Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / usb / gadget / udc / s3c-hsudc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* linux/drivers/usb/gadget/s3c-hsudc.c
3  *
4  * Copyright (c) 2010 Samsung Electronics Co., Ltd.
5  *              http://www.samsung.com/
6  *
7  * S3C24XX USB 2.0 High-speed USB controller gadget driver
8  *
9  * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
10  * Each endpoint can be configured as either in or out endpoint. Endpoints
11  * can be configured for Bulk or Interrupt transfer mode.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/delay.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/clk.h>
24 #include <linux/err.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
27 #include <linux/usb/otg.h>
28 #include <linux/prefetch.h>
29 #include <linux/platform_data/s3c-hsudc.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/pm_runtime.h>
32
33 #include <mach/regs-s3c2443-clock.h>
34
35 #define S3C_HSUDC_REG(x)        (x)
36
37 /* Non-Indexed Registers */
38 #define S3C_IR                          S3C_HSUDC_REG(0x00) /* Index Register */
39 #define S3C_EIR                         S3C_HSUDC_REG(0x04) /* EP Intr Status */
40 #define S3C_EIR_EP0                     (1<<0)
41 #define S3C_EIER                        S3C_HSUDC_REG(0x08) /* EP Intr Enable */
42 #define S3C_FAR                         S3C_HSUDC_REG(0x0c) /* Gadget Address */
43 #define S3C_FNR                         S3C_HSUDC_REG(0x10) /* Frame Number */
44 #define S3C_EDR                         S3C_HSUDC_REG(0x14) /* EP Direction */
45 #define S3C_TR                          S3C_HSUDC_REG(0x18) /* Test Register */
46 #define S3C_SSR                         S3C_HSUDC_REG(0x1c) /* System Status */
47 #define S3C_SSR_DTZIEN_EN               (0xff8f)
48 #define S3C_SSR_ERR                     (0xff80)
49 #define S3C_SSR_VBUSON                  (1 << 8)
50 #define S3C_SSR_HSP                     (1 << 4)
51 #define S3C_SSR_SDE                     (1 << 3)
52 #define S3C_SSR_RESUME                  (1 << 2)
53 #define S3C_SSR_SUSPEND                 (1 << 1)
54 #define S3C_SSR_RESET                   (1 << 0)
55 #define S3C_SCR                         S3C_HSUDC_REG(0x20) /* System Control */
56 #define S3C_SCR_DTZIEN_EN               (1 << 14)
57 #define S3C_SCR_RRD_EN                  (1 << 5)
58 #define S3C_SCR_SUS_EN                  (1 << 1)
59 #define S3C_SCR_RST_EN                  (1 << 0)
60 #define S3C_EP0SR                       S3C_HSUDC_REG(0x24) /* EP0 Status */
61 #define S3C_EP0SR_EP0_LWO               (1 << 6)
62 #define S3C_EP0SR_STALL                 (1 << 4)
63 #define S3C_EP0SR_TX_SUCCESS            (1 << 1)
64 #define S3C_EP0SR_RX_SUCCESS            (1 << 0)
65 #define S3C_EP0CR                       S3C_HSUDC_REG(0x28) /* EP0 Control */
66 #define S3C_BR(_x)                      S3C_HSUDC_REG(0x60 + (_x * 4))
67
68 /* Indexed Registers */
69 #define S3C_ESR                         S3C_HSUDC_REG(0x2c) /* EPn Status */
70 #define S3C_ESR_FLUSH                   (1 << 6)
71 #define S3C_ESR_STALL                   (1 << 5)
72 #define S3C_ESR_LWO                     (1 << 4)
73 #define S3C_ESR_PSIF_ONE                (1 << 2)
74 #define S3C_ESR_PSIF_TWO                (2 << 2)
75 #define S3C_ESR_TX_SUCCESS              (1 << 1)
76 #define S3C_ESR_RX_SUCCESS              (1 << 0)
77 #define S3C_ECR                         S3C_HSUDC_REG(0x30) /* EPn Control */
78 #define S3C_ECR_DUEN                    (1 << 7)
79 #define S3C_ECR_FLUSH                   (1 << 6)
80 #define S3C_ECR_STALL                   (1 << 1)
81 #define S3C_ECR_IEMS                    (1 << 0)
82 #define S3C_BRCR                        S3C_HSUDC_REG(0x34) /* Read Count */
83 #define S3C_BWCR                        S3C_HSUDC_REG(0x38) /* Write Count */
84 #define S3C_MPR                         S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
85
86 #define WAIT_FOR_SETUP                  (0)
87 #define DATA_STATE_XMIT                 (1)
88 #define DATA_STATE_RECV                 (2)
89
90 static const char * const s3c_hsudc_supply_names[] = {
91         "vdda",         /* analog phy supply, 3.3V */
92         "vddi",         /* digital phy supply, 1.2V */
93         "vddosc",       /* oscillator supply, 1.8V - 3.3V */
94 };
95
96 /**
97  * struct s3c_hsudc_ep - Endpoint representation used by driver.
98  * @ep: USB gadget layer representation of device endpoint.
99  * @name: Endpoint name (as required by ep autoconfiguration).
100  * @dev: Reference to the device controller to which this EP belongs.
101  * @desc: Endpoint descriptor obtained from the gadget driver.
102  * @queue: Transfer request queue for the endpoint.
103  * @stopped: Maintains state of endpoint, set if EP is halted.
104  * @bEndpointAddress: EP address (including direction bit).
105  * @fifo: Base address of EP FIFO.
