Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, usec);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret)
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155
156         return ret;
157 }
158
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168         u32 command;
169         u32 state;
170         int ret;
171
172         state = readl(&xhci->op_regs->status);
173
174         if (state == ~(u32)0) {
175                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176                 return -ENODEV;
177         }
178
179         if ((state & STS_HALT) == 0) {
180                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181                 return 0;
182         }
183
184         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185         command = readl(&xhci->op_regs->command);
186         command |= CMD_RESET;
187         writel(command, &xhci->op_regs->command);
188
189         /* Existing Intel xHCI controllers require a delay of 1 mS,
190          * after setting the CMD_RESET bit, and before accessing any
191          * HC registers. This allows the HC to complete the
192          * reset operation and be ready for HC register access.
193          * Without this delay, the subsequent HC register access,
194          * may result in a system hang very rarely.
195          */
196         if (xhci->quirks & XHCI_INTEL_HOST)
197                 udelay(1000);
198
199         ret = xhci_handshake(&xhci->op_regs->command,
200                         CMD_RESET, 0, 10 * 1000 * 1000);
201         if (ret)
202                 return ret;
203
204         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208                          "Wait for controller to be ready for doorbell rings");
209         /*
210          * xHCI cannot write to any doorbells or operational registers other
211          * than status until the "Controller Not Ready" flag is cleared.
212          */
213         ret = xhci_handshake(&xhci->op_regs->status,
214                         STS_CNR, 0, 10 * 1000 * 1000);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270                 struct xhci_intr_reg __iomem *ir;
271
272                 ir = &xhci->run_regs->ir_set[i];
273                 val = xhci_read_64(xhci, &ir->erst_base);
274                 if (upper_32_bits(val))
275                         xhci_write_64(xhci, 0, &ir->erst_base);
276                 val= xhci_read_64(xhci, &ir->erst_dequeue);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
279         }
280
281         /* Wait for the fault to appear. It will be cleared on reset */
282         err = xhci_handshake(&xhci->op_regs->status,
283                              STS_FATAL, STS_FATAL,
284                              XHCI_MAX_HALT_USEC);
285         if (!err)
286                 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295         int ret;
296         /*
297          * TODO:Check with MSI Soc for sysdev
298          */
299         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302         if (ret < 0) {
303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304                                 "failed to allocate MSI entry");
305                 return ret;
306         }
307
308         ret = request_irq(pdev->irq, xhci_msi_irq,
309                                 0, "xhci_hcd", xhci_to_hcd(xhci));
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "disable MSI interrupt");
313                 pci_free_irq_vectors(pdev);
314         }
315
316         return ret;
317 }
318
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324         int i, ret = 0;
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         /*
329          * calculate number of msi-x vectors supported.
330          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331          *   with max number of interrupters based on the xhci HCSPARAMS1.
332          * - num_online_cpus: maximum msi-x vectors per CPUs core.
333          *   Add additional 1 vector to ensure always available interrupt.
334          */
335         xhci->msix_count = min(num_online_cpus() + 1,
336                                 HCS_MAX_INTRS(xhci->hcs_params1));
337
338         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339                         PCI_IRQ_MSIX);
340         if (ret < 0) {
341                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342                                 "Failed to enable MSI-X");
343                 return ret;
344         }
345
346         for (i = 0; i < xhci->msix_count; i++) {
347                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348                                 "xhci_hcd", xhci_to_hcd(xhci));
349                 if (ret)
350                         goto disable_msix;
351         }
352
353         hcd->msix_enabled = 1;
354         return ret;
355
356 disable_msix:
357         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358         while (--i >= 0)
359                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360         pci_free_irq_vectors(pdev);
361         return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367         struct usb_hcd *hcd = xhci_to_hcd(xhci);
368         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370         if (xhci->quirks & XHCI_PLAT)
371                 return;
372
373         /* return if using legacy interrupt */
374         if (hcd->irq > 0)
375                 return;
376
377         if (hcd->msix_enabled) {
378                 int i;
379
380                 for (i = 0; i < xhci->msix_count; i++)
381                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382         } else {
383                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384         }
385
386         pci_free_irq_vectors(pdev);
387         hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392         struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394         if (hcd->msix_enabled) {
395                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396                 int i;
397
398                 for (i = 0; i < xhci->msix_count; i++)
399                         synchronize_irq(pci_irq_vector(pdev, i));
400         }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406         struct pci_dev  *pdev;
407         int ret;
408
409         /* The xhci platform device has set up IRQs through usb_add_hcd. */
410         if (xhci->quirks & XHCI_PLAT)
411                 return 0;
412
413         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414         /*
415          * Some Fresco Logic host controllers advertise MSI, but fail to
416          * generate interrupts.  Don't even try to enable MSI.
417          */
418         if (xhci->quirks & XHCI_BROKEN_MSI)
419                 goto legacy_irq;
420
421         /* unregister the legacy interrupt */
422         if (hcd->irq)
423                 free_irq(hcd->irq, hcd);
424         hcd->irq = 0;
425
426         ret = xhci_setup_msix(xhci);
427         if (ret)
428                 /* fall back to msi*/
429                 ret = xhci_setup_msi(xhci);
430
431         if (!ret) {
432                 hcd->msi_enabled = 1;
433                 return 0;
434         }
435
436         if (!pdev->irq) {
437                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438                 return -EINVAL;
439         }
440
441  legacy_irq:
442         if (!strlen(hcd->irq_descr))
443                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444                          hcd->driver->description, hcd->self.busnum);
445
446         /* fall back to legacy interrupt*/
447         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448                         hcd->irq_descr, hcd);
449         if (ret) {
450                 xhci_err(xhci, "request interrupt %d failed\n",
451                                 pdev->irq);
452                 return ret;
453         }
454         hcd->irq = pdev->irq;
455         return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462         return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477         struct xhci_hcd *xhci;
478         struct usb_hcd *hcd;
479         struct xhci_hub *rhub;
480         u32 temp;
481         int i;
482
483         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484         rhub = &xhci->usb3_rhub;
485
486         for (i = 0; i < rhub->num_ports; i++) {
487                 temp = readl(rhub->ports[i]->addr);
488                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489                         /*
490                          * Compliance Mode Detected. Letting USB Core
491                          * handle the Warm Reset
492                          */
493                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                                         "Compliance mode detected->port %d",
495                                         i + 1);
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Attempting compliance mode recovery");
498                         hcd = xhci->shared_hcd;
499
500                         if (hcd->state == HC_STATE_SUSPENDED)
501                                 usb_hcd_resume_root_hub(hcd);
502
503                         usb_hcd_poll_rh_status(hcd);
504                 }
505         }
506
507         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508                 mod_timer(&xhci->comp_mode_recovery_timer,
509                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524         xhci->port_status_u0 = 0;
525         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526                     0);
527         xhci->comp_mode_recovery_timer.expires = jiffies +
528                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530         add_timer(&xhci->comp_mode_recovery_timer);
531         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532                         "Compliance mode recovery timer initialized");
533 }
534
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543         const char *dmi_product_name, *dmi_sys_vendor;
544
545         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547         if (!dmi_product_name || !dmi_sys_vendor)
548                 return false;
549
550         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551                 return false;
552
553         if (strstr(dmi_product_name, "Z420") ||
554                         strstr(dmi_product_name, "Z620") ||
555                         strstr(dmi_product_name, "Z820") ||
556                         strstr(dmi_product_name, "Z1 Workstation"))
557                 return true;
558
559         return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578         int retval = 0;
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581         spin_lock_init(&xhci->lock);
582         if (xhci->hci_version == 0x95 && link_quirk) {
583                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584                                 "QUIRK: Not clearing Link TRB chain bits.");
585                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586         } else {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588                                 "xHCI doesn't need link TRB QUIRK");
589         }
590         retval = xhci_mem_init(xhci, GFP_KERNEL);
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593         /* Initializing Compliance Mode Recovery Data If Needed */
594         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596                 compliance_mode_recovery_timer_init(xhci);
597         }
598
599         return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607         if (xhci_start(xhci)) {
608                 xhci_halt(xhci);
609                 return -ENODEV;
610         }
611         xhci->shared_hcd->state = HC_STATE_RUNNING;
612         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614         if (xhci->quirks & XHCI_NEC_HOST)
615                 xhci_ring_cmd_db(xhci);
616
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "Finished xhci_run for USB3 roothub");
619         return 0;
620 }
621
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         u64 temp_64;
638         int ret;
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         /* Start the xHCI host controller running only after the USB 2.0 roothub
642          * is setup.
643          */
644
645         hcd->uses_new_polling = 1;
646         if (!usb_hcd_is_primary_hcd(hcd))
647                 return xhci_run_finished(xhci);
648
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651         ret = xhci_try_enable_msi(hcd);
652         if (ret)
653                 return ret;
654
655         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656         temp_64 &= ~ERST_PTR_MASK;
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "// Set the interrupt modulation register");
662         temp = readl(&xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665         writel(temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = readl(&xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "// Enable interrupts, cmd = 0x%x.", temp);
672         writel(temp, &xhci->op_regs->command);
673
674         temp = readl(&xhci->ir_set->irq_pending);
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680         if (xhci->quirks & XHCI_NEC_HOST) {
681                 struct xhci_command *command;
682
683                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684                 if (!command)
685                         return -ENOMEM;
686
687                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688                                 TRB_TYPE(TRB_NEC_GET_FW));
689                 if (ret)
690                         xhci_free_command(xhci, command);
691         }
692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693                         "Finished xhci_run for USB2 roothub");
694
695         xhci_dbc_init(xhci);
696
697         xhci_debugfs_init(xhci);
698
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714         u32 temp;
715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717         mutex_lock(&xhci->mutex);
718
719         /* Only halt host and free memory after both hcds are removed */
720         if (!usb_hcd_is_primary_hcd(hcd)) {
721                 mutex_unlock(&xhci->mutex);
722                 return;
723         }
724
725         xhci_dbc_exit(xhci);
726
727         spin_lock_irq(&xhci->lock);
728         xhci->xhc_state |= XHCI_STATE_HALTED;
729         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         /* Deleting Compliance Mode Recovery Timer */
737         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738                         (!(xhci_all_ports_seen_u0(xhci)))) {
739                 del_timer_sync(&xhci->comp_mode_recovery_timer);
740                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741                                 "%s: compliance mode recovery timer deleted",
742                                 __func__);
743         }
744
745         if (xhci->quirks & XHCI_AMD_PLL_FIX)
746                 usb_amd_dev_put();
747
748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749                         "// Disabling event ring interrupts");
750         temp = readl(&xhci->op_regs->status);
751         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752         temp = readl(&xhci->ir_set->irq_pending);
753         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756         xhci_mem_cleanup(xhci);
757         xhci_debugfs_exit(xhci);
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_stop completed - status = %x",
760                         readl(&xhci->op_regs->status));
761         mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         /* Workaround for spurious wakeups at shutdown with HSW */
783         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784                 xhci_reset(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "xhci_shutdown completed - status = %x",
791                         readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798         xhci->s3.command = readl(&xhci->op_regs->command);
799         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811         writel(xhci->s3.command, &xhci->op_regs->command);
812         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824         u64     val_64;
825
826         /* step 2: initialize command ring buffer */
827         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830                                       xhci->cmd_ring->dequeue) &
831                  (u64) ~CMD_RING_RSVD_BITS) |
832                 xhci->cmd_ring->cycle_state;
833         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834                         "// Setting command ring address to 0x%llx",
835                         (long unsigned long) val_64);
836         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850         struct xhci_ring *ring;
851         struct xhci_segment *seg;
852
853         ring = xhci->cmd_ring;
854         seg = ring->deq_seg;
855         do {
856                 memset(seg->trbs, 0,
857                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859                         cpu_to_le32(~TRB_CYCLE);
860                 seg = seg->next;
861         } while (seg != ring->deq_seg);
862
863         /* Reset the software enqueue and dequeue pointers */
864         ring->deq_seg = ring->first_seg;
865         ring->dequeue = ring->first_seg->trbs;
866         ring->enq_seg = ring->deq_seg;
867         ring->enqueue = ring->dequeue;
868
869         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870         /*
871          * Ring is now zeroed, so the HW should look for change of ownership
872          * when the cycle bit is set to 1.
873          */
874         ring->cycle_state = 1;
875
876         /*
877          * Reset the hardware dequeue pointer.
878          * Yes, this will need to be re-written after resume, but we're paranoid
879          * and want to make sure the hardware doesn't access bogus memory
880          * because, say, the BIOS or an SMI started the host without changing
881          * the command ring pointers.
882          */
883         xhci_set_cmd_ring_deq(xhci);
884 }
885
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888         struct xhci_port **ports;
889         int port_index;
890         unsigned long flags;
891         u32 t1, t2, portsc;
892
893         spin_lock_irqsave(&xhci->lock, flags);
894
895         /* disable usb3 ports Wake bits */
896         port_index = xhci->usb3_rhub.num_ports;
897         ports = xhci->usb3_rhub.ports;
898         while (port_index--) {
899                 t1 = readl(ports[port_index]->addr);
900                 portsc = t1;
901                 t1 = xhci_port_state_to_neutral(t1);
902                 t2 = t1 & ~PORT_WAKE_BITS;
903                 if (t1 != t2) {
904                         writel(t2, ports[port_index]->addr);
905                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906                                  xhci->usb3_rhub.hcd->self.busnum,
907                                  port_index + 1, portsc, t2);
908                 }
909         }
910
911         /* disable usb2 ports Wake bits */
912         port_index = xhci->usb2_rhub.num_ports;
913         ports = xhci->usb2_rhub.ports;
914         while (port_index--) {
915                 t1 = readl(ports[port_index]->addr);
916                 portsc = t1;
917                 t1 = xhci_port_state_to_neutral(t1);
918                 t2 = t1 & ~PORT_WAKE_BITS;
919                 if (t1 != t2) {
920                         writel(t2, ports[port_index]->addr);
921                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922                                  xhci->usb2_rhub.hcd->self.busnum,
923                                  port_index + 1, portsc, t2);
924                 }
925         }
926         spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931         struct xhci_port        **ports;
932         int                     port_index;
933         u32                     status;
934         u32                     portsc;
935
936         status = readl(&xhci->op_regs->status);
937         if (status & STS_EINT)
938                 return true;
939         /*
940          * Checking STS_EINT is not enough as there is a lag between a change
941          * bit being set and the Port Status Change Event that it generated
942          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943          */
944
945         port_index = xhci->usb2_rhub.num_ports;
946         ports = xhci->usb2_rhub.ports;
947         while (port_index--) {
948                 portsc = readl(ports[port_index]->addr);
949                 if (portsc & PORT_CHANGE_MASK ||
950                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951                         return true;
952         }
953         port_index = xhci->usb3_rhub.num_ports;
954         ports = xhci->usb3_rhub.ports;
955         while (port_index--) {
956                 portsc = readl(ports[port_index]->addr);
957                 if (portsc & PORT_CHANGE_MASK ||
958                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959                         return true;
960         }
961         return false;
962 }
963
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972         int                     rc = 0;
973         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
974         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
975         u32                     command;
976         u32                     res;
977
978         if (!hcd->state)
979                 return 0;
980
981         if (hcd->state != HC_STATE_SUSPENDED ||
982                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983                 return -EINVAL;
984
985         xhci_dbc_suspend(xhci);
986
987         /* Clear root port wake on bits if wakeup not allowed. */
988         if (!do_wakeup)
989                 xhci_disable_port_wake_on_bits(xhci);
990
991         /* Don't poll the roothubs on bus suspend. */
992         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
993         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
994         del_timer_sync(&hcd->rh_timer);
995         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
996         del_timer_sync(&xhci->shared_hcd->rh_timer);
997
998         if (xhci->quirks & XHCI_SUSPEND_DELAY)
999                 usleep_range(1000, 1500);
1000
1001         spin_lock_irq(&xhci->lock);
1002         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1003         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1004         /* step 1: stop endpoint */
1005         /* skipped assuming that port suspend has done */
1006
1007         /* step 2: clear Run/Stop bit */
1008         command = readl(&xhci->op_regs->command);
1009         command &= ~CMD_RUN;
1010         writel(command, &xhci->op_regs->command);
1011
1012         /* Some chips from Fresco Logic need an extraordinary delay */
1013         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1014
1015         if (xhci_handshake(&xhci->op_regs->status,
1016                       STS_HALT, STS_HALT, delay)) {
1017                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1018                 spin_unlock_irq(&xhci->lock);
1019                 return -ETIMEDOUT;
1020         }
1021         xhci_clear_command_ring(xhci);
1022
1023         /* step 3: save registers */
1024         xhci_save_registers(xhci);
1025
1026         /* step 4: set CSS flag */
1027         command = readl(&xhci->op_regs->command);
1028         command |= CMD_CSS;
1029         writel(command, &xhci->op_regs->command);
1030         xhci->broken_suspend = 0;
1031         if (xhci_handshake(&xhci->op_regs->status,
1032                                 STS_SAVE, 0, 20 * 1000)) {
1033         /*
1034          * AMD SNPS xHC 3.0 occasionally does not clear the
1035          * SSS bit of USBSTS and when driver tries to poll
1036          * to see if the xHC clears BIT(8) which never happens
1037          * and driver assumes that controller is not responding
1038          * and times out. To workaround this, its good to check
1039          * if SRE and HCE bits are not set (as per xhci
1040          * Section 5.4.2) and bypass the timeout.
1041          */
1042                 res = readl(&xhci->op_regs->status);
1043                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1044                     (((res & STS_SRE) == 0) &&
1045                                 ((res & STS_HCE) == 0))) {
1046                         xhci->broken_suspend = 1;
1047                 } else {
1048                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1049                         spin_unlock_irq(&xhci->lock);
1050                         return -ETIMEDOUT;
1051                 }
1052         }
1053         spin_unlock_irq(&xhci->lock);
1054
1055         /*
1056          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1057          * is about to be suspended.
1058          */
1059         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1060                         (!(xhci_all_ports_seen_u0(xhci)))) {
1061                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1062                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1063                                 "%s: compliance mode recovery timer deleted",
1064                                 __func__);
1065         }
1066
1067         /* step 5: remove core well power */
1068         /* synchronize irq when using MSI-X */
1069         xhci_msix_sync_irqs(xhci);
1070
1071         return rc;
1072 }
1073 EXPORT_SYMBOL_GPL(xhci_suspend);
1074
1075 /*
1076  * start xHC (not bus-specific)
1077  *
1078  * This is called when the machine transition from S3/S4 mode.
1079  *
1080  */
1081 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1082 {
1083         u32                     command, temp = 0;
1084         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1085         struct usb_hcd          *secondary_hcd;
1086         int                     retval = 0;
1087         bool                    comp_timer_running = false;
1088
1089         if (!hcd->state)
1090                 return 0;
1091
1092         /* Wait a bit if either of the roothubs need to settle from the
1093          * transition into bus suspend.
1094          */
1095
1096         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1097             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1098                 msleep(100);
1099
1100         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1101         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1102
1103         spin_lock_irq(&xhci->lock);
1104         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1105                 hibernated = true;
1106
1107         if (!hibernated) {
1108                 /*
1109                  * Some controllers might lose power during suspend, so wait
1110                  * for controller not ready bit to clear, just as in xHC init.
