Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / usb / gadget / udc / mv_udc_core.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
4  * Author: Chao Xie <chao.xie@marvell.com>
5  *         Neil Zhang <zhangwm@marvell.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/ioport.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 #include <linux/device.h>
24 #include <linux/usb/ch9.h>
25 #include <linux/usb/gadget.h>
26 #include <linux/usb/otg.h>
27 #include <linux/pm.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/platform_data/mv_usb.h>
33 #include <asm/unaligned.h>
34
35 #include "mv_udc.h"
36
37 #define DRIVER_DESC             "Marvell PXA USB Device Controller driver"
38
39 #define ep_dir(ep)      (((ep)->ep_num == 0) ? \
40                                 ((ep)->udc->ep0_dir) : ((ep)->direction))
41
42 /* timeout value -- usec */
43 #define RESET_TIMEOUT           10000
44 #define FLUSH_TIMEOUT           10000
45 #define EPSTATUS_TIMEOUT        10000
46 #define PRIME_TIMEOUT           10000
47 #define READSAFE_TIMEOUT        1000
48
49 #define LOOPS_USEC_SHIFT        1
50 #define LOOPS_USEC              (1 << LOOPS_USEC_SHIFT)
51 #define LOOPS(timeout)          ((timeout) >> LOOPS_USEC_SHIFT)
52
53 static DECLARE_COMPLETION(release_done);
54
55 static const char driver_name[] = "mv_udc";
56 static const char driver_desc[] = DRIVER_DESC;
57
58 static void nuke(struct mv_ep *ep, int status);
59 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
60
61 /* for endpoint 0 operations */
62 static const struct usb_endpoint_descriptor mv_ep0_desc = {
63         .bLength =              USB_DT_ENDPOINT_SIZE,
64         .bDescriptorType =      USB_DT_ENDPOINT,
65         .bEndpointAddress =     0,
66         .bmAttributes =         USB_ENDPOINT_XFER_CONTROL,
67         .wMaxPacketSize =       EP0_MAX_PKT_SIZE,
68 };
69
70 static void ep0_reset(struct mv_udc *udc)
71 {
72         struct mv_ep *ep;
73         u32 epctrlx;
74         int i = 0;
75
76         /* ep0 in and out */
77         for (i = 0; i < 2; i++) {
78                 ep = &udc->eps[i];
79                 ep->udc = udc;
80
81                 /* ep0 dQH */
82                 ep->dqh = &udc->ep_dqh[i];
83
84                 /* configure ep0 endpoint capabilities in dQH */
85                 ep->dqh->max_packet_length =
86                         (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
87                         | EP_QUEUE_HEAD_IOS;
88
89                 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
90
91                 epctrlx = readl(&udc->op_regs->epctrlx[0]);
92                 if (i) {        /* TX */
93                         epctrlx |= EPCTRL_TX_ENABLE
94                                 | (USB_ENDPOINT_XFER_CONTROL
95                                         << EPCTRL_TX_EP_TYPE_SHIFT);
96
97                 } else {        /* RX */
98                         epctrlx |= EPCTRL_RX_ENABLE
99                                 | (USB_ENDPOINT_XFER_CONTROL
100                                         << EPCTRL_RX_EP_TYPE_SHIFT);
101                 }
102
103                 writel(epctrlx, &udc->op_regs->epctrlx[0]);
104         }
105 }
106
107 /* protocol ep0 stall, will automatically be cleared on new transaction */
108 static void ep0_stall(struct mv_udc *udc)
109 {
110         u32     epctrlx;
111
112         /* set TX and RX to stall */
113         epctrlx = readl(&udc->op_regs->epctrlx[0]);
114         epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
115         writel(epctrlx, &udc->op_regs->epctrlx[0]);
116
117         /* update ep0 state */
118         udc->ep0_state = WAIT_FOR_SETUP;
119         udc->ep0_dir = EP_DIR_OUT;
120 }
121
122 static int process_ep_req(struct mv_udc *udc, int index,
123         struct mv_req *curr_req)
124 {
125         struct mv_dtd   *curr_dtd;
126         struct mv_dqh   *curr_dqh;
127         int actual, remaining_length;
128         int i, direction;
129         int retval = 0;
130         u32 errors;
131         u32 bit_pos;
132
133         curr_dqh = &udc->ep_dqh[index];
134         direction = index % 2;
135
136         curr_dtd = curr_req->head;
137         actual = curr_req->req.length;
138
139         for (i = 0; i < curr_req->dtd_count; i++) {
140                 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
141                         dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
142                                 udc->eps[index].name);
143                         return 1;
144                 }
145
146                 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
147                 if (!errors) {
148                         remaining_length =
149                                 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
150                                         >> DTD_LENGTH_BIT_POS;
151                         actual -= remaining_length;
152
153                         if (remaining_length) {
154                                 if (direction) {
155                                         dev_dbg(&udc->dev->dev,
156                                                 "TX dTD remains data\n");
157                                         retval = -EPROTO;
158                                         break;
159                                 } else
160                                         break;
161                         }
162                 } else {
163                         dev_info(&udc->dev->dev,
164                                 "complete_tr error: ep=%d %s: error = 0x%x\n",
165                                 index >> 1, direction ? "SEND" : "RECV",
166                                 errors);
167                         if (errors & DTD_STATUS_HALTED) {
168                                 /* Clear the errors and Halt condition */
169                                 curr_dqh->size_ioc_int_sts &= ~errors;
170                                 retval = -EPIPE;
171                         } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
172                                 retval = -EPROTO;
173                         } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
174                                 retval = -EILSEQ;
175                         }
176                 }
177                 if (i != curr_req->dtd_count - 1)
178                         curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
179         }
180         if (retval)
181                 return retval;
182
183         if (direction == EP_DIR_OUT)
184                 bit_pos = 1 << curr_req->ep->ep_num;
185         else
186                 bit_pos = 1 << (16 + curr_req->ep->ep_num);
187
188         while (curr_dqh->curr_dtd_ptr == curr_dtd->td_dma) {
189                 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
190                         while (readl(&udc->op_regs->epstatus) & bit_pos)
191                                 udelay(1);
192                         break;
193                 }
194                 udelay(1);
195         }
196
197         curr_req->req.actual = actual;
198
199         return 0;
200 }
201
202 /*
203  * done() - retire a request; caller blocked irqs
204  * @status : request status to be set, only works when
205  * request is still in progress.
206  */
207 static void done(struct mv_ep *ep, struct mv_req *req, int status)
208         __releases(&ep->udc->lock)
209         __acquires(&ep->udc->lock)
210 {
211         struct mv_udc *udc = NULL;
212         unsigned char stopped = ep->stopped;
213         struct mv_dtd *curr_td, *next_td;
214         int j;
215
216         udc = (struct mv_udc *)ep->udc;
217         /* Removed the req from fsl_ep->queue */
218         list_del_init(&req->queue);
219
220         /* req.status should be set as -EINPROGRESS in ep_queue() */
221         if (req->req.status == -EINPROGRESS)
222                 req->req.status = status;
223         else
224                 status = req->req.status;
225
226         /* Free dtd for the request */
227         next_td = req->head;
228         for (j = 0; j < req->dtd_count; j++) {
229                 curr_td = next_td;
230                 if (j != req->dtd_count - 1)
231                         next_td = curr_td->next_dtd_virt;
232                 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
233         }
234
235         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
236
237         if (status && (status != -ESHUTDOWN))
238                 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
239                         ep->ep.name, &req->req, status,
240                         req->req.actual, req->req.length);
241
242         ep->stopped = 1;
243
244         spin_unlock(&ep->udc->lock);
245
246         usb_gadget_giveback_request(&ep->ep, &req->req);
247
248         spin_lock(&ep->udc->lock);
249         ep->stopped = stopped;
250 }
251
252 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
253 {
254         struct mv_udc *udc;
255         struct mv_dqh *dqh;
256         u32 bit_pos, direction;
257         u32 usbcmd, epstatus;
258         unsigned int loops;
259         int retval = 0;
260
261         udc = ep->udc;
262         direction = ep_dir(ep);
263         dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
264         bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
265
266         /* check if the pipe is empty */
267         if (!(list_empty(&ep->queue))) {
268                 struct mv_req *lastreq;
269                 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
270                 lastreq->tail->dtd_next =
271                         req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
272
273                 wmb();
274
275                 if (readl(&udc->op_regs->epprime) & bit_pos)
276                         goto done;
277
278                 loops = LOOPS(READSAFE_TIMEOUT);
279                 while (1) {
280                         /* start with setting the semaphores */
281                         usbcmd = readl(&udc->op_regs->usbcmd);
282                         usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
283                         writel(usbcmd, &udc->op_regs->usbcmd);
284
285                         /* read the endpoint status */
286                         epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
287
288                         /*
289                          * Reread the ATDTW semaphore bit to check if it is
290                          * cleared. When hardware see a hazard, it will clear
291                          * the bit or else we remain set to 1 and we can
292                          * proceed with priming of endpoint if not already
293                          * primed.
