel;
4419
4420         /* The U2 timeout is encoded in 256us intervals */
4421         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4422         /* If the necessary timeout value is bigger than what we can set in the
4423          * USB 3.0 hub, we have to disable hub-initiated U2.
4424          */
4425         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4426                 return timeout_ns;
4427         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4428                         "due to long timeout %llu ms\n", timeout_ns);
4429         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4430 }
4431
4432 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4433                 struct usb_device *udev,
4434                 struct usb_endpoint_descriptor *desc,
4435                 enum usb3_link_state state,
4436                 u16 *timeout)
4437 {
4438         if (state == USB3_LPM_U1)
4439                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4440         else if (state == USB3_LPM_U2)
4441                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4442
4443         return USB3_LPM_DISABLED;
4444 }
4445
4446 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4447                 struct usb_device *udev,
4448                 struct usb_endpoint_descriptor *desc,
4449                 enum usb3_link_state state,
4450                 u16 *timeout)
4451 {
4452         u16 alt_timeout;
4453
4454         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4455                 desc, state, timeout);
4456
4457         /* If we found we can't enable hub-initiated LPM, or
4458          * the U1 or U2 exit latency was too high to allow
4459          * device-initiated LPM as well, just stop searching.
4460          */
4461         if (alt_timeout == USB3_LPM_DISABLED ||
4462                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4463                 *timeout = alt_timeout;
4464                 return -E2BIG;
4465         }
4466         if (alt_timeout > *timeout)
4467                 *timeout = alt_timeout;
4468         return 0;
4469 }
4470
4471 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4472                 struct usb_device *udev,
4473                 struct usb_host_interface *alt,
4474                 enum usb3_link_state state,
4475                 u16 *timeout)
4476 {
4477         int j;
4478
4479         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4480                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4481                                         &alt->endpoint[j].desc, state, timeout))
4482                         return -E2BIG;
4483                 continue;
4484         }
4485         return 0;
4486 }
4487
4488 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4489                 enum usb3_link_state state)
4490 {
4491         struct usb_device *parent;
4492         unsigned int num_hubs;
4493
4494         if (state == USB3_LPM_U2)
4495                 return 0;
4496
4497         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4498         for (parent = udev->parent, num_hubs = 0; parent->parent;
4499                         parent = parent->parent)
4500                 num_hubs++;
4501
4502         if (num_hubs < 2)
4503                 return 0;
4504
4505         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4506                         " below second-tier hub.\n");
4507         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4508                         "to decrease power consumption.\n");
4509         return -E2BIG;
4510 }
4511
4512 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4513                 struct usb_device *udev,
4514                 enum usb3_link_state state)
4515 {
4516         if (xhci->quirks & XHCI_INTEL_HOST)
4517                 return xhci_check_intel_tier_policy(udev, state);
4518         else
4519                 return 0;
4520 }
4521
4522 /* Returns the U1 or U2 timeout that should be enabled.
4523  * If the tier check or timeout setting functions return with a non-zero exit
4524  * code, that means the timeout value has been finalized and we shouldn't look
4525  * at any more endpoints.
4526  */
4527 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4528                         struct usb_device *udev, enum usb3_link_state state)
4529 {
4530         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4531         struct usb_host_config *config;
4532         char *state_name;
4533         int i;
4534         u16 timeout = USB3_LPM_DISABLED;
4535
4536         if (state == USB3_LPM_U1)
4537                 state_name = "U1";
4538         else if (state == USB3_LPM_U2)
4539                 state_name = "U2";
4540         else {
4541                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4542                                 state);
4543                 return timeout;
4544         }
4545
4546         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4547                 return timeout;
4548
4549         /* Gather some information about the currently installed configuration
4550          * and alternate interface settings.
4551          */
4552         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4553                         state, &timeout))
4554                 return timeout;
4555
4556         config = udev->actconfig;
4557         if (!config)
4558                 return timeout;
4559
4560         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4561                 struct usb_driver *driver;
4562                 struct usb_interface *intf = config->interface[i];
4563
4564                 if (!intf)
4565                         continue;
4566
4567                 /* Check if any currently bound drivers want hub-initiated LPM
4568                  * disabled.