106  */
107 struct s3c_hsudc_ep {
108         struct usb_ep ep;
109         char name[20];
110         struct s3c_hsudc *dev;
111         struct list_head queue;
112         u8 stopped;
113         u8 wedge;
114         u8 bEndpointAddress;
115         void __iomem *fifo;
116 };
117
118 /**
119  * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
120  * @req: Reference to USB gadget transfer request.
121  * @queue: Used for inserting this request to the endpoint request queue.
122  */
123 struct s3c_hsudc_req {
124         struct usb_request req;
125         struct list_head queue;
126 };
127
128 /**
129  * struct s3c_hsudc - Driver's abstraction of the device controller.
130  * @gadget: Instance of usb_gadget which is referenced by gadget driver.
131  * @driver: Reference to currenty active gadget driver.
132  * @dev: The device reference used by probe function.
133  * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
134  * @regs: Remapped base address of controller's register space.
135  * irq: IRQ number used by the controller.
136  * uclk: Reference to the controller clock.
137  * ep0state: Current state of EP0.
138  * ep: List of endpoints supported by the controller.
139  */
140 struct s3c_hsudc {
141         struct usb_gadget gadget;
142         struct usb_gadget_driver *driver;
143         struct device *dev;
144         struct s3c24xx_hsudc_platdata *pd;
145         struct usb_phy *transceiver;
146         struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
147         spinlock_t lock;
148         void __iomem *regs;
149         int irq;
150         struct clk *uclk;
151         int ep0state;
152         struct s3c_hsudc_ep ep[];
153 };
154
155 #define ep_maxpacket(_ep)       ((_ep)->ep.maxpacket)
156 #define ep_is_in(_ep)           ((_ep)->bEndpointAddress & USB_DIR_IN)
157 #define ep_index(_ep)           ((_ep)->bEndpointAddress & \
158                                         USB_ENDPOINT_NUMBER_MASK)
159
160 static const char driver_name[] = "s3c-udc";
161 static const char ep0name[] = "ep0-control";
162
163 static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
164 {
165         return container_of(req, struct s3c_hsudc_req, req);
166 }
167
168 static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
169 {
170         return container_of(ep, struct s3c_hsudc_ep, ep);
171 }
172
173 static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
174 {
175         return container_of(gadget, struct s3c_hsudc, gadget);
176 }
177
178 static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
179 {
180         ep_addr &= USB_ENDPOINT_NUMBER_MASK;
181         writel(ep_addr, hsudc->regs + S3C_IR);
182 }
183
184 static inline void __orr32(void __iomem *ptr, u32 val)
185 {
186         writel(readl(ptr) | val, ptr);
187 }
188
189 static void s3c_hsudc_init_phy(void)
190 {
191         u32 cfg;
192
193         cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
194         writel(cfg, S3C2443_PWRCFG);
195
196         cfg = readl(S3C2443_URSTCON);
197         cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
198         writel(cfg, S3C2443_URSTCON);
199         mdelay(1);
200
201         cfg = readl(S3C2443_URSTCON);
202         cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
203         writel(cfg, S3C2443_URSTCON);
204
205         cfg = readl(S3C2443_PHYCTRL);
206         cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
207         cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
208         writel(cfg, S3C2443_PHYCTRL);
209
210         cfg = readl(S3C2443_PHYPWR);
211         cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
212                 S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
213                 S3C2443_PHYPWR_ANALOG_PD);
214         cfg |= S3C2443_PHYPWR_COMMON_ON;
215         writel(cfg, S3C2443_PHYPWR);
216
217         cfg = readl(S3C2443_UCLKCON);
218         cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
219                 S3C2443_UCLKCON_TCLKEN);
220         writel(cfg, S3C2443_UCLKCON);
221 }
222
223 static void s3c_hsudc_uninit_phy(void)
224 {
225         u32 cfg;
226
227         cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
228         writel(cfg, S3C2443_PWRCFG);
229
230         writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
231
232         cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
233         writel(cfg, S3C2443_UCLKCON);
234 }
235
236 /**
237  * s3c_hsudc_complete_request - Complete a transfer request.
238  * @hsep: Endpoint to which the request belongs.
239  * @hsreq: Transfer request to be completed.
240  * @status: Transfer completion status for the transfer request.
241  */
242 static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
243                                 struct s3c_hsudc_req *hsreq, int status)
244 {
245         unsigned int stopped = hsep->stopped;
246         struct s3c_hsudc *hsudc = hsep->dev;
247
248         list_del_init(&hsreq->queue);
249         hsreq->req.status = status;
250
251         if (!ep_index(hsep)) {
252                 hsudc->ep0state = WAIT_FOR_SETUP;
253                 hsep->bEndpointAddress &= ~USB_DIR_IN;
254         }
255
256         hsep->stopped = 1;
257         spin_unlock(&hsudc->lock);
258         usb_gadget_giveback_request(&hsep->ep, &hsreq->req);
259         spin_lock(&hsudc->lock);
260         hsep->stopped = stopped;
261 }
262
263 /**
264  * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
265  * @hsep: Endpoint for which queued requests have to be terminated.
266  * @status: Transfer completion status for the transfer request.
267  */
268 static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
269 {
270         struct s3c_hsudc_req *hsreq;
271
272         while (!list_empty(&hsep->queue)) {
273                 hsreq = list_entry(hsep->queue.next,
274                                 struct s3c_hsudc_req, queue);
275                 s3c_hsudc_complete_request(hsep, hsreq, status);
276         }
277 }
278
279 /**
280  * s3c_hsudc_stop_activity - Stop activity on all endpoints.
281  * @hsudc: Device controller for which EP activity is to be stopped.
282  *
283  * All the endpoints are stopped and any pending transfer requests if any on
284  * the endpoint are terminated.