1111                  */
1112                 retval = xhci_handshake(&xhci->op_regs->status,
1113                                         STS_CNR, 0, 10 * 1000 * 1000);
1114                 if (retval) {
1115                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1116                                   retval);
1117                         spin_unlock_irq(&xhci->lock);
1118                         return retval;
1119                 }
1120                 /* step 1: restore register */
1121                 xhci_restore_registers(xhci);
1122                 /* step 2: initialize command ring buffer */
1123                 xhci_set_cmd_ring_deq(xhci);
1124                 /* step 3: restore state and start state*/
1125                 /* step 3: set CRS flag */
1126                 command = readl(&xhci->op_regs->command);
1127                 command |= CMD_CRS;
1128                 writel(command, &xhci->op_regs->command);
1129                 /*
1130                  * Some controllers take up to 55+ ms to complete the controller
1131                  * restore so setting the timeout to 100ms. Xhci specification
1132                  * doesn't mention any timeout value.
1133                  */
1134                 if (xhci_handshake(&xhci->op_regs->status,
1135                               STS_RESTORE, 0, 100 * 1000)) {
1136                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1137                         spin_unlock_irq(&xhci->lock);
1138                         return -ETIMEDOUT;
1139                 }
1140                 temp = readl(&xhci->op_regs->status);
1141         }
1142
1143         /* If restore operation fails, re-initialize the HC during resume */
1144         if ((temp & STS_SRE) || hibernated) {
1145
1146                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1147                                 !(xhci_all_ports_seen_u0(xhci))) {
1148                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1149                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1150                                 "Compliance Mode Recovery Timer deleted!");
1151                 }
1152
1153                 /* Let the USB core know _both_ roothubs lost power. */
1154                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1155                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1156
1157                 xhci_dbg(xhci, "Stop HCD\n");
1158                 xhci_halt(xhci);
1159                 xhci_zero_64b_regs(xhci);
1160                 retval = xhci_reset(xhci);
1161                 spin_unlock_irq(&xhci->lock);
1162                 if (retval)
1163                         return retval;
1164                 xhci_cleanup_msix(xhci);
1165
1166                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1167                 temp = readl(&xhci->op_regs->status);
1168                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1169                 temp = readl(&xhci->ir_set->irq_pending);
1170                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1171
1172                 xhci_dbg(xhci, "cleaning up memory\n");
1173                 xhci_mem_cleanup(xhci);
1174                 xhci_debugfs_exit(xhci);
1175                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1176                             readl(&xhci->op_regs->status));
1177
1178                 /* USB core calls the PCI reinit and start functions twice:
1179                  * first with the primary HCD, and then with the secondary HCD.
1180                  * If we don't do the same, the host will never be started.
1181                  */
1182                 if (!usb_hcd_is_primary_hcd(hcd))
1183                         secondary_hcd = hcd;
1184                 else
1185                         secondary_hcd = xhci->shared_hcd;
1186
1187                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1188                 retval = xhci_init(hcd->primary_hcd);
1189                 if (retval)
1190                         return retval;
1191                 comp_timer_running = true;
1192
1193                 xhci_dbg(xhci, "Start the primary HCD\n");
1194                 retval = xhci_run(hcd->primary_hcd);
1195                 if (!retval) {
1196                         xhci_dbg(xhci, "Start the secondary HCD\n");
1197                         retval = xhci_run(secondary_hcd);
1198                 }
1199                 hcd->state = HC_STATE_SUSPENDED;
1200                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1201                 goto done;
1202         }
1203
1204         /* step 4: set Run/Stop bit */
1205         command = readl(&xhci->op_regs->command);
1206         command |= CMD_RUN;
1207         writel(command, &xhci->op_regs->command);
1208         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1209                   0, 250 * 1000);
1210
1211         /* step 5: walk topology and initialize portsc,
1212          * portpmsc and portli
1213          */
1214         /* this is done in bus_resume */
1215
1216         /* step 6: restart each of the previously
1217          * Running endpoints by ringing their doorbells
1218          */
1219
1220         spin_unlock_irq(&xhci->lock);
1221
1222         xhci_dbc_resume(xhci);
1223
1224  done:
1225         if (retval == 0) {
1226                 /* Resume root hubs only when have pending events. */
1227                 if (xhci_pending_portevent(xhci)) {
1228                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1229                         usb_hcd_resume_root_hub(hcd);
1230                 }
1231         }
1232
1233         /*
1234          * If system is subject to the Quirk, Compliance Mode Timer needs to
1235          * be re-initialized Always after a system resume. Ports are subject
1236          * to suffer the Compliance Mode issue again. It doesn't matter if
1237          * ports have entered previously to U0 before system's suspension.
1238          */
1239         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1240                 compliance_mode_recovery_timer_init(xhci);
1241
1242         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1243                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1244
1245         /* Re-enable port polling. */
1246         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1247         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1248         usb_hcd_poll_rh_status(xhci->shared_hcd);
1249         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1250         usb_hcd_poll_rh_status(hcd);
1251
1252         return retval;
1253 }
1254 EXPORT_SYMBOL_GPL(xhci_resume);
1255 #endif  /* CONFIG_PM */
1256
1257 /*-------------------------------------------------------------------------*/
1258
1259 /*
1260  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1261  * we'll copy the actual data into the TRB address register. This is limited to
1262  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1263  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1264  */
1265 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1266                                 gfp_t mem_flags)
1267 {
1268         if (xhci_urb_suitable_for_idt(urb))
1269                 return 0;
1270
1271         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1272 }
1273
1274 /**
1275  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1276  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1277  * value to right shift 1 for the bitmask.
1278  *
1279  * Index  = (epnum * 2) + direction - 1,
1280  * where direction = 0 for OUT, 1 for IN.
1281  * For control endpoints, the IN index is used (OUT index is unused), so
1282  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1283  */
1284 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1285 {
1286         unsigned int index;
1287         if (usb_endpoint_xfer_control(desc))
1288                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1289         else
1290                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1291                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1292         return index;
1293 }
1294
1295 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1296  * address from the XHCI endpoint index.
1297  */
1298 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1299 {
1300         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1301         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1302         return direction | number;
1303 }
1304
1305 /* Find the flag for this endpoint (for use in the control context).  Use the
1306  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1307  * bit 1, etc.
1308  */
1309 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1310 {
1311         return 1 << (xhci_get_endpoint_index(desc) + 1);
1312 }
1313
1314 /* Find the flag for this endpoint (for use in the control context).  Use the
1315  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1316  * bit 1, etc.
1317  */
1318 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1319 {
1320         return 1 << (ep_index + 1);
1321 }
1322
1323 /* Compute the last valid endpoint context index.  Basically, this is the
1324  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1325  * we find the most significant bit set in the added contexts flags.
1326  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1327  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1328  */
1329 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1330 {
1331         return fls(added_ctxs) - 1;
1332 }
1333
1334 /* Returns 1 if the arguments are OK;
1335  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1336  */
1337 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1338                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1339                 const char *func) {
1340         struct xhci_hcd *xhci;
1341         struct xhci_virt_device *virt_dev;
1342
1343         if (!hcd || (check_ep && !ep) || !udev) {
1344                 pr_debug("xHCI %s called with invalid args\n", func);
1345                 return -EINVAL;
1346         }
1347         if (!udev->parent) {
1348                 pr_debug("xHCI %s called for root hub\n", func);
1349                 return 0;
1350         }
1351
1352         xhci = hcd_to_xhci(hcd);
1353         if (check_virt_dev) {
1354                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1355                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1356                                         func);
1357                         return -EINVAL;
1358                 }
1359
1360                 virt_dev = xhci->devs[udev->slot_id];
1361                 if (virt_dev->udev != udev) {
1362                         xhci_dbg(xhci, "xHCI %s called with udev and "
1363                                           "virt_dev does not match\n", func);
1364                         return -EINVAL;
1365                 }
1366         }
1367
1368         if (xhci->xhc_state & XHCI_STATE_HALTED)
1369                 return -ENODEV;
1370
1371         return 1;
1372 }
1373
1374 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1375                 struct usb_device *udev, struct xhci_command *command,
1376                 bool ctx_change, bool must_succeed);
1377
1378 /*
1379  * Full speed devices may have a max packet size greater than 8 bytes, but the
1380  * USB core doesn't know that until it reads the first 8 bytes of the
1381  * descriptor.  If the usb_device's max packet size changes after that point,
1382  * we need to issue an evaluate context command and wait on it.
1383  */
1384 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1385                 unsigned int ep_index, struct urb *urb)
1386 {
1387         struct xhci_container_ctx *out_ctx;
1388         struct xhci_input_control_ctx *ctrl_ctx;
1389         struct xhci_ep_ctx *ep_ctx;
1390         struct xhci_command *command;
1391         int max_packet_size;
1392         int hw_max_packet_size;
1393         int ret = 0;
1394
1395         out_ctx = xhci->devs[slot_id]->out_ctx;
1396         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1397         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1398         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1399         if (hw_max_packet_size != max_packet_size) {
1400                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1401                                 "Max Packet Size for ep 0 changed.");
1402                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1403                                 "Max packet size in usb_device = %d",
1404                                 max_packet_size);
1405                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1406                                 "Max packet size in xHCI HW = %d",
1407                                 hw_max_packet_size);
1408                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1409                                 "Issuing evaluate context command.");
1410
1411                 /* Set up the input context flags for the command */
1412                 /* FIXME: This won't work if a non-default control endpoint
1413                  * changes max packet sizes.
1414                  */
1415
1416                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1417                 if (!command)
1418                         return -ENOMEM;
1419
1420                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1421                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1422                 if (!ctrl_ctx) {
1423                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1424                                         __func__);
1425                         ret = -ENOMEM;
1426                         goto command_cleanup;
1427                 }
1428                 /* Set up the modified control endpoint 0 */
1429                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1430                                 xhci->devs[slot_id]->out_ctx, ep_index);
1431
1432                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1433                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1434                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1435
1436                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1437                 ctrl_ctx->drop_flags = 0;
1438
1439                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1440                                 true, false);
1441
1442                 /* Clean up the input context for later use by bandwidth
1443                  * functions.
1444                  */
1445                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1446 command_cleanup:
1447                 kfree(command->completion);
1448                 kfree(command);
1449         }
1450         return ret;
1451 }
1452
1453 /*
1454  * non-error returns are a promise to giveback() the urb later
1455  * we drop ownership so next owner (or urb unlink) can get it
1456  */
1457 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1458 {
1459         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1460         unsigned long flags;
1461         int ret = 0;
1462         unsigned int slot_id, ep_index;
1463         unsigned int *ep_state;
1464         struct urb_priv *urb_priv;
1465         int num_tds;
1466
1467         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1468                                         true, true, __func__) <= 0)
1469                 return -EINVAL;
1470
1471         slot_id = urb->dev->slot_id;
1472         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1473         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1474
1475         if (!HCD_HW_ACCESSIBLE(hcd)) {
1476                 if (!in_interrupt())
1477                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1478                 return -ESHUTDOWN;
1479         }
1480         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1481                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1482                 return -ENODEV;
1483         }
1484
1485         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1486                 num_tds = urb->number_of_packets;
1487         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1488             urb->transfer_buffer_length > 0 &&
1489             urb->transfer_flags & URB_ZERO_PACKET &&
1490             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1491                 num_tds = 2;
1492         else
1493                 num_tds = 1;
1494
1495         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1496         if (!urb_priv)
1497                 return -ENOMEM;
1498
1499         urb_priv->num_tds = num_tds;
1500         urb_priv->num_tds_done = 0;
1501         urb->hcpriv = urb_priv;
1502
1503         trace_xhci_urb_enqueue(urb);
1504
1505         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1506                 /* Check to see if the max packet size for the default control
1507                  * endpoint changed during FS device enumeration
1508                  */
1509                 if (urb->dev->speed == USB_SPEED_FULL) {
1510                         ret = xhci_check_maxpacket(xhci, slot_id,
1511                                         ep_index, urb);
1512                         if (ret < 0) {
1513                                 xhci_urb_free_priv(urb_priv);
1514                                 urb->hcpriv = NULL;
1515                                 return ret;
1516                         }
1517                 }
1518         }
1519
1520         spin_lock_irqsave(&xhci->lock, flags);
1521
1522         if (xhci->xhc_state & XHCI_STATE_DYING) {
1523                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1524                          urb->ep->desc.bEndpointAddress, urb);
1525                 ret = -ESHUTDOWN;
1526                 goto free_priv;
1527         }
1528         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1529                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1530                           *ep_state);
1531                 ret = -EINVAL;
1532                 goto free_priv;
1533         }
1534         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1535                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1536                 ret = -EINVAL;
1537                 goto free_priv;
1538         }
1539
1540         switch (usb_endpoint_type(&urb->ep->desc)) {
1541
1542         case USB_ENDPOINT_XFER_CONTROL:
1543                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1544                                          slot_id, ep_index);
1545                 break;
1546         case USB_ENDPOINT_XFER_BULK:
1547                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1548                                          slot_id, ep_index);
1549                 break;
1550         case USB_ENDPOINT_XFER_INT:
1551                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1552                                 slot_id, ep_index);
1553                 break;
1554         case USB_ENDPOINT_XFER_ISOC:
1555                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1556                                 slot_id, ep_index);
1557         }
1558
1559         if (ret) {
1560 free_priv:
1561                 xhci_urb_free_priv(urb_priv);
1562                 urb->hcpriv = NULL;
1563         }
1564         spin_unlock_irqrestore(&xhci->lock, flags);
1565         return ret;
1566 }
1567
1568 /*
1569  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1570  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1571  * should pick up where it left off in the TD, unless a Set Transfer Ring
1572  * Dequeue Pointer is issued.
1573  *
1574  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1575  * the ring.  Since the ring is a contiguous structure, they can't be physically
1576  * removed.  Instead, there are two options:
1577  *
1578  *  1) If the HC is in the middle of processing the URB to be canceled, we
1579  *     simply move the ring's dequeue pointer past those TRBs using the Set
1580  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1581  *     when drivers timeout on the last submitted URB and attempt to cancel.
1582  *
1583  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1584  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1585  *     HC will need to invalidate the any TRBs it has cached after the stop
1586  *     endpoint command, as noted in the xHCI 0.95 errata.
1587  *
1588  *  3) The TD may have completed by the time the Stop Endpoint Command
1589  *     completes, so software needs to handle that case too.
1590  *
1591  * This function should protect against the TD enqueueing code ringing the
1592  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1593  * It also needs to account for multiple cancellations on happening at the same
1594  * time for the same endpoint.
1595  *
1596  * Note that this function can be called in any context, or so says
1597  * usb_hcd_unlink_urb()
1598  */
1599 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1600 {
1601         unsigned long flags;
1602         int ret, i;
1603         u32 temp;
1604         struct xhci_hcd *xhci;
1605         struct urb_priv *urb_priv;
1606         struct xhci_td *td;
1607         unsigned int ep_index;
1608         struct xhci_ring *ep_ring;
1609         struct xhci_virt_ep *ep;
1610         struct xhci_command *command;
1611         struct xhci_virt_device *vdev;
1612
1613         xhci = hcd_to_xhci(hcd);
1614         spin_lock_irqsave(&xhci->lock, flags);
1615
1616         trace_xhci_urb_dequeue(urb);
1617
1618         /* Make sure the URB hasn't completed or been unlinked already */
1619         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1620         if (ret)
1621                 goto done;
1622
1623         /* give back URB now if we can't queue it for cancel */
1624         vdev = xhci->devs[urb->dev->slot_id];
1625         urb_priv = urb->hcpriv;
1626         if (!vdev || !urb_priv)
1627                 goto err_giveback;
1628
1629         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1630         ep = &vdev->eps[ep_index];
1631         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1632         if (!ep || !ep_ring)
1633                 goto err_giveback;
1634
1635         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1636         temp = readl(&xhci->op_regs->status);
1637         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1638                 xhci_hc_died(xhci);
1639                 goto done;
1640         }
1641
1642         /*
1643          * check ring is not re-allocated since URB was enqueued. If it is, then
1644          * make sure none of the ring related pointers in this URB private data
1645          * are touched, such as td_list, otherwise we overwrite freed data
1646          */
1647         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1648                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1649                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1650                         td = &urb_priv->td[i];
1651                         if (!list_empty(&td->cancelled_td_list))
1652                                 list_del_init(&td->cancelled_td_list);
1653                 }
1654                 goto err_giveback;
1655         }
1656
1657         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1658                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1659                                 "HC halted, freeing TD manually.");
1660                 for (i = urb_priv->num_tds_done;
1661                      i < urb_priv->num_tds;
1662                      i++) {
1663                         td = &urb_priv->td[i];
1664                         if (!list_empty(&td->td_list))
1665                                 list_del_init(&td->td_list);
1666                         if (!list_empty(&td->cancelled_td_list))
1667                                 list_del_init(&td->cancelled_td_list);
1668                 }
1669                 goto err_giveback;
1670         }
1671
1672         i = urb_priv->num_tds_done;
1673         if (i < urb_priv->num_tds)
1674                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1675                                 "Cancel URB %p, dev %s, ep 0x%x, "
1676                                 "starting at offset 0x%llx",
1677                                 urb, urb->dev->devpath,
1678                                 urb->ep->desc.bEndpointAddress,
1679                                 (unsigned long long) xhci_trb_virt_to_dma(
1680                                         urb_priv->td[i].start_seg,
1681                                         urb_priv->td[i].first_trb));
1682
1683         for (; i < urb_priv->num_tds; i++) {
1684                 td = &urb_priv->td[i];
1685                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1686         }
1687
1688         /* Queue a stop endpoint command, but only if this is
1689          * the first cancellation to be handled.
1690          */
1691         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1692                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1693                 if (!command) {
1694                         ret = -ENOMEM;
1695                         goto done;
1696                 }
1697                 ep->ep_state |= EP_STOP_CMD_PENDING;
1698                 ep->stop_cmd_timer.expires = jiffies +
1699                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1700                 add_timer(&ep->stop_cmd_timer);
1701                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1702                                          ep_index, 0);
1703                 xhci_ring_cmd_db(xhci);
1704         }
1705 done:
1706         spin_unlock_irqrestore(&xhci->lock, flags);
1707         return ret;
1708
1709 err_giveback:
1710         if (urb_priv)
1711                 xhci_urb_free_priv(urb_priv);
1712         usb_hcd_unlink_urb_from_ep(hcd, urb);
1713         spin_unlock_irqrestore(&xhci->lock, flags);
1714         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1715         return ret;
1716 }
1717
1718 /* Drop an endpoint from a new bandwidth configuration for this device.
1719  * Only one call to this function is allowed per endpoint before
1720  * check_bandwidth() or reset_bandwidth() must be called.
1721  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1722  * add the endpoint to the schedule with possibly new parameters denoted by a
1723  * different endpoint descriptor in usb_host_endpoint.
1724  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1725  * not allowed.
1726  *
1727  * The USB core will not allow URBs to be queued to an endpoint that is being
1728  * disabled, so there's no need for mutual exclusion to protect
1729  * the xhci->devs[slot_id] structure.