4569                  */
4570                 if (intf->dev.driver) {
4571                         driver = to_usb_driver(intf->dev.driver);
4572                         if (driver && driver->disable_hub_initiated_lpm) {
4573                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4574                                                 "at request of driver %s\n",
4575                                                 state_name, driver->name);
4576                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4577                         }
4578                 }
4579
4580                 /* Not sure how this could happen... */
4581                 if (!intf->cur_altsetting)
4582                         continue;
4583
4584                 if (xhci_update_timeout_for_interface(xhci, udev,
4585                                         intf->cur_altsetting,
4586                                         state, &timeout))
4587                         return timeout;
4588         }
4589         return timeout;
4590 }
4591
4592 static int calculate_max_exit_latency(struct usb_device *udev,
4593                 enum usb3_link_state state_changed,
4594                 u16 hub_encoded_timeout)
4595 {
4596         unsigned long long u1_mel_us = 0;
4597         unsigned long long u2_mel_us = 0;
4598         unsigned long long mel_us = 0;
4599         bool disabling_u1;
4600         bool disabling_u2;
4601         bool enabling_u1;
4602         bool enabling_u2;
4603
4604         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4605                         hub_encoded_timeout == USB3_LPM_DISABLED);
4606         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4607                         hub_encoded_timeout == USB3_LPM_DISABLED);
4608
4609         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4610                         hub_encoded_timeout != USB3_LPM_DISABLED);
4611         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4612                         hub_encoded_timeout != USB3_LPM_DISABLED);
4613
4614         /* If U1 was already enabled and we're not disabling it,
4615          * or we're going to enable U1, account for the U1 max exit latency.
4616          */
4617         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4618                         enabling_u1)
4619                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4620         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4621                         enabling_u2)
4622                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4623
4624         if (u1_mel_us > u2_mel_us)
4625                 mel_us = u1_mel_us;
4626         else
4627                 mel_us = u2_mel_us;
4628         /* xHCI host controller max exit latency field is only 16 bits wide. */
4629         if (mel_us > MAX_EXIT) {
4630                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4631                                 "is too big.\n", mel_us);
4632                 return -E2BIG;
4633         }
4634         return mel_us;
4635 }
4636
4637 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4638 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639                         struct usb_device *udev, enum usb3_link_state state)
4640 {
4641         struct xhci_hcd *xhci;
4642         u16 hub_encoded_timeout;
4643         int mel;
4644         int ret;
4645
4646         xhci = hcd_to_xhci(hcd);
4647         /* The LPM timeout values are pretty host-controller specific, so don't
4648          * enable hub-initiated timeouts unless the vendor has provided
4649          * information about their timeout algorithm.
4650          */
4651         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4652                         !xhci->devs[udev->slot_id])
4653                 return USB3_LPM_DISABLED;
4654
4655         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4656         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4657         if (mel < 0) {
4658                 /* Max Exit Latency is too big, disable LPM. */
4659                 hub_encoded_timeout = USB3_LPM_DISABLED;
4660                 mel = 0;
4661         }
4662
4663         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4664         if (ret)
4665                 return ret;
4666         return hub_encoded_timeout;
4667 }
4668
4669 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4670                         struct usb_device *udev, enum usb3_link_state state)
4671 {
4672         struct xhci_hcd *xhci;
4673         u16 mel;
4674
4675         xhci = hcd_to_xhci(hcd);
4676         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4677                         !xhci->devs[udev->slot_id])
4678                 return 0;
4679
4680         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4681         return xhci_change_max_exit_latency(xhci, udev, mel);
4682 }
4683 #else /* CONFIG_PM */
4684
4685 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4686                                 struct usb_device *udev, int enable)
4687 {
4688         return 0;
4689 }
4690
4691 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4692 {
4693         return 0;
4694 }
4695
4696 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4697                         struct usb_device *udev, enum usb3_link_state state)
4698 {
4699         return USB3_LPM_DISABLED;
4700 }
4701
4702 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4703                         struct usb_device *udev, enum usb3_link_state state)
4704 {
4705         return 0;
4706 }
4707 #endif  /* CONFIG_PM */
4708
4709 /*-------------------------------------------------------------------------*/
4710
4711 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4712  * internal data structures for the device.
4713  */
4714 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4715                         struct usb_tt *tt, gfp_t mem_flags)
4716 {
4717         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4718         struct xhci_virt_device *vdev;
4719         struct xhci_command *config_cmd;
4720         struct xhci_input_control_ctx *ctrl_ctx;
4721         struct xhci_slot_ctx *slot_ctx;
4722         unsigned long flags;
4723         unsigned think_time;
4724         int ret;
4725
4726         /* Ignore root hubs */
4727         if (!hdev->parent)
4728                 return 0;
4729
4730         vdev = xhci->devs[hdev->slot_id];
4731         if (!vdev) {
4732                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4733                 return -EINVAL;
4734         }
4735         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4736         if (!config_cmd) {
4737                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4738                 return -ENOMEM;
4739         }
4740         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4741         if (!ctrl_ctx) {
4742                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4743                                 __func__);
4744                 xhci_free_command(xhci, config_cmd);
4745                 return -ENOMEM;
4746         }
4747
4748         spin_lock_irqsave(&xhci->lock, flags);
4749         if (hdev->speed == USB_SPEED_HIGH &&
4750                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4751                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4752                 xhci_free_command(xhci, config_cmd);
4753                 spin_unlock_irqrestore(&xhci->lock, flags);
4754                 return -ENOMEM;
4755         }
4756
4757         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4758         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4759         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4760         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4761         /*
4762          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4763          * but it may be already set to 1 when setup an xHCI virtual
4764          * device, so clear it anyway.