294                          */
295                         if (readl(&udc->op_regs->usbcmd)
296                                 & USBCMD_ATDTW_TRIPWIRE_SET)
297                                 break;
298
299                         loops--;
300                         if (loops == 0) {
301                                 dev_err(&udc->dev->dev,
302                                         "Timeout for ATDTW_TRIPWIRE...\n");
303                                 retval = -ETIME;
304                                 goto done;
305                         }
306                         udelay(LOOPS_USEC);
307                 }
308
309                 /* Clear the semaphore */
310                 usbcmd = readl(&udc->op_regs->usbcmd);
311                 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
312                 writel(usbcmd, &udc->op_regs->usbcmd);
313
314                 if (epstatus)
315                         goto done;
316         }
317
318         /* Write dQH next pointer and terminate bit to 0 */
319         dqh->next_dtd_ptr = req->head->td_dma
320                                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
321
322         /* clear active and halt bit, in case set from a previous error */
323         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
324
325         /* Ensure that updates to the QH will occur before priming. */
326         wmb();
327
328         /* Prime the Endpoint */
329         writel(bit_pos, &udc->op_regs->epprime);
330
331 done:
332         return retval;
333 }
334
335 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
336                 dma_addr_t *dma, int *is_last)
337 {
338         struct mv_dtd *dtd;
339         struct mv_udc *udc;
340         struct mv_dqh *dqh;
341         u32 temp, mult = 0;
342
343         /* how big will this transfer be? */
344         if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
345                 dqh = req->ep->dqh;
346                 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
347                                 & 0x3;
348                 *length = min(req->req.length - req->req.actual,
349                                 (unsigned)(mult * req->ep->ep.maxpacket));
350         } else
351                 *length = min(req->req.length - req->req.actual,
352                                 (unsigned)EP_MAX_LENGTH_TRANSFER);
353
354         udc = req->ep->udc;
355
356         /*
357          * Be careful that no _GFP_HIGHMEM is set,
358          * or we can not use dma_to_virt
359          */
360         dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
361         if (dtd == NULL)
362                 return dtd;
363
364         dtd->td_dma = *dma;
365         /* initialize buffer page pointers */
366         temp = (u32)(req->req.dma + req->req.actual);
367         dtd->buff_ptr0 = cpu_to_le32(temp);
368         temp &= ~0xFFF;
369         dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
370         dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
371         dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
372         dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
373
374         req->req.actual += *length;
375
376         /* zlp is needed if req->req.zero is set */
377         if (req->req.zero) {
378                 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
379                         *is_last = 1;
380                 else
381                         *is_last = 0;
382         } else if (req->req.length == req->req.actual)
383                 *is_last = 1;
384         else
385                 *is_last = 0;
386
387         /* Fill in the transfer size; set active bit */
388         temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
389
390         /* Enable interrupt for the last dtd of a request */
391         if (*is_last && !req->req.no_interrupt)
392                 temp |= DTD_IOC;
393
394         temp |= mult << 10;
395
396         dtd->size_ioc_sts = temp;
397
398         mb();
399
400         return dtd;
401 }
402
403 /* generate dTD linked list for a request */
404 static int req_to_dtd(struct mv_req *req)
405 {
406         unsigned count;
407         int is_last, is_first = 1;
408         struct mv_dtd *dtd, *last_dtd = NULL;
409         dma_addr_t dma;
410
411         do {
412                 dtd = build_dtd(req, &count, &dma, &is_last);
413                 if (dtd == NULL)
414                         return -ENOMEM;
415
416                 if (is_first) {
417                         is_first = 0;
418                         req->head = dtd;
419                 } else {
420                         last_dtd->dtd_next = dma;
421                         last_dtd->next_dtd_virt = dtd;
422                 }
423                 last_dtd = dtd;
424                 req->dtd_count++;
425         } while (!is_last);
426
427         /* set terminate bit to 1 for the last dTD */
428         dtd->dtd_next = DTD_NEXT_TERMINATE;
429
430         req->tail = dtd;
431
432         return 0;
433 }
434
435 static int mv_ep_enable(struct usb_ep *_ep,
436                 const struct usb_endpoint_descriptor *desc)
437 {
438         struct mv_udc *udc;
439         struct mv_ep *ep;
440         struct mv_dqh *dqh;
441         u16 max = 0;
442         u32 bit_pos, epctrlx, direction;
443         const unsigned char zlt = 1;
444         unsigned char ios, mult;
445         unsigned long flags;
446
447         ep = container_of(_ep, struct mv_ep, ep);
448         udc = ep->udc;
449
450         if (!_ep || !desc
451                         || desc->bDescriptorType != USB_DT_ENDPOINT)
452                 return -EINVAL;
453
454         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
455                 return -ESHUTDOWN;
456
457         direction = ep_dir(ep);
458         max = usb_endpoint_maxp(desc);
459
460         /*
461          * disable HW zero length termination select
462          * driver handles zero length packet through req->req.zero
463          */
464         bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
465
466         /* Check if the Endpoint is Primed */
467         if ((readl(&udc->op_regs->epprime) & bit_pos)
468                 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
469                 dev_info(&udc->dev->dev,
470                         "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
471                         " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
472                         (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
473                         (unsigned)readl(&udc->op_regs->epprime),
474                         (unsigned)readl(&udc->op_regs->epstatus),
475                         (unsigned)bit_pos);
476                 goto en_done;
477         }
478
479         /* Set the max packet length, interrupt on Setup and Mult fields */
480         ios = 0;
481         mult = 0;
482         switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
483         case USB_ENDPOINT_XFER_BULK:
484         case USB_ENDPOINT_XFER_INT:
485                 break;
486         case USB_ENDPOINT_XFER_CONTROL:
487                 ios = 1;
488                 break;
489         case USB_ENDPOINT_XFER_ISOC:
490                 /* Calculate transactions needed for high bandwidth iso */
491                 mult = usb_endpoint_maxp_mult(desc);
492                 /* 3 transactions at most */
493                 if (mult > 3)
494                         goto en_done;
495                 break;
496         default:
497                 goto en_done;
498         }
499
500         spin_lock_irqsave(&udc->lock, flags);
501         /* Get the endpoint queue head address */
502         dqh = ep->dqh;
503         dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
504                 | (mult << EP_QUEUE_HEAD_MULT_POS)
505                 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
506                 | (ios ? EP_QUEUE_HEAD_IOS : 0);
507         dqh->next_dtd_ptr = 1;
508         dqh->size_ioc_int_sts = 0;
509
510         ep->ep.maxpacket = max;
511         ep->ep.desc = desc;
512         ep->stopped = 0;
513
514         /* Enable the endpoint for Rx or Tx and set the endpoint type */
515         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
516         if (direction == EP_DIR_IN) {
517                 epctrlx &= ~EPCTRL_TX_ALL_MASK;
518                 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
519                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
520                                 << EPCTRL_TX_EP_TYPE_SHIFT);
521         } else {
522                 epctrlx &= ~EPCTRL_RX_ALL_MASK;
523                 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
524                         | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
525                                 << EPCTRL_RX_EP_TYPE_SHIFT);
526         }
527         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
528
529         /*
530          * Implement Guideline (GL# USB-7) The unused endpoint type must
531          * be programmed to bulk.