1730  */
1731 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1732                 struct usb_host_endpoint *ep)
1733 {
1734         struct xhci_hcd *xhci;
1735         struct xhci_container_ctx *in_ctx, *out_ctx;
1736         struct xhci_input_control_ctx *ctrl_ctx;
1737         unsigned int ep_index;
1738         struct xhci_ep_ctx *ep_ctx;
1739         u32 drop_flag;
1740         u32 new_add_flags, new_drop_flags;
1741         int ret;
1742
1743         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1744         if (ret <= 0)
1745                 return ret;
1746         xhci = hcd_to_xhci(hcd);
1747         if (xhci->xhc_state & XHCI_STATE_DYING)
1748                 return -ENODEV;
1749
1750         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1751         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1752         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1753                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1754                                 __func__, drop_flag);
1755                 return 0;
1756         }
1757
1758         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1759         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1760         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1761         if (!ctrl_ctx) {
1762                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1763                                 __func__);
1764                 return 0;
1765         }
1766
1767         ep_index = xhci_get_endpoint_index(&ep->desc);
1768         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1769         /* If the HC already knows the endpoint is disabled,
1770          * or the HCD has noted it is disabled, ignore this request
1771          */
1772         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1773             le32_to_cpu(ctrl_ctx->drop_flags) &
1774             xhci_get_endpoint_flag(&ep->desc)) {
1775                 /* Do not warn when called after a usb_device_reset */
1776                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1777                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1778                                   __func__, ep);
1779                 return 0;
1780         }
1781
1782         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1783         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1784
1785         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1786         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1787
1788         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1789
1790         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1791
1792         if (xhci->quirks & XHCI_MTK_HOST)
1793                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1794
1795         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1796                         (unsigned int) ep->desc.bEndpointAddress,
1797                         udev->slot_id,
1798                         (unsigned int) new_drop_flags,
1799                         (unsigned int) new_add_flags);
1800         return 0;
1801 }
1802
1803 /* Add an endpoint to a new possible bandwidth configuration for this device.
1804  * Only one call to this function is allowed per endpoint before
1805  * check_bandwidth() or reset_bandwidth() must be called.
1806  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1807  * add the endpoint to the schedule with possibly new parameters denoted by a
1808  * different endpoint descriptor in usb_host_endpoint.
1809  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1810  * not allowed.
1811  *
1812  * The USB core will not allow URBs to be queued to an endpoint until the
1813  * configuration or alt setting is installed in the device, so there's no need
1814  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1815  */
1816 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1817                 struct usb_host_endpoint *ep)
1818 {
1819         struct xhci_hcd *xhci;
1820         struct xhci_container_ctx *in_ctx;
1821         unsigned int ep_index;
1822         struct xhci_input_control_ctx *ctrl_ctx;
1823         struct xhci_ep_ctx *ep_ctx;
1824         u32 added_ctxs;
1825         u32 new_add_flags, new_drop_flags;
1826         struct xhci_virt_device *virt_dev;
1827         int ret = 0;
1828
1829         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1830         if (ret <= 0) {
1831                 /* So we won't queue a reset ep command for a root hub */
1832                 ep->hcpriv = NULL;
1833                 return ret;
1834         }
1835         xhci = hcd_to_xhci(hcd);
1836         if (xhci->xhc_state & XHCI_STATE_DYING)
1837                 return -ENODEV;
1838
1839         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1840         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1841                 /* FIXME when we have to issue an evaluate endpoint command to
1842                  * deal with ep0 max packet size changing once we get the
1843                  * descriptors
1844                  */
1845                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1846                                 __func__, added_ctxs);
1847                 return 0;
1848         }
1849
1850         virt_dev = xhci->devs[udev->slot_id];
1851         in_ctx = virt_dev->in_ctx;
1852         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1853         if (!ctrl_ctx) {
1854                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1855                                 __func__);
1856                 return 0;
1857         }
1858
1859         ep_index = xhci_get_endpoint_index(&ep->desc);
1860         /* If this endpoint is already in use, and the upper layers are trying
1861          * to add it again without dropping it, reject the addition.
1862          */
1863         if (virt_dev->eps[ep_index].ring &&
1864                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1865                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1866                                 "without dropping it.\n",
1867                                 (unsigned int) ep->desc.bEndpointAddress);
1868                 return -EINVAL;
1869         }
1870
1871         /* If the HCD has already noted the endpoint is enabled,
1872          * ignore this request.
1873          */
1874         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1875                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1876                                 __func__, ep);
1877                 return 0;
1878         }
1879
1880         /*
1881          * Configuration and alternate setting changes must be done in
1882          * process context, not interrupt context (or so documenation
1883          * for usb_set_interface() and usb_set_configuration() claim).
1884          */
1885         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1886                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1887                                 __func__, ep->desc.bEndpointAddress);
1888                 return -ENOMEM;
1889         }
1890
1891         if (xhci->quirks & XHCI_MTK_HOST) {
1892                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1893                 if (ret < 0) {
1894                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1895                         virt_dev->eps[ep_index].new_ring = NULL;
1896                         return ret;
1897                 }
1898         }
1899
1900         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1901         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1902
1903         /* If xhci_endpoint_disable() was called for this endpoint, but the
1904          * xHC hasn't been notified yet through the check_bandwidth() call,
1905          * this re-adds a new state for the endpoint from the new endpoint
1906          * descriptors.  We must drop and re-add this endpoint, so we leave the
1907          * drop flags alone.
1908          */
1909         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1910
1911         /* Store the usb_device pointer for later use */
1912         ep->hcpriv = udev;
1913
1914         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1915         trace_xhci_add_endpoint(ep_ctx);
1916
1917         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1918
1919         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1920                         (unsigned int) ep->desc.bEndpointAddress,
1921                         udev->slot_id,
1922                         (unsigned int) new_drop_flags,
1923                         (unsigned int) new_add_flags);
1924         return 0;
1925 }
1926
1927 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1928 {
1929         struct xhci_input_control_ctx *ctrl_ctx;
1930         struct xhci_ep_ctx *ep_ctx;
1931         struct xhci_slot_ctx *slot_ctx;
1932         int i;
1933
1934         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1935         if (!ctrl_ctx) {
1936                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1937                                 __func__);
1938                 return;
1939         }
1940
1941         /* When a device's add flag and drop flag are zero, any subsequent
1942          * configure endpoint command will leave that endpoint's state
1943          * untouched.  Make sure we don't leave any old state in the input
1944          * endpoint contexts.
1945          */
1946         ctrl_ctx->drop_flags = 0;
1947         ctrl_ctx->add_flags = 0;
1948         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1949         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1950         /* Endpoint 0 is always valid */
1951         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1952         for (i = 1; i < 31; i++) {
1953                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1954                 ep_ctx->ep_info = 0;
1955                 ep_ctx->ep_info2 = 0;
1956                 ep_ctx->deq = 0;
1957                 ep_ctx->tx_info = 0;
1958         }
1959 }
1960
1961 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1962                 struct usb_device *udev, u32 *cmd_status)
1963 {
1964         int ret;
1965
1966         switch (*cmd_status) {
1967         case COMP_COMMAND_ABORTED:
1968         case COMP_COMMAND_RING_STOPPED:
1969                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1970                 ret = -ETIME;
1971                 break;
1972         case COMP_RESOURCE_ERROR:
1973                 dev_warn(&udev->dev,
1974                          "Not enough host controller resources for new device state.\n");
1975                 ret = -ENOMEM;
1976                 /* FIXME: can we allocate more resources for the HC? */
1977                 break;
1978         case COMP_BANDWIDTH_ERROR:
1979         case COMP_SECONDARY_BANDWIDTH_ERROR:
1980                 dev_warn(&udev->dev,
1981                          "Not enough bandwidth for new device state.\n");
1982                 ret = -ENOSPC;
1983                 /* FIXME: can we go back to the old state? */
1984                 break;
1985         case COMP_TRB_ERROR:
1986                 /* the HCD set up something wrong */
1987                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1988                                 "add flag = 1, "
1989                                 "and endpoint is not disabled.\n");
1990                 ret = -EINVAL;
1991                 break;
1992         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1993                 dev_warn(&udev->dev,
1994                          "ERROR: Incompatible device for endpoint configure command.\n");
1995                 ret = -ENODEV;
1996                 break;
1997         case COMP_SUCCESS:
1998                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1999                                 "Successful Endpoint Configure command");
2000                 ret = 0;
2001                 break;
2002         default:
2003                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2004                                 *cmd_status);
2005                 ret = -EINVAL;
2006                 break;
2007         }
2008         return ret;
2009 }
2010
2011 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2012                 struct usb_device *udev, u32 *cmd_status)
2013 {
2014         int ret;
2015
2016         switch (*cmd_status) {
2017         case COMP_COMMAND_ABORTED:
2018         case COMP_COMMAND_RING_STOPPED:
2019                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2020                 ret = -ETIME;
2021                 break;
2022         case COMP_PARAMETER_ERROR:
2023                 dev_warn(&udev->dev,
2024                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2025                 ret = -EINVAL;
2026                 break;
2027         case COMP_SLOT_NOT_ENABLED_ERROR:
2028                 dev_warn(&udev->dev,
2029                         "WARN: slot not enabled for evaluate context command.\n");
2030                 ret = -EINVAL;
2031                 break;
2032         case COMP_CONTEXT_STATE_ERROR:
2033                 dev_warn(&udev->dev,
2034                         "WARN: invalid context state for evaluate context command.\n");
2035                 ret = -EINVAL;
2036                 break;
2037         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2038                 dev_warn(&udev->dev,
2039                         "ERROR: Incompatible device for evaluate context command.\n");
2040                 ret = -ENODEV;
2041                 break;
2042         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2043                 /* Max Exit Latency too large error */
2044                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2045                 ret = -EINVAL;
2046                 break;
2047         case COMP_SUCCESS:
2048                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2049                                 "Successful evaluate context command");
2050                 ret = 0;
2051                 break;
2052         default:
2053                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2054                         *cmd_status);
2055                 ret = -EINVAL;
2056                 break;
2057         }
2058         return ret;
2059 }
2060
2061 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2062                 struct xhci_input_control_ctx *ctrl_ctx)
2063 {
2064         u32 valid_add_flags;
2065         u32 valid_drop_flags;
2066
2067         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2068          * (bit 1).  The default control endpoint is added during the Address
2069          * Device command and is never removed until the slot is disabled.
2070          */
2071         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2072         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2073
2074         /* Use hweight32 to count the number of ones in the add flags, or
2075          * number of endpoints added.  Don't count endpoints that are changed
2076          * (both added and dropped).
2077          */
2078         return hweight32(valid_add_flags) -
2079                 hweight32(valid_add_flags & valid_drop_flags);
2080 }
2081
2082 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2083                 struct xhci_input_control_ctx *ctrl_ctx)
2084 {
2085         u32 valid_add_flags;
2086         u32 valid_drop_flags;
2087
2088         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2089         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2090
2091         return hweight32(valid_drop_flags) -
2092                 hweight32(valid_add_flags & valid_drop_flags);
2093 }
2094
2095 /*
2096  * We need to reserve the new number of endpoints before the configure endpoint
2097  * command completes.  We can't subtract the dropped endpoints from the number
2098  * of active endpoints until the command completes because we can oversubscribe
2099  * the host in this case:
2100  *
2101  *  - the first configure endpoint command drops more endpoints than it adds
2102  *  - a second configure endpoint command that adds more endpoints is queued
2103  *  - the first configure endpoint command fails, so the config is unchanged
2104  *  - the second command may succeed, even though there isn't enough resources
2105  *
2106  * Must be called with xhci->lock held.
2107  */
2108 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2109                 struct xhci_input_control_ctx *ctrl_ctx)
2110 {
2111         u32 added_eps;
2112
2113         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2114         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2115                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2116                                 "Not enough ep ctxs: "
2117                                 "%u active, need to add %u, limit is %u.",
2118                                 xhci->num_active_eps, added_eps,
2119                                 xhci->limit_active_eps);
2120                 return -ENOMEM;
2121         }
2122         xhci->num_active_eps += added_eps;
2123         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2124                         "Adding %u ep ctxs, %u now active.", added_eps,
2125                         xhci->num_active_eps);
2126         return 0;
2127 }
2128
2129 /*
2130  * The configure endpoint was failed by the xHC for some other reason, so we
2131  * need to revert the resources that failed configuration would have used.
2132  *
2133  * Must be called with xhci->lock held.
2134  */
2135 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2136                 struct xhci_input_control_ctx *ctrl_ctx)
2137 {
2138         u32 num_failed_eps;
2139
2140         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2141         xhci->num_active_eps -= num_failed_eps;
2142         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143                         "Removing %u failed ep ctxs, %u now active.",
2144                         num_failed_eps,
2145                         xhci->num_active_eps);
2146 }
2147
2148 /*
2149  * Now that the command has completed, clean up the active endpoint count by
2150  * subtracting out the endpoints that were dropped (but not changed).
2151  *
2152  * Must be called with xhci->lock held.
2153  */
2154 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2155                 struct xhci_input_control_ctx *ctrl_ctx)
2156 {
2157         u32 num_dropped_eps;
2158
2159         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2160         xhci->num_active_eps -= num_dropped_eps;
2161         if (num_dropped_eps)
2162                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2163                                 "Removing %u dropped ep ctxs, %u now active.",
2164                                 num_dropped_eps,
2165                                 xhci->num_active_eps);
2166 }
2167
2168 static unsigned int xhci_get_block_size(struct usb_device *udev)
2169 {
2170         switch (udev->speed) {
2171         case USB_SPEED_LOW:
2172         case USB_SPEED_FULL:
2173                 return FS_BLOCK;
2174         case USB_SPEED_HIGH:
2175                 return HS_BLOCK;
2176         case USB_SPEED_SUPER:
2177         case USB_SPEED_SUPER_PLUS:
2178                 return SS_BLOCK;
2179         case USB_SPEED_UNKNOWN:
2180         case USB_SPEED_WIRELESS:
2181         default:
2182                 /* Should never happen */
2183                 return 1;
2184         }
2185 }
2186
2187 static unsigned int
2188 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2189 {
2190         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2191                 return LS_OVERHEAD;
2192         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2193                 return FS_OVERHEAD;
2194         return HS_OVERHEAD;
2195 }
2196
2197 /* If we are changing a LS/FS device under a HS hub,
2198  * make sure (if we are activating a new TT) that the HS bus has enough
2199  * bandwidth for this new TT.
2200  */
2201 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2202                 struct xhci_virt_device *virt_dev,
2203                 int old_active_eps)
2204 {
2205         struct xhci_interval_bw_table *bw_table;
2206         struct xhci_tt_bw_info *tt_info;
2207
2208         /* Find the bandwidth table for the root port this TT is attached to. */
2209         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2210         tt_info = virt_dev->tt_info;
2211         /* If this TT already had active endpoints, the bandwidth for this TT
2212          * has already been added.  Removing all periodic endpoints (and thus
2213          * making the TT enactive) will only decrease the bandwidth used.
2214          */
2215         if (old_active_eps)
2216                 return 0;
2217         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2218                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2219                         return -ENOMEM;
2220                 return 0;
2221         }
2222         /* Not sure why we would have no new active endpoints...
2223          *
2224          * Maybe because of an Evaluate Context change for a hub update or a
2225          * control endpoint 0 max packet size change?
2226          * FIXME: skip the bandwidth calculation in that case.
2227          */
2228         return 0;
2229 }
2230
2231 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2232                 struct xhci_virt_device *virt_dev)
2233 {
2234         unsigned int bw_reserved;
2235
2236         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2237         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2238                 return -ENOMEM;
2239
2240         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2241         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2242                 return -ENOMEM;
2243
2244         return 0;
2245 }
2246
2247 /*
2248  * This algorithm is a very conservative estimate of the worst-case scheduling
2249  * scenario for any one interval.  The hardware dynamically schedules the
2250  * packets, so we can't tell which microframe could be the limiting factor in
2251  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2252  *
2253  * Obviously, we can't solve an NP complete problem to find the minimum worst
2254  * case scenario.  Instead, we come up with an estimate that is no less than
2255  * the worst case bandwidth used for any one microframe, but may be an
2256  * over-estimate.
2257  *
2258  * We walk the requirements for each endpoint by interval, starting with the
2259  * smallest interval, and place packets in the schedule where there is only one
2260  * possible way to schedule packets for that interval.  In order to simplify
2261  * this algorithm, we record the largest max packet size for each interval, and
2262  * assume all packets will be that size.
2263  *
2264  * For interval 0, we obviously must schedule all packets for each interval.
2265  * The bandwidth for interval 0 is just the amount of data to be transmitted
2266  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2267  * the number of packets).
2268  *
2269  * For interval 1, we have two possible microframes to schedule those packets
2270  * in.  For this algorithm, if we can schedule the same number of packets for
2271  * each possible scheduling opportunity (each microframe), we will do so.  The
2272  * remaining number of packets will be saved to be transmitted in the gaps in
2273  * the next interval's scheduling sequence.
2274  *
2275  * As we move those remaining packets to be scheduled with interval 2 packets,
2276  * we have to double the number of remaining packets to transmit.  This is
2277  * because the intervals are actually powers of 2, and we would be transmitting
2278  * the previous interval's packets twice in this interval.  We also have to be
2279  * sure that when we look at the largest max packet size for this interval, we
2280  * also look at the largest max packet size for the remaining packets and take
2281  * the greater of the two.
2282  *
2283  * The algorithm continues to evenly distribute packets in each scheduling
2284  * opportunity, and push the remaining packets out, until we get to the last
2285  * interval.  Then those packets and their associated overhead are just added
2286  * to the bandwidth used.
2287  */
2288 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2289                 struct xhci_virt_device *virt_dev,
2290                 int old_active_eps)
2291 {
2292         unsigned int bw_reserved;
2293         unsigned int max_bandwidth;
2294         unsigned int bw_used;
2295         unsigned int block_size;
2296         struct xhci_interval_bw_table *bw_table;
2297         unsigned int packet_size = 0;
2298         unsigned int overhead = 0;
2299         unsigned int packets_transmitted = 0;
2300         unsigned int packets_remaining = 0;
2301         unsigned int i;
2302
2303         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2304                 return xhci_check_ss_bw(xhci, virt_dev);
2305
2306         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2307                 max_bandwidth = HS_BW_LIMIT;
2308                 /* Convert percent of bus BW reserved to blocks reserved */
2309                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2310         } else {
2311                 max_bandwidth = FS_BW_LIMIT;
2312                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2313         }
2314
2315         bw_table = virt_dev->bw_table;
2316         /* We need to translate the max packet size and max ESIT payloads into
2317          * the units the hardware uses.
2318          */
2319         block_size = xhci_get_block_size(virt_dev->udev);
2320
2321         /* If we are manipulating a LS/FS device under a HS hub, double check
2322          * that the HS bus has enough bandwidth if we are activing a new TT.
2323          */
2324         if (virt_dev->tt_info) {
2325                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2326                                 "Recalculating BW for rootport %u",
2327                                 virt_dev->real_port);
2328                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2329                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2330                                         "newly activated TT.\n");
2331                         return -ENOMEM;
2332                 }
2333                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2334                                 "Recalculating BW for TT slot %u port %u",
2335                                 virt_dev->tt_info->slot_id,
2336                                 virt_dev->tt_info->ttport);
2337         } else {
2338                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2339                                 "Recalculating BW for rootport %u",
2340                                 virt_dev->real_port);
2341         }
2342
2343         /* Add in how much bandwidth will be used for interval zero, or the
2344          * rounded max ESIT payload + number of packets * largest overhead.