4765          */
4766         if (tt->multi)
4767                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4768         else if (hdev->speed == USB_SPEED_FULL)
4769                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4770
4771         if (xhci->hci_version > 0x95) {
4772                 xhci_dbg(xhci, "xHCI version %x needs hub "
4773                                 "TT think time and number of ports\n",
4774                                 (unsigned int) xhci->hci_version);
4775                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4776                 /* Set TT think time - convert from ns to FS bit times.
4777                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4778                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4779                  *
4780                  * xHCI 1.0: this field shall be 0 if the device is not a
4781                  * High-spped hub.
4782                  */
4783                 think_time = tt->think_time;
4784                 if (think_time != 0)
4785                         think_time = (think_time / 666) - 1;
4786                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4787                         slot_ctx->tt_info |=
4788                                 cpu_to_le32(TT_THINK_TIME(think_time));
4789         } else {
4790                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4791                                 "TT think time or number of ports\n",
4792                                 (unsigned int) xhci->hci_version);
4793         }
4794         slot_ctx->dev_state = 0;
4795         spin_unlock_irqrestore(&xhci->lock, flags);
4796
4797         xhci_dbg(xhci, "Set up %s for hub device.\n",
4798                         (xhci->hci_version > 0x95) ?
4799                         "configure endpoint" : "evaluate context");
4800         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4801         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4802
4803         /* Issue and wait for the configure endpoint or
4804          * evaluate context command.
4805          */
4806         if (xhci->hci_version > 0x95)
4807                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4808                                 false, false);
4809         else
4810                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4811                                 true, false);
4812
4813         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4814         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4815
4816         xhci_free_command(xhci, config_cmd);
4817         return ret;
4818 }
4819
4820 int xhci_get_frame(struct usb_hcd *hcd)
4821 {
4822         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4823         /* EHCI mods by the periodic size.  Why? */
4824         return readl(&xhci->run_regs->microframe_index) >> 3;
4825 }
4826
4827 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4828 {
4829         struct xhci_hcd         *xhci;
4830         struct device           *dev = hcd->self.controller;
4831         int                     retval;
4832
4833         /* Accept arbitrarily long scatter-gather lists */
4834         hcd->self.sg_tablesize = ~0;
4835
4836         /* support to build packet from discontinuous buffers */
4837         hcd->self.no_sg_constraint = 1;
4838
4839         /* XHCI controllers don't stop the ep queue on short packets :| */
4840         hcd->self.no_stop_on_short = 1;
4841
4842         xhci = hcd_to_xhci(hcd);
4843
4844         if (usb_hcd_is_primary_hcd(hcd)) {
4845                 xhci->main_hcd = hcd;
4846                 /* Mark the first roothub as being USB 2.0.
4847                  * The xHCI driver will register the USB 3.0 roothub.
4848                  */
4849                 hcd->speed = HCD_USB2;
4850                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4851                 /*
4852                  * USB 2.0 roothub under xHCI has an integrated TT,
4853                  * (rate matching hub) as opposed to having an OHCI/UHCI
4854                  * companion controller.
4855                  */
4856                 hcd->has_tt = 1;
4857         } else {
4858                 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4859                 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4860                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4861                         hcd->speed = HCD_USB31;
4862                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4863                 }
4864                 /* xHCI private pointer was set in xhci_pci_probe for the second
4865                  * registered roothub.
4866                  */
4867                 return 0;
4868         }
4869
4870         mutex_init(&xhci->mutex);
4871         xhci->cap_regs = hcd->regs;
4872         xhci->op_regs = hcd->regs +
4873                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4874         xhci->run_regs = hcd->regs +
4875                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4876         /* Cache read-only capability registers */
4877         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4878         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4879         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4880         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4881         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4882         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4883         if (xhci->hci_version > 0x100)
4884                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4885         xhci_print_registers(xhci);
4886
4887         xhci->quirks |= quirks;
4888
4889         get_quirks(dev, xhci);
4890
4891         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4892          * success event after a short transfer. This quirk will ignore such
4893          * spurious event.
4894          */
4895         if (xhci->hci_version > 0x96)
4896                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4897
4898         /* Make sure the HC is halted. */
4899         retval = xhci_halt(xhci);
4900         if (retval)
4901                 return retval;
4902
4903         xhci_dbg(xhci, "Resetting HCD\n");
4904         /* Reset the internal HC memory state and registers. */
4905         retval = xhci_reset(xhci);
4906         if (retval)
4907                 return retval;
4908         xhci_dbg(xhci, "Reset complete\n");
4909
4910         /*
4911          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4912          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4913          * address memory pointers actually. So, this driver clears the AC64
4914          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4915          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4916          */
4917         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4918                 xhci->hcc_params &= ~BIT(0);
4919
4920         /* Set dma_mask and coherent_dma_mask to 64-bits,
4921          * if xHC supports 64-bit addressing */
4922         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4923                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4924                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4925                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4926         } else {
4927                 /*
4928                  * This is to avoid error in cases where a 32-bit USB
4929                  * controller is used on a 64-bit capable system.