532          */
533         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
534         if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
535                 epctrlx |= (USB_ENDPOINT_XFER_BULK
536                                 << EPCTRL_RX_EP_TYPE_SHIFT);
537                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
538         }
539
540         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
541         if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
542                 epctrlx |= (USB_ENDPOINT_XFER_BULK
543                                 << EPCTRL_TX_EP_TYPE_SHIFT);
544                 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
545         }
546
547         spin_unlock_irqrestore(&udc->lock, flags);
548
549         return 0;
550 en_done:
551         return -EINVAL;
552 }
553
554 static int  mv_ep_disable(struct usb_ep *_ep)
555 {
556         struct mv_udc *udc;
557         struct mv_ep *ep;
558         struct mv_dqh *dqh;
559         u32 epctrlx, direction;
560         unsigned long flags;
561
562         ep = container_of(_ep, struct mv_ep, ep);
563         if ((_ep == NULL) || !ep->ep.desc)
564                 return -EINVAL;
565
566         udc = ep->udc;
567
568         /* Get the endpoint queue head address */
569         dqh = ep->dqh;
570
571         spin_lock_irqsave(&udc->lock, flags);
572
573         direction = ep_dir(ep);
574
575         /* Reset the max packet length and the interrupt on Setup */
576         dqh->max_packet_length = 0;
577
578         /* Disable the endpoint for Rx or Tx and reset the endpoint type */
579         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
580         epctrlx &= ~((direction == EP_DIR_IN)
581                         ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
582                         : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
583         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
584
585         /* nuke all pending requests (does flush) */
586         nuke(ep, -ESHUTDOWN);
587
588         ep->ep.desc = NULL;
589         ep->stopped = 1;
590
591         spin_unlock_irqrestore(&udc->lock, flags);
592
593         return 0;
594 }
595
596 static struct usb_request *
597 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
598 {
599         struct mv_req *req = NULL;
600
601         req = kzalloc(sizeof *req, gfp_flags);
602         if (!req)
603                 return NULL;
604
605         req->req.dma = DMA_ADDR_INVALID;
606         INIT_LIST_HEAD(&req->queue);
607
608         return &req->req;
609 }
610
611 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
612 {
613         struct mv_req *req = NULL;
614
615         req = container_of(_req, struct mv_req, req);
616
617         if (_req)
618                 kfree(req);
619 }
620
621 static void mv_ep_fifo_flush(struct usb_ep *_ep)
622 {
623         struct mv_udc *udc;
624         u32 bit_pos, direction;
625         struct mv_ep *ep;
626         unsigned int loops;
627
628         if (!_ep)
629                 return;
630
631         ep = container_of(_ep, struct mv_ep, ep);
632         if (!ep->ep.desc)
633                 return;
634
635         udc = ep->udc;
636         direction = ep_dir(ep);
637
638         if (ep->ep_num == 0)
639                 bit_pos = (1 << 16) | 1;
640         else if (direction == EP_DIR_OUT)
641                 bit_pos = 1 << ep->ep_num;
642         else
643                 bit_pos = 1 << (16 + ep->ep_num);
644
645         loops = LOOPS(EPSTATUS_TIMEOUT);
646         do {
647                 unsigned int inter_loops;
648
649                 if (loops == 0) {
650                         dev_err(&udc->dev->dev,
651                                 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
652                                 (unsigned)readl(&udc->op_regs->epstatus),
653                                 (unsigned)bit_pos);
654                         return;
655                 }
656                 /* Write 1 to the Flush register */
657                 writel(bit_pos, &udc->op_regs->epflush);
658
659                 /* Wait until flushing completed */
660                 inter_loops = LOOPS(FLUSH_TIMEOUT);
661                 while (readl(&udc->op_regs->epflush)) {
662                         /*
663                          * ENDPTFLUSH bit should be cleared to indicate this
664                          * operation is complete
665                          */
666                         if (inter_loops == 0) {
667                                 dev_err(&udc->dev->dev,
668                                         "TIMEOUT for ENDPTFLUSH=0x%x,"
669                                         "bit_pos=0x%x\n",
670                                         (unsigned)readl(&udc->op_regs->epflush),
671                                         (unsigned)bit_pos);
672                                 return;
673                         }
674                         inter_loops--;
675                         udelay(LOOPS_USEC);
676                 }
677                 loops--;
678         } while (readl(&udc->op_regs->epstatus) & bit_pos);
679 }
680
681 /* queues (submits) an I/O request to an endpoint */
682 static int
683 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
684 {
685         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
686         struct mv_req *req = container_of(_req, struct mv_req, req);
687         struct mv_udc *udc = ep->udc;
688         unsigned long flags;
689         int retval;
690
691         /* catch various bogus parameters */
692         if (!_req || !req->req.complete || !req->req.buf
693                         || !list_empty(&req->queue)) {
694                 dev_err(&udc->dev->dev, "%s, bad params", __func__);
695                 return -EINVAL;
696         }
697         if (unlikely(!_ep || !ep->ep.desc)) {
698                 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
699                 return -EINVAL;
700         }
701
702         udc = ep->udc;
703         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
704                 return -ESHUTDOWN;
705
706         req->ep = ep;
707
708         /* map virtual address to hardware */
709         retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
710         if (retval)
711                 return retval;
712
713         req->req.status = -EINPROGRESS;
714         req->req.actual = 0;
715         req->dtd_count = 0;
716
717         spin_lock_irqsave(&udc->lock, flags);
718
719         /* build dtds and push them to device queue */
720         if (!req_to_dtd(req)) {
721                 retval = queue_dtd(ep, req);
722                 if (retval) {
723                         spin_unlock_irqrestore(&udc->lock, flags);
724                         dev_err(&udc->dev->dev, "Failed to queue dtd\n");
725                         goto err_unmap_dma;
726                 }
727         } else {
728                 spin_unlock_irqrestore(&udc->lock, flags);
729                 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
730                 retval = -ENOMEM;
731                 goto err_unmap_dma;
732         }
733
734         /* Update ep0 state */
735         if (ep->ep_num == 0)
736                 udc->ep0_state = DATA_STATE_XMIT;
737
738         /* irq handler advances the queue */
739         list_add_tail(&req->queue, &ep->queue);
740         spin_unlock_irqrestore(&udc->lock, flags);
741
742         return 0;
743
744 err_unmap_dma:
745         usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
746
747         return retval;
748 }
749
750 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
751 {
752         struct mv_dqh *dqh = ep->dqh;
753         u32 bit_pos;
754
755         /* Write dQH next pointer and terminate bit to 0 */
756         dqh->next_dtd_ptr = req->head->td_dma
757                 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
758
759         /* clear active and halt bit, in case set from a previous error */
760         dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
761
762         /* Ensure that updates to the QH will occure before priming. */
763         wmb();
764
765         bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
766
767         /* Prime the Endpoint */
768         writel(bit_pos, &ep->udc->op_regs->epprime);
769 }
770
771 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
772 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
773 {
774         struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
775         struct mv_req *req;
776         struct mv_udc *udc = ep->udc;
777         unsigned long flags;
778         int stopped, ret = 0;
779         u32 epctrlx;
780
781         if (!_ep || !_req)
782                 return -EINVAL;
783
784         spin_lock_irqsave(&ep->udc->lock, flags);
785         stopped = ep->stopped;
786
787         /* Stop the ep before we deal with the queue */
788         ep->stopped = 1;
789         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
790         if (ep_dir(ep) == EP_DIR_IN)
791                 epctrlx &= ~EPCTRL_TX_ENABLE;
792         else
793                 epctrlx &= ~EPCTRL_RX_ENABLE;
794         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
795
796         /* make sure it's actually queued on this endpoint */
797         list_for_each_entry(req, &ep->queue, queue) {
798                 if (&req->req == _req)
799                         break;
800         }
801         if (&req->req != _req) {
802                 ret = -EINVAL;
803                 goto out;
804         }
805
806         /* The request is in progress, or completed but not dequeued */
807         if (ep->queue.next == &req->queue) {
808                 _req->status = -ECONNRESET;
809                 mv_ep_fifo_flush(_ep);  /* flush current transfer */
810
811                 /* The request isn't the last request in this ep queue */
812                 if (req->queue.next != &ep->queue) {
813                         struct mv_req *next_req;
814
815                         next_req = list_entry(req->queue.next,
816                                 struct mv_req, queue);
817
818                         /* Point the QH to the first TD of next request */
819                         mv_prime_ep(ep, next_req);
820                 } else {
821                         struct mv_dqh *qh;
822
823                         qh = ep->dqh;
824                         qh->next_dtd_ptr = 1;
825                         qh->size_ioc_int_sts = 0;
826                 }
827
828                 /* The request hasn't been processed, patch up the TD chain */
829         } else {
830                 struct mv_req *prev_req;
831
832                 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
833                 writel(readl(&req->tail->dtd_next),
834                                 &prev_req->tail->dtd_next);
835
836         }
837
838         done(ep, req, -ECONNRESET);
839
840         /* Enable EP */
841 out:
842         epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
843         if (ep_dir(ep) == EP_DIR_IN)
844                 epctrlx |= EPCTRL_TX_ENABLE;
845         else
846                 epctrlx |= EPCTRL_RX_ENABLE;
847         writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
848         ep->stopped = stopped;
849
850         spin_unlock_irqrestore(&ep->udc->lock, flags);
851         return ret;
852 }
853
854 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
855 {
856         u32 epctrlx;
857