285  */
286 static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
287 {
288         struct s3c_hsudc_ep *hsep;
289         int epnum;
290
291         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
292
293         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
294                 hsep = &hsudc->ep[epnum];
295                 hsep->stopped = 1;
296                 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
297         }
298 }
299
300 /**
301  * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
302  * @hsudc: Device controller from which setup packet is to be read.
303  * @buf: The buffer into which the setup packet is read.
304  *
305  * The setup packet received in the EP0 fifo is read and stored into a
306  * given buffer address.
307  */
308
309 static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
310 {
311         int count;
312
313         count = readl(hsudc->regs + S3C_BRCR);
314         while (count--)
315                 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
316
317         writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
318 }
319
320 /**
321  * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
322  * @hsep: Endpoint to which the data is to be written.
323  * @hsreq: Transfer request from which the next chunk of data is written.
324  *
325  * Write the next chunk of data from a transfer request to the endpoint FIFO.
326  * If the transfer request completes, 1 is returned, otherwise 0 is returned.
327  */
328 static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
329                                 struct s3c_hsudc_req *hsreq)
330 {
331         u16 *buf;
332         u32 max = ep_maxpacket(hsep);
333         u32 count, length;
334         bool is_last;
335         void __iomem *fifo = hsep->fifo;
336
337         buf = hsreq->req.buf + hsreq->req.actual;
338         prefetch(buf);
339
340         length = hsreq->req.length - hsreq->req.actual;
341         length = min(length, max);
342         hsreq->req.actual += length;
343
344         writel(length, hsep->dev->regs + S3C_BWCR);
345         for (count = 0; count < length; count += 2)
346                 writel(*buf++, fifo);
347
348         if (count != max) {
349                 is_last = true;
350         } else {
351                 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
352                         is_last = false;
353                 else
354                         is_last = true;
355         }
356
357         if (is_last) {
358                 s3c_hsudc_complete_request(hsep, hsreq, 0);
359                 return 1;
360         }
361
362         return 0;
363 }
364
365 /**
366  * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
367  * @hsep: Endpoint from which the data is to be read.
368  * @hsreq: Transfer request to which the next chunk of data read is written.
369  *
370  * Read the next chunk of data from the endpoint FIFO and a write it to the
371  * transfer request buffer. If the transfer request completes, 1 is returned,
372  * otherwise 0 is returned.
373  */
374 static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
375                                 struct s3c_hsudc_req *hsreq)
376 {
377         struct s3c_hsudc *hsudc = hsep->dev;
378         u32 csr, offset;
379         u16 *buf, word;
380         u32 buflen, rcnt, rlen;
381         void __iomem *fifo = hsep->fifo;
382         u32 is_short = 0;
383
384         offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
385         csr = readl(hsudc->regs + offset);
386         if (!(csr & S3C_ESR_RX_SUCCESS))
387                 return -EINVAL;
388
389         buf = hsreq->req.buf + hsreq->req.actual;
390         prefetchw(buf);
391         buflen = hsreq->req.length - hsreq->req.actual;
392
393         rcnt = readl(hsudc->regs + S3C_BRCR);
394         rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
395
396         hsreq->req.actual += min(rlen, buflen);
397         is_short = (rlen < hsep->ep.maxpacket);
398
399         while (rcnt-- != 0) {
400                 word = (u16)readl(fifo);
401                 if (buflen) {
402                         *buf++ = word;
403                         buflen--;
404                 } else {
405                         hsreq->req.status = -EOVERFLOW;
406                 }
407         }
408
409         writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
410
411         if (is_short || hsreq->req.actual == hsreq->req.length) {
412                 s3c_hsudc_complete_request(hsep, hsreq, 0);
413                 return 1;
414         }
415
416         return 0;
417 }
418
419 /**
420  * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
421  * @hsudc - Device controller for which the interrupt is to be handled.
422  * @ep_idx - Endpoint number on which an interrupt is pending.
423  *
424  * Handles interrupt for a in-endpoint. The interrupts that are handled are
425  * stall and data transmit complete interrupt.
426  */
427 static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
428 {
429         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
430         struct s3c_hsudc_req *hsreq;
431         u32 csr;
432
433         csr = readl(hsudc->regs + S3C_ESR);
434         if (csr & S3C_ESR_STALL) {
435                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
436                 return;
437         }
438
439         if (csr & S3C_ESR_TX_SUCCESS) {
440                 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
441                 if (list_empty(&hsep->queue))
442                         return;
443
444                 hsreq = list_entry(hsep->queue.next,
445                                 struct s3c_hsudc_req, queue);
446                 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
447                                 (csr & S3C_ESR_PSIF_TWO))
448                         s3c_hsudc_write_fifo(hsep, hsreq);
449         }
450 }
451
452 /**
453  * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
454  * @hsudc - Device controller for which the interrupt is to be handled.
455  * @ep_idx - Endpoint number on which an interrupt is pending.
456  *
457  * Handles interrupt for a out-endpoint. The interrupts that are handled are
458  * stall, flush and data ready interrupt.
459  */
460 static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
461 {
462         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
463         struct s3c_hsudc_req *hsreq;
464         u32 csr;
465
466         csr = readl(hsudc->regs + S3C_ESR);
467         if (csr & S3C_ESR_STALL) {
468                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
469                 return;
470         }
471
472         if (csr & S3C_ESR_FLUSH) {
473                 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
474                 return;
475         }
476
477         if (csr & S3C_ESR_RX_SUCCESS) {
478                 if (list_empty(&hsep->queue))
479                         return;
480
481                 hsreq = list_entry(hsep->queue.next,
482                                 struct s3c_hsudc_req, queue);
483                 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
484                                 (csr & S3C_ESR_PSIF_TWO))
485                         s3c_hsudc_read_fifo(hsep, hsreq);
486         }
487 }
488
489 /** s3c_hsudc_set_halt - Set or clear a endpoint halt.