2345          */
2346         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2347                 bw_table->interval_bw[0].num_packets *
2348                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2349
2350         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2351                 unsigned int bw_added;
2352                 unsigned int largest_mps;
2353                 unsigned int interval_overhead;
2354
2355                 /*
2356                  * How many packets could we transmit in this interval?
2357                  * If packets didn't fit in the previous interval, we will need
2358                  * to transmit that many packets twice within this interval.
2359                  */
2360                 packets_remaining = 2 * packets_remaining +
2361                         bw_table->interval_bw[i].num_packets;
2362
2363                 /* Find the largest max packet size of this or the previous
2364                  * interval.
2365                  */
2366                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2367                         largest_mps = 0;
2368                 else {
2369                         struct xhci_virt_ep *virt_ep;
2370                         struct list_head *ep_entry;
2371
2372                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2373                         virt_ep = list_entry(ep_entry,
2374                                         struct xhci_virt_ep, bw_endpoint_list);
2375                         /* Convert to blocks, rounding up */
2376                         largest_mps = DIV_ROUND_UP(
2377                                         virt_ep->bw_info.max_packet_size,
2378                                         block_size);
2379                 }
2380                 if (largest_mps > packet_size)
2381                         packet_size = largest_mps;
2382
2383                 /* Use the larger overhead of this or the previous interval. */
2384                 interval_overhead = xhci_get_largest_overhead(
2385                                 &bw_table->interval_bw[i]);
2386                 if (interval_overhead > overhead)
2387                         overhead = interval_overhead;
2388
2389                 /* How many packets can we evenly distribute across
2390                  * (1 << (i + 1)) possible scheduling opportunities?
2391                  */
2392                 packets_transmitted = packets_remaining >> (i + 1);
2393
2394                 /* Add in the bandwidth used for those scheduled packets */
2395                 bw_added = packets_transmitted * (overhead + packet_size);
2396
2397                 /* How many packets do we have remaining to transmit? */
2398                 packets_remaining = packets_remaining % (1 << (i + 1));
2399
2400                 /* What largest max packet size should those packets have? */
2401                 /* If we've transmitted all packets, don't carry over the
2402                  * largest packet size.
2403                  */
2404                 if (packets_remaining == 0) {
2405                         packet_size = 0;
2406                         overhead = 0;
2407                 } else if (packets_transmitted > 0) {
2408                         /* Otherwise if we do have remaining packets, and we've
2409                          * scheduled some packets in this interval, take the
2410                          * largest max packet size from endpoints with this
2411                          * interval.
2412                          */
2413                         packet_size = largest_mps;
2414                         overhead = interval_overhead;
2415                 }
2416                 /* Otherwise carry over packet_size and overhead from the last
2417                  * time we had a remainder.
2418                  */
2419                 bw_used += bw_added;
2420                 if (bw_used > max_bandwidth) {
2421                         xhci_warn(xhci, "Not enough bandwidth. "
2422                                         "Proposed: %u, Max: %u\n",
2423                                 bw_used, max_bandwidth);
2424                         return -ENOMEM;
2425                 }
2426         }
2427         /*
2428          * Ok, we know we have some packets left over after even-handedly
2429          * scheduling interval 15.  We don't know which microframes they will
2430          * fit into, so we over-schedule and say they will be scheduled every
2431          * microframe.
2432          */
2433         if (packets_remaining > 0)
2434                 bw_used += overhead + packet_size;
2435
2436         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2437                 unsigned int port_index = virt_dev->real_port - 1;
2438
2439                 /* OK, we're manipulating a HS device attached to a
2440                  * root port bandwidth domain.  Include the number of active TTs
2441                  * in the bandwidth used.
2442                  */
2443                 bw_used += TT_HS_OVERHEAD *
2444                         xhci->rh_bw[port_index].num_active_tts;
2445         }
2446
2447         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2448                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2449                 "Available: %u " "percent",
2450                 bw_used, max_bandwidth, bw_reserved,
2451                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2452                 max_bandwidth);
2453
2454         bw_used += bw_reserved;
2455         if (bw_used > max_bandwidth) {
2456                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2457                                 bw_used, max_bandwidth);
2458                 return -ENOMEM;
2459         }
2460
2461         bw_table->bw_used = bw_used;
2462         return 0;
2463 }
2464
2465 static bool xhci_is_async_ep(unsigned int ep_type)
2466 {
2467         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2468                                         ep_type != ISOC_IN_EP &&
2469                                         ep_type != INT_IN_EP);
2470 }
2471
2472 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2473 {
2474         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2475 }
2476
2477 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2478 {
2479         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2480
2481         if (ep_bw->ep_interval == 0)
2482                 return SS_OVERHEAD_BURST +
2483                         (ep_bw->mult * ep_bw->num_packets *
2484                                         (SS_OVERHEAD + mps));
2485         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2486                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2487                                 1 << ep_bw->ep_interval);
2488
2489 }
2490
2491 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2492                 struct xhci_bw_info *ep_bw,
2493                 struct xhci_interval_bw_table *bw_table,
2494                 struct usb_device *udev,
2495                 struct xhci_virt_ep *virt_ep,
2496                 struct xhci_tt_bw_info *tt_info)
2497 {
2498         struct xhci_interval_bw *interval_bw;
2499         int normalized_interval;
2500
2501         if (xhci_is_async_ep(ep_bw->type))
2502                 return;
2503
2504         if (udev->speed >= USB_SPEED_SUPER) {
2505                 if (xhci_is_sync_in_ep(ep_bw->type))
2506                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2507                                 xhci_get_ss_bw_consumed(ep_bw);
2508                 else
2509                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2510                                 xhci_get_ss_bw_consumed(ep_bw);
2511                 return;
2512         }
2513
2514         /* SuperSpeed endpoints never get added to intervals in the table, so
2515          * this check is only valid for HS/FS/LS devices.
2516          */
2517         if (list_empty(&virt_ep->bw_endpoint_list))
2518                 return;
2519         /* For LS/FS devices, we need to translate the interval expressed in
2520          * microframes to frames.
2521          */
2522         if (udev->speed == USB_SPEED_HIGH)
2523                 normalized_interval = ep_bw->ep_interval;
2524         else
2525                 normalized_interval = ep_bw->ep_interval - 3;
2526
2527         if (normalized_interval == 0)
2528                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2529         interval_bw = &bw_table->interval_bw[normalized_interval];
2530         interval_bw->num_packets -= ep_bw->num_packets;
2531         switch (udev->speed) {
2532         case USB_SPEED_LOW:
2533                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2534                 break;
2535         case USB_SPEED_FULL:
2536                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2537                 break;
2538         case USB_SPEED_HIGH:
2539                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2540                 break;
2541         case USB_SPEED_SUPER:
2542         case USB_SPEED_SUPER_PLUS:
2543         case USB_SPEED_UNKNOWN:
2544         case USB_SPEED_WIRELESS:
2545                 /* Should never happen because only LS/FS/HS endpoints will get
2546                  * added to the endpoint list.
2547                  */
2548                 return;
2549         }
2550         if (tt_info)
2551                 tt_info->active_eps -= 1;
2552         list_del_init(&virt_ep->bw_endpoint_list);
2553 }
2554
2555 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2556                 struct xhci_bw_info *ep_bw,
2557                 struct xhci_interval_bw_table *bw_table,
2558                 struct usb_device *udev,
2559                 struct xhci_virt_ep *virt_ep,
2560                 struct xhci_tt_bw_info *tt_info)
2561 {
2562         struct xhci_interval_bw *interval_bw;
2563         struct xhci_virt_ep *smaller_ep;
2564         int normalized_interval;
2565
2566         if (xhci_is_async_ep(ep_bw->type))
2567                 return;
2568
2569         if (udev->speed == USB_SPEED_SUPER) {
2570                 if (xhci_is_sync_in_ep(ep_bw->type))
2571                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2572                                 xhci_get_ss_bw_consumed(ep_bw);
2573                 else
2574                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2575                                 xhci_get_ss_bw_consumed(ep_bw);
2576                 return;
2577         }
2578
2579         /* For LS/FS devices, we need to translate the interval expressed in
2580          * microframes to frames.
2581          */
2582         if (udev->speed == USB_SPEED_HIGH)
2583                 normalized_interval = ep_bw->ep_interval;
2584         else
2585                 normalized_interval = ep_bw->ep_interval - 3;
2586
2587         if (normalized_interval == 0)
2588                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2589         interval_bw = &bw_table->interval_bw[normalized_interval];
2590         interval_bw->num_packets += ep_bw->num_packets;
2591         switch (udev->speed) {
2592         case USB_SPEED_LOW:
2593                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2594                 break;
2595         case USB_SPEED_FULL:
2596                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2597                 break;
2598         case USB_SPEED_HIGH:
2599                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2600                 break;
2601         case USB_SPEED_SUPER:
2602         case USB_SPEED_SUPER_PLUS:
2603         case USB_SPEED_UNKNOWN:
2604         case USB_SPEED_WIRELESS:
2605                 /* Should never happen because only LS/FS/HS endpoints will get
2606                  * added to the endpoint list.
2607                  */
2608                 return;
2609         }
2610
2611         if (tt_info)
2612                 tt_info->active_eps += 1;
2613         /* Insert the endpoint into the list, largest max packet size first. */
2614         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2615                         bw_endpoint_list) {
2616                 if (ep_bw->max_packet_size >=
2617                                 smaller_ep->bw_info.max_packet_size) {
2618                         /* Add the new ep before the smaller endpoint */
2619                         list_add_tail(&virt_ep->bw_endpoint_list,
2620                                         &smaller_ep->bw_endpoint_list);
2621                         return;
2622                 }
2623         }
2624         /* Add the new endpoint at the end of the list. */
2625         list_add_tail(&virt_ep->bw_endpoint_list,
2626                         &interval_bw->endpoints);
2627 }
2628
2629 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2630                 struct xhci_virt_device *virt_dev,
2631                 int old_active_eps)
2632 {
2633         struct xhci_root_port_bw_info *rh_bw_info;
2634         if (!virt_dev->tt_info)
2635                 return;
2636
2637         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2638         if (old_active_eps == 0 &&
2639                                 virt_dev->tt_info->active_eps != 0) {
2640                 rh_bw_info->num_active_tts += 1;
2641                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2642         } else if (old_active_eps != 0 &&
2643                                 virt_dev->tt_info->active_eps == 0) {
2644                 rh_bw_info->num_active_tts -= 1;
2645                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2646         }
2647 }
2648
2649 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2650                 struct xhci_virt_device *virt_dev,
2651                 struct xhci_container_ctx *in_ctx)
2652 {
2653         struct xhci_bw_info ep_bw_info[31];
2654         int i;
2655         struct xhci_input_control_ctx *ctrl_ctx;
2656         int old_active_eps = 0;
2657
2658         if (virt_dev->tt_info)
2659                 old_active_eps = virt_dev->tt_info->active_eps;
2660
2661         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2662         if (!ctrl_ctx) {
2663                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2664                                 __func__);
2665                 return -ENOMEM;
2666         }
2667
2668         for (i = 0; i < 31; i++) {
2669                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2670                         continue;
2671
2672                 /* Make a copy of the BW info in case we need to revert this */
2673                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2674                                 sizeof(ep_bw_info[i]));
2675                 /* Drop the endpoint from the interval table if the endpoint is
2676                  * being dropped or changed.
2677                  */
2678                 if (EP_IS_DROPPED(ctrl_ctx, i))
2679                         xhci_drop_ep_from_interval_table(xhci,
2680                                         &virt_dev->eps[i].bw_info,
2681                                         virt_dev->bw_table,
2682                                         virt_dev->udev,
2683                                         &virt_dev->eps[i],
2684                                         virt_dev->tt_info);
2685         }
2686         /* Overwrite the information stored in the endpoints' bw_info */
2687         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2688         for (i = 0; i < 31; i++) {
2689                 /* Add any changed or added endpoints to the interval table */
2690                 if (EP_IS_ADDED(ctrl_ctx, i))
2691                         xhci_add_ep_to_interval_table(xhci,
2692                                         &virt_dev->eps[i].bw_info,
2693                                         virt_dev->bw_table,
2694                                         virt_dev->udev,
2695                                         &virt_dev->eps[i],
2696                                         virt_dev->tt_info);
2697         }
2698
2699         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2700                 /* Ok, this fits in the bandwidth we have.
2701                  * Update the number of active TTs.
2702                  */
2703                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2704                 return 0;
2705         }
2706
2707         /* We don't have enough bandwidth for this, revert the stored info. */
2708         for (i = 0; i < 31; i++) {
2709                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2710                         continue;
2711
2712                 /* Drop the new copies of any added or changed endpoints from
2713                  * the interval table.
2714                  */
2715                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2716                         xhci_drop_ep_from_interval_table(xhci,
2717                                         &virt_dev->eps[i].bw_info,
2718                                         virt_dev->bw_table,
2719                                         virt_dev->udev,
2720                                         &virt_dev->eps[i],
2721                                         virt_dev->tt_info);
2722                 }
2723                 /* Revert the endpoint back to its old information */
2724                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2725                                 sizeof(ep_bw_info[i]));
2726                 /* Add any changed or dropped endpoints back into the table */
2727                 if (EP_IS_DROPPED(ctrl_ctx, i))
2728                         xhci_add_ep_to_interval_table(xhci,
2729                                         &virt_dev->eps[i].bw_info,
2730                                         virt_dev->bw_table,
2731                                         virt_dev->udev,
2732                                         &virt_dev->eps[i],
2733                                         virt_dev->tt_info);
2734         }
2735         return -ENOMEM;
2736 }
2737
2738
2739 /* Issue a configure endpoint command or evaluate context command
2740  * and wait for it to finish.
2741  */
2742 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2743                 struct usb_device *udev,
2744                 struct xhci_command *command,
2745                 bool ctx_change, bool must_succeed)
2746 {
2747         int ret;
2748         unsigned long flags;
2749         struct xhci_input_control_ctx *ctrl_ctx;
2750         struct xhci_virt_device *virt_dev;
2751         struct xhci_slot_ctx *slot_ctx;
2752
2753         if (!command)
2754                 return -EINVAL;
2755
2756         spin_lock_irqsave(&xhci->lock, flags);
2757
2758         if (xhci->xhc_state & XHCI_STATE_DYING) {
2759                 spin_unlock_irqrestore(&xhci->lock, flags);
2760                 return -ESHUTDOWN;
2761         }
2762
2763         virt_dev = xhci->devs[udev->slot_id];
2764
2765         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2766         if (!ctrl_ctx) {
2767                 spin_unlock_irqrestore(&xhci->lock, flags);
2768                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2769                                 __func__);
2770                 return -ENOMEM;
2771         }
2772
2773         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2774                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2775                 spin_unlock_irqrestore(&xhci->lock, flags);
2776                 xhci_warn(xhci, "Not enough host resources, "
2777                                 "active endpoint contexts = %u\n",
2778                                 xhci->num_active_eps);
2779                 return -ENOMEM;
2780         }
2781         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2782             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2783                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2784                         xhci_free_host_resources(xhci, ctrl_ctx);
2785                 spin_unlock_irqrestore(&xhci->lock, flags);
2786                 xhci_warn(xhci, "Not enough bandwidth\n");
2787                 return -ENOMEM;
2788         }
2789
2790         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2791
2792         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2793         trace_xhci_configure_endpoint(slot_ctx);
2794
2795         if (!ctx_change)
2796                 ret = xhci_queue_configure_endpoint(xhci, command,
2797                                 command->in_ctx->dma,
2798                                 udev->slot_id, must_succeed);
2799         else
2800                 ret = xhci_queue_evaluate_context(xhci, command,
2801                                 command->in_ctx->dma,
2802                                 udev->slot_id, must_succeed);
2803         if (ret < 0) {
2804                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2805                         xhci_free_host_resources(xhci, ctrl_ctx);
2806                 spin_unlock_irqrestore(&xhci->lock, flags);
2807                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2808                                 "FIXME allocate a new ring segment");
2809                 return -ENOMEM;
2810         }
2811         xhci_ring_cmd_db(xhci);
2812         spin_unlock_irqrestore(&xhci->lock, flags);
2813
2814         /* Wait for the configure endpoint command to complete */
2815         wait_for_completion(command->completion);
2816
2817         if (!ctx_change)
2818                 ret = xhci_configure_endpoint_result(xhci, udev,
2819                                                      &command->status);
2820         else
2821                 ret = xhci_evaluate_context_result(xhci, udev,
2822                                                    &command->status);
2823
2824         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2825                 spin_lock_irqsave(&xhci->lock, flags);
2826                 /* If the command failed, remove the reserved resources.
2827                  * Otherwise, clean up the estimate to include dropped eps.
2828                  */
2829                 if (ret)
2830                         xhci_free_host_resources(xhci, ctrl_ctx);
2831                 else
2832                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2833                 spin_unlock_irqrestore(&xhci->lock, flags);
2834         }
2835         return ret;
2836 }
2837
2838 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2839         struct xhci_virt_device *vdev, int i)
2840 {
2841         struct xhci_virt_ep *ep = &vdev->eps[i];
2842
2843         if (ep->ep_state & EP_HAS_STREAMS) {
2844                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2845                                 xhci_get_endpoint_address(i));
2846                 xhci_free_stream_info(xhci, ep->stream_info);
2847                 ep->stream_info = NULL;
2848                 ep->ep_state &= ~EP_HAS_STREAMS;
2849         }
2850 }
2851
2852 /* Called after one or more calls to xhci_add_endpoint() or
2853  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2854  * to call xhci_reset_bandwidth().
2855  *
2856  * Since we are in the middle of changing either configuration or
2857  * installing a new alt setting, the USB core won't allow URBs to be
2858  * enqueued for any endpoint on the old config or interface.  Nothing
2859  * else should be touching the xhci->devs[slot_id] structure, so we
2860  * don't need to take the xhci->lock for manipulating that.
2861  */
2862 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2863 {
2864         int i;
2865         int ret = 0;
2866         struct xhci_hcd *xhci;
2867         struct xhci_virt_device *virt_dev;
2868         struct xhci_input_control_ctx *ctrl_ctx;
2869         struct xhci_slot_ctx *slot_ctx;
2870         struct xhci_command *command;
2871
2872         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2873         if (ret <= 0)
2874                 return ret;
2875         xhci = hcd_to_xhci(hcd);
2876         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2877                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2878                 return -ENODEV;
2879
2880         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2881         virt_dev = xhci->devs[udev->slot_id];
2882
2883         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2884         if (!command)
2885                 return -ENOMEM;
2886
2887         command->in_ctx = virt_dev->in_ctx;
2888
2889         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2890         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2891         if (!ctrl_ctx) {
2892                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2893                                 __func__);
2894                 ret = -ENOMEM;
2895                 goto command_cleanup;
2896         }
2897         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2898         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2899         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2900
2901         /* Don't issue the command if there's no endpoints to update. */
2902         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2903             ctrl_ctx->drop_flags == 0) {
2904                 ret = 0;
2905                 goto command_cleanup;
2906         }
2907         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2908         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2909         for (i = 31; i >= 1; i--) {
2910                 __le32 le32 = cpu_to_le32(BIT(i));
2911
2912                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2913                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2914                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2915                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2916                         break;
2917                 }
2918         }
2919
2920         ret = xhci_configure_endpoint(xhci, udev, command,
2921                         false, false);
2922         if (ret)
2923                 /* Callee should call reset_bandwidth() */
2924                 goto command_cleanup;
2925
2926         /* Free any rings that were dropped, but not changed. */
2927         for (i = 1; i < 31; i++) {
2928                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2929                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2930                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2931                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2932                 }
2933         }
2934         xhci_zero_in_ctx(xhci, virt_dev);
2935         /*
2936          * Install any rings for completely new endpoints or changed endpoints,
2937          * and free any old rings from changed endpoints.