858         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
859
860         if (stall) {
861                 if (direction == EP_DIR_IN)
862                         epctrlx |= EPCTRL_TX_EP_STALL;
863                 else
864                         epctrlx |= EPCTRL_RX_EP_STALL;
865         } else {
866                 if (direction == EP_DIR_IN) {
867                         epctrlx &= ~EPCTRL_TX_EP_STALL;
868                         epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
869                 } else {
870                         epctrlx &= ~EPCTRL_RX_EP_STALL;
871                         epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
872                 }
873         }
874         writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
875 }
876
877 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
878 {
879         u32 epctrlx;
880
881         epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
882
883         if (direction == EP_DIR_OUT)
884                 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
885         else
886                 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
887 }
888
889 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
890 {
891         struct mv_ep *ep;
892         unsigned long flags = 0;
893         int status = 0;
894         struct mv_udc *udc;
895
896         ep = container_of(_ep, struct mv_ep, ep);
897         udc = ep->udc;
898         if (!_ep || !ep->ep.desc) {
899                 status = -EINVAL;
900                 goto out;
901         }
902
903         if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
904                 status = -EOPNOTSUPP;
905                 goto out;
906         }
907
908         /*
909          * Attempt to halt IN ep will fail if any transfer requests
910          * are still queue
911          */
912         if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
913                 status = -EAGAIN;
914                 goto out;
915         }
916
917         spin_lock_irqsave(&ep->udc->lock, flags);
918         ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
919         if (halt && wedge)
920                 ep->wedge = 1;
921         else if (!halt)
922                 ep->wedge = 0;
923         spin_unlock_irqrestore(&ep->udc->lock, flags);
924
925         if (ep->ep_num == 0) {
926                 udc->ep0_state = WAIT_FOR_SETUP;
927                 udc->ep0_dir = EP_DIR_OUT;
928         }
929 out:
930         return status;
931 }
932
933 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
934 {
935         return mv_ep_set_halt_wedge(_ep, halt, 0);
936 }
937
938 static int mv_ep_set_wedge(struct usb_ep *_ep)
939 {
940         return mv_ep_set_halt_wedge(_ep, 1, 1);
941 }
942
943 static const struct usb_ep_ops mv_ep_ops = {
944         .enable         = mv_ep_enable,
945         .disable        = mv_ep_disable,
946
947         .alloc_request  = mv_alloc_request,
948         .free_request   = mv_free_request,
949
950         .queue          = mv_ep_queue,
951         .dequeue        = mv_ep_dequeue,
952
953         .set_wedge      = mv_ep_set_wedge,
954         .set_halt       = mv_ep_set_halt,
955         .fifo_flush     = mv_ep_fifo_flush,     /* flush fifo */
956 };
957
958 static int udc_clock_enable(struct mv_udc *udc)
959 {
960         return clk_prepare_enable(udc->clk);
961 }
962
963 static void udc_clock_disable(struct mv_udc *udc)
964 {
965         clk_disable_unprepare(udc->clk);
966 }
967
968 static void udc_stop(struct mv_udc *udc)
969 {
970         u32 tmp;
971
972         /* Disable interrupts */
973         tmp = readl(&udc->op_regs->usbintr);
974         tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
975                 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
976         writel(tmp, &udc->op_regs->usbintr);
977
978         udc->stopped = 1;
979
980         /* Reset the Run the bit in the command register to stop VUSB */
981         tmp = readl(&udc->op_regs->usbcmd);
982         tmp &= ~USBCMD_RUN_STOP;
983         writel(tmp, &udc->op_regs->usbcmd);
984 }
985
986 static void udc_start(struct mv_udc *udc)
987 {
988         u32 usbintr;
989
990         usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
991                 | USBINTR_PORT_CHANGE_DETECT_EN
992                 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
993         /* Enable interrupts */
994         writel(usbintr, &udc->op_regs->usbintr);
995
996         udc->stopped = 0;
997
998         /* Set the Run bit in the command register */
999         writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1000 }
1001
1002 static int udc_reset(struct mv_udc *udc)
1003 {
1004         unsigned int loops;
1005         u32 tmp, portsc;
1006
1007         /* Stop the controller */
1008         tmp = readl(&udc->op_regs->usbcmd);
1009         tmp &= ~USBCMD_RUN_STOP;
1010         writel(tmp, &udc->op_regs->usbcmd);
1011
1012         /* Reset the controller to get default values */
1013         writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1014
1015         /* wait for reset to complete */
1016         loops = LOOPS(RESET_TIMEOUT);
1017         while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1018                 if (loops == 0) {
1019                         dev_err(&udc->dev->dev,
1020                                 "Wait for RESET completed TIMEOUT\n");
1021                         return -ETIMEDOUT;
1022                 }
1023                 loops--;
1024                 udelay(LOOPS_USEC);
1025         }
1026
1027         /* set controller to device mode */
1028         tmp = readl(&udc->op_regs->usbmode);
1029         tmp |= USBMODE_CTRL_MODE_DEVICE;
1030
1031         /* turn setup lockout off, require setup tripwire in usbcmd */
1032         tmp |= USBMODE_SETUP_LOCK_OFF;
1033
1034         writel(tmp, &udc->op_regs->usbmode);
1035
1036         writel(0x0, &udc->op_regs->epsetupstat);
1037
1038         /* Configure the Endpoint List Address */
1039         writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1040                 &udc->op_regs->eplistaddr);
1041
1042         portsc = readl(&udc->op_regs->portsc[0]);
1043         if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1044                 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1045
1046         if (udc->force_fs)
1047                 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1048         else
1049                 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1050
1051         writel(portsc, &udc->op_regs->portsc[0]);
1052
1053         tmp = readl(&udc->op_regs->epctrlx[0]);
1054         tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1055         writel(tmp, &udc->op_regs->epctrlx[0]);
1056
1057         return 0;
1058 }
1059
1060 static int mv_udc_enable_internal(struct mv_udc *udc)
1061 {
1062         int retval;
1063
1064         if (udc->active)
1065                 return 0;
1066
1067         dev_dbg(&udc->dev->dev, "enable udc\n");
1068         retval = udc_clock_enable(udc);
1069         if (retval)
1070                 return retval;
1071
1072         if (udc->pdata->phy_init) {
1073                 retval = udc->pdata->phy_init(udc->phy_regs);
1074                 if (retval) {
1075                         dev_err(&udc->dev->dev,
1076                                 "init phy error %d\n", retval);
1077                         udc_clock_disable(udc);
1078                         return retval;
1079                 }
1080         }
1081         udc->active = 1;
1082
1083         return 0;
1084 }
1085
1086 static int mv_udc_enable(struct mv_udc *udc)
1087 {
1088         if (udc->clock_gating)
1089                 return mv_udc_enable_internal(udc);
1090
1091         return 0;
1092 }
1093
1094 static void mv_udc_disable_internal(struct mv_udc *udc)
1095 {
1096         if (udc->active) {
1097                 dev_dbg(&udc->dev->dev, "disable udc\n");
1098                 if (udc->pdata->phy_deinit)
1099                         udc->pdata->phy_deinit(udc->phy_regs);
1100                 udc_clock_disable(udc);
1101                 udc->active = 0;
1102         }
1103 }
1104
1105 static void mv_udc_disable(struct mv_udc *udc)
1106 {
1107         if (udc->clock_gating)
1108                 mv_udc_disable_internal(udc);
1109 }
1110
1111 static int mv_udc_get_frame(struct usb_gadget *gadget)
1112 {
1113         struct mv_udc *udc;
1114         u16     retval;
1115
1116         if (!gadget)
1117                 return -ENODEV;
1118
1119         udc = container_of(gadget, struct mv_udc, gadget);
1120
1121         retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1122
1123         return retval;
1124 }
1125
1126 /* Tries to wake up the host connected to this gadget */
1127 static int mv_udc_wakeup(struct usb_gadget *gadget)
1128 {
1129         struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1130         u32 portsc;
1131
1132         /* Remote wakeup feature not enabled by host */
1133         if (!udc->remote_wakeup)
1134                 return -ENOTSUPP;
1135
1136         portsc = readl(&udc->op_regs->portsc);
1137         /* not suspended? */
1138         if (!(portsc & PORTSCX_PORT_SUSPEND))
1139                 return 0;
1140         /* trigger force resume */
1141         portsc |= PORTSCX_PORT_FORCE_RESUME;
1142         writel(portsc, &udc->op_regs->portsc[0]);
1143         return 0;
1144 }
1145
1146 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1147 {
1148         struct mv_udc *udc;
1149         unsigned long flags;
1150         int retval = 0;
1151
1152         udc = container_of(gadget, struct mv_udc, gadget);
1153         spin_lock_irqsave(&udc->lock, flags);
1154
1155         udc->vbus_active = (is_active != 0);
1156
1157         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1158                 __func__, udc->softconnect, udc->vbus_active);
1159
1160         if (udc->driver && udc->softconnect && udc->vbus_active) {
1161                 retval = mv_udc_enable(udc);
1162                 if (retval == 0) {
1163                         /* Clock is disabled, need re-init registers */
1164                         udc_reset(udc);
1165                         ep0_reset(udc);
1166                         udc_start(udc);
1167                 }
1168         } else if (udc->driver && udc->softconnect) {
1169                 if (!udc->active)
1170                         goto out;
1171
1172                 /* stop all the transfer in queue*/
1173                 stop_activity(udc, udc->driver);
1174                 udc_stop(udc);
1175                 mv_udc_disable(udc);
1176         }
1177
1178 out:
1179         spin_unlock_irqrestore(&udc->lock, flags);
1180         return retval;
1181 }
1182
1183 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1184 {
1185         struct mv_udc *udc;
1186         unsigned long flags;
1187         int retval = 0;
1188
1189         udc = container_of(gadget, struct mv_udc, gadget);
1190         spin_lock_irqsave(&udc->lock, flags);
1191
1192         udc->softconnect = (is_on != 0);
1193
1194         dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1195                         __func__, udc->softconnect, udc->vbus_active);
1196
1197         if (udc->driver && udc->softconnect && udc->vbus_active) {
1198                 retval = mv_udc_enable(udc);
1199                 if (retval == 0) {
1200                         /* Clock is disabled, need re-init registers */
1201                         udc_reset(udc);