490  * @_ep: Endpoint on which halt has to be set or cleared.
491  * @value: 1 for setting halt on endpoint, 0 to clear halt.
492  *
493  * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
494  * If halt is cleared, for in-endpoints, if there are any pending
495  * transfer requests, transfers are started.
496  */
497 static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
498 {
499         struct s3c_hsudc_ep *hsep = our_ep(_ep);
500         struct s3c_hsudc *hsudc = hsep->dev;
501         struct s3c_hsudc_req *hsreq;
502         unsigned long irqflags;
503         u32 ecr;
504         u32 offset;
505
506         if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
507                 return -EAGAIN;
508
509         spin_lock_irqsave(&hsudc->lock, irqflags);
510         set_index(hsudc, ep_index(hsep));
511         offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
512         ecr = readl(hsudc->regs + offset);
513
514         if (value) {
515                 ecr |= S3C_ECR_STALL;
516                 if (ep_index(hsep))
517                         ecr |= S3C_ECR_FLUSH;
518                 hsep->stopped = 1;
519         } else {
520                 ecr &= ~S3C_ECR_STALL;
521                 hsep->stopped = hsep->wedge = 0;
522         }
523         writel(ecr, hsudc->regs + offset);
524
525         if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
526                 hsreq = list_entry(hsep->queue.next,
527                         struct s3c_hsudc_req, queue);
528                 if (hsreq)
529                         s3c_hsudc_write_fifo(hsep, hsreq);
530         }
531
532         spin_unlock_irqrestore(&hsudc->lock, irqflags);
533         return 0;
534 }
535
536 /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
537  * @_ep: Endpoint on which wedge has to be set.
538  *
539  * Sets the halt feature with the clear requests ignored.
540  */
541 static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
542 {
543         struct s3c_hsudc_ep *hsep = our_ep(_ep);
544
545         if (!hsep)
546                 return -EINVAL;
547
548         hsep->wedge = 1;
549         return usb_ep_set_halt(_ep);
550 }
551
552 /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
553  * @_ep: Device controller on which the set/clear feature needs to be handled.
554  * @ctrl: Control request as received on the endpoint 0.
555  *
556  * Handle set feature or clear feature control requests on the control endpoint.
557  */
558 static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
559                                         struct usb_ctrlrequest *ctrl)
560 {
561         struct s3c_hsudc_ep *hsep;
562         bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
563         u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
564
565         if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
566                 hsep = &hsudc->ep[ep_num];
567                 switch (le16_to_cpu(ctrl->wValue)) {
568                 case USB_ENDPOINT_HALT:
569                         if (set || !hsep->wedge)
570                                 s3c_hsudc_set_halt(&hsep->ep, set);
571                         return 0;
572                 }
573         }
574
575         return -ENOENT;
576 }
577
578 /**
579  * s3c_hsudc_process_req_status - Handle get status control request.
580  * @hsudc: Device controller on which get status request has be handled.
581  * @ctrl: Control request as received on the endpoint 0.
582  *
583  * Handle get status control request received on control endpoint.
584  */
585 static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
586                                         struct usb_ctrlrequest *ctrl)
587 {
588         struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
589         struct s3c_hsudc_req hsreq;
590         struct s3c_hsudc_ep *hsep;
591         __le16 reply;
592         u8 epnum;
593
594         switch (ctrl->bRequestType & USB_RECIP_MASK) {
595         case USB_RECIP_DEVICE:
596                 reply = cpu_to_le16(0);
597                 break;
598
599         case USB_RECIP_INTERFACE:
600                 reply = cpu_to_le16(0);
601                 break;
602
603         case USB_RECIP_ENDPOINT:
604                 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
605                 hsep = &hsudc->ep[epnum];
606                 reply = cpu_to_le16(hsep->stopped ? 1 : 0);
607                 break;
608         }
609
610         INIT_LIST_HEAD(&hsreq.queue);
611         hsreq.req.length = 2;
612         hsreq.req.buf = &reply;
613         hsreq.req.actual = 0;
614         hsreq.req.complete = NULL;
615         s3c_hsudc_write_fifo(hsep0, &hsreq);
616 }
617
618 /**
619  * s3c_hsudc_process_setup - Process control request received on endpoint 0.
620  * @hsudc: Device controller on which control request has been received.
621  *
622  * Read the control request received on endpoint 0, decode it and handle
623  * the request.
624  */
625 static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
626 {
627         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
628         struct usb_ctrlrequest ctrl = {0};
629         int ret;
630
631         s3c_hsudc_nuke_ep(hsep, -EPROTO);
632         s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
633
634         if (ctrl.bRequestType & USB_DIR_IN) {
635                 hsep->bEndpointAddress |= USB_DIR_IN;
636                 hsudc->ep0state = DATA_STATE_XMIT;
637         } else {
638                 hsep->bEndpointAddress &= ~USB_DIR_IN;
639                 hsudc->ep0state = DATA_STATE_RECV;
640         }
641
642         switch (ctrl.bRequest) {
643         case USB_REQ_SET_ADDRESS:
644                 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
645                         break;
646                 hsudc->ep0state = WAIT_FOR_SETUP;
647                 return;
648
649         case USB_REQ_GET_STATUS:
650                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
651                         break;
652                 s3c_hsudc_process_req_status(hsudc, &ctrl);
653                 return;
654
655         case USB_REQ_SET_FEATURE:
656         case USB_REQ_CLEAR_FEATURE:
657                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
658                         break;
659                 s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
660                 hsudc->ep0state = WAIT_FOR_SETUP;
661                 return;
662         }
663
664         if (hsudc->driver) {
665                 spin_unlock(&hsudc->lock);
666                 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
667                 spin_lock(&hsudc->lock);
668
669                 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
670                         hsep->bEndpointAddress &= ~USB_DIR_IN;
671                         hsudc->ep0state = WAIT_FOR_SETUP;
672                 }
673
674                 if (ret < 0) {
675                         dev_err(hsudc->dev, "setup failed, returned %d\n",
676                                                 ret);
677                         s3c_hsudc_set_halt(&hsep->ep, 1);
678                         hsudc->ep0state = WAIT_FOR_SETUP;
679                         hsep->bEndpointAddress &= ~USB_DIR_IN;
680                 }
681         }
682 }
683
684 /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
685  * @hsudc: Device controller on which endpoint 0 interrupt has occured.