2938          */
2939         for (i = 1; i < 31; i++) {
2940                 if (!virt_dev->eps[i].new_ring)
2941                         continue;
2942                 /* Only free the old ring if it exists.
2943                  * It may not if this is the first add of an endpoint.
2944                  */
2945                 if (virt_dev->eps[i].ring) {
2946                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2947                 }
2948                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2949                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2950                 virt_dev->eps[i].new_ring = NULL;
2951         }
2952 command_cleanup:
2953         kfree(command->completion);
2954         kfree(command);
2955
2956         return ret;
2957 }
2958
2959 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2960 {
2961         struct xhci_hcd *xhci;
2962         struct xhci_virt_device *virt_dev;
2963         int i, ret;
2964
2965         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2966         if (ret <= 0)
2967                 return;
2968         xhci = hcd_to_xhci(hcd);
2969
2970         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2971         virt_dev = xhci->devs[udev->slot_id];
2972         /* Free any rings allocated for added endpoints */
2973         for (i = 0; i < 31; i++) {
2974                 if (virt_dev->eps[i].new_ring) {
2975                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2976                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2977                         virt_dev->eps[i].new_ring = NULL;
2978                 }
2979         }
2980         xhci_zero_in_ctx(xhci, virt_dev);
2981 }
2982
2983 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2984                 struct xhci_container_ctx *in_ctx,
2985                 struct xhci_container_ctx *out_ctx,
2986                 struct xhci_input_control_ctx *ctrl_ctx,
2987                 u32 add_flags, u32 drop_flags)
2988 {
2989         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2990         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2991         xhci_slot_copy(xhci, in_ctx, out_ctx);
2992         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2993 }
2994
2995 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2996                 unsigned int slot_id, unsigned int ep_index,
2997                 struct xhci_dequeue_state *deq_state)
2998 {
2999         struct xhci_input_control_ctx *ctrl_ctx;
3000         struct xhci_container_ctx *in_ctx;
3001         struct xhci_ep_ctx *ep_ctx;
3002         u32 added_ctxs;
3003         dma_addr_t addr;
3004
3005         in_ctx = xhci->devs[slot_id]->in_ctx;
3006         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3007         if (!ctrl_ctx) {
3008                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3009                                 __func__);
3010                 return;
3011         }
3012
3013         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3014                         xhci->devs[slot_id]->out_ctx, ep_index);
3015         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3016         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3017                         deq_state->new_deq_ptr);
3018         if (addr == 0) {
3019                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3020                                 "reset ep command\n");
3021                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3022                                 deq_state->new_deq_seg,
3023                                 deq_state->new_deq_ptr);
3024                 return;
3025         }
3026         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3027
3028         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3029         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3030                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3031                         added_ctxs, added_ctxs);
3032 }
3033
3034 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3035                                unsigned int ep_index, unsigned int stream_id,
3036                                struct xhci_td *td)
3037 {
3038         struct xhci_dequeue_state deq_state;
3039
3040         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3041                         "Cleaning up stalled endpoint ring");
3042         /* We need to move the HW's dequeue pointer past this TD,
3043          * or it will attempt to resend it on the next doorbell ring.
3044          */
3045         xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3046                                     &deq_state);
3047
3048         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3049                 return;
3050
3051         /* HW with the reset endpoint quirk will use the saved dequeue state to
3052          * issue a configure endpoint command later.
3053          */
3054         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3055                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3056                                 "Queueing new dequeue state");
3057                 xhci_queue_new_dequeue_state(xhci, slot_id,
3058                                 ep_index, &deq_state);
3059         } else {
3060                 /* Better hope no one uses the input context between now and the
3061                  * reset endpoint completion!
3062                  * XXX: No idea how this hardware will react when stream rings
3063                  * are enabled.
3064                  */
3065                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3066                                 "Setting up input context for "
3067                                 "configure endpoint command");
3068                 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3069                                 ep_index, &deq_state);
3070         }
3071 }
3072
3073 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3074                                   struct usb_host_endpoint *host_ep)
3075 {
3076         struct xhci_hcd         *xhci;
3077         struct xhci_virt_device *vdev;
3078         struct xhci_virt_ep     *ep;
3079         struct usb_device       *udev;
3080         unsigned long           flags;
3081         unsigned int            ep_index;
3082
3083         xhci = hcd_to_xhci(hcd);
3084 rescan:
3085         spin_lock_irqsave(&xhci->lock, flags);
3086
3087         udev = (struct usb_device *)host_ep->hcpriv;
3088         if (!udev || !udev->slot_id)
3089                 goto done;
3090
3091         vdev = xhci->devs[udev->slot_id];
3092         if (!vdev)
3093                 goto done;
3094
3095         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3096         ep = &vdev->eps[ep_index];
3097         if (!ep)
3098                 goto done;
3099
3100         /* wait for hub_tt_work to finish clearing hub TT */
3101         if (ep->ep_state & EP_CLEARING_TT) {
3102                 spin_unlock_irqrestore(&xhci->lock, flags);
3103                 schedule_timeout_uninterruptible(1);
3104                 goto rescan;
3105         }
3106
3107         if (ep->ep_state)
3108                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3109                          ep->ep_state);
3110 done:
3111         host_ep->hcpriv = NULL;
3112         spin_unlock_irqrestore(&xhci->lock, flags);
3113 }
3114
3115 /*
3116  * Called after usb core issues a clear halt control message.
3117  * The host side of the halt should already be cleared by a reset endpoint
3118  * command issued when the STALL event was received.
3119  *
3120  * The reset endpoint command may only be issued to endpoints in the halted
3121  * state. For software that wishes to reset the data toggle or sequence number
3122  * of an endpoint that isn't in the halted state this function will issue a
3123  * configure endpoint command with the Drop and Add bits set for the target
3124  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3125  */
3126
3127 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3128                 struct usb_host_endpoint *host_ep)
3129 {
3130         struct xhci_hcd *xhci;
3131         struct usb_device *udev;
3132         struct xhci_virt_device *vdev;
3133         struct xhci_virt_ep *ep;
3134         struct xhci_input_control_ctx *ctrl_ctx;
3135         struct xhci_command *stop_cmd, *cfg_cmd;
3136         unsigned int ep_index;
3137         unsigned long flags;
3138         u32 ep_flag;
3139         int err;
3140
3141         xhci = hcd_to_xhci(hcd);
3142         if (!host_ep->hcpriv)
3143                 return;
3144         udev = (struct usb_device *) host_ep->hcpriv;
3145         vdev = xhci->devs[udev->slot_id];
3146
3147         /*
3148          * vdev may be lost due to xHC restore error and re-initialization
3149          * during S3/S4 resume. A new vdev will be allocated later by
3150          * xhci_discover_or_reset_device()
3151          */
3152         if (!udev->slot_id || !vdev)
3153                 return;
3154         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3155         ep = &vdev->eps[ep_index];
3156         if (!ep)
3157                 return;
3158
3159         /* Bail out if toggle is already being cleared by a endpoint reset */
3160         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3161                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3162                 return;
3163         }
3164         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3165         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3166             usb_endpoint_xfer_isoc(&host_ep->desc))
3167                 return;
3168
3169         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3170
3171         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3172                 return;
3173
3174         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3175         if (!stop_cmd)
3176                 return;
3177
3178         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3179         if (!cfg_cmd)
3180                 goto cleanup;
3181
3182         spin_lock_irqsave(&xhci->lock, flags);
3183
3184         /* block queuing new trbs and ringing ep doorbell */
3185         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3186
3187         /*
3188          * Make sure endpoint ring is empty before resetting the toggle/seq.
3189          * Driver is required to synchronously cancel all transfer request.
3190          * Stop the endpoint to force xHC to update the output context
3191          */
3192
3193         if (!list_empty(&ep->ring->td_list)) {
3194                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3195                 spin_unlock_irqrestore(&xhci->lock, flags);
3196                 xhci_free_command(xhci, cfg_cmd);
3197                 goto cleanup;
3198         }
3199
3200         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3201                                         ep_index, 0);
3202         if (err < 0) {
3203                 spin_unlock_irqrestore(&xhci->lock, flags);
3204                 xhci_free_command(xhci, cfg_cmd);
3205                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3206                                 __func__, err);
3207                 goto cleanup;
3208         }
3209
3210         xhci_ring_cmd_db(xhci);
3211         spin_unlock_irqrestore(&xhci->lock, flags);
3212
3213         wait_for_completion(stop_cmd->completion);
3214
3215         spin_lock_irqsave(&xhci->lock, flags);
3216
3217         /* config ep command clears toggle if add and drop ep flags are set */
3218         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3219         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3220                                            ctrl_ctx, ep_flag, ep_flag);
3221         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3222
3223         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3224                                       udev->slot_id, false);
3225         if (err < 0) {
3226                 spin_unlock_irqrestore(&xhci->lock, flags);
3227                 xhci_free_command(xhci, cfg_cmd);
3228                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3229                                 __func__, err);
3230                 goto cleanup;
3231         }
3232
3233         xhci_ring_cmd_db(xhci);
3234         spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236         wait_for_completion(cfg_cmd->completion);
3237
3238         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3239         xhci_free_command(xhci, cfg_cmd);
3240 cleanup:
3241         xhci_free_command(xhci, stop_cmd);
3242 }
3243
3244 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3245                 struct usb_device *udev, struct usb_host_endpoint *ep,
3246                 unsigned int slot_id)
3247 {
3248         int ret;
3249         unsigned int ep_index;
3250         unsigned int ep_state;
3251
3252         if (!ep)
3253                 return -EINVAL;
3254         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3255         if (ret <= 0)
3256                 return -EINVAL;
3257         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3258                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3259                                 " descriptor for ep 0x%x does not support streams\n",
3260                                 ep->desc.bEndpointAddress);
3261                 return -EINVAL;
3262         }
3263
3264         ep_index = xhci_get_endpoint_index(&ep->desc);
3265         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3266         if (ep_state & EP_HAS_STREAMS ||
3267                         ep_state & EP_GETTING_STREAMS) {
3268                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3269                                 "already has streams set up.\n",
3270                                 ep->desc.bEndpointAddress);
3271                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3272                                 "dynamic stream context array reallocation.\n");
3273                 return -EINVAL;
3274         }
3275         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3276                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3277                                 "endpoint 0x%x; URBs are pending.\n",
3278                                 ep->desc.bEndpointAddress);
3279                 return -EINVAL;
3280         }
3281         return 0;
3282 }
3283
3284 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3285                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3286 {
3287         unsigned int max_streams;
3288
3289         /* The stream context array size must be a power of two */
3290         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3291         /*
3292          * Find out how many primary stream array entries the host controller
3293          * supports.  Later we may use secondary stream arrays (similar to 2nd
3294          * level page entries), but that's an optional feature for xHCI host
3295          * controllers. xHCs must support at least 4 stream IDs.
3296          */
3297         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3298         if (*num_stream_ctxs > max_streams) {
3299                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3300                                 max_streams);
3301                 *num_stream_ctxs = max_streams;
3302                 *num_streams = max_streams;
3303         }
3304 }
3305
3306 /* Returns an error code if one of the endpoint already has streams.
3307  * This does not change any data structures, it only checks and gathers
3308  * information.
3309  */
3310 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3311                 struct usb_device *udev,
3312                 struct usb_host_endpoint **eps, unsigned int num_eps,
3313                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3314 {
3315         unsigned int max_streams;
3316         unsigned int endpoint_flag;
3317         int i;
3318         int ret;
3319
3320         for (i = 0; i < num_eps; i++) {
3321                 ret = xhci_check_streams_endpoint(xhci, udev,
3322                                 eps[i], udev->slot_id);
3323                 if (ret < 0)
3324                         return ret;
3325
3326                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3327                 if (max_streams < (*num_streams - 1)) {
3328                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3329                                         eps[i]->desc.bEndpointAddress,
3330                                         max_streams);
3331                         *num_streams = max_streams+1;
3332                 }
3333
3334                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3335                 if (*changed_ep_bitmask & endpoint_flag)
3336                         return -EINVAL;
3337                 *changed_ep_bitmask |= endpoint_flag;
3338         }
3339         return 0;
3340 }
3341
3342 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3343                 struct usb_device *udev,
3344                 struct usb_host_endpoint **eps, unsigned int num_eps)
3345 {
3346         u32 changed_ep_bitmask = 0;
3347         unsigned int slot_id;
3348         unsigned int ep_index;
3349         unsigned int ep_state;
3350         int i;
3351
3352         slot_id = udev->slot_id;
3353         if (!xhci->devs[slot_id])
3354                 return 0;
3355
3356         for (i = 0; i < num_eps; i++) {
3357                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3358                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3359                 /* Are streams already being freed for the endpoint? */
3360                 if (ep_state & EP_GETTING_NO_STREAMS) {
3361                         xhci_warn(xhci, "WARN Can't disable streams for "
3362                                         "endpoint 0x%x, "
3363                                         "streams are being disabled already\n",
3364                                         eps[i]->desc.bEndpointAddress);
3365                         return 0;
3366                 }
3367                 /* Are there actually any streams to free? */
3368                 if (!(ep_state & EP_HAS_STREAMS) &&
3369                                 !(ep_state & EP_GETTING_STREAMS)) {
3370                         xhci_warn(xhci, "WARN Can't disable streams for "
3371                                         "endpoint 0x%x, "
3372                                         "streams are already disabled!\n",
3373                                         eps[i]->desc.bEndpointAddress);
3374                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3375                                         "with non-streams endpoint\n");
3376                         return 0;
3377                 }
3378                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3379         }
3380         return changed_ep_bitmask;
3381 }
3382
3383 /*
3384  * The USB device drivers use this function (through the HCD interface in USB
3385  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3386  * coordinate mass storage command queueing across multiple endpoints (basically
3387  * a stream ID == a task ID).
3388  *
3389  * Setting up streams involves allocating the same size stream context array
3390  * for each endpoint and issuing a configure endpoint command for all endpoints.
3391  *
3392  * Don't allow the call to succeed if one endpoint only supports one stream
3393  * (which means it doesn't support streams at all).
3394  *
3395  * Drivers may get less stream IDs than they asked for, if the host controller
3396  * hardware or endpoints claim they can't support the number of requested
3397  * stream IDs.
3398  */
3399 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3400                 struct usb_host_endpoint **eps, unsigned int num_eps,
3401                 unsigned int num_streams, gfp_t mem_flags)
3402 {
3403         int i, ret;
3404         struct xhci_hcd *xhci;
3405         struct xhci_virt_device *vdev;
3406         struct xhci_command *config_cmd;
3407         struct xhci_input_control_ctx *ctrl_ctx;
3408         unsigned int ep_index;
3409         unsigned int num_stream_ctxs;
3410         unsigned int max_packet;
3411         unsigned long flags;
3412         u32 changed_ep_bitmask = 0;
3413
3414         if (!eps)
3415                 return -EINVAL;
3416
3417         /* Add one to the number of streams requested to account for
3418          * stream 0 that is reserved for xHCI usage.
3419          */
3420         num_streams += 1;
3421         xhci = hcd_to_xhci(hcd);
3422         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3423                         num_streams);
3424
3425         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3426         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3427                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3428                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3429                 return -ENOSYS;
3430         }
3431
3432         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3433         if (!config_cmd)
3434                 return -ENOMEM;
3435
3436         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3437         if (!ctrl_ctx) {
3438                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3439                                 __func__);
3440                 xhci_free_command(xhci, config_cmd);
3441                 return -ENOMEM;
3442         }
3443
3444         /* Check to make sure all endpoints are not already configured for
3445          * streams.  While we're at it, find the maximum number of streams that
3446          * all the endpoints will support and check for duplicate endpoints.
3447          */
3448         spin_lock_irqsave(&xhci->lock, flags);
3449         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3450                         num_eps, &num_streams, &changed_ep_bitmask);
3451         if (ret < 0) {
3452                 xhci_free_command(xhci, config_cmd);
3453                 spin_unlock_irqrestore(&xhci->lock, flags);
3454                 return ret;
3455         }
3456         if (num_streams <= 1) {
3457                 xhci_warn(xhci, "WARN: endpoints can't handle "
3458                                 "more than one stream.\n");
3459                 xhci_free_command(xhci, config_cmd);
3460                 spin_unlock_irqrestore(&xhci->lock, flags);
3461                 return -EINVAL;
3462         }
3463         vdev = xhci->devs[udev->slot_id];
3464         /* Mark each endpoint as being in transition, so
3465          * xhci_urb_enqueue() will reject all URBs.
3466          */
3467         for (i = 0; i < num_eps; i++) {
3468                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3469                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3470         }
3471         spin_unlock_irqrestore(&xhci->lock, flags);
3472
3473         /* Setup internal data structures and allocate HW data structures for
3474          * streams (but don't install the HW structures in the input context
3475          * until we're sure all memory allocation succeeded).
3476          */
3477         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3478         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3479                         num_stream_ctxs, num_streams);
3480
3481         for (i = 0; i < num_eps; i++) {
3482                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3483                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3484                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3485                                 num_stream_ctxs,
3486                                 num_streams,
3487                                 max_packet, mem_flags);
3488                 if (!vdev->eps[ep_index].stream_info)
3489                         goto cleanup;
3490                 /* Set maxPstreams in endpoint context and update deq ptr to
3491                  * point to stream context array. FIXME
3492                  */
3493         }
3494
3495         /* Set up the input context for a configure endpoint command. */
3496         for (i = 0; i < num_eps; i++) {
3497                 struct xhci_ep_ctx *ep_ctx;
3498
3499                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3500                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3501
3502                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3503                                 vdev->out_ctx, ep_index);
3504                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3505                                 vdev->eps[ep_index].stream_info);
3506         }
3507         /* Tell the HW to drop its old copy of the endpoint context info
3508          * and add the updated copy from the input context.
3509          */
3510         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3511                         vdev->out_ctx, ctrl_ctx,
3512                         changed_ep_bitmask, changed_ep_bitmask);
3513
3514         /* Issue and wait for the configure endpoint command */
3515         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3516                         false, false);
3517
3518         /* xHC rejected the configure endpoint command for some reason, so we
3519          * leave the old ring intact and free our internal streams data
3520          * structure.