1202                         ep0_reset(udc);
1203                         udc_start(udc);
1204                 }
1205         } else if (udc->driver && udc->vbus_active) {
1206                 /* stop all the transfer in queue*/
1207                 stop_activity(udc, udc->driver);
1208                 udc_stop(udc);
1209                 mv_udc_disable(udc);
1210         }
1211
1212         spin_unlock_irqrestore(&udc->lock, flags);
1213         return retval;
1214 }
1215
1216 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1217 static int mv_udc_stop(struct usb_gadget *);
1218 /* device controller usb_gadget_ops structure */
1219 static const struct usb_gadget_ops mv_ops = {
1220
1221         /* returns the current frame number */
1222         .get_frame      = mv_udc_get_frame,
1223
1224         /* tries to wake up the host connected to this gadget */
1225         .wakeup         = mv_udc_wakeup,
1226
1227         /* notify controller that VBUS is powered or not */
1228         .vbus_session   = mv_udc_vbus_session,
1229
1230         /* D+ pullup, software-controlled connect/disconnect to USB host */
1231         .pullup         = mv_udc_pullup,
1232         .udc_start      = mv_udc_start,
1233         .udc_stop       = mv_udc_stop,
1234 };
1235
1236 static int eps_init(struct mv_udc *udc)
1237 {
1238         struct mv_ep    *ep;
1239         char name[14];
1240         int i;
1241
1242         /* initialize ep0 */
1243         ep = &udc->eps[0];
1244         ep->udc = udc;
1245         strncpy(ep->name, "ep0", sizeof(ep->name));
1246         ep->ep.name = ep->name;
1247         ep->ep.ops = &mv_ep_ops;
1248         ep->wedge = 0;
1249         ep->stopped = 0;
1250         usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1251         ep->ep.caps.type_control = true;
1252         ep->ep.caps.dir_in = true;
1253         ep->ep.caps.dir_out = true;
1254         ep->ep_num = 0;
1255         ep->ep.desc = &mv_ep0_desc;
1256         INIT_LIST_HEAD(&ep->queue);
1257
1258         ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1259
1260         /* initialize other endpoints */
1261         for (i = 2; i < udc->max_eps * 2; i++) {
1262                 ep = &udc->eps[i];
1263                 if (i % 2) {
1264                         snprintf(name, sizeof(name), "ep%din", i / 2);
1265                         ep->direction = EP_DIR_IN;
1266                         ep->ep.caps.dir_in = true;
1267                 } else {
1268                         snprintf(name, sizeof(name), "ep%dout", i / 2);
1269                         ep->direction = EP_DIR_OUT;
1270                         ep->ep.caps.dir_out = true;
1271                 }
1272                 ep->udc = udc;
1273                 strncpy(ep->name, name, sizeof(ep->name));
1274                 ep->ep.name = ep->name;
1275
1276                 ep->ep.caps.type_iso = true;
1277                 ep->ep.caps.type_bulk = true;
1278                 ep->ep.caps.type_int = true;
1279
1280                 ep->ep.ops = &mv_ep_ops;
1281                 ep->stopped = 0;
1282                 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1283                 ep->ep_num = i / 2;
1284
1285                 INIT_LIST_HEAD(&ep->queue);
1286                 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1287
1288                 ep->dqh = &udc->ep_dqh[i];
1289         }
1290
1291         return 0;
1292 }
1293
1294 /* delete all endpoint requests, called with spinlock held */
1295 static void nuke(struct mv_ep *ep, int status)
1296 {
1297         /* called with spinlock held */
1298         ep->stopped = 1;
1299
1300         /* endpoint fifo flush */
1301         mv_ep_fifo_flush(&ep->ep);
1302
1303         while (!list_empty(&ep->queue)) {
1304                 struct mv_req *req = NULL;
1305                 req = list_entry(ep->queue.next, struct mv_req, queue);
1306                 done(ep, req, status);
1307         }
1308 }
1309
1310 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1311 {
1312         struct mv_ep    *ep;
1313
1314         nuke(&udc->eps[0], -ESHUTDOWN);
1315
1316         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1317                 nuke(ep, -ESHUTDOWN);
1318         }
1319
1320         /* report reset; the driver is already quiesced */
1321         if (driver) {
1322                 spin_unlock(&udc->lock);
1323                 usb_gadget_udc_reset(&udc->gadget, driver);
1324                 spin_lock(&udc->lock);
1325         }
1326 }
1327 /* stop all USB activities */
1328 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1329 {
1330         struct mv_ep    *ep;
1331
1332         nuke(&udc->eps[0], -ESHUTDOWN);
1333
1334         list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1335                 nuke(ep, -ESHUTDOWN);
1336         }
1337
1338         /* report disconnect; the driver is already quiesced */
1339         if (driver) {
1340                 spin_unlock(&udc->lock);
1341                 driver->disconnect(&udc->gadget);
1342                 spin_lock(&udc->lock);
1343         }
1344 }
1345
1346 static int mv_udc_start(struct usb_gadget *gadget,
1347                 struct usb_gadget_driver *driver)
1348 {
1349         struct mv_udc *udc;
1350         int retval = 0;
1351         unsigned long flags;
1352
1353         udc = container_of(gadget, struct mv_udc, gadget);
1354
1355         if (udc->driver)
1356                 return -EBUSY;
1357
1358         spin_lock_irqsave(&udc->lock, flags);
1359
1360         /* hook up the driver ... */
1361         driver->driver.bus = NULL;
1362         udc->driver = driver;
1363
1364         udc->usb_state = USB_STATE_ATTACHED;
1365         udc->ep0_state = WAIT_FOR_SETUP;
1366         udc->ep0_dir = EP_DIR_OUT;
1367
1368         spin_unlock_irqrestore(&udc->lock, flags);
1369
1370         if (udc->transceiver) {
1371                 retval = otg_set_peripheral(udc->transceiver->otg,
1372                                         &udc->gadget);
1373                 if (retval) {
1374                         dev_err(&udc->dev->dev,
1375                                 "unable to register peripheral to otg\n");
1376                         udc->driver = NULL;
1377                         return retval;
1378                 }
1379         }
1380
1381         /* When boot with cable attached, there will be no vbus irq occurred */
1382         if (udc->qwork)
1383                 queue_work(udc->qwork, &udc->vbus_work);
1384
1385         return 0;
1386 }
1387
1388 static int mv_udc_stop(struct usb_gadget *gadget)
1389 {
1390         struct mv_udc *udc;
1391         unsigned long flags;
1392
1393         udc = container_of(gadget, struct mv_udc, gadget);
1394
1395         spin_lock_irqsave(&udc->lock, flags);
1396
1397         mv_udc_enable(udc);
1398         udc_stop(udc);
1399
1400         /* stop all usb activities */
1401         udc->gadget.speed = USB_SPEED_UNKNOWN;
1402         stop_activity(udc, NULL);
1403         mv_udc_disable(udc);
1404
1405         spin_unlock_irqrestore(&udc->lock, flags);
1406
1407         /* unbind gadget driver */
1408         udc->driver = NULL;
1409
1410         return 0;
1411 }
1412
1413 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1414 {
1415         u32 portsc;
1416
1417         portsc = readl(&udc->op_regs->portsc[0]);
1418         portsc |= mode << 16;
1419         writel(portsc, &udc->op_regs->portsc[0]);
1420 }
1421
1422 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1423 {
1424         struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1425         struct mv_req *req = container_of(_req, struct mv_req, req);
1426         struct mv_udc *udc;
1427         unsigned long flags;
1428
1429         udc = mvep->udc;
1430
1431         dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1432
1433         spin_lock_irqsave(&udc->lock, flags);
1434         if (req->test_mode) {
1435                 mv_set_ptc(udc, req->test_mode);
1436                 req->test_mode = 0;
1437         }
1438         spin_unlock_irqrestore(&udc->lock, flags);
1439 }
1440
1441 static int
1442 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1443 {
1444         int retval = 0;
1445         struct mv_req *req;
1446         struct mv_ep *ep;
1447
1448         ep = &udc->eps[0];
1449         udc->ep0_dir = direction;
1450         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1451
1452         req = udc->status_req;
1453
1454         /* fill in the reqest structure */
1455         if (empty == false) {
1456                 *((u16 *) req->req.buf) = cpu_to_le16(status);
1457                 req->req.length = 2;
1458         } else
1459                 req->req.length = 0;
1460
1461         req->ep = ep;
1462         req->req.status = -EINPROGRESS;
1463         req->req.actual = 0;
1464         if (udc->test_mode) {
1465                 req->req.complete = prime_status_complete;
1466                 req->test_mode = udc->test_mode;
1467                 udc->test_mode = 0;
1468         } else
1469                 req->req.complete = NULL;
1470         req->dtd_count = 0;
1471
1472         if (req->req.dma == DMA_ADDR_INVALID) {
1473                 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1474                                 req->req.buf, req->req.length,
1475                                 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1476                 req->mapped = 1;
1477         }
1478
1479         /* prime the data phase */
1480         if (!req_to_dtd(req)) {
1481                 retval = queue_dtd(ep, req);
1482                 if (retval) {
1483                         dev_err(&udc->dev->dev,
1484                                 "Failed to queue dtd when prime status\n");
1485                         goto out;
1486                 }
1487         } else{ /* no mem */
1488                 retval = -ENOMEM;
1489                 dev_err(&udc->dev->dev,
1490                         "Failed to dma_pool_alloc when prime status\n");
1491                 goto out;
1492         }
1493
1494         list_add_tail(&req->queue, &ep->queue);
1495
1496         return 0;
1497 out:
1498         usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1499
1500         return retval;
1501 }
1502
1503 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1504 {
1505         if (index <= TEST_FORCE_EN) {
1506                 udc->test_mode = index;
1507                 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1508                         ep0_stall(udc);
1509         } else
1510                 dev_err(&udc->dev->dev,
1511                         "This test mode(%d) is not supported\n", index);
1512 }
1513
1514 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1515 {
1516         udc->dev_addr = (u8)setup->wValue;
1517
1518         /* update usb state */
1519         udc->usb_state = USB_STATE_ADDRESS;
1520
1521         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1522                 ep0_stall(udc);
1523 }
1524
1525 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1526         struct usb_ctrlrequest *setup)
1527 {
1528         u16 status = 0;
1529         int retval;
1530
1531         if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1532                 != (USB_DIR_IN | USB_TYPE_STANDARD))
1533                 return;
1534
1535         if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1536                 status = 1 << USB_DEVICE_SELF_POWERED;