686  *
687  * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
688  * when a stall handshake is sent to host or data is sent/received on
689  * endpoint 0.
690  */
691 static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
692 {
693         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
694         struct s3c_hsudc_req *hsreq;
695         u32 csr = readl(hsudc->regs + S3C_EP0SR);
696         u32 ecr;
697
698         if (csr & S3C_EP0SR_STALL) {
699                 ecr = readl(hsudc->regs + S3C_EP0CR);
700                 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
701                 writel(ecr, hsudc->regs + S3C_EP0CR);
702
703                 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
704                 hsep->stopped = 0;
705
706                 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
707                 hsudc->ep0state = WAIT_FOR_SETUP;
708                 hsep->bEndpointAddress &= ~USB_DIR_IN;
709                 return;
710         }
711
712         if (csr & S3C_EP0SR_TX_SUCCESS) {
713                 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
714                 if (ep_is_in(hsep)) {
715                         if (list_empty(&hsep->queue))
716                                 return;
717
718                         hsreq = list_entry(hsep->queue.next,
719                                         struct s3c_hsudc_req, queue);
720                         s3c_hsudc_write_fifo(hsep, hsreq);
721                 }
722         }
723
724         if (csr & S3C_EP0SR_RX_SUCCESS) {
725                 if (hsudc->ep0state == WAIT_FOR_SETUP)
726                         s3c_hsudc_process_setup(hsudc);
727                 else {
728                         if (!ep_is_in(hsep)) {
729                                 if (list_empty(&hsep->queue))
730                                         return;
731                                 hsreq = list_entry(hsep->queue.next,
732                                         struct s3c_hsudc_req, queue);
733                                 s3c_hsudc_read_fifo(hsep, hsreq);
734                         }
735                 }
736         }
737 }
738
739 /**
740  * s3c_hsudc_ep_enable - Enable a endpoint.
741  * @_ep: The endpoint to be enabled.
742  * @desc: Endpoint descriptor.
743  *
744  * Enables a endpoint when called from the gadget driver. Endpoint stall if
745  * any is cleared, transfer type is configured and endpoint interrupt is
746  * enabled.
747  */
748 static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
749                                 const struct usb_endpoint_descriptor *desc)
750 {
751         struct s3c_hsudc_ep *hsep;
752         struct s3c_hsudc *hsudc;
753         unsigned long flags;
754         u32 ecr = 0;
755
756         hsep = our_ep(_ep);
757         if (!_ep || !desc || _ep->name == ep0name
758                 || desc->bDescriptorType != USB_DT_ENDPOINT
759                 || hsep->bEndpointAddress != desc->bEndpointAddress
760                 || ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
761                 return -EINVAL;
762
763         if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
764                 && usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
765                 || !desc->wMaxPacketSize)
766                 return -ERANGE;
767
768         hsudc = hsep->dev;
769         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
770                 return -ESHUTDOWN;
771
772         spin_lock_irqsave(&hsudc->lock, flags);
773
774         set_index(hsudc, hsep->bEndpointAddress);
775         ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
776         writel(ecr, hsudc->regs + S3C_ECR);
777
778         hsep->stopped = hsep->wedge = 0;
779         hsep->ep.desc = desc;
780         hsep->ep.maxpacket = usb_endpoint_maxp(desc);
781
782         s3c_hsudc_set_halt(_ep, 0);
783         __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
784
785         spin_unlock_irqrestore(&hsudc->lock, flags);
786         return 0;
787 }
788
789 /**
790  * s3c_hsudc_ep_disable - Disable a endpoint.
791  * @_ep: The endpoint to be disabled.
792  * @desc: Endpoint descriptor.
793  *
794  * Disables a endpoint when called from the gadget driver.
795  */
796 static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
797 {
798         struct s3c_hsudc_ep *hsep = our_ep(_ep);
799         struct s3c_hsudc *hsudc = hsep->dev;
800         unsigned long flags;
801
802         if (!_ep || !hsep->ep.desc)
803                 return -EINVAL;
804
805         spin_lock_irqsave(&hsudc->lock, flags);
806
807         set_index(hsudc, hsep->bEndpointAddress);
808         __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
809
810         s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
811
812         hsep->ep.desc = NULL;
813         hsep->stopped = 1;
814
815         spin_unlock_irqrestore(&hsudc->lock, flags);
816         return 0;
817 }
818
819 /**
820  * s3c_hsudc_alloc_request - Allocate a new request.
821  * @_ep: Endpoint for which request is allocated (not used).
822  * @gfp_flags: Flags used for the allocation.
823  *
824  * Allocates a single transfer request structure when called from gadget driver.