3521          */
3522         if (ret < 0)
3523                 goto cleanup;
3524
3525         spin_lock_irqsave(&xhci->lock, flags);
3526         for (i = 0; i < num_eps; i++) {
3527                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3528                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3529                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3530                          udev->slot_id, ep_index);
3531                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3532         }
3533         xhci_free_command(xhci, config_cmd);
3534         spin_unlock_irqrestore(&xhci->lock, flags);
3535
3536         /* Subtract 1 for stream 0, which drivers can't use */
3537         return num_streams - 1;
3538
3539 cleanup:
3540         /* If it didn't work, free the streams! */
3541         for (i = 0; i < num_eps; i++) {
3542                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3544                 vdev->eps[ep_index].stream_info = NULL;
3545                 /* FIXME Unset maxPstreams in endpoint context and
3546                  * update deq ptr to point to normal string ring.
3547                  */
3548                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3549                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3550                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3551         }
3552         xhci_free_command(xhci, config_cmd);
3553         return -ENOMEM;
3554 }
3555
3556 /* Transition the endpoint from using streams to being a "normal" endpoint
3557  * without streams.
3558  *
3559  * Modify the endpoint context state, submit a configure endpoint command,
3560  * and free all endpoint rings for streams if that completes successfully.
3561  */
3562 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3563                 struct usb_host_endpoint **eps, unsigned int num_eps,
3564                 gfp_t mem_flags)
3565 {
3566         int i, ret;
3567         struct xhci_hcd *xhci;
3568         struct xhci_virt_device *vdev;
3569         struct xhci_command *command;
3570         struct xhci_input_control_ctx *ctrl_ctx;
3571         unsigned int ep_index;
3572         unsigned long flags;
3573         u32 changed_ep_bitmask;
3574
3575         xhci = hcd_to_xhci(hcd);
3576         vdev = xhci->devs[udev->slot_id];
3577
3578         /* Set up a configure endpoint command to remove the streams rings */
3579         spin_lock_irqsave(&xhci->lock, flags);
3580         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3581                         udev, eps, num_eps);
3582         if (changed_ep_bitmask == 0) {
3583                 spin_unlock_irqrestore(&xhci->lock, flags);
3584                 return -EINVAL;
3585         }
3586
3587         /* Use the xhci_command structure from the first endpoint.  We may have
3588          * allocated too many, but the driver may call xhci_free_streams() for
3589          * each endpoint it grouped into one call to xhci_alloc_streams().
3590          */
3591         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3592         command = vdev->eps[ep_index].stream_info->free_streams_command;
3593         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3594         if (!ctrl_ctx) {
3595                 spin_unlock_irqrestore(&xhci->lock, flags);
3596                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3597                                 __func__);
3598                 return -EINVAL;
3599         }
3600
3601         for (i = 0; i < num_eps; i++) {
3602                 struct xhci_ep_ctx *ep_ctx;
3603
3604                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3605                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3606                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3607                         EP_GETTING_NO_STREAMS;
3608
3609                 xhci_endpoint_copy(xhci, command->in_ctx,
3610                                 vdev->out_ctx, ep_index);
3611                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3612                                 &vdev->eps[ep_index]);
3613         }
3614         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3615                         vdev->out_ctx, ctrl_ctx,
3616                         changed_ep_bitmask, changed_ep_bitmask);
3617         spin_unlock_irqrestore(&xhci->lock, flags);
3618
3619         /* Issue and wait for the configure endpoint command,
3620          * which must succeed.
3621          */
3622         ret = xhci_configure_endpoint(xhci, udev, command,
3623                         false, true);
3624
3625         /* xHC rejected the configure endpoint command for some reason, so we
3626          * leave the streams rings intact.
3627          */
3628         if (ret < 0)
3629                 return ret;
3630
3631         spin_lock_irqsave(&xhci->lock, flags);
3632         for (i = 0; i < num_eps; i++) {
3633                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3634                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3635                 vdev->eps[ep_index].stream_info = NULL;
3636                 /* FIXME Unset maxPstreams in endpoint context and
3637                  * update deq ptr to point to normal string ring.
3638                  */
3639                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3640                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3641         }
3642         spin_unlock_irqrestore(&xhci->lock, flags);
3643
3644         return 0;
3645 }
3646
3647 /*
3648  * Deletes endpoint resources for endpoints that were active before a Reset
3649  * Device command, or a Disable Slot command.  The Reset Device command leaves
3650  * the control endpoint intact, whereas the Disable Slot command deletes it.
3651  *
3652  * Must be called with xhci->lock held.
3653  */
3654 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3655         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3656 {
3657         int i;
3658         unsigned int num_dropped_eps = 0;
3659         unsigned int drop_flags = 0;
3660
3661         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3662                 if (virt_dev->eps[i].ring) {
3663                         drop_flags |= 1 << i;
3664                         num_dropped_eps++;
3665                 }
3666         }
3667         xhci->num_active_eps -= num_dropped_eps;
3668         if (num_dropped_eps)
3669                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3670                                 "Dropped %u ep ctxs, flags = 0x%x, "
3671                                 "%u now active.",
3672                                 num_dropped_eps, drop_flags,
3673                                 xhci->num_active_eps);
3674 }
3675
3676 /*
3677  * This submits a Reset Device Command, which will set the device state to 0,
3678  * set the device address to 0, and disable all the endpoints except the default
3679  * control endpoint.  The USB core should come back and call
3680  * xhci_address_device(), and then re-set up the configuration.  If this is
3681  * called because of a usb_reset_and_verify_device(), then the old alternate
3682  * settings will be re-installed through the normal bandwidth allocation
3683  * functions.
3684  *
3685  * Wait for the Reset Device command to finish.  Remove all structures
3686  * associated with the endpoints that were disabled.  Clear the input device
3687  * structure? Reset the control endpoint 0 max packet size?
3688  *
3689  * If the virt_dev to be reset does not exist or does not match the udev,
3690  * it means the device is lost, possibly due to the xHC restore error and
3691  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3692  * re-allocate the device.
3693  */
3694 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3695                 struct usb_device *udev)
3696 {
3697         int ret, i;
3698         unsigned long flags;
3699         struct xhci_hcd *xhci;
3700         unsigned int slot_id;
3701         struct xhci_virt_device *virt_dev;
3702         struct xhci_command *reset_device_cmd;
3703         struct xhci_slot_ctx *slot_ctx;
3704         int old_active_eps = 0;
3705
3706         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3707         if (ret <= 0)
3708                 return ret;
3709         xhci = hcd_to_xhci(hcd);
3710         slot_id = udev->slot_id;
3711         virt_dev = xhci->devs[slot_id];
3712         if (!virt_dev) {
3713                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3714                                 "not exist. Re-allocate the device\n", slot_id);
3715                 ret = xhci_alloc_dev(hcd, udev);
3716                 if (ret == 1)
3717                         return 0;
3718                 else
3719                         return -EINVAL;
3720         }
3721
3722         if (virt_dev->tt_info)
3723                 old_active_eps = virt_dev->tt_info->active_eps;
3724
3725         if (virt_dev->udev != udev) {
3726                 /* If the virt_dev and the udev does not match, this virt_dev
3727                  * may belong to another udev.
3728                  * Re-allocate the device.
3729                  */
3730                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3731                                 "not match the udev. Re-allocate the device\n",
3732                                 slot_id);
3733                 ret = xhci_alloc_dev(hcd, udev);
3734                 if (ret == 1)
3735                         return 0;
3736                 else
3737                         return -EINVAL;
3738         }
3739
3740         /* If device is not setup, there is no point in resetting it */
3741         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3742         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3743                                                 SLOT_STATE_DISABLED)
3744                 return 0;
3745
3746         trace_xhci_discover_or_reset_device(slot_ctx);
3747
3748         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3749         /* Allocate the command structure that holds the struct completion.
3750          * Assume we're in process context, since the normal device reset
3751          * process has to wait for the device anyway.  Storage devices are
3752          * reset as part of error handling, so use GFP_NOIO instead of
3753          * GFP_KERNEL.
3754          */
3755         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3756         if (!reset_device_cmd) {
3757                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3758                 return -ENOMEM;
3759         }
3760
3761         /* Attempt to submit the Reset Device command to the command ring */
3762         spin_lock_irqsave(&xhci->lock, flags);
3763
3764         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3765         if (ret) {
3766                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3767                 spin_unlock_irqrestore(&xhci->lock, flags);
3768                 goto command_cleanup;
3769         }
3770         xhci_ring_cmd_db(xhci);
3771         spin_unlock_irqrestore(&xhci->lock, flags);
3772
3773         /* Wait for the Reset Device command to finish */
3774         wait_for_completion(reset_device_cmd->completion);
3775
3776         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3777          * unless we tried to reset a slot ID that wasn't enabled,
3778          * or the device wasn't in the addressed or configured state.
3779          */
3780         ret = reset_device_cmd->status;
3781         switch (ret) {
3782         case COMP_COMMAND_ABORTED:
3783         case COMP_COMMAND_RING_STOPPED:
3784                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3785                 ret = -ETIME;
3786                 goto command_cleanup;
3787         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3788         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3789                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3790                                 slot_id,
3791                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3792                 xhci_dbg(xhci, "Not freeing device rings.\n");
3793                 /* Don't treat this as an error.  May change my mind later. */
3794                 ret = 0;
3795                 goto command_cleanup;
3796         case COMP_SUCCESS:
3797                 xhci_dbg(xhci, "Successful reset device command.\n");
3798                 break;
3799         default:
3800                 if (xhci_is_vendor_info_code(xhci, ret))
3801                         break;
3802                 xhci_warn(xhci, "Unknown completion code %u for "
3803                                 "reset device command.\n", ret);
3804                 ret = -EINVAL;
3805                 goto command_cleanup;
3806         }
3807
3808         /* Free up host controller endpoint resources */
3809         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3810                 spin_lock_irqsave(&xhci->lock, flags);
3811                 /* Don't delete the default control endpoint resources */
3812                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3813                 spin_unlock_irqrestore(&xhci->lock, flags);
3814         }
3815
3816         /* Everything but endpoint 0 is disabled, so free the rings. */
3817         for (i = 1; i < 31; i++) {
3818                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3819
3820                 if (ep->ep_state & EP_HAS_STREAMS) {
3821                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3822                                         xhci_get_endpoint_address(i));
3823                         xhci_free_stream_info(xhci, ep->stream_info);
3824                         ep->stream_info = NULL;
3825                         ep->ep_state &= ~EP_HAS_STREAMS;
3826                 }
3827
3828                 if (ep->ring) {
3829                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3830                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3831                 }
3832                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3833                         xhci_drop_ep_from_interval_table(xhci,
3834                                         &virt_dev->eps[i].bw_info,
3835                                         virt_dev->bw_table,
3836                                         udev,
3837                                         &virt_dev->eps[i],
3838                                         virt_dev->tt_info);
3839                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3840         }
3841         /* If necessary, update the number of active TTs on this root port */
3842         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3843         virt_dev->flags = 0;
3844         ret = 0;
3845
3846 command_cleanup:
3847         xhci_free_command(xhci, reset_device_cmd);
3848         return ret;
3849 }
3850
3851 /*
3852  * At this point, the struct usb_device is about to go away, the device has
3853  * disconnected, and all traffic has been stopped and the endpoints have been
3854  * disabled.  Free any HC data structures associated with that device.
3855  */
3856 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3857 {
3858         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3859         struct xhci_virt_device *virt_dev;
3860         struct xhci_slot_ctx *slot_ctx;
3861         int i, ret;
3862
3863 #ifndef CONFIG_USB_DEFAULT_PERSIST
3864         /*
3865          * We called pm_runtime_get_noresume when the device was attached.
3866          * Decrement the counter here to allow controller to runtime suspend
3867          * if no devices remain.
3868          */
3869         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3870                 pm_runtime_put_noidle(hcd->self.controller);
3871 #endif
3872
3873         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3874         /* If the host is halted due to driver unload, we still need to free the
3875          * device.
3876          */
3877         if (ret <= 0 && ret != -ENODEV)
3878                 return;
3879
3880         virt_dev = xhci->devs[udev->slot_id];
3881         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3882         trace_xhci_free_dev(slot_ctx);
3883
3884         /* Stop any wayward timer functions (which may grab the lock) */
3885         for (i = 0; i < 31; i++) {
3886                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3887                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3888         }
3889         virt_dev->udev = NULL;
3890         ret = xhci_disable_slot(xhci, udev->slot_id);
3891         if (ret)
3892                 xhci_free_virt_device(xhci, udev->slot_id);
3893 }
3894
3895 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3896 {
3897         struct xhci_command *command;
3898         unsigned long flags;
3899         u32 state;
3900         int ret = 0;
3901
3902         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3903         if (!command)
3904                 return -ENOMEM;
3905
3906         xhci_debugfs_remove_slot(xhci, slot_id);
3907
3908         spin_lock_irqsave(&xhci->lock, flags);
3909         /* Don't disable the slot if the host controller is dead. */
3910         state = readl(&xhci->op_regs->status);
3911         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3912                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3913                 spin_unlock_irqrestore(&xhci->lock, flags);
3914                 kfree(command);
3915                 return -ENODEV;
3916         }
3917
3918         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3919                                 slot_id);
3920         if (ret) {
3921                 spin_unlock_irqrestore(&xhci->lock, flags);
3922                 kfree(command);
3923                 return ret;
3924         }
3925         xhci_ring_cmd_db(xhci);
3926         spin_unlock_irqrestore(&xhci->lock, flags);
3927         return ret;
3928 }
3929
3930 /*
3931  * Checks if we have enough host controller resources for the default control
3932  * endpoint.
3933  *
3934  * Must be called with xhci->lock held.
3935  */
3936 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3937 {
3938         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3939                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3940                                 "Not enough ep ctxs: "
3941                                 "%u active, need to add 1, limit is %u.",
3942                                 xhci->num_active_eps, xhci->limit_active_eps);
3943                 return -ENOMEM;
3944         }
3945         xhci->num_active_eps += 1;
3946         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3947                         "Adding 1 ep ctx, %u now active.",
3948                         xhci->num_active_eps);
3949         return 0;
3950 }
3951
3952
3953 /*
3954  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3955  * timed out, or allocating memory failed.  Returns 1 on success.
3956  */
3957 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3958 {
3959         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3960         struct xhci_virt_device *vdev;
3961         struct xhci_slot_ctx *slot_ctx;
3962         unsigned long flags;
3963         int ret, slot_id;
3964         struct xhci_command *command;
3965
3966         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3967         if (!command)
3968                 return 0;
3969
3970         spin_lock_irqsave(&xhci->lock, flags);
3971         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3972         if (ret) {
3973                 spin_unlock_irqrestore(&xhci->lock, flags);
3974                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3975                 xhci_free_command(xhci, command);
3976                 return 0;
3977         }
3978         xhci_ring_cmd_db(xhci);
3979         spin_unlock_irqrestore(&xhci->lock, flags);
3980
3981         wait_for_completion(command->completion);
3982         slot_id = command->slot_id;
3983
3984         if (!slot_id || command->status != COMP_SUCCESS) {
3985                 xhci_err(xhci, "Error while assigning device slot ID\n");
3986                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3987                                 HCS_MAX_SLOTS(
3988                                         readl(&xhci->cap_regs->hcs_params1)));
3989                 xhci_free_command(xhci, command);
3990                 return 0;
3991         }
3992
3993         xhci_free_command(xhci, command);
3994
3995         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3996                 spin_lock_irqsave(&xhci->lock, flags);
3997                 ret = xhci_reserve_host_control_ep_resources(xhci);
3998                 if (ret) {
3999                         spin_unlock_irqrestore(&xhci->lock, flags);
4000                         xhci_warn(xhci, "Not enough host resources, "
4001                                         "active endpoint contexts = %u\n",
4002                                         xhci->num_active_eps);
4003                         goto disable_slot;
4004                 }
4005                 spin_unlock_irqrestore(&xhci->lock, flags);
4006         }
4007         /* Use GFP_NOIO, since this function can be called from
4008          * xhci_discover_or_reset_device(), which may be called as part of
4009          * mass storage driver error handling.
4010          */
4011         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4012                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4013                 goto disable_slot;
4014         }
4015         vdev = xhci->devs[slot_id];
4016         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4017         trace_xhci_alloc_dev(slot_ctx);
4018
4019         udev->slot_id = slot_id;
4020
4021         xhci_debugfs_create_slot(xhci, slot_id);
4022
4023 #ifndef CONFIG_USB_DEFAULT_PERSIST
4024         /*
4025          * If resetting upon resume, we can't put the controller into runtime
4026          * suspend if there is a device attached.
4027          */
4028         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4029                 pm_runtime_get_noresume(hcd->self.controller);
4030 #endif
4031
4032         /* Is this a LS or FS device under a HS hub? */
4033         /* Hub or peripherial? */
4034         return 1;
4035
4036 disable_slot:
4037         ret = xhci_disable_slot(xhci, udev->slot_id);
4038         if (ret)
4039                 xhci_free_virt_device(xhci, udev->slot_id);
4040
4041         return 0;
4042 }
4043
4044 /*
4045  * Issue an Address Device command and optionally send a corresponding
4046  * SetAddress request to the device.
4047  */
4048 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4049                              enum xhci_setup_dev setup)
4050 {
4051         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4052         unsigned long flags;
4053         struct xhci_virt_device *virt_dev;
4054         int ret = 0;
4055         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4056         struct xhci_slot_ctx *slot_ctx;
4057         struct xhci_input_control_ctx *ctrl_ctx;
4058         u64 temp_64;
4059         struct xhci_command *command = NULL;
4060
4061         mutex_lock(&xhci->mutex);
4062
4063         if (xhci->xhc_state) {  /* dying, removing or halted */
4064                 ret = -ESHUTDOWN;
4065                 goto out;
4066         }
4067
4068         if (!udev->slot_id) {
4069                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4070                                 "Bad Slot ID %d", udev->slot_id);
4071                 ret = -EINVAL;
4072                 goto out;
4073         }
4074
4075         virt_dev = xhci->devs[udev->slot_id];
4076
4077         if (WARN_ON(!virt_dev)) {
4078                 /*
4079                  * In plug/unplug torture test with an NEC controller,
4080                  * a zero-dereference was observed once due to virt_dev = 0.
4081                  * Print useful debug rather than crash if it is observed again!
4082                  */
4083                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4084                         udev->slot_id);
4085                 ret = -EINVAL;
4086                 goto out;
4087         }
4088         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4089         trace_xhci_setup_device_slot(slot_ctx);
4090
4091         if (setup == SETUP_CONTEXT_ONLY) {
4092                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4093                     SLOT_STATE_DEFAULT) {
4094                         xhci_dbg(xhci, "Slot already in default state\n");
4095                         goto out;
4096                 }
4097         }
4098
4099         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4100         if (!command) {
4101                 ret = -ENOMEM;
4102                 goto out;
4103         }
4104
4105         command->in_ctx = virt_dev->in_ctx;
4106
4107         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4108         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4109         if (!ctrl_ctx) {
4110                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4111                                 __func__);
4112                 ret = -EINVAL;
4113                 goto out;
4114         }
4115         /*
4116          * If this is the first Set Address since device plug-in or
4117          * virt_device realloaction after a resume with an xHCI power loss,
4118          * then set up the slot context.