1537                 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1538         } else if ((setup->bRequestType & USB_RECIP_MASK)
1539                         == USB_RECIP_INTERFACE) {
1540                 /* get interface status */
1541                 status = 0;
1542         } else if ((setup->bRequestType & USB_RECIP_MASK)
1543                         == USB_RECIP_ENDPOINT) {
1544                 u8 ep_num, direction;
1545
1546                 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1547                 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1548                                 ? EP_DIR_IN : EP_DIR_OUT;
1549                 status = ep_is_stall(udc, ep_num, direction)
1550                                 << USB_ENDPOINT_HALT;
1551         }
1552
1553         retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1554         if (retval)
1555                 ep0_stall(udc);
1556         else
1557                 udc->ep0_state = DATA_STATE_XMIT;
1558 }
1559
1560 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1561 {
1562         u8 ep_num;
1563         u8 direction;
1564         struct mv_ep *ep;
1565
1566         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1567                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1568                 switch (setup->wValue) {
1569                 case USB_DEVICE_REMOTE_WAKEUP:
1570                         udc->remote_wakeup = 0;
1571                         break;
1572                 default:
1573                         goto out;
1574                 }
1575         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1576                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1577                 switch (setup->wValue) {
1578                 case USB_ENDPOINT_HALT:
1579                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1580                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1581                                 ? EP_DIR_IN : EP_DIR_OUT;
1582                         if (setup->wValue != 0 || setup->wLength != 0
1583                                 || ep_num > udc->max_eps)
1584                                 goto out;
1585                         ep = &udc->eps[ep_num * 2 + direction];
1586                         if (ep->wedge == 1)
1587                                 break;
1588                         spin_unlock(&udc->lock);
1589                         ep_set_stall(udc, ep_num, direction, 0);
1590                         spin_lock(&udc->lock);
1591                         break;
1592                 default:
1593                         goto out;
1594                 }
1595         } else
1596                 goto out;
1597
1598         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1599                 ep0_stall(udc);
1600 out:
1601         return;
1602 }
1603
1604 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1605 {
1606         u8 ep_num;
1607         u8 direction;
1608
1609         if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1610                 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1611                 switch (setup->wValue) {
1612                 case USB_DEVICE_REMOTE_WAKEUP:
1613                         udc->remote_wakeup = 1;
1614                         break;
1615                 case USB_DEVICE_TEST_MODE:
1616                         if (setup->wIndex & 0xFF
1617                                 ||  udc->gadget.speed != USB_SPEED_HIGH)
1618                                 ep0_stall(udc);
1619
1620                         if (udc->usb_state != USB_STATE_CONFIGURED
1621                                 && udc->usb_state != USB_STATE_ADDRESS
1622                                 && udc->usb_state != USB_STATE_DEFAULT)
1623                                 ep0_stall(udc);
1624
1625                         mv_udc_testmode(udc, (setup->wIndex >> 8));
1626                         goto out;
1627                 default:
1628                         goto out;
1629                 }
1630         } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1631                 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1632                 switch (setup->wValue) {
1633                 case USB_ENDPOINT_HALT:
1634                         ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1635                         direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1636                                 ? EP_DIR_IN : EP_DIR_OUT;
1637                         if (setup->wValue != 0 || setup->wLength != 0
1638                                 || ep_num > udc->max_eps)
1639                                 goto out;
1640                         spin_unlock(&udc->lock);
1641                         ep_set_stall(udc, ep_num, direction, 1);
1642                         spin_lock(&udc->lock);
1643                         break;
1644                 default:
1645                         goto out;
1646                 }
1647         } else
1648                 goto out;
1649
1650         if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1651                 ep0_stall(udc);
1652 out:
1653         return;
1654 }
1655
1656 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1657         struct usb_ctrlrequest *setup)
1658         __releases(&ep->udc->lock)
1659         __acquires(&ep->udc->lock)
1660 {
1661         bool delegate = false;
1662
1663         nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1664
1665         dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1666                         setup->bRequestType, setup->bRequest,
1667                         setup->wValue, setup->wIndex, setup->wLength);
1668         /* We process some standard setup requests here */
1669         if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1670                 switch (setup->bRequest) {
1671                 case USB_REQ_GET_STATUS:
1672                         ch9getstatus(udc, ep_num, setup);
1673                         break;
1674
1675                 case USB_REQ_SET_ADDRESS:
1676                         ch9setaddress(udc, setup);
1677                         break;
1678
1679                 case USB_REQ_CLEAR_FEATURE:
1680                         ch9clearfeature(udc, setup);
1681                         break;
1682
1683                 case USB_REQ_SET_FEATURE:
1684                         ch9setfeature(udc, setup);
1685                         break;
1686
1687                 default:
1688                         delegate = true;
1689                 }
1690         } else
1691                 delegate = true;
1692
1693         /* delegate USB standard requests to the gadget driver */
1694         if (delegate == true) {
1695                 /* USB requests handled by gadget */
1696                 if (setup->wLength) {
1697                         /* DATA phase from gadget, STATUS phase from udc */
1698                         udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1699                                         ?  EP_DIR_IN : EP_DIR_OUT;
1700                         spin_unlock(&udc->lock);
1701                         if (udc->driver->setup(&udc->gadget,
1702                                 &udc->local_setup_buff) < 0)
1703                                 ep0_stall(udc);
1704                         spin_lock(&udc->lock);
1705                         udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1706                                         ?  DATA_STATE_XMIT : DATA_STATE_RECV;
1707                 } else {
1708                         /* no DATA phase, IN STATUS phase from gadget */
1709                         udc->ep0_dir = EP_DIR_IN;
1710                         spin_unlock(&udc->lock);
1711                         if (udc->driver->setup(&udc->gadget,
1712                                 &udc->local_setup_buff) < 0)
1713                                 ep0_stall(udc);
1714                         spin_lock(&udc->lock);
1715                         udc->ep0_state = WAIT_FOR_OUT_STATUS;
1716                 }
1717         }
1718 }
1719
1720 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1721 static void ep0_req_complete(struct mv_udc *udc,
1722         struct mv_ep *ep0, struct mv_req *req)
1723 {
1724         u32 new_addr;
1725
1726         if (udc->usb_state == USB_STATE_ADDRESS) {
1727                 /* set the new address */
1728                 new_addr = (u32)udc->dev_addr;
1729                 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1730                         &udc->op_regs->deviceaddr);
1731         }
1732
1733         done(ep0, req, 0);
1734
1735         switch (udc->ep0_state) {
1736         case DATA_STATE_XMIT:
1737                 /* receive status phase */
1738                 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1739                         ep0_stall(udc);
1740                 break;
1741         case DATA_STATE_RECV:
1742                 /* send status phase */
1743                 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1744                         ep0_stall(udc);
1745                 break;
1746         case WAIT_FOR_OUT_STATUS:
1747                 udc->ep0_state = WAIT_FOR_SETUP;
1748                 break;
1749         case WAIT_FOR_SETUP:
1750                 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1751                 break;
1752         default:
1753                 ep0_stall(udc);
1754                 break;
1755         }
1756 }
1757
1758 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1759 {
1760         u32 temp;
1761         struct mv_dqh *dqh;
1762
1763         dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1764
1765         /* Clear bit in ENDPTSETUPSTAT */
1766         writel((1 << ep_num), &udc->op_regs->epsetupstat);
1767
1768         /* while a hazard exists when setup package arrives */
1769         do {
1770                 /* Set Setup Tripwire */
1771                 temp = readl(&udc->op_regs->usbcmd);
1772                 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1773
1774                 /* Copy the setup packet to local buffer */
1775                 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1776         } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1777
1778         /* Clear Setup Tripwire */
1779         temp = readl(&udc->op_regs->usbcmd);
1780         writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1781 }
1782
1783 static void irq_process_tr_complete(struct mv_udc *udc)
1784 {
1785         u32 tmp, bit_pos;
1786         int i, ep_num = 0, direction = 0;
1787         struct mv_ep    *curr_ep;
1788         struct mv_req *curr_req, *temp_req;
1789         int status;
1790
1791         /*
1792          * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1793          * because the setup packets are to be read ASAP
1794          */
1795
1796         /* Process all Setup packet received interrupts */
1797         tmp = readl(&udc->op_regs->epsetupstat);
1798
1799         if (tmp) {
1800                 for (i = 0; i < udc->max_eps; i++) {
1801                         if (tmp & (1 << i)) {
1802                                 get_setup_data(udc, i,
1803                                         (u8 *)(&udc->local_setup_buff));
1804                                 handle_setup_packet(udc, i,
1805                                         &udc->local_setup_buff);
1806                         }
1807                 }
1808         }
1809
1810         /* Don't clear the endpoint setup status register here.
1811          * It is cleared as a setup packet is read out of the buffer
1812          */
1813
1814         /* Process non-setup transaction complete interrupts */
1815         tmp = readl(&udc->op_regs->epcomplete);
1816
1817         if (!tmp)
1818                 return;
1819
1820         writel(tmp, &udc->op_regs->epcomplete);
1821
1822         for (i = 0; i < udc->max_eps * 2; i++) {
1823                 ep_num = i >> 1;
1824                 direction = i % 2;
1825
1826                 bit_pos = 1 << (ep_num + 16 * direction);
1827
1828                 if (!(bit_pos & tmp))
1829                         continue;
1830
1831                 if (i == 1)
1832                         curr_ep = &udc->eps[0];
1833                 else
1834                         curr_ep = &udc->eps[i];
1835                 /* process the req queue until an uncomplete request */
1836                 list_for_each_entry_safe(curr_req, temp_req,
1837                         &curr_ep->queue, queue) {
1838                         status = process_ep_req(udc, i, curr_req);
1839                         if (status)
1840                                 break;
1841
1842                         /* write back status to req */
1843                         curr_req->req.status = status;
1844
1845                         /* ep0 request completion */
1846                         if (ep_num == 0) {
1847                                 ep0_req_complete(udc, curr_ep, curr_req);
1848                                 break;
1849                         } else {
1850                                 done(curr_ep, curr_req, status);
1851                         }
1852                 }
1853         }
1854 }
1855
1856 static void irq_process_reset(struct mv_udc *udc)
1857 {
1858         u32 tmp;
1859         unsigned int loops;
1860
1861         udc->ep0_dir = EP_DIR_OUT;
1862         udc->ep0_state = WAIT_FOR_SETUP;
1863         udc->remote_wakeup = 0;         /* default to 0 on reset */
1864
1865         /* The address bits are past bit 25-31. Set the address */
1866         tmp = readl(&udc->op_regs->deviceaddr);
1867         tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1868         writel(tmp, &udc->op_regs->deviceaddr);
1869
1870         /* Clear all the setup token semaphores */
1871         tmp = readl(&udc->op_regs->epsetupstat);
1872         writel(tmp, &udc->op_regs->epsetupstat);
1873
1874         /* Clear all the endpoint complete status bits */
1875         tmp = readl(&udc->op_regs->epcomplete);
1876         writel(tmp, &udc->op_regs->epcomplete);
1877
1878         /* wait until all endptprime bits cleared */
1879         loops = LOOPS(PRIME_TIMEOUT);
1880         while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1881                 if (loops == 0) {
1882                         dev_err(&udc->dev->dev,
1883                                 "Timeout for ENDPTPRIME = 0x%x\n",
1884                                 readl(&udc->op_regs->epprime));
1885                         break;
1886                 }
1887                 loops--;
1888                 udelay(LOOPS_USEC);
1889         }
1890
1891         /* Write 1s to the Flush register */
1892         writel((u32)~0, &udc->op_regs->epflush);
1893
1894         if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1895                 dev_info(&udc->dev->dev, "usb bus reset\n");
1896                 udc->usb_state = USB_STATE_DEFAULT;
1897                 /* reset all the queues, stop all USB activities */
1898                 gadget_reset(udc, udc->driver);
1899         } else {
1900                 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1901                         readl(&udc->op_regs->portsc));
1902
1903                 /*
1904                  * re-initialize
1905                  * controller reset
1906                  */
1907                 udc_reset(udc);
1908
1909                 /* reset all the queues, stop all USB activities */
1910                 stop_activity(udc, udc->driver);
1911
1912                 /* reset ep0 dQH and endptctrl */
1913                 ep0_reset(udc);
1914
1915                 /* enable interrupt and set controller to run state */
1916                 udc_start(udc);
1917
1918                 udc->usb_state = USB_STATE_ATTACHED;
1919         }
1920 }
1921
1922 static void handle_bus_resume(struct mv_udc *udc)
1923 {
1924         udc->usb_state = udc->resume_state;
1925         udc->resume_state = 0;
1926
1927         /* report resume to the driver */
1928         if (udc->driver) {
1929                 if (udc->driver->resume) {
1930                         spin_unlock(&udc->lock);
1931                         udc->driver->resume(&udc->gadget);
1932                         spin_lock(&udc->lock);
1933                 }
1934         }
1935 }
1936
1937 static void irq_process_suspend(struct mv_udc *udc)
1938 {
1939         udc->resume_state = udc->usb_state;
1940         udc->usb_state = USB_STATE_SUSPENDED;
1941
1942         if (udc->driver->suspend) {
1943                 spin_unlock(&udc->lock);
1944                 udc->driver->suspend(&udc->gadget);
1945                 spin_lock(&udc->lock);
1946         }
1947 }
1948
1949 static void irq_process_port_change(struct mv_udc *udc)
1950 {
1951         u32 portsc;
1952
1953         portsc = readl(&udc->op_regs->portsc[0]);
1954         if (!(portsc & PORTSCX_PORT_RESET)) {
1955                 /* Get the speed */
1956                 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1957                 switch (speed) {
1958                 case PORTSCX_PORT_SPEED_HIGH:
1959                         udc->gadget.speed = USB_SPEED_HIGH;
1960                         break;
1961                 case PORTSCX_PORT_SPEED_FULL:
1962                         udc->gadget.speed = USB_SPEED_FULL;
1963                         break;
1964                 case PORTSCX_PORT_SPEED_LOW:
1965                         udc->gadget.speed = USB_SPEED_LOW;
1966                         break;
1967                 default:
1968                         udc->gadget.speed = USB_SPEED_UNKNOWN;
1969                         break;
1970                 }
1971         }
1972
1973         if (portsc & PORTSCX_PORT_SUSPEND) {
1974                 udc->resume_state = udc->usb_state;
1975                 udc->usb_state = USB_STATE_SUSPENDED;
1976                 if (udc->driver->suspend) {
1977                         spin_unlock(&udc->lock);
1978                         udc->driver->suspend(&udc->gadget);
1979                         spin_lock(&udc->lock);
1980                 }
1981         }
1982
1983         if (!(portsc & PORTSCX_PORT_SUSPEND)
1984                 && udc->usb_state == USB_STATE_SUSPENDED) {
1985                 handle_bus_resume(udc);
1986         }
1987
1988         if (!udc->resume_state)
1989                 udc->usb_state = USB_STATE_DEFAULT;
1990 }
1991
1992 static void irq_process_error(struct mv_udc *udc)
1993 {
1994         /* Increment the error count */
1995         udc->errors++;
1996 }
1997
1998 static irqreturn_t mv_udc_irq(int irq, void *dev)
1999 {
2000         struct mv_udc *udc = (struct mv_udc *)dev;
2001         u32 status, intr;
2002
2003         /* Disable ISR when stopped bit is set */
2004         if (udc->stopped)
2005                 return IRQ_NONE;
2006
2007         spin_lock(&udc->lock);
2008
2009         status = readl(&udc->op_regs->usbsts);
2010         intr = readl(&udc->op_regs->usbintr);
2011         status &= intr;
2012
2013         if (status == 0) {
2014                 spin_unlock(&udc->lock);
2015                 return IRQ_NONE;
2016         }
2017
2018         /* Clear all the interrupts occurred */
2019         writel(status, &udc->op_regs->usbsts);
2020
2021         if (status & USBSTS_ERR)
2022                 irq_process_error(udc);
2023
2024         if (status & USBSTS_RESET)
2025                 irq_process_reset(udc);
2026
2027         if (status & USBSTS_PORT_CHANGE)
2028                 irq_process_port_change(udc);
2029
2030         if (status & USBSTS_INT)
2031                 irq_process_tr_complete(udc);
2032
2033         if (status & USBSTS_SUSPEND)
2034                 irq_process_suspend(udc);
2035
2036         spin_unlock(&udc->lock);
2037
2038         return IRQ_HANDLED;
2039 }
2040
2041 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2042 {
2043         struct mv_udc *udc = (struct mv_udc *)dev;
2044
2045         /* polling VBUS and init phy may cause too much time*/
2046         if (udc->qwork)
2047                 queue_work(udc->qwork, &udc->vbus_work);
2048
2049         return IRQ_HANDLED;
2050 }
2051
2052 static void mv_udc_vbus_work(struct work_struct *work)
2053 {
2054         struct mv_udc *udc;
2055         unsigned int vbus;
2056
2057         udc = container_of(work, struct mv_udc, vbus_work);
2058         if (!udc->pdata->vbus)
2059                 return;
2060
2061         vbus = udc->pdata->vbus->poll();
2062         dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2063
2064         if (vbus == VBUS_HIGH)
2065                 mv_udc_vbus_session(&udc->gadget, 1);
2066         else if (vbus == VBUS_LOW)
2067                 mv_udc_vbus_session(&udc->gadget, 0);
2068 }
2069
2070 /* release device structure */
2071 static void gadget_release(struct device *_dev)
2072 {
2073         struct mv_udc *udc;
2074
2075         udc = dev_get_drvdata(_dev);
2076
2077         complete(udc->done);
2078 }
2079
2080 static int mv_udc_remove(struct platform_device *pdev)
2081 {
2082         struct mv_udc *udc;
2083
2084         udc = platform_get_drvdata(pdev);
2085
2086         usb_del_gadget_udc(&udc->gadget);
2087
2088         if (udc->qwork) {
2089                 flush_workqueue(udc->qwork);
2090                 destroy_workqueue(udc->qwork);
2091         }
2092
2093         /* free memory allocated in probe */
2094         dma_pool_destroy(udc->dtd_pool);
2095
2096         if (udc->ep_dqh)
2097                 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2098                         udc->ep_dqh, udc->ep_dqh_dma);
2099
2100         mv_udc_disable(udc);
2101
2102         /* free dev, wait for the release() finished */
2103         wait_for_completion(udc->done);
2104
2105         return 0;
2106 }
2107
2108 static int mv_udc_probe(struct platform_device *pdev)
2109 {
2110         struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2111         struct mv_udc *udc;
2112         int retval = 0;
2113         struct resource *r;
2114         size_t size;
2115
2116         if (pdata == NULL) {
2117                 dev_err(&pdev->dev, "missing platform_data\n");
2118                 return -ENODEV;
2119         }
2120
2121         udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2122         if (udc == NULL)
2123                 return -ENOMEM;
2124
2125         udc->done = &release_done;
2126         udc->pdata = dev_get_platdata(&pdev->dev);
2127         spin_lock_init(&udc->lock);
2128
2129         udc->dev = pdev;
2130
2131         if (pdata->mode == MV_USB_MODE_OTG) {
2132                 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2133                                         USB_PHY_TYPE_USB2);
2134                 if (IS_ERR(udc->transceiver)) {
2135                         retval = PTR_ERR(udc->transceiver);
2136
2137                         if (retval == -ENXIO)
2138                                 return retval;
2139
2140                         udc->transceiver = NULL;
2141                         return -EPROBE_DEFER;
2142                 }
2143         }
2144
2145         /* udc only have one sysclk. */
2146         udc->clk = devm_clk_get(&pdev->dev, NULL);
2147         if (IS_ERR(udc->clk))
2148                 return PTR_ERR(udc->clk);
2149
2150         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2151         if (r == NULL) {
2152                 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2153                 return -ENODEV;
2154         }
2155
2156         udc->cap_regs = (struct mv_cap_regs __iomem *)
2157                 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2158         if (udc->cap_regs == NULL) {
2159                 dev_err(&pdev->dev, "failed to map I/O memory\n");
2160                 return -EBUSY;
2161         }
2162
2163         r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2164         if (r == NULL) {
2165                 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2166                 return -ENODEV;
2167         }
2168
2169         udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2170         if (udc->phy_regs == NULL) {
2171                 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2172                 return -EBUSY;
2173         }
2174
2175         /* we will acces controller register, so enable the clk */
2176         retval = mv_udc_enable_internal(udc);
2177         if (retval)
2178                 return retval;
2179
2180         udc->op_regs =
2181                 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2182                 + (readl(&udc->cap_regs->caplength_hciversion)
2183                         & CAPLENGTH_MASK));
2184         udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2185
2186         /*
2187          * some platform will use usb to download image, it may not disconnect
2188          * usb gadget before loading kernel. So first stop udc here.