825  */
826 static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
827                                                 gfp_t gfp_flags)
828 {
829         struct s3c_hsudc_req *hsreq;
830
831         hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
832         if (!hsreq)
833                 return NULL;
834
835         INIT_LIST_HEAD(&hsreq->queue);
836         return &hsreq->req;
837 }
838
839 /**
840  * s3c_hsudc_free_request - Deallocate a request.
841  * @ep: Endpoint for which request is deallocated (not used).
842  * @_req: Request to be deallocated.
843  *
844  * Allocates a single transfer request structure when called from gadget driver.
845  */
846 static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
847 {
848         struct s3c_hsudc_req *hsreq;
849
850         hsreq = our_req(_req);
851         WARN_ON(!list_empty(&hsreq->queue));
852         kfree(hsreq);
853 }
854
855 /**
856  * s3c_hsudc_queue - Queue a transfer request for the endpoint.
857  * @_ep: Endpoint for which the request is queued.
858  * @_req: Request to be queued.
859  * @gfp_flags: Not used.
860  *
861  * Start or enqueue a request for a endpoint when called from gadget driver.
862  */
863 static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
864                         gfp_t gfp_flags)
865 {
866         struct s3c_hsudc_req *hsreq;
867         struct s3c_hsudc_ep *hsep;
868         struct s3c_hsudc *hsudc;
869         unsigned long flags;
870         u32 offset;
871         u32 csr;
872
873         hsreq = our_req(_req);
874         if ((!_req || !_req->complete || !_req->buf ||
875                 !list_empty(&hsreq->queue)))
876                 return -EINVAL;
877
878         hsep = our_ep(_ep);
879         hsudc = hsep->dev;
880         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
881                 return -ESHUTDOWN;
882
883         spin_lock_irqsave(&hsudc->lock, flags);
884         set_index(hsudc, hsep->bEndpointAddress);
885
886         _req->status = -EINPROGRESS;
887         _req->actual = 0;
888
889         if (!ep_index(hsep) && _req->length == 0) {
890                 hsudc->ep0state = WAIT_FOR_SETUP;
891                 s3c_hsudc_complete_request(hsep, hsreq, 0);
892                 spin_unlock_irqrestore(&hsudc->lock, flags);
893                 return 0;
894         }
895
896         if (list_empty(&hsep->queue) && !hsep->stopped) {
897                 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
898                 if (ep_is_in(hsep)) {
899                         csr = readl(hsudc->regs + offset);
900                         if (!(csr & S3C_ESR_TX_SUCCESS) &&
901                                 (s3c_hsudc_write_fifo(hsep, hsreq) == 1))
902                                 hsreq = NULL;
903                 } else {
904                         csr = readl(hsudc->regs + offset);
905                         if ((csr & S3C_ESR_RX_SUCCESS)
906                                    && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
907                                 hsreq = NULL;
908                 }
909         }
910
911         if (hsreq)
912                 list_add_tail(&hsreq->queue, &hsep->queue);
913
914         spin_unlock_irqrestore(&hsudc->lock, flags);
915         return 0;
916 }
917
918 /**
919  * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
920  * @_ep: Endpoint from which the request is dequeued.
921  * @_req: Request to be dequeued.
922  *
923  * Dequeue a request from a endpoint when called from gadget driver.
924  */
925 static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
926 {
927         struct s3c_hsudc_ep *hsep = our_ep(_ep);
928         struct s3c_hsudc *hsudc = hsep->dev;
929         struct s3c_hsudc_req *hsreq;
930         unsigned long flags;
931
932         hsep = our_ep(_ep);
933         if (!_ep || hsep->ep.name == ep0name)
934                 return -EINVAL;
935
936         spin_lock_irqsave(&hsudc->lock, flags);
937
938         list_for_each_entry(hsreq, &hsep->queue, queue) {
939                 if (&hsreq->req == _req)
940                         break;
941         }
942         if (&hsreq->req != _req) {
943                 spin_unlock_irqrestore(&hsudc->lock, flags);
944                 return -EINVAL;
945         }
946
947         set_index(hsudc, hsep->bEndpointAddress);
948         s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
949
950         spin_unlock_irqrestore(&hsudc->lock, flags);
951         return 0;
952 }
953
954 static const struct usb_ep_ops s3c_hsudc_ep_ops = {
955         .enable = s3c_hsudc_ep_enable,
956         .disable = s3c_hsudc_ep_disable,
957         .alloc_request = s3c_hsudc_alloc_request,
958         .free_request = s3c_hsudc_free_request,
959         .queue = s3c_hsudc_queue,
960         .dequeue = s3c_hsudc_dequeue,
961         .set_halt = s3c_hsudc_set_halt,
962         .set_wedge = s3c_hsudc_set_wedge,
963 };
964
965 /**
966  * s3c_hsudc_initep - Initialize a endpoint to default state.
967  * @hsudc - Reference to the device controller.
968  * @hsep - Endpoint to be initialized.
969  * @epnum - Address to be assigned to the endpoint.
970  *
971  * Initialize a endpoint with default configuration.