4119          */
4120         if (!slot_ctx->dev_info)
4121                 xhci_setup_addressable_virt_dev(xhci, udev);
4122         /* Otherwise, update the control endpoint ring enqueue pointer. */
4123         else
4124                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4125         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4126         ctrl_ctx->drop_flags = 0;
4127
4128         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4129                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4130
4131         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4132         spin_lock_irqsave(&xhci->lock, flags);
4133         trace_xhci_setup_device(virt_dev);
4134         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4135                                         udev->slot_id, setup);
4136         if (ret) {
4137                 spin_unlock_irqrestore(&xhci->lock, flags);
4138                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4139                                 "FIXME: allocate a command ring segment");
4140                 goto out;
4141         }
4142         xhci_ring_cmd_db(xhci);
4143         spin_unlock_irqrestore(&xhci->lock, flags);
4144
4145         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4146         wait_for_completion(command->completion);
4147
4148         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4149          * the SetAddress() "recovery interval" required by USB and aborting the
4150          * command on a timeout.
4151          */
4152         switch (command->status) {
4153         case COMP_COMMAND_ABORTED:
4154         case COMP_COMMAND_RING_STOPPED:
4155                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4156                 ret = -ETIME;
4157                 break;
4158         case COMP_CONTEXT_STATE_ERROR:
4159         case COMP_SLOT_NOT_ENABLED_ERROR:
4160                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4161                          act, udev->slot_id);
4162                 ret = -EINVAL;
4163                 break;
4164         case COMP_USB_TRANSACTION_ERROR:
4165                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4166
4167                 mutex_unlock(&xhci->mutex);
4168                 ret = xhci_disable_slot(xhci, udev->slot_id);
4169                 if (!ret)
4170                         xhci_alloc_dev(hcd, udev);
4171                 kfree(command->completion);
4172                 kfree(command);
4173                 return -EPROTO;
4174         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4175                 dev_warn(&udev->dev,
4176                          "ERROR: Incompatible device for setup %s command\n", act);
4177                 ret = -ENODEV;
4178                 break;
4179         case COMP_SUCCESS:
4180                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4181                                "Successful setup %s command", act);
4182                 break;
4183         default:
4184                 xhci_err(xhci,
4185                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4186                          act, command->status);
4187                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4188                 ret = -EINVAL;
4189                 break;
4190         }
4191         if (ret)
4192                 goto out;
4193         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4194         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4195                         "Op regs DCBAA ptr = %#016llx", temp_64);
4196         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4197                 "Slot ID %d dcbaa entry @%p = %#016llx",
4198                 udev->slot_id,
4199                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4200                 (unsigned long long)
4201                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4202         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4203                         "Output Context DMA address = %#08llx",
4204                         (unsigned long long)virt_dev->out_ctx->dma);
4205         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4206                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4207         /*
4208          * USB core uses address 1 for the roothubs, so we add one to the
4209          * address given back to us by the HC.
4210          */
4211         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4212                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4213         /* Zero the input context control for later use */
4214         ctrl_ctx->add_flags = 0;
4215         ctrl_ctx->drop_flags = 0;
4216         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4217         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4218
4219         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4220                        "Internal device address = %d",
4221                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4222 out:
4223         mutex_unlock(&xhci->mutex);
4224         if (command) {
4225                 kfree(command->completion);
4226                 kfree(command);
4227         }
4228         return ret;
4229 }
4230
4231 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4232 {
4233         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4234 }
4235
4236 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4237 {
4238         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4239 }
4240
4241 /*
4242  * Transfer the port index into real index in the HW port status
4243  * registers. Caculate offset between the port's PORTSC register
4244  * and port status base. Divide the number of per port register
4245  * to get the real index. The raw port number bases 1.
4246  */
4247 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4248 {
4249         struct xhci_hub *rhub;
4250
4251         rhub = xhci_get_rhub(hcd);
4252         return rhub->ports[port1 - 1]->hw_portnum + 1;
4253 }
4254
4255 /*
4256  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4257  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4258  */
4259 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4260                         struct usb_device *udev, u16 max_exit_latency)
4261 {
4262         struct xhci_virt_device *virt_dev;
4263         struct xhci_command *command;
4264         struct xhci_input_control_ctx *ctrl_ctx;
4265         struct xhci_slot_ctx *slot_ctx;
4266         unsigned long flags;
4267         int ret;
4268
4269         spin_lock_irqsave(&xhci->lock, flags);
4270
4271         virt_dev = xhci->devs[udev->slot_id];
4272
4273         /*
4274          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4275          * xHC was re-initialized. Exit latency will be set later after
4276          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4277          */
4278
4279         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4280                 spin_unlock_irqrestore(&xhci->lock, flags);
4281                 return 0;
4282         }
4283
4284         /* Attempt to issue an Evaluate Context command to change the MEL. */
4285         command = xhci->lpm_command;
4286         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4287         if (!ctrl_ctx) {
4288                 spin_unlock_irqrestore(&xhci->lock, flags);
4289                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4290                                 __func__);
4291                 return -ENOMEM;
4292         }
4293
4294         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4295         spin_unlock_irqrestore(&xhci->lock, flags);
4296
4297         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4298         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4299         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4300         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4301         slot_ctx->dev_state = 0;
4302
4303         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4304                         "Set up evaluate context for LPM MEL change.");
4305
4306         /* Issue and wait for the evaluate context command. */
4307         ret = xhci_configure_endpoint(xhci, udev, command,
4308                         true, true);
4309
4310         if (!ret) {
4311                 spin_lock_irqsave(&xhci->lock, flags);
4312                 virt_dev->current_mel = max_exit_latency;
4313                 spin_unlock_irqrestore(&xhci->lock, flags);
4314         }
4315         return ret;
4316 }
4317
4318 #ifdef CONFIG_PM
4319
4320 /* BESL to HIRD Encoding array for USB2 LPM */
4321 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4322         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4323
4324 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4325 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4326                                         struct usb_device *udev)
4327 {
4328         int u2del, besl, besl_host;
4329         int besl_device = 0;
4330         u32 field;
4331
4332         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4333         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4334
4335         if (field & USB_BESL_SUPPORT) {
4336                 for (besl_host = 0; besl_host < 16; besl_host++) {
4337                         if (xhci_besl_encoding[besl_host] >= u2del)
4338                                 break;
4339                 }
4340                 /* Use baseline BESL value as default */
4341                 if (field & USB_BESL_BASELINE_VALID)
4342                         besl_device = USB_GET_BESL_BASELINE(field);
4343                 else if (field & USB_BESL_DEEP_VALID)
4344                         besl_device = USB_GET_BESL_DEEP(field);
4345         } else {
4346                 if (u2del <= 50)
4347                         besl_host = 0;
4348                 else
4349                         besl_host = (u2del - 51) / 75 + 1;
4350         }
4351
4352         besl = besl_host + besl_device;
4353         if (besl > 15)
4354                 besl = 15;
4355
4356         return besl;
4357 }
4358
4359 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4360 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4361 {
4362         u32 field;
4363         int l1;
4364         int besld = 0;
4365         int hirdm = 0;
4366
4367         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4368
4369         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4370         l1 = udev->l1_params.timeout / 256;
4371
4372         /* device has preferred BESLD */
4373         if (field & USB_BESL_DEEP_VALID) {
4374                 besld = USB_GET_BESL_DEEP(field);
4375                 hirdm = 1;
4376         }
4377
4378         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4379 }
4380
4381 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4382                         struct usb_device *udev, int enable)
4383 {
4384         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4385         struct xhci_port **ports;
4386         __le32 __iomem  *pm_addr, *hlpm_addr;
4387         u32             pm_val, hlpm_val, field;
4388         unsigned int    port_num;
4389         unsigned long   flags;
4390         int             hird, exit_latency;
4391         int             ret;
4392
4393         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4394                         !udev->lpm_capable)
4395                 return -EPERM;
4396
4397         if (!udev->parent || udev->parent->parent ||
4398                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4399                 return -EPERM;
4400
4401         if (udev->usb2_hw_lpm_capable != 1)
4402                 return -EPERM;
4403
4404         spin_lock_irqsave(&xhci->lock, flags);
4405
4406         ports = xhci->usb2_rhub.ports;
4407         port_num = udev->portnum - 1;
4408         pm_addr = ports[port_num]->addr + PORTPMSC;
4409         pm_val = readl(pm_addr);
4410         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4411
4412         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4413                         enable ? "enable" : "disable", port_num + 1);
4414
4415         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4416                 /* Host supports BESL timeout instead of HIRD */
4417                 if (udev->usb2_hw_lpm_besl_capable) {
4418                         /* if device doesn't have a preferred BESL value use a
4419                          * default one which works with mixed HIRD and BESL
4420                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4421                          */
4422                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4423                         if ((field & USB_BESL_SUPPORT) &&
4424                             (field & USB_BESL_BASELINE_VALID))
4425                                 hird = USB_GET_BESL_BASELINE(field);
4426                         else
4427                                 hird = udev->l1_params.besl;
4428
4429                         exit_latency = xhci_besl_encoding[hird];
4430                         spin_unlock_irqrestore(&xhci->lock, flags);
4431
4432                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4433                          * input context for link powermanagement evaluate
4434                          * context commands. It is protected by hcd->bandwidth
4435                          * mutex and is shared by all devices. We need to set
4436                          * the max ext latency in USB 2 BESL LPM as well, so
4437                          * use the same mutex and xhci_change_max_exit_latency()
4438                          */
4439                         mutex_lock(hcd->bandwidth_mutex);
4440                         ret = xhci_change_max_exit_latency(xhci, udev,
4441                                                            exit_latency);
4442                         mutex_unlock(hcd->bandwidth_mutex);
4443
4444                         if (ret < 0)
4445                                 return ret;
4446                         spin_lock_irqsave(&xhci->lock, flags);
4447
4448                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4449                         writel(hlpm_val, hlpm_addr);
4450                         /* flush write */
4451                         readl(hlpm_addr);
4452                 } else {
4453                         hird = xhci_calculate_hird_besl(xhci, udev);
4454                 }
4455
4456                 pm_val &= ~PORT_HIRD_MASK;
4457                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4458                 writel(pm_val, pm_addr);
4459                 pm_val = readl(pm_addr);
4460                 pm_val |= PORT_HLE;
4461                 writel(pm_val, pm_addr);
4462                 /* flush write */
4463                 readl(pm_addr);
4464         } else {
4465                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4466                 writel(pm_val, pm_addr);
4467                 /* flush write */
4468                 readl(pm_addr);
4469                 if (udev->usb2_hw_lpm_besl_capable) {
4470                         spin_unlock_irqrestore(&xhci->lock, flags);
4471                         mutex_lock(hcd->bandwidth_mutex);
4472                         xhci_change_max_exit_latency(xhci, udev, 0);
4473                         mutex_unlock(hcd->bandwidth_mutex);
4474                         return 0;
4475                 }
4476         }
4477
4478         spin_unlock_irqrestore(&xhci->lock, flags);
4479         return 0;
4480 }
4481
4482 /* check if a usb2 port supports a given extened capability protocol
4483  * only USB2 ports extended protocol capability values are cached.
4484  * Return 1 if capability is supported
4485  */
4486 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4487                                            unsigned capability)
4488 {
4489         u32 port_offset, port_count;
4490         int i;
4491
4492         for (i = 0; i < xhci->num_ext_caps; i++) {
4493                 if (xhci->ext_caps[i] & capability) {
4494                         /* port offsets starts at 1 */
4495                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4496                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4497                         if (port >= port_offset &&
4498                             port < port_offset + port_count)
4499                                 return 1;
4500                 }
4501         }
4502         return 0;
4503 }
4504
4505 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4506 {
4507         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4508         int             portnum = udev->portnum - 1;
4509
4510         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4511                 return 0;
4512
4513         /* we only support lpm for non-hub device connected to root hub yet */
4514         if (!udev->parent || udev->parent->parent ||
4515                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4516                 return 0;
4517
4518         if (xhci->hw_lpm_support == 1 &&
4519                         xhci_check_usb2_port_capability(
4520                                 xhci, portnum, XHCI_HLC)) {
4521                 udev->usb2_hw_lpm_capable = 1;
4522                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4523                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4524                 if (xhci_check_usb2_port_capability(xhci, portnum,
4525                                         XHCI_BLC))
4526                         udev->usb2_hw_lpm_besl_capable = 1;
4527         }
4528
4529         return 0;
4530 }
4531
4532 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4533
4534 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4535 static unsigned long long xhci_service_interval_to_ns(
4536                 struct usb_endpoint_descriptor *desc)
4537 {
4538         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4539 }
4540
4541 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4542                 enum usb3_link_state state)
4543 {
4544         unsigned long long sel;
4545         unsigned long long pel;
4546         unsigned int max_sel_pel;
4547         char *state_name;
4548
4549         switch (state) {
4550         case USB3_LPM_U1:
4551                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4552                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4553                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4554                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4555                 state_name = "U1";
4556                 break;
4557         case USB3_LPM_U2:
4558                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4559                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4560                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4561                 state_name = "U2";
4562                 break;
4563         default:
4564                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4565                                 __func__);
4566                 return USB3_LPM_DISABLED;
4567         }
4568
4569         if (sel <= max_sel_pel && pel <= max_sel_pel)
4570                 return USB3_LPM_DEVICE_INITIATED;
4571
4572         if (sel > max_sel_pel)
4573                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4574                                 "due to long SEL %llu ms\n",
4575                                 state_name, sel);
4576         else
4577                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4578                                 "due to long PEL %llu ms\n",
4579                                 state_name, pel);
4580         return USB3_LPM_DISABLED;
4581 }
4582
4583 /* The U1 timeout should be the maximum of the following values:
4584  *  - For control endpoints, U1 system exit latency (SEL) * 3
4585  *  - For bulk endpoints, U1 SEL * 5
4586  *  - For interrupt endpoints:
4587  *    - Notification EPs, U1 SEL * 3
4588  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4589  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4590  */
4591 static unsigned long long xhci_calculate_intel_u1_timeout(
4592                 struct usb_device *udev,
4593                 struct usb_endpoint_descriptor *desc)
4594 {
4595         unsigned long long timeout_ns;
4596         int ep_type;
4597         int intr_type;
4598
4599         ep_type = usb_endpoint_type(desc);
4600         switch (ep_type) {
4601         case USB_ENDPOINT_XFER_CONTROL:
4602                 timeout_ns = udev->u1_params.sel * 3;
4603                 break;
4604         case USB_ENDPOINT_XFER_BULK:
4605                 timeout_ns = udev->u1_params.sel * 5;
4606                 break;
4607         case USB_ENDPOINT_XFER_INT:
4608                 intr_type = usb_endpoint_interrupt_type(desc);
4609                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4610                         timeout_ns = udev->u1_params.sel * 3;
4611                         break;
4612                 }
4613                 /* Otherwise the calculation is the same as isoc eps */
4614                 /* fall through */
4615         case USB_ENDPOINT_XFER_ISOC:
4616                 timeout_ns = xhci_service_interval_to_ns(desc);
4617                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4618                 if (timeout_ns < udev->u1_params.sel * 2)
4619                         timeout_ns = udev->u1_params.sel * 2;
4620                 break;
4621         default:
4622                 return 0;
4623         }
4624
4625         return timeout_ns;
4626 }
4627
4628 /* Returns the hub-encoded U1 timeout value. */
4629 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4630                 struct usb_device *udev,
4631                 struct usb_endpoint_descriptor *desc)
4632 {
4633         unsigned long long timeout_ns;
4634
4635         /* Prevent U1 if service interval is shorter than U1 exit latency */
4636         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4637                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4638                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4639                         return USB3_LPM_DISABLED;
4640                 }
4641         }
4642
4643         if (xhci->quirks & XHCI_INTEL_HOST)
4644                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4645         else
4646                 timeout_ns = udev->u1_params.sel;
4647
4648         /* The U1 timeout is encoded in 1us intervals.
4649          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4650          */
4651         if (timeout_ns == USB3_LPM_DISABLED)
4652                 timeout_ns = 1;
4653         else
4654                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4655
4656         /* If the necessary timeout value is bigger than what we can set in the
4657          * USB 3.0 hub, we have to disable hub-initiated U1.
4658          */
4659         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4660                 return timeout_ns;
4661         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4662                         "due to long timeout %llu ms\n", timeout_ns);
4663         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4664 }
4665
4666 /* The U2 timeout should be the maximum of:
4667  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4668  *  - largest bInterval of any active periodic endpoint (to avoid going
4669  *    into lower power link states between intervals).
4670  *  - the U2 Exit Latency of the device
4671  */
4672 static unsigned long long xhci_calculate_intel_u2_timeout(
4673                 struct usb_device *udev,
4674                 struct usb_endpoint_descriptor *desc)
4675 {
4676         unsigned long long timeout_ns;
4677         unsigned long long u2_del_ns;
4678
4679         timeout_ns = 10 * 1000 * 1000;
4680
4681         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4682                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4683                 timeout_ns = xhci_service_interval_to_ns(desc);
4684
4685         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4686         if (u2_del_ns > timeout_ns)
4687                 timeout_ns = u2_del_ns;
4688
4689         return timeout_ns;
4690 }
4691
4692 /* Returns the hub-encoded U2 timeout value. */
4693 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4694                 struct usb_device *udev,
4695                 struct usb_endpoint_descriptor *desc)
4696 {
4697         unsigned long long timeout_ns;
4698
4699         /* Prevent U2 if service interval is shorter than U2 exit latency */
4700         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4701                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4702                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4703                         return USB3_LPM_DISABLED;
4704                 }
4705         }
4706
4707         if (xhci->quirks & XHCI_INTEL_HOST)
4708                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4709         else
4710                 timeout_ns = udev->u2_params.sel;
4711
4712         /* The U2 timeout is encoded in 256us intervals */
4713         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4714         /* If the necessary timeout value is bigger than what we can set in the
4715          * USB 3.0 hub, we have to disable hub-initiated U2.
4716          */
4717         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4718                 return timeout_ns;
4719         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4720                         "due to long timeout %llu ms\n", timeout_ns);
4721         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4722 }
4723
4724 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4725                 struct usb_device *udev,
4726                 struct usb_endpoint_descriptor *desc,
4727                 enum usb3_link_state state,
4728                 u16 *timeout)
4729 {
4730         if (state == USB3_LPM_U1)
4731                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4732         else if (state == USB3_LPM_U2)
4733                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4734
4735         return USB3_LPM_DISABLED;
4736 }
4737
4738 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4739                 struct usb_device *udev,
4740                 struct usb_endpoint_descriptor *desc,
4741                 enum usb3_link_state state,
4742                 u16 *timeout)
4743 {
4744         u16 alt_timeout;
4745
4746         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4747                 desc, state, timeout);
4748
4749         /* If we found we can't enable hub-initiated LPM, and
4750          * the U1 or U2 exit latency was too high to allow
4751          * device-initiated LPM as well, then we will disable LPM
4752          * for this device, so stop searching any further.