2189          */
2190         udc_stop(udc);
2191         writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2192
2193         size = udc->max_eps * sizeof(struct mv_dqh) *2;
2194         size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2195         udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2196                                         &udc->ep_dqh_dma, GFP_KERNEL);
2197
2198         if (udc->ep_dqh == NULL) {
2199                 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2200                 retval = -ENOMEM;
2201                 goto err_disable_clock;
2202         }
2203         udc->ep_dqh_size = size;
2204
2205         /* create dTD dma_pool resource */
2206         udc->dtd_pool = dma_pool_create("mv_dtd",
2207                         &pdev->dev,
2208                         sizeof(struct mv_dtd),
2209                         DTD_ALIGNMENT,
2210                         DMA_BOUNDARY);
2211
2212         if (!udc->dtd_pool) {
2213                 retval = -ENOMEM;
2214                 goto err_free_dma;
2215         }
2216
2217         size = udc->max_eps * sizeof(struct mv_ep) *2;
2218         udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2219         if (udc->eps == NULL) {
2220                 retval = -ENOMEM;
2221                 goto err_destroy_dma;
2222         }
2223
2224         /* initialize ep0 status request structure */
2225         udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2226                                         GFP_KERNEL);
2227         if (!udc->status_req) {
2228                 retval = -ENOMEM;
2229                 goto err_destroy_dma;
2230         }
2231         INIT_LIST_HEAD(&udc->status_req->queue);
2232
2233         /* allocate a small amount of memory to get valid address */
2234         udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2235         udc->status_req->req.dma = DMA_ADDR_INVALID;
2236
2237         udc->resume_state = USB_STATE_NOTATTACHED;
2238         udc->usb_state = USB_STATE_POWERED;
2239         udc->ep0_dir = EP_DIR_OUT;
2240         udc->remote_wakeup = 0;
2241
2242         r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2243         if (r == NULL) {
2244                 dev_err(&pdev->dev, "no IRQ resource defined\n");
2245                 retval = -ENODEV;
2246                 goto err_destroy_dma;
2247         }
2248         udc->irq = r->start;
2249         if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2250                 IRQF_SHARED, driver_name, udc)) {
2251                 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2252                         udc->irq);
2253                 retval = -ENODEV;
2254                 goto err_destroy_dma;
2255         }
2256
2257         /* initialize gadget structure */
2258         udc->gadget.ops = &mv_ops;      /* usb_gadget_ops */
2259         udc->gadget.ep0 = &udc->eps[0].ep;      /* gadget ep0 */
2260         INIT_LIST_HEAD(&udc->gadget.ep_list);   /* ep_list */
2261         udc->gadget.speed = USB_SPEED_UNKNOWN;  /* speed */
2262         udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2263
2264         /* the "gadget" abstracts/virtualizes the controller */
2265         udc->gadget.name = driver_name;         /* gadget name */
2266
2267         eps_init(udc);
2268
2269         /* VBUS detect: we can disable/enable clock on demand.*/
2270         if (udc->transceiver)
2271                 udc->clock_gating = 1;
2272         else if (pdata->vbus) {
2273                 udc->clock_gating = 1;
2274                 retval = devm_request_threaded_irq(&pdev->dev,
2275                                 pdata->vbus->irq, NULL,
2276                                 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2277                 if (retval) {
2278                         dev_info(&pdev->dev,
2279                                 "Can not request irq for VBUS, "
2280                                 "disable clock gating\n");
2281                         udc->clock_gating = 0;
2282                 }
2283
2284                 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2285                 if (!udc->qwork) {
2286                         dev_err(&pdev->dev, "cannot create workqueue\n");
2287                         retval = -ENOMEM;
2288                         goto err_destroy_dma;
2289                 }
2290
2291                 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2292         }
2293
2294         /*
2295          * When clock gating is supported, we can disable clk and phy.
2296          * If not, it means that VBUS detection is not supported, we
2297          * have to enable vbus active all the time to let controller work.
2298          */
2299         if (udc->clock_gating)
2300                 mv_udc_disable_internal(udc);
2301         else
2302                 udc->vbus_active = 1;
2303
2304         retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2305                         gadget_release);
2306         if (retval)
2307                 goto err_create_workqueue;
2308
2309         platform_set_drvdata(pdev, udc);
2310         dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2311                 udc->clock_gating ? "with" : "without");
2312
2313         return 0;
2314
2315 err_create_workqueue:
2316         destroy_workqueue(udc->qwork);
2317 err_destroy_dma:
2318         dma_pool_destroy(udc->dtd_pool);
2319 err_free_dma:
2320         dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2321                         udc->ep_dqh, udc->ep_dqh_dma);
2322 err_disable_clock:
2323         mv_udc_disable_internal(udc);
2324
2325         return retval;
2326 }
2327
2328 #ifdef CONFIG_PM
2329 static int mv_udc_suspend(struct device *dev)
2330 {
2331         struct mv_udc *udc;
2332
2333         udc = dev_get_drvdata(dev);
2334
2335         /* if OTG is enabled, the following will be done in OTG driver*/
2336         if (udc->transceiver)
2337                 return 0;
2338
2339         if (udc->pdata->vbus && udc->pdata->vbus->poll)
2340                 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2341                         dev_info(&udc->dev->dev, "USB cable is connected!\n");
2342                         return -EAGAIN;
2343                 }
2344
2345         /*
2346          * only cable is unplugged, udc can suspend.
2347          * So do not care about clock_gating == 1.
2348          */
2349         if (!udc->clock_gating) {
2350                 udc_stop(udc);
2351
2352                 spin_lock_irq(&udc->lock);
2353                 /* stop all usb activities */
2354                 stop_activity(udc, udc->driver);
2355                 spin_unlock_irq(&udc->lock);
2356
2357                 mv_udc_disable_internal(udc);
2358         }
2359
2360         return 0;
2361 }
2362
2363 static int mv_udc_resume(struct device *dev)
2364 {
2365         struct mv_udc *udc;
2366         int retval;
2367
2368         udc = dev_get_drvdata(dev);
2369
2370         /* if OTG is enabled, the following will be done in OTG driver*/
2371         if (udc->transceiver)
2372                 return 0;
2373
2374         if (!udc->clock_gating) {
2375                 retval = mv_udc_enable_internal(udc);
2376                 if (retval)
2377                         return retval;
2378
2379                 if (udc->driver && udc->softconnect) {
2380                         udc_reset(udc);
2381                         ep0_reset(udc);
2382                         udc_start(udc);
2383                 }
2384         }
2385
2386         return 0;
2387 }
2388
2389 static const struct dev_pm_ops mv_udc_pm_ops = {
2390         .suspend        = mv_udc_suspend,
2391         .resume         = mv_udc_resume,
2392 };
2393 #endif
2394
2395 static void mv_udc_shutdown(struct platform_device *pdev)
2396 {
2397         struct mv_udc *udc;
2398         u32 mode;
2399
2400         udc = platform_get_drvdata(pdev);
2401         /* reset controller mode to IDLE */
2402         mv_udc_enable(udc);
2403         mode = readl(&udc->op_regs->usbmode);
2404         mode &= ~3;
2405         writel(mode, &udc->op_regs->usbmode);
2406         mv_udc_disable(udc);
2407 }
2408
2409 static struct platform_driver udc_driver = {
2410         .probe          = mv_udc_probe,
2411         .remove         = mv_udc_remove,
2412         .shutdown       = mv_udc_shutdown,
2413         .driver         = {
2414                 .name   = "mv-udc",
2415 #ifdef CONFIG_PM
2416                 .pm     = &mv_udc_pm_ops,
2417 #endif
2418         },
2419 };
2420
2421 module_platform_driver(udc_driver);
2422 MODULE_ALIAS("platform:mv-udc");
2423 MODULE_DESCRIPTION(DRIVER_DESC);
2424 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2425 MODULE_LICENSE("GPL");