972  */
973 static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
974                                 struct s3c_hsudc_ep *hsep, int epnum)
975 {
976         char *dir;
977
978         if ((epnum % 2) == 0) {
979                 dir = "out";
980         } else {
981                 dir = "in";
982                 hsep->bEndpointAddress = USB_DIR_IN;
983         }
984
985         hsep->bEndpointAddress |= epnum;
986         if (epnum)
987                 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
988         else
989                 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
990
991         INIT_LIST_HEAD(&hsep->queue);
992         INIT_LIST_HEAD(&hsep->ep.ep_list);
993         if (epnum)
994                 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
995
996         hsep->dev = hsudc;
997         hsep->ep.name = hsep->name;
998         usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64);
999         hsep->ep.ops = &s3c_hsudc_ep_ops;
1000         hsep->fifo = hsudc->regs + S3C_BR(epnum);
1001         hsep->ep.desc = NULL;
1002         hsep->stopped = 0;
1003         hsep->wedge = 0;
1004
1005         if (epnum == 0) {
1006                 hsep->ep.caps.type_control = true;
1007                 hsep->ep.caps.dir_in = true;
1008                 hsep->ep.caps.dir_out = true;
1009         } else {
1010                 hsep->ep.caps.type_iso = true;
1011                 hsep->ep.caps.type_bulk = true;
1012                 hsep->ep.caps.type_int = true;
1013         }
1014
1015         if (epnum & 1)
1016                 hsep->ep.caps.dir_in = true;
1017         else
1018                 hsep->ep.caps.dir_out = true;
1019
1020         set_index(hsudc, epnum);
1021         writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
1022 }
1023
1024 /**
1025  * s3c_hsudc_setup_ep - Configure all endpoints to default state.
1026  * @hsudc: Reference to device controller.
1027  *
1028  * Configures all endpoints to default state.
1029  */
1030 static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
1031 {
1032         int epnum;
1033
1034         hsudc->ep0state = WAIT_FOR_SETUP;
1035         INIT_LIST_HEAD(&hsudc->gadget.ep_list);
1036         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
1037                 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
1038 }
1039
1040 /**
1041  * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
1042  * @hsudc: Reference to device controller.
1043  *
1044  * Reconfigures the device controller registers to a default state.
1045  */
1046 static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
1047 {
1048         writel(0xAA, hsudc->regs + S3C_EDR);
1049         writel(1, hsudc->regs + S3C_EIER);
1050         writel(0, hsudc->regs + S3C_TR);
1051         writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1052                         S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1053         writel(0, hsudc->regs + S3C_EP0CR);
1054
1055         s3c_hsudc_setup_ep(hsudc);
1056 }
1057
1058 /**
1059  * s3c_hsudc_irq - Interrupt handler for device controller.
1060  * @irq: Not used.
1061  * @_dev: Reference to the device controller.
1062  *
1063  * Interrupt handler for the device controller. This handler handles controller
1064  * interrupts and endpoint interrupts.
1065  */
1066 static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1067 {
1068         struct s3c_hsudc *hsudc = _dev;
1069         struct s3c_hsudc_ep *hsep;
1070         u32 ep_intr;
1071         u32 sys_status;
1072         u32 ep_idx;
1073
1074         spin_lock(&hsudc->lock);
1075
1076         sys_status = readl(hsudc->regs + S3C_SSR);
1077         ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1078
1079         if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1080                 spin_unlock(&hsudc->lock);
1081                 return IRQ_HANDLED;
1082         }
1083
1084         if (sys_status) {
1085                 if (sys_status & S3C_SSR_VBUSON)
1086                         writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1087
1088                 if (sys_status & S3C_SSR_ERR)
1089                         writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1090
1091                 if (sys_status & S3C_SSR_SDE) {
1092                         writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1093                         hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1094                                 USB_SPEED_HIGH : USB_SPEED_FULL;
1095                 }
1096
1097                 if (sys_status & S3C_SSR_SUSPEND) {
1098                         writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1099                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1100                                 && hsudc->driver && hsudc->driver->suspend)
1101                                 hsudc->driver->suspend(&hsudc->gadget);
1102                 }
1103
1104                 if (sys_status & S3C_SSR_RESUME) {
1105                         writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1106                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1107                                 && hsudc->driver && hsudc->driver->resume)
1108                                 hsudc->driver->resume(&hsudc->gadget);
1109                 }
1110
1111                 if (sys_status & S3C_SSR_RESET) {
1112                         writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1113                         for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1114                                 hsep = &hsudc->ep[ep_idx];
1115                                 hsep->stopped = 1;
1116                                 s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1117                         }
1118                         s3c_hsudc_reconfig(hsudc);
1119                         hsudc->ep0state = WAIT_FOR_SETUP;
1120                 }
1121         }
1122
1123         if (ep_intr & S3C_EIR_EP0) {
1124                 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1125                 set_index(hsudc, 0);
1126                 s3c_hsudc_handle_ep0_intr(hsudc);
1127         }
1128
1129         ep_intr >>= 1;
1130         ep_idx = 1;
1131         while (ep_intr) {
1132                 if (ep_intr & 1)  {
1133                         hsep = &hsudc->ep[ep_idx];
1134                         set_index(hsudc, ep_idx);
1135                         writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1136                         if (ep_is_in(hsep))
1137                                 s3c_hsudc_epin_intr(hsudc, ep_idx);
1138                         else
1139                                 s3c_hsudc_epout_intr(hsudc, ep_idx);
1140                 }
1141                 ep_intr >>= 1;
1142                 ep_idx++;
1143         }
1144
1145         spin_unlock(&hsudc->lock);
1146         return IRQ_HANDLED;
1147 }
1148
1149 static int s3c_hsudc_start(struct usb_gadget *gadget,
1150                 struct usb_gadget_driver *driver)
1151 {
1152         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1153         int ret;
1154
1155         if (!driver
1156                 || driver->max_speed < USB_SPEED_FULL
1157                 || !driver->setup)
1158                 return -EINVAL;
1159
1160         if (!hsudc)
1161                 return -ENODEV;
1162
1163         if (hsudc->driver)
1164                 return -EBUSY;
1165
1166         hsudc->driver = driver;
1167
1168         ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1169                                     hsudc->supplies);
1170         if (ret != 0) {
1171                 dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1172                 goto err_supplies;
1173         }
1174
1175         /* connect to bus through transceiver */
1176         if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
1177                 ret = otg_set_peripheral(hsudc->transceiver->otg,
1178                                         &hsudc->gadget);
1179                 if (ret) {
1180                         dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1181                                         hsudc->gadget.name);
1182                         goto err_otg;
1183                 }
1184         }
1185
1186         enable_irq(hsudc->irq);
1187         s3c_hsudc_reconfig(hsudc);
1188
1189         pm_runtime_get_sync(hsudc->dev);
1190
1191         s3c_hsudc_init_phy();
1192         if (hsudc->pd->gpio_init)
1193                 hsudc->pd->gpio_init();
1194
1195         return 0;
1196 err_otg:
1197         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1198 err_supplies:
1199         hsudc->driver = NULL;
1200         return ret;
1201 }
1202
1203 static int s3c_hsudc_stop(struct usb_gadget *gadget)
1204 {
1205         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1206         unsigned long flags;
1207
1208         if (!hsudc)
1209                 return -ENODEV;
1210
1211         spin_lock_irqsave(&hsudc->lock, flags);
1212         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1213         s3c_hsudc_uninit_phy();
1214
1215         pm_runtime_put(hsudc->dev);
1216
1217         if (hsudc->pd->gpio_uninit)
1218                 hsudc->pd->gpio_uninit();
1219         s3c_hsudc_stop_activity(hsudc);
1220         spin_unlock_irqrestore(&hsudc->lock, flags);
1221
1222         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1223                 (void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1224
1225         disable_irq(hsudc->irq);
1226
1227         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1228         hsudc->driver = NULL;
1229
1230         return 0;
1231 }
1232
1233 static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1234 {
1235         return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1236 }
1237
1238 static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1239 {
1240         return s3c_hsudc_read_frameno(to_hsudc(gadget));
1241 }
1242
1243 static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1244 {
1245         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1246
1247         if (!hsudc)
1248                 return -ENODEV;
1249
1250         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1251                 return usb_phy_set_power(hsudc->transceiver, mA);
1252
1253         return -EOPNOTSUPP;
1254 }
1255
1256 static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1257         .get_frame      = s3c_hsudc_gadget_getframe,
1258         .udc_start      = s3c_hsudc_start,
1259         .udc_stop       = s3c_hsudc_stop,
1260         .vbus_draw      = s3c_hsudc_vbus_draw,
1261 };
1262
1263 static int s3c_hsudc_probe(struct platform_device *pdev)
1264 {
1265         struct device *dev = &pdev->dev;
1266         struct resource *res;
1267         struct s3c_hsudc *hsudc;
1268         struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev);
1269         int ret, i;
1270
1271         hsudc = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsudc) +
1272                         sizeof(struct s3c_hsudc_ep) * pd->epnum,
1273                         GFP_KERNEL);
1274         if (!hsudc)
1275                 return -ENOMEM;
1276
1277         platform_set_drvdata(pdev, dev);
1278         hsudc->dev = dev;
1279         hsudc->pd = dev_get_platdata(&pdev->dev);
1280
1281         hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
1282
1283         for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1284                 hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1285
1286         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1287                                  hsudc->supplies);
1288         if (ret != 0) {
1289                 dev_err(dev, "failed to request supplies: %d\n", ret);
1290                 goto err_supplies;
1291         }
1292
1293         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1294
1295         hsudc->regs = devm_ioremap_resource(&pdev->dev, res);
1296         if (IS_ERR(hsudc->regs)) {
1297                 ret = PTR_ERR(hsudc->regs);
1298                 goto err_res;
1299         }
1300
1301         spin_lock_init(&hsudc->lock);
1302
1303         hsudc->gadget.max_speed = USB_SPEED_HIGH;
1304         hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1305         hsudc->gadget.name = dev_name(dev);
1306         hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1307         hsudc->gadget.is_otg = 0;
1308         hsudc->gadget.is_a_peripheral = 0;
1309         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1310
1311         s3c_hsudc_setup_ep(hsudc);
1312
1313         ret = platform_get_irq(pdev, 0);
1314         if (ret < 0)
1315                 goto err_res;
1316         hsudc->irq = ret;
1317
1318         ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
1319                                 driver_name, hsudc);
1320         if (ret < 0) {
1321                 dev_err(dev, "irq request failed\n");
1322                 goto err_res;
1323         }
1324
1325         hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
1326         if (IS_ERR(hsudc->uclk)) {
1327                 dev_err(dev, "failed to find usb-device clock source\n");
1328                 ret = PTR_ERR(hsudc->uclk);
1329                 goto err_res;
1330         }
1331         clk_enable(hsudc->uclk);
1332
1333         local_irq_disable();
1334
1335         disable_irq(hsudc->irq);
1336         local_irq_enable();
1337
1338         ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1339         if (ret)
1340                 goto err_add_udc;
1341
1342         pm_runtime_enable(dev);
1343
1344         return 0;
1345 err_add_udc:
1346         clk_disable(hsudc->uclk);
1347 err_res:
1348         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1349                 usb_put_phy(hsudc->transceiver);
1350
1351 err_supplies:
1352         return ret;
1353 }
1354
1355 static struct platform_driver s3c_hsudc_driver = {
1356         .driver         = {
1357                 .name   = "s3c-hsudc",
1358         },
1359         .probe          = s3c_hsudc_probe,
1360 };
1361
1362 module_platform_driver(s3c_hsudc_driver);
1363
1364 MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1365 MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1366 MODULE_LICENSE("GPL");
1367 MODULE_ALIAS("platform:s3c-hsudc");