4753          */
4754         if (alt_timeout == USB3_LPM_DISABLED) {
4755                 *timeout = alt_timeout;
4756                 return -E2BIG;
4757         }
4758         if (alt_timeout > *timeout)
4759                 *timeout = alt_timeout;
4760         return 0;
4761 }
4762
4763 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4764                 struct usb_device *udev,
4765                 struct usb_host_interface *alt,
4766                 enum usb3_link_state state,
4767                 u16 *timeout)
4768 {
4769         int j;
4770
4771         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4772                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4773                                         &alt->endpoint[j].desc, state, timeout))
4774                         return -E2BIG;
4775                 continue;
4776         }
4777         return 0;
4778 }
4779
4780 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4781                 enum usb3_link_state state)
4782 {
4783         struct usb_device *parent;
4784         unsigned int num_hubs;
4785
4786         if (state == USB3_LPM_U2)
4787                 return 0;
4788
4789         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4790         for (parent = udev->parent, num_hubs = 0; parent->parent;
4791                         parent = parent->parent)
4792                 num_hubs++;
4793
4794         if (num_hubs < 2)
4795                 return 0;
4796
4797         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4798                         " below second-tier hub.\n");
4799         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4800                         "to decrease power consumption.\n");
4801         return -E2BIG;
4802 }
4803
4804 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4805                 struct usb_device *udev,
4806                 enum usb3_link_state state)
4807 {
4808         if (xhci->quirks & XHCI_INTEL_HOST)
4809                 return xhci_check_intel_tier_policy(udev, state);
4810         else
4811                 return 0;
4812 }
4813
4814 /* Returns the U1 or U2 timeout that should be enabled.
4815  * If the tier check or timeout setting functions return with a non-zero exit
4816  * code, that means the timeout value has been finalized and we shouldn't look
4817  * at any more endpoints.
4818  */
4819 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4820                         struct usb_device *udev, enum usb3_link_state state)
4821 {
4822         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4823         struct usb_host_config *config;
4824         char *state_name;
4825         int i;
4826         u16 timeout = USB3_LPM_DISABLED;
4827
4828         if (state == USB3_LPM_U1)
4829                 state_name = "U1";
4830         else if (state == USB3_LPM_U2)
4831                 state_name = "U2";
4832         else {
4833                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4834                                 state);
4835                 return timeout;
4836         }
4837
4838         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4839                 return timeout;
4840
4841         /* Gather some information about the currently installed configuration
4842          * and alternate interface settings.
4843          */
4844         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4845                         state, &timeout))
4846                 return timeout;
4847
4848         config = udev->actconfig;
4849         if (!config)
4850                 return timeout;
4851
4852         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4853                 struct usb_driver *driver;
4854                 struct usb_interface *intf = config->interface[i];
4855
4856                 if (!intf)
4857                         continue;
4858
4859                 /* Check if any currently bound drivers want hub-initiated LPM
4860                  * disabled.
4861                  */
4862                 if (intf->dev.driver) {
4863                         driver = to_usb_driver(intf->dev.driver);
4864                         if (driver && driver->disable_hub_initiated_lpm) {
4865                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4866                                         state_name, driver->name);
4867                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4868                                                                       state);
4869                                 if (timeout == USB3_LPM_DISABLED)
4870                                         return timeout;
4871                         }
4872                 }
4873
4874                 /* Not sure how this could happen... */
4875                 if (!intf->cur_altsetting)
4876                         continue;
4877
4878                 if (xhci_update_timeout_for_interface(xhci, udev,
4879                                         intf->cur_altsetting,
4880                                         state, &timeout))
4881                         return timeout;
4882         }
4883         return timeout;
4884 }
4885
4886 static int calculate_max_exit_latency(struct usb_device *udev,
4887                 enum usb3_link_state state_changed,
4888                 u16 hub_encoded_timeout)
4889 {
4890         unsigned long long u1_mel_us = 0;
4891         unsigned long long u2_mel_us = 0;
4892         unsigned long long mel_us = 0;
4893         bool disabling_u1;
4894         bool disabling_u2;
4895         bool enabling_u1;
4896         bool enabling_u2;
4897
4898         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4899                         hub_encoded_timeout == USB3_LPM_DISABLED);
4900         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4901                         hub_encoded_timeout == USB3_LPM_DISABLED);
4902
4903         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4904                         hub_encoded_timeout != USB3_LPM_DISABLED);
4905         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4906                         hub_encoded_timeout != USB3_LPM_DISABLED);
4907
4908         /* If U1 was already enabled and we're not disabling it,
4909          * or we're going to enable U1, account for the U1 max exit latency.
4910          */
4911         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4912                         enabling_u1)
4913                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4914         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4915                         enabling_u2)
4916                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4917
4918         if (u1_mel_us > u2_mel_us)
4919                 mel_us = u1_mel_us;
4920         else
4921                 mel_us = u2_mel_us;
4922         /* xHCI host controller max exit latency field is only 16 bits wide. */
4923         if (mel_us > MAX_EXIT) {
4924                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4925                                 "is too big.\n", mel_us);
4926                 return -E2BIG;
4927         }
4928         return mel_us;
4929 }
4930
4931 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4932 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4933                         struct usb_device *udev, enum usb3_link_state state)
4934 {
4935         struct xhci_hcd *xhci;
4936         u16 hub_encoded_timeout;
4937         int mel;
4938         int ret;
4939
4940         xhci = hcd_to_xhci(hcd);
4941         /* The LPM timeout values are pretty host-controller specific, so don't
4942          * enable hub-initiated timeouts unless the vendor has provided
4943          * information about their timeout algorithm.
4944          */
4945         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4946                         !xhci->devs[udev->slot_id])
4947                 return USB3_LPM_DISABLED;
4948
4949         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4950         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4951         if (mel < 0) {
4952                 /* Max Exit Latency is too big, disable LPM. */
4953                 hub_encoded_timeout = USB3_LPM_DISABLED;
4954                 mel = 0;
4955         }
4956
4957         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4958         if (ret)
4959                 return ret;
4960         return hub_encoded_timeout;
4961 }
4962
4963 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4964                         struct usb_device *udev, enum usb3_link_state state)
4965 {
4966         struct xhci_hcd *xhci;
4967         u16 mel;
4968
4969         xhci = hcd_to_xhci(hcd);
4970         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4971                         !xhci->devs[udev->slot_id])
4972                 return 0;
4973
4974         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4975         return xhci_change_max_exit_latency(xhci, udev, mel);
4976 }
4977 #else /* CONFIG_PM */
4978
4979 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4980                                 struct usb_device *udev, int enable)
4981 {
4982         return 0;
4983 }
4984
4985 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4986 {
4987         return 0;
4988 }
4989
4990 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4991                         struct usb_device *udev, enum usb3_link_state state)
4992 {
4993         return USB3_LPM_DISABLED;
4994 }
4995
4996 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4997                         struct usb_device *udev, enum usb3_link_state state)
4998 {
4999         return 0;
5000 }
5001 #endif  /* CONFIG_PM */
5002
5003 /*-------------------------------------------------------------------------*/
5004
5005 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5006  * internal data structures for the device.
5007  */
5008 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5009                         struct usb_tt *tt, gfp_t mem_flags)
5010 {
5011         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5012         struct xhci_virt_device *vdev;
5013         struct xhci_command *config_cmd;
5014         struct xhci_input_control_ctx *ctrl_ctx;
5015         struct xhci_slot_ctx *slot_ctx;
5016         unsigned long flags;
5017         unsigned think_time;
5018         int ret;
5019
5020         /* Ignore root hubs */
5021         if (!hdev->parent)
5022                 return 0;
5023
5024         vdev = xhci->devs[hdev->slot_id];
5025         if (!vdev) {
5026                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5027                 return -EINVAL;
5028         }
5029
5030         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5031         if (!config_cmd)
5032                 return -ENOMEM;
5033
5034         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5035         if (!ctrl_ctx) {
5036                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5037                                 __func__);
5038                 xhci_free_command(xhci, config_cmd);
5039                 return -ENOMEM;
5040         }
5041
5042         spin_lock_irqsave(&xhci->lock, flags);
5043         if (hdev->speed == USB_SPEED_HIGH &&
5044                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5045                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5046                 xhci_free_command(xhci, config_cmd);
5047                 spin_unlock_irqrestore(&xhci->lock, flags);
5048                 return -ENOMEM;
5049         }
5050
5051         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5052         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5053         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5054         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5055         /*
5056          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5057          * but it may be already set to 1 when setup an xHCI virtual
5058          * device, so clear it anyway.
5059          */
5060         if (tt->multi)
5061                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5062         else if (hdev->speed == USB_SPEED_FULL)
5063                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5064
5065         if (xhci->hci_version > 0x95) {
5066                 xhci_dbg(xhci, "xHCI version %x needs hub "
5067                                 "TT think time and number of ports\n",
5068                                 (unsigned int) xhci->hci_version);
5069                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5070                 /* Set TT think time - convert from ns to FS bit times.
5071                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5072                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5073                  *
5074                  * xHCI 1.0: this field shall be 0 if the device is not a
5075                  * High-spped hub.
5076                  */
5077                 think_time = tt->think_time;
5078                 if (think_time != 0)
5079                         think_time = (think_time / 666) - 1;
5080                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5081                         slot_ctx->tt_info |=
5082                                 cpu_to_le32(TT_THINK_TIME(think_time));
5083         } else {
5084                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5085                                 "TT think time or number of ports\n",
5086                                 (unsigned int) xhci->hci_version);
5087         }
5088         slot_ctx->dev_state = 0;
5089         spin_unlock_irqrestore(&xhci->lock, flags);
5090
5091         xhci_dbg(xhci, "Set up %s for hub device.\n",
5092                         (xhci->hci_version > 0x95) ?
5093                         "configure endpoint" : "evaluate context");
5094
5095         /* Issue and wait for the configure endpoint or
5096          * evaluate context command.
5097          */
5098         if (xhci->hci_version > 0x95)
5099                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5100                                 false, false);
5101         else
5102                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5103                                 true, false);
5104
5105         xhci_free_command(xhci, config_cmd);
5106         return ret;
5107 }
5108
5109 static int xhci_get_frame(struct usb_hcd *hcd)
5110 {
5111         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5112         /* EHCI mods by the periodic size.  Why? */
5113         return readl(&xhci->run_regs->microframe_index) >> 3;
5114 }
5115
5116 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5117 {
5118         struct xhci_hcd         *xhci;
5119         /*
5120          * TODO: Check with DWC3 clients for sysdev according to
5121          * quirks
5122          */
5123         struct device           *dev = hcd->self.sysdev;
5124         unsigned int            minor_rev;
5125         int                     retval;
5126
5127         /* Accept arbitrarily long scatter-gather lists */
5128         hcd->self.sg_tablesize = ~0;
5129
5130         /* support to build packet from discontinuous buffers */
5131         hcd->self.no_sg_constraint = 1;
5132
5133         /* XHCI controllers don't stop the ep queue on short packets :| */
5134         hcd->self.no_stop_on_short = 1;
5135
5136         xhci = hcd_to_xhci(hcd);
5137
5138         if (usb_hcd_is_primary_hcd(hcd)) {
5139                 xhci->main_hcd = hcd;
5140                 xhci->usb2_rhub.hcd = hcd;
5141                 /* Mark the first roothub as being USB 2.0.
5142                  * The xHCI driver will register the USB 3.0 roothub.
5143                  */
5144                 hcd->speed = HCD_USB2;
5145                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5146                 /*
5147                  * USB 2.0 roothub under xHCI has an integrated TT,
5148                  * (rate matching hub) as opposed to having an OHCI/UHCI
5149                  * companion controller.
5150                  */
5151                 hcd->has_tt = 1;
5152         } else {
5153                 /*
5154                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5155                  * should return 0x31 for sbrn, or that the minor revision
5156                  * is a two digit BCD containig minor and sub-minor numbers.
5157                  * This was later clarified in xHCI 1.2.
5158                  *
5159                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5160                  * minor revision set to 0x1 instead of 0x10.
5161                  */
5162                 if (xhci->usb3_rhub.min_rev == 0x1)
5163                         minor_rev = 1;
5164                 else
5165                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5166
5167                 switch (minor_rev) {
5168                 case 2:
5169                         hcd->speed = HCD_USB32;
5170                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5171                         hcd->self.root_hub->rx_lanes = 2;
5172                         hcd->self.root_hub->tx_lanes = 2;
5173                         break;
5174                 case 1:
5175                         hcd->speed = HCD_USB31;
5176                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5177                         break;
5178                 }
5179                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5180                           minor_rev,
5181                           minor_rev ? "Enhanced " : "");
5182
5183                 xhci->usb3_rhub.hcd = hcd;
5184                 /* xHCI private pointer was set in xhci_pci_probe for the second
5185                  * registered roothub.
5186                  */
5187                 return 0;
5188         }
5189
5190         mutex_init(&xhci->mutex);
5191         xhci->cap_regs = hcd->regs;
5192         xhci->op_regs = hcd->regs +
5193                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5194         xhci->run_regs = hcd->regs +
5195                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5196         /* Cache read-only capability registers */
5197         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5198         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5199         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5200         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5201         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5202         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5203         if (xhci->hci_version > 0x100)
5204                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5205
5206         xhci->quirks |= quirks;
5207
5208         get_quirks(dev, xhci);
5209
5210         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5211          * success event after a short transfer. This quirk will ignore such
5212          * spurious event.
5213          */
5214         if (xhci->hci_version > 0x96)
5215                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5216
5217         /* Make sure the HC is halted. */
5218         retval = xhci_halt(xhci);
5219         if (retval)
5220                 return retval;
5221
5222         xhci_zero_64b_regs(xhci);
5223
5224         xhci_dbg(xhci, "Resetting HCD\n");
5225         /* Reset the internal HC memory state and registers. */
5226         retval = xhci_reset(xhci);
5227         if (retval)
5228                 return retval;
5229         xhci_dbg(xhci, "Reset complete\n");
5230
5231         /*
5232          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5233          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5234          * address memory pointers actually. So, this driver clears the AC64
5235          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5236          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5237          */
5238         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5239                 xhci->hcc_params &= ~BIT(0);
5240
5241         /* Set dma_mask and coherent_dma_mask to 64-bits,
5242          * if xHC supports 64-bit addressing */
5243         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5244                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5245                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5246                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5247         } else {
5248                 /*
5249                  * This is to avoid error in cases where a 32-bit USB
5250                  * controller is used on a 64-bit capable system.
5251                  */
5252                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5253                 if (retval)
5254                         return retval;
5255                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5256                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5257         }
5258
5259         xhci_dbg(xhci, "Calling HCD init\n");
5260         /* Initialize HCD and host controller data structures. */
5261         retval = xhci_init(hcd);
5262         if (retval)
5263                 return retval;
5264         xhci_dbg(xhci, "Called HCD init\n");
5265
5266         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5267                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5268
5269         return 0;
5270 }
5271 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5272
5273 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5274                 struct usb_host_endpoint *ep)
5275 {
5276         struct xhci_hcd *xhci;
5277         struct usb_device *udev;
5278         unsigned int slot_id;
5279         unsigned int ep_index;
5280         unsigned long flags;
5281
5282         xhci = hcd_to_xhci(hcd);
5283
5284         spin_lock_irqsave(&xhci->lock, flags);
5285         udev = (struct usb_device *)ep->hcpriv;
5286         slot_id = udev->slot_id;
5287         ep_index = xhci_get_endpoint_index(&ep->desc);
5288
5289         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5290         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5291         spin_unlock_irqrestore(&xhci->lock, flags);
5292 }
5293
5294 static const struct hc_driver xhci_hc_driver = {
5295         .description =          "xhci-hcd",
5296         .product_desc =         "xHCI Host Controller",
5297         .hcd_priv_size =        sizeof(struct xhci_hcd),
5298
5299         /*
5300          * generic hardware linkage
5301          */
5302         .irq =                  xhci_irq,
5303         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED,
5304
5305         /*
5306          * basic lifecycle operations
5307          */
5308         .reset =                NULL, /* set in xhci_init_driver() */
5309         .start =                xhci_run,
5310         .stop =                 xhci_stop,
5311         .shutdown =             xhci_shutdown,
5312
5313         /*
5314          * managing i/o requests and associated device resources
5315          */
5316         .map_urb_for_dma =      xhci_map_urb_for_dma,
5317         .urb_enqueue =          xhci_urb_enqueue,
5318         .urb_dequeue =          xhci_urb_dequeue,
5319         .alloc_dev =            xhci_alloc_dev,
5320         .free_dev =             xhci_free_dev,
5321         .alloc_streams =        xhci_alloc_streams,
5322         .free_streams =         xhci_free_streams,
5323         .add_endpoint =         xhci_add_endpoint,
5324         .drop_endpoint =        xhci_drop_endpoint,
5325         .endpoint_disable =     xhci_endpoint_disable,
5326         .endpoint_reset =       xhci_endpoint_reset,
5327         .check_bandwidth =      xhci_check_bandwidth,
5328         .reset_bandwidth =      xhci_reset_bandwidth,
5329         .address_device =       xhci_address_device,
5330         .enable_device =        xhci_enable_device,
5331         .update_hub_device =    xhci_update_hub_device,
5332         .reset_device =         xhci_discover_or_reset_device,
5333
5334         /*
5335          * scheduling support
5336          */
5337         .get_frame_number =     xhci_get_frame,
5338
5339         /*
5340          * root hub support
5341          */
5342         .hub_control =          xhci_hub_control,
5343         .hub_status_data =      xhci_hub_status_data,
5344         .bus_suspend =          xhci_bus_suspend,
5345         .bus_resume =           xhci_bus_resume,
5346         .get_resuming_ports =   xhci_get_resuming_ports,
5347
5348         /*
5349          * call back when device connected and addressed
5350          */
5351         .update_device =        xhci_update_device,
5352         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5353         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5354         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5355         .find_raw_port_number = xhci_find_raw_port_number,
5356         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5357 };
5358
5359 void xhci_init_driver(struct hc_driver *drv,
5360                       const struct xhci_driver_overrides *over)
5361 {
5362         BUG_ON(!over);
5363
5364         /* Copy the generic table to drv then apply the overrides */
5365         *drv = xhci_hc_driver;
5366
5367         if (over) {
5368                 drv->hcd_priv_size += over->extra_priv_size;
5369                 if (over->reset)
5370                         drv->reset = over->reset;
5371                 if (over->start)
5372                         drv->start = over->start;
5373         }
5374 }
5375 EXPORT_SYMBOL_GPL(xhci_init_driver);
5376
5377 MODULE_DESCRIPTION(DRIVER_DESC);
5378 MODULE_AUTHOR(DRIVER_AUTHOR);
5379 MODULE_LICENSE("GPL");
5380
5381 static int __init xhci_hcd_init(void)
5382 {
5383         /*
5384          * Check the compiler generated sizes of structures that must be laid
5385          * out in specific ways for hardware access.
5386          */
5387         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5388         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5389         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5390         /* xhci_device_control has eight fields, and also
5391          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5392          */
5393         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5394         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5395         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5396         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5397         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5398         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5399         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5400
5401         if (usb_disabled())
5402                 return -ENODEV;
5403
5404         xhci_debugfs_create_root();
5405
5406         return 0;
5407 }
5408
5409 /*
5410  * If an init function is provided, an exit function must also be provided
5411  * to allow module unload.
5412  */
5413 static void __exit xhci_hcd_fini(void)
5414 {
5415         xhci_debugfs_remove_root();
5416 }
5417
5418 module_init(xhci_hcd_init);
5419 module_exit(xhci_hcd_fini);