4930                  */
4931                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4932                 if (retval)
4933                         return retval;
4934                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4935                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4936         }
4937
4938         xhci_dbg(xhci, "Calling HCD init\n");
4939         /* Initialize HCD and host controller data structures. */
4940         retval = xhci_init(hcd);
4941         if (retval)
4942                 return retval;
4943         xhci_dbg(xhci, "Called HCD init\n");
4944
4945         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4946                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4947
4948         return 0;
4949 }
4950 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4951
4952 static const struct hc_driver xhci_hc_driver = {
4953         .description =          "xhci-hcd",
4954         .product_desc =         "xHCI Host Controller",
4955         .hcd_priv_size =        sizeof(struct xhci_hcd),
4956
4957         /*
4958          * generic hardware linkage
4959          */
4960         .irq =                  xhci_irq,
4961         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4962
4963         /*
4964          * basic lifecycle operations
4965          */
4966         .reset =                NULL, /* set in xhci_init_driver() */
4967         .start =                xhci_run,
4968         .stop =                 xhci_stop,
4969         .shutdown =             xhci_shutdown,
4970
4971         /*
4972          * managing i/o requests and associated device resources
4973          */
4974         .urb_enqueue =          xhci_urb_enqueue,
4975         .urb_dequeue =          xhci_urb_dequeue,
4976         .alloc_dev =            xhci_alloc_dev,
4977         .free_dev =             xhci_free_dev,
4978         .alloc_streams =        xhci_alloc_streams,
4979         .free_streams =         xhci_free_streams,
4980         .add_endpoint =         xhci_add_endpoint,
4981         .drop_endpoint =        xhci_drop_endpoint,
4982         .endpoint_reset =       xhci_endpoint_reset,
4983         .check_bandwidth =      xhci_check_bandwidth,
4984         .reset_bandwidth =      xhci_reset_bandwidth,
4985         .address_device =       xhci_address_device,
4986         .enable_device =        xhci_enable_device,
4987         .update_hub_device =    xhci_update_hub_device,
4988         .reset_device =         xhci_discover_or_reset_device,
4989
4990         /*
4991          * scheduling support
4992          */
4993         .get_frame_number =     xhci_get_frame,
4994
4995         /*
4996          * root hub support
4997          */
4998         .hub_control =          xhci_hub_control,
4999         .hub_status_data =      xhci_hub_status_data,
5000         .bus_suspend =          xhci_bus_suspend,
5001         .bus_resume =           xhci_bus_resume,
5002
5003         /*
5004          * call back when device connected and addressed
5005          */
5006         .update_device =        xhci_update_device,
5007         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5008         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5009         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5010         .find_raw_port_number = xhci_find_raw_port_number,
5011 };
5012
5013 void xhci_init_driver(struct hc_driver *drv,
5014                       const struct xhci_driver_overrides *over)
5015 {
5016         BUG_ON(!over);
5017
5018         /* Copy the generic table to drv then apply the overrides */
5019         *drv = xhci_hc_driver;
5020
5021         if (over) {
5022                 drv->hcd_priv_size += over->extra_priv_size;
5023                 if (over->reset)
5024                         drv->reset = over->reset;
5025                 if (over->start)
5026                         drv->start = over->start;
5027         }
5028 }
5029 EXPORT_SYMBOL_GPL(xhci_init_driver);
5030
5031 MODULE_DESCRIPTION(DRIVER_DESC);
5032 MODULE_AUTHOR(DRIVER_AUTHOR);
5033 MODULE_LICENSE("GPL");
5034
5035 static int __init xhci_hcd_init(void)
5036 {
5037         /*
5038          * Check the compiler generated sizes of structures that must be laid
5039          * out in specific ways for hardware access.
5040          */
5041         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5042         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5043         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5044         /* xhci_device_control has eight fields, and also
5045          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5046          */
5047         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5048         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5049         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5050         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5051         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5052         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5053         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5054
5055         if (usb_disabled())
5056                 return -ENODEV;
5057
5058         return 0;
5059 }
5060
5061 /*
5062  * If an init function is provided, an exit function must also be provided
5063  * to allow module unload.
5064  */
5065 static void __exit xhci_hcd_fini(void) { }
5066
5067 module_init(xhci_hcd_init);
5068 module_exit(xhci_hcd_